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• Enterprise Systems Integration

– many kinds of systems which must be integrated
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systems infrastructure

integration logic

Introduction

• Enterprise Systems Integration

– easier to integrate if the integration logic can be defined 
separately from the systems
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• Enterprise Systems Integration

– the integration logic is the business process
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• Such business process is an orchestration

– typically, an orchestration:
• receives a message from a system

• transforms the message into another format/structure

• sends the message to another system

– BPM-like flow constructs are possible

business process

Introduction



• In the past

– the business process is just a conceptual view

– implementation is done at the systems level

• In the present

– the orchestration is the implementation of a process

– systems infrastructure can be adapted to fit the process

Introduction



• Key concepts

– orchestration
• an executable model of a business process

– service
• an abstraction of some system functionality

Introduction

SystemSystem

ServiceService



Introduction

• Why services and orchestrations are so important

– services allow us to create a different landscape over 
existing systems

– orchestrations allow us to implement a business process 
over existing systems/services

System SystemSystem

Service

Orchestration



Introduction

• Furthermore

– the concepts of service and orchestration are 
interchangeable
• an orchestration can be exposed as a service

• a service can be implemented as an orchestration of other services

Orchestration

Service



Introduction

• Therefore, everything is 
a service, and there can 
be several layers of 
services

System SystemSystem System

Service exposed to 
the outside world



Service-Oriented Architecture

• A business process is a top-level service which is 
implemented as an orchestration of mid-level 
services which in turn are implemented as 
orchestrations of low-level services exposed by 
systems and applications. 
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Human workflows

• What happens when processes are performed by 
people?



Human workflows

• A process gets instantiated multiple times



Human workflows

• Tasks lists, to-do lists, or work queues

workflow
engine

work
queues

resources



Comparison

Human Workflows Service Orchestrations

Process model Orchestration

Process instance Orchestration instance

Activity
• human task

Activity
• service/system invocation

Resource
• human

Resource
• service (e.g. Web service)
• database (or other data sources)
• etc. (any other application)

Work queue Message queue

Flow constructs
• branching
• parallelism
• loops

Flow constructs
• branching
• parallelism
• loops

Advanced mechanisms
• exception handling
• transactions and compensation
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Examples

Branching Parallelism Loop



Concepts of orchestration flow



Activities

• In business processes, activities are (mostly) tasks

• In orchestrations, activities are (mostly) message 
exchanges

Task Task

Task

Task Task

Task

Receive Send

Receive

Receive Send

Send



Messages

• What is a message?

– a message is some structured data
• it may be a request sent to an external system

• it may be a response received from an external system

– usually, it takes the form of an XML document
• and it may be depicted as a tree structure

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice



Messages

• Message schema vs. message instance

• the schema is usually defined in XSD (XML Schema Definition)

<PurchaseOrder>
<Header>

<ReqID>R1</ReqID>
<Date>2014-07-08</Date>

</Header>
<Item>

<ProductRef>537</ProductRef>
<ProductDesc>Printer cartridge</ProductDesc>
<Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>

</Item>
</PurchaseOrder>

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice



Messages

• Some platforms use XML namespaces

• the type of message is then

<?xml version="1.0" encoding="utf-8"?>
<ns0:PurchaseOrder xmlns:ns0="http://OfficeSupplies.PurchaseOrder">

<Header>
<ReqID>R1</ReqID>
<Date>2014-07-08</Date>

</Header>
<Item>

<ProductRef>537</ProductRef>
<ProductDesc>Printer cartridge</ProductDesc>
<Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>

</Item>
</ns0:PurchaseOrder>

http://OfficeSupplies.PurchaseOrder#PurchaseOrder



Ports

• Messages are sent or received through ports
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Ports

• A port is a connection to an external system

– i.e. a Web service, a database, a message queue, etc.

– communication is configured in the port itself, and not in 
the orchestration
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Activating receive

• An orchestration begins with the arrival of a message

– the first receive creates new orchestration instances and is 
called the activating receive

Receive
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• A normal receive executes in an existing instance

– but how do we know which instance should receive 
Message_2 ?
• more on this later…
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Messages

• Once a message is received, it cannot be changed

– but the message lives through the entire orchestration
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Message construction

• It is possible to create new messages through 
transformation of existing ones
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Message transformation

• How does transformation work?

– messages can be transformed using transformation maps

– for XML messages, the map can be specified using XSLT

Request
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Message transformation

• A map may have several source schemas

– grabbing data from several source messages

Request
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Source schemas

PurchaseOrder
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Message transformation

• It is possible to use special functions too

– in some platforms, these are called functoids

– can be specified as XSLT functions and operators

Request
ReqID
ProductRef
Quantity

Source schemas

PurchaseOrder
Header    

ReqID
Date        

Item    
ProductRef
ProductDesc

Quantity        
UnitPrice
TotalPrice

Target schema

ProductInfo
ProductDesc
UnitPrice

x



Message assignment

• Alternatively, it may be possible to manipulate 
messages directly through code

– in this case we use a message assignment
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• A message assignment contains code (e.g. C#)

– the message elements are accessible as properties

Message assignment

Message_3.Header.ReqID = Message_1.ReqID;

Message_3.Header.Date = System.DateTime.Now.ToString("yyyy-MM-dd");

Message_3.Item.ProductRef = Message_1.ProductRef;

Message_3.Item.ProductDesc = Message_2.ProductDesc;

Message_3.Item.Quantity = Message_1.Quantity;

Message_3.Item.UnitPrice = Message_2.UnitPrice;

Message_3.Item.TotalPrice = Message_1.Quantity * Message_2.UnitPrice;

Request
ReqID
ProductRef
Quantity

ProductInfo
ProductDesc
UnitPrice

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Message_1

Message_2

Message_3

Message Assignment



Controlling the flow

• We have seen

– how to receive messages

– how to send messages

– how to construct new messages

• Now we will see how to control the flow

– with branching decisions

– with parallelism

– with loops (not addressed)



Decisions

• Choosing between alternative paths
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Decisions

• The condition is usually based on message properties

Receive 
port

Message_1
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Decisions

• What if there are multiple conditions?

Receive 
port
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Message_1.Quantity <= 250…

…

Else …
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Parallelism

• Multiple paths running concurrently
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port

Message_1

Receive

Parallel

Send

Send
port

Send

Message_2

Send
port

Message_1

Construct

Transform

A



Parallelism

• Multiple paths running concurrently
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Block structure

• Orchestrations have a nested block structure



Correlations



• An approval process

The problem
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• The process is instantiated multiple times

The problem
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• The solution is to have a correlation id

– a unique request number in every request

The solution
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Correlation properties

• The correlation is based on a common message 
property

Request
ReqID
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Correlation type vs. correlation set

• Some definitions

– Correlation type is the set of message properties (one or 
more) that are used as correlation id

– Correlation set is the set of message exchanges (send or 
receive) included in the same correlation



Correlation set

• The correlation set

– is initialized in one exchange

– is followed by one or more exchanges
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• Adding the correlation to the orchestration

Correlation
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A simple business process



A simple business process

• A purchase process for office supplies

Get price and 
description

Approve 
purchase order

Order product 
from supplier

New
purchase
request

Approved?

Yes

No

Database
server Supplier

Web Service

Manager

approval_requests

approval_responses



A simple business process

• What our orchestration must do

– receive a request

– query a database

– interact with message queues

– invoke a Web service



Receiving the request

• The orchestration is instantiated every time a new 
request is received

– define the request schema

– use an activating receive

Request
Receive

Receive 
port

…

Request
ReqID
ProductRef
Quantity

Schema

Orchestration

A



Querying the database

• A database for office supplies

– to make things simpler, we will use a single table

ProductRef ProductDesc UnitPrice

537 Printer cartridge 24.99

538 Paper A4 80g 3.99

539 Binder A4 25mm 5.49

540 Office Chair 149.99

Products



Querying the database

• Our request contains a ProductRef

ProductRef ProductDesc UnitPrice

537 Printer cartridge 24.99

538 Paper A4 80g 3.99

539 Binder A4 25mm 5.49

540 Office Chair 149.99

Products

Request
ReqID
ProductRef
Quantity

Message schema

<ns0:Request xmlns:ns0="http://OfficeSupplies.Request">
<ReqID>R1</ReqID>
<ProductRef>537</ProductRef>
<Quantity>2</Quantity>

</ns0:Request>

Message instance (example)



Querying the database

• We have to query the database for the given 
ProductRef

ProductDesc UnitPrice

Printer cartridge 24.99

SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = 537;

ProductRef ProductDesc UnitPrice

537 Printer cartridge 24.99

538 Paper A4 80g 3.99

539 Binder A4 25mm 5.49

540 Office Chair 149.99

Products

Query

Result



Querying the database

• The query must work for any given ProductRef

– we turn it into a stored procedure

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = @ProductRef;

Stored procedure

EXEC GetProductInfo 537;

Sample run

ProductDesc UnitPrice

Printer cartridge 24.99

Result



Querying the database

• Since we are working with XML messages, we would 
like to have the output in XML

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = @ProductRef
FOR XML AUTO;

Stored procedure

EXEC GetProductInfo 537;

Sample run

Result

<Products ProductDesc="Printer cartridge" UnitPrice="24.99" />



Querying the database

• We can even get the schema definition

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = @ProductRef
FOR XML AUTO, XMLDATA;

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Products" content="empty" model="closed">
<AttributeType name="ProductDesc" dt:type="string" />
<AttributeType name="UnitPrice" dt:type="number" />
<attribute type="ProductDesc" />
<attribute type="UnitPrice" />

</ElementType>
</Schema>
<Products xmlns="x-schema:#Schema1" ProductDesc="Printer cartridge" UnitPrice="24.99" />

EXEC GetProductInfo 537;



Querying the database

• Orchestration sends input parameters to the stored 
procedure, and receives the results
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Querying the database

• We need to construct the InProduct message

Request
Receive

Send

Receive
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port
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Port
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InProduct
ProductRef

OutProduct
Products

ProductDesc
UnitPrice

Database
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gets the results
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Querying the database

• For this purpose, we use a transformation map

Source schema Target schema

Request
ReqID
ProductRef
Quantity

InProduct
ProductRef



Querying the database

• Our orchestration looks like this

Request
Receive

Send

Receive
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port
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Approving the purchase

• With the original request and the response from the 
database, we construct a purchase order for approval

Request
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Approving the purchase

• Again, we use a transformation map
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Target schema
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Approving the purchase
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Approving the purchase

• Sending the purchase for approval
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Approving the purchase

• Sending the purchase for approval
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Approving the purchase

• The manager has an application to approve the 
purchase order

– receives a message (PurchaseOrder) from the 
approval_requests queue

– shows the purchase order and asks whether it should be 
approved or not

– sends a message (Approval) to the approval_responses
queue

approval_requests

approval_responses

Manager



Approving the purchase

• Using C# and MSMQ

using System;
using System.IO;
using System.Xml;
using System.Messaging;

namespace ConsoleApproval
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Waiting for message...");

string queueName = @".\private$\approval_requests";
MessageQueue mq = new MessageQueue(queueName);

Message msg = mq.Receive();
Console.WriteLine("Message has been received!");

StreamReader reader = new StreamReader(msg.BodyStream);
string request = reader.ReadToEnd();
Console.WriteLine(request);



XmlDocument doc = new XmlDocument();
doc.LoadXml(request);
string ReqID = doc.GetElementsByTagName("ReqID")[0].InnerText;

string Approved = "";
while ((Approved != "yes") && (Approved != "no"))
{

Console.Write("Approve? (yes/no) ");
Approved = Console.ReadLine().ToLower();

}

string response = "<ns0:Approval xmlns:ns0=\"http://OfficeSupplies.Approval\">";
response += "<ReqID>" + ReqID + "</ReqID>";
response += "<Approved>" + Approved + "</Approved>";
response += "</ns0:Approval>";
Console.WriteLine(response);

queueName = @".\private$\approval_responses";
mq = new MessageQueue(queueName);

msg = new Message();

StreamWriter writer = new StreamWriter(msg.BodyStream);
writer.Write(response);
writer.Flush();

mq.Send(msg);

Console.WriteLine("Message has been sent!");
}

}
}



Approving the purchase



Approving the purchase



Approving the purchase



Approving the purchase

• Checking if the purchase is approved

Send

Receive
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Invoking the Web Service

…

Condition Else

Construct

Message 
Assignment

Send

Receive

Web 
Service 

Port

Approval.Approved == "yes"

Supplier
Web Service



Invoking the Web Service

• The Supplier Web Service

– has a single method OrderProduct()

Supplier
Web Service

string OrderProduct(int ProductRef, int Quantity)
{

...

return DeliveryDate;
}

OrderProduct(ProductRef, Quantity)

DeliveryDate



Invoking the Web Service

• The Supplier Web Service

– a simple implementation in ASP.NET and C#

using System;
using System.Web.Services;

[WebService(Namespace = "http://OfficeSupplies")]
public class Service : WebService
{

[WebMethod]
public string OrderProduct(int ProductRef, int Quantity)
{

string DeliveryDate = DateTime.Now.AddDays(2).ToString("yyyy-MM-dd");

return DeliveryDate;
}

}

<%@ WebService Language="C#" CodeBehind="~/App_Code/Service.cs" Class="Service" %>

Service.asmx

Service.cs



Invoking the Web Service



Invoking the Web Service
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Invoking the Web Service

…
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Invoking the Web Service

• How do we know if the orchestration called the WS?

– insert some "debugging" code

using System;
using System.Web.Services;

[WebService(Namespace = "http://OfficeSupplies")]
public class Service : WebService
{

[WebMethod]
public string OrderProduct(int ProductRef, int Quantity)
{

string DeliveryDate = DateTime.Now.AddDays(2).ToString("yyyy-MM-dd");

string entry = String.Format("ProductRef = {0}, Quantity = {1}, 
DeliveryDate = {2}", ProductRef, Quantity, DeliveryDate);

System.Diagnostics.EventLog.WriteEntry("SupplierWebService", entry);

return DeliveryDate;
}

}



Invoking the Web Service
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Tool support

• There are several tools available

– Apache ODE

– Microsoft BizTalk Server

– JBoss Enterprise SOA Platform

– OpenESB / Glassfish

– Oracle Fusion Middleware

– IBM WebSphere

– TIBCO BusinessWorks

– Software AG webMethods

– etc.



Conclusion

• Current tools for Enterprise Systems Integration draw 
heavily from BPM and BPM systems

– similar concepts, similar constructs, similar execution

– orchestrations can be seen as "low-level" processes

• The concepts of services and SOA are a powerful 
mechanism to raise the level of abstraction

– low-level services and low-level orchestrations vs. high-
level services and high-level orchestrations



Conclusion

• BPM concepts together with services and 
orchestrations provide a systematic approach to 
implement business processes on top of enterprise 
systems

System SystemSystem System


