
BPM in Enterprise Systems Integration

Diogo R. Ferreira
Instituto Superior Técnico (IST)

Universidade de Lisboa

Bayreuth International Summer School, 14 - 18 July 2014 Course 4: Business Process Management

Mobile application

Introduction

• Enterprise Systems Integration

– many kinds of systems which must be integrated

File server

Web service

Database

User portal

Desktop application

ERP system

Mail server

Online payment

Introduction

• Enterprise Systems Integration

– integration depends on business processes

File server

Web service

Database

User portal

ERP system

Mail server

Online payment

Mobile application

Desktop application

Introduction

• Enterprise Systems Integration

– integration depends on business processes

File server

Web service

Database

User portal

ERP system

Mail server

Online payment

Mobile application

Desktop application

systems infrastructure

integration logic

Introduction

• Enterprise Systems Integration

– easier to integrate if the integration logic can be defined
separately from the systems

File
server

Web
service

DatabaseUser
portal

Desktop
application

ERP
system

Mail
server

Mobile
application

Online
payment

• Enterprise Systems Integration

– the integration logic is the business process

systems infrastructure

business process

Introduction

File
server

Web
service

DatabaseUser
portal

Desktop
application

ERP
system

Mail
server

Mobile
application

Online
payment

• Such business process is an orchestration

– typically, an orchestration:
• receives a message from a system

• transforms the message into another format/structure

• sends the message to another system

– BPM-like flow constructs are possible

business process

Introduction

• In the past

– the business process is just a conceptual view

– implementation is done at the systems level

• In the present

– the orchestration is the implementation of a process

– systems infrastructure can be adapted to fit the process

Introduction

• Key concepts

– orchestration
• an executable model of a business process

– service
• an abstraction of some system functionality

Introduction

SystemSystem

ServiceService

Introduction

• Why services and orchestrations are so important

– services allow us to create a different landscape over
existing systems

– orchestrations allow us to implement a business process
over existing systems/services

System SystemSystem

Service

Orchestration

Introduction

• Furthermore

– the concepts of service and orchestration are
interchangeable
• an orchestration can be exposed as a service

• a service can be implemented as an orchestration of other services

Orchestration

Service

Introduction

• Therefore, everything is
a service, and there can
be several layers of
services

System SystemSystem System

Service exposed to
the outside world

Service-Oriented Architecture

• A business process is a top-level service which is
implemented as an orchestration of mid-level
services which in turn are implemented as
orchestrations of low-level services exposed by
systems and applications.

Service-Oriented Architecture

Activity Activity

Activity

Activity Activity

Activity

Application Application Application Application Application Application

Service

Service

Service Service

Service

Service

Service

Service Service

Service ServiceService

Service

Service

Service

business
process
layer

service
interface
layer

application
layer

Service-Oriented Architecture

Activity Activity

Activity

Activity Activity

Activity

Application Application Application Application Application Application

Service

Service

Service Service

Service

Service

Service

Service Service

Service ServiceService

Service

Service

Service

C
h

an
ge

s
fr

o
m

 a
p

p
lic

at
io

n
 la

ye
r

C
h

an
ge

s
fr

o
m

 b
u

si
n

es
s

p
ro

ce
ss

 la
ye

r

Human workflows

• What happens when processes are performed by
people?

Human workflows

• A process gets instantiated multiple times

Human workflows

• Tasks lists, to-do lists, or work queues

workflow
engine

work
queues

resources

Comparison

Human Workflows Service Orchestrations

Process model Orchestration

Process instance Orchestration instance

Activity
• human task

Activity
• service/system invocation

Resource
• human

Resource
• service (e.g. Web service)
• database (or other data sources)
• etc. (any other application)

Work queue Message queue

Flow constructs
• branching
• parallelism
• loops

Flow constructs
• branching
• parallelism
• loops

Advanced mechanisms
• exception handling
• transactions and compensation

Examples

Send

Receive

Send

Receive

Send

Receive

Web service

Database

Message queues

Examples

Branching Parallelism Loop

Concepts of orchestration flow

Activities

• In business processes, activities are (mostly) tasks

• In orchestrations, activities are (mostly) message
exchanges

Task Task

Task

Task Task

Task

Receive Send

Receive

Receive Send

Send

Messages

• What is a message?

– a message is some structured data
• it may be a request sent to an external system

• it may be a response received from an external system

– usually, it takes the form of an XML document
• and it may be depicted as a tree structure

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Messages

• Message schema vs. message instance

• the schema is usually defined in XSD (XML Schema Definition)

<PurchaseOrder>
<Header>

<ReqID>R1</ReqID>
<Date>2014-07-08</Date>

</Header>
<Item>

<ProductRef>537</ProductRef>
<ProductDesc>Printer cartridge</ProductDesc>
<Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>

</Item>
</PurchaseOrder>

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Messages

• Some platforms use XML namespaces

• the type of message is then

<?xml version="1.0" encoding="utf-8"?>
<ns0:PurchaseOrder xmlns:ns0="http://OfficeSupplies.PurchaseOrder">

<Header>
<ReqID>R1</ReqID>
<Date>2014-07-08</Date>

</Header>
<Item>

<ProductRef>537</ProductRef>
<ProductDesc>Printer cartridge</ProductDesc>
<Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>

</Item>
</ns0:PurchaseOrder>

http://OfficeSupplies.PurchaseOrder#PurchaseOrder

Ports

• Messages are sent or received through ports

Receive Send

Receive

Receive Send

Send

Receive
port

M
es

sa
ge

Send
port

M
es

sa
ge

Receive
port

M
es

sa
ge

Receive
port

M
es

sa
ge

Send
port

M
es

sa
ge

Send
port

M
es

sa
ge

Ports

• A port is a connection to an external system

– i.e. a Web service, a database, a message queue, etc.

– communication is configured in the port itself, and not in
the orchestration

Receive Send

Receive

Receive Send

Send

Receive
port

M
es

sa
ge

Receive
port

M
es

sa
ge

Send
port

M
es

sa
ge

Activating receive

• An orchestration begins with the arrival of a message

– the first receive creates new orchestration instances and is
called the activating receive

Receive

Receive
port

Receive

Receive

Receive

3 messages

3 new instances
running independently

A

A

A

A

• A normal receive executes in an existing instance

– but how do we know which instance should receive
Message_2 ?
• more on this later…

Receive

Receive Receive

Receive
port

M
es

sa
ge

_1

Receive
port

M
es

sa
ge

_2

…

This message
triggers a new
orchestration

instance

This message is
received by a running
orchestration
instance

A

Messages

• Once a message is received, it cannot be changed

– but the message lives through the entire orchestration

Receive ReceiveReceive

Receive
port

M
es

sa
ge

_1

Receive
port

M
es

sa
ge

_3

Receive
port

M
es

sa
ge

_2

Message_1 exists from this point onwards

Message_2 exists from this point onwards

Message_3

A

Message construction

• It is possible to create new messages through
transformation of existing ones

Receive
port

M
es

sa
ge

_1

Construct

Transform Send

Send
port

M
es

sa
ge

_2
Message_1 exists from this point onwards

Message_2

Receive
A

Message transformation

• How does transformation work?

– messages can be transformed using transformation maps

– for XML messages, the map can be specified using XSLT

Request
ReqID
ProductRef
Quantity

Source schema

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc

Quantity
UnitPrice
TotalPrice

Target schema

Message transformation

• A map may have several source schemas

– grabbing data from several source messages

Request
ReqID
ProductRef
Quantity

Source schemas

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc

Quantity
UnitPrice
TotalPrice

Target schema

ProductInfo
ProductDesc
UnitPrice

Message transformation

• It is possible to use special functions too

– in some platforms, these are called functoids

– can be specified as XSLT functions and operators

Request
ReqID
ProductRef
Quantity

Source schemas

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc

Quantity
UnitPrice
TotalPrice

Target schema

ProductInfo
ProductDesc
UnitPrice

x

Message assignment

• Alternatively, it may be possible to manipulate
messages directly through code

– in this case we use a message assignment

Receive
port

M
es

sa
ge

_1

Construct

Message
Assignment

Send

Send
port

M
es

sa
ge

_2

Message_1 exists from this point onwards

Message_2

Receive
A

• A message assignment contains code (e.g. C#)

– the message elements are accessible as properties

Message assignment

Message_3.Header.ReqID = Message_1.ReqID;

Message_3.Header.Date = System.DateTime.Now.ToString("yyyy-MM-dd");

Message_3.Item.ProductRef = Message_1.ProductRef;

Message_3.Item.ProductDesc = Message_2.ProductDesc;

Message_3.Item.Quantity = Message_1.Quantity;

Message_3.Item.UnitPrice = Message_2.UnitPrice;

Message_3.Item.TotalPrice = Message_1.Quantity * Message_2.UnitPrice;

Request
ReqID
ProductRef
Quantity

ProductInfo
ProductDesc
UnitPrice

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Message_1

Message_2

Message_3

Message Assignment

Controlling the flow

• We have seen

– how to receive messages

– how to send messages

– how to construct new messages

• Now we will see how to control the flow

– with branching decisions

– with parallelism

– with loops (not addressed)

Decisions

• Choosing between alternative paths

Receive
port

Message_1

Receive

Decide

Condition

Else

Send

Send
port

Send

Message_2

Send
port

Message_1

Construct

Transform

A

Decisions

• The condition is usually based on message properties

Receive
port

Message_1

Receive

Decide

Condition

Else

Send

Send
port

Send

Message_2Construct

Transform

Message_1.Quantity <= 500

A

Decisions

• What if there are multiple conditions?

Receive
port

Message_1

Receive

Decide

Condition

Condition

Message_1.Quantity <= 250…

…

Else …

Message_1.Quantity <= 500

A

Parallelism

• Multiple paths running concurrently

Receive
port

Message_1

Receive

Parallel

Send

Send
port

Send

Message_2

Send
port

Message_1

Construct

Transform

A

Parallelism

• Multiple paths running concurrently

Receive
port

Receive

Parallel

…

…

…

…

…

…

…

…

A

Block structure

• Orchestrations have a nested block structure

Correlations

• An approval process

The problem

Request

Approval

Receive

Send

Receive

Send

Receive
port

Send
port

Receive
port

Send
port

Request

Approval

requests

approvals

Manager

A

• The process is instantiated multiple times

The problem

Receive

Send

Receive

Receive
port

Send
port

Receive
port

requests

approvals

Manager?

Orchestration instances

…

A

• The solution is to have a correlation id

– a unique request number in every request

The solution

Receive

Send

Receive

Receive
port

Send
port

Receive
port

requests

approvals

Manager?

…

1 2 3

3

Orchestration instances

A

Correlation properties

• The correlation is based on a common message
property

Request
ReqID
ProductRef
Quantity

Approval
ReqID
Approved

Send

Receive

Send
port

Receive
port

Request

Approval

requests

approvals

Manager

ReqID is the
correlation
property

Correlation type vs. correlation set

• Some definitions

– Correlation type is the set of message properties (one or
more) that are used as correlation id

– Correlation set is the set of message exchanges (send or
receive) included in the same correlation

Correlation set

• The correlation set

– is initialized in one exchange

– is followed by one or more exchanges

Send

Receive

Send
port

Receive
port

Request

Approval

requests

approvals

Manager

Correlation set

This send initializes
the correlation set

This receive follows
the correlation set

C

C

• Adding the correlation to the orchestration

Correlation

Request

Approval

Receive

Send

Receive

Send

Receive
port

Send
port

Receive
port

Send
port

Request

Approval

requests

approvals

Manager

A

C

C

A simple business process

A simple business process

• A purchase process for office supplies

Get price and
description

Approve
purchase order

Order product
from supplier

New
purchase
request

Approved?

Yes

No

Database
server Supplier

Web Service

Manager

approval_requests

approval_responses

A simple business process

• What our orchestration must do

– receive a request

– query a database

– interact with message queues

– invoke a Web service

Receiving the request

• The orchestration is instantiated every time a new
request is received

– define the request schema

– use an activating receive

Request
Receive

Receive
port

…

Request
ReqID
ProductRef
Quantity

Schema

Orchestration

A

Querying the database

• A database for office supplies

– to make things simpler, we will use a single table

ProductRef ProductDesc UnitPrice

537 Printer cartridge 24.99

538 Paper A4 80g 3.99

539 Binder A4 25mm 5.49

540 Office Chair 149.99

Products

Querying the database

• Our request contains a ProductRef

ProductRef ProductDesc UnitPrice

537 Printer cartridge 24.99

538 Paper A4 80g 3.99

539 Binder A4 25mm 5.49

540 Office Chair 149.99

Products

Request
ReqID
ProductRef
Quantity

Message schema

<ns0:Request xmlns:ns0="http://OfficeSupplies.Request">
<ReqID>R1</ReqID>
<ProductRef>537</ProductRef>
<Quantity>2</Quantity>

</ns0:Request>

Message instance (example)

Querying the database

• We have to query the database for the given
ProductRef

ProductDesc UnitPrice

Printer cartridge 24.99

SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = 537;

ProductRef ProductDesc UnitPrice

537 Printer cartridge 24.99

538 Paper A4 80g 3.99

539 Binder A4 25mm 5.49

540 Office Chair 149.99

Products

Query

Result

Querying the database

• The query must work for any given ProductRef

– we turn it into a stored procedure

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = @ProductRef;

Stored procedure

EXEC GetProductInfo 537;

Sample run

ProductDesc UnitPrice

Printer cartridge 24.99

Result

Querying the database

• Since we are working with XML messages, we would
like to have the output in XML

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = @ProductRef
FOR XML AUTO;

Stored procedure

EXEC GetProductInfo 537;

Sample run

Result

<Products ProductDesc="Printer cartridge" UnitPrice="24.99" />

Querying the database

• We can even get the schema definition

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products
WHERE ProductRef = @ProductRef
FOR XML AUTO, XMLDATA;

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Products" content="empty" model="closed">
<AttributeType name="ProductDesc" dt:type="string" />
<AttributeType name="UnitPrice" dt:type="number" />
<attribute type="ProductDesc" />
<attribute type="UnitPrice" />

</ElementType>
</Schema>
<Products xmlns="x-schema:#Schema1" ProductDesc="Printer cartridge" UnitPrice="24.99" />

EXEC GetProductInfo 537;

Querying the database

• Orchestration sends input parameters to the stored
procedure, and receives the results

Request
Receive

Send

Receive

Receive
port

SQL
Adapter

Port

…

InProduct
ProductRef

OutProduct
Products

ProductDesc
UnitPrice

Database

invokes stored procedure

gets the results

A

Querying the database

• We need to construct the InProduct message

Request
Receive

Send

Receive

Receive
port

SQL
Adapter

Port

…

InProduct
ProductRef

OutProduct
Products

ProductDesc
UnitPrice

Database

invokes stored procedure

gets the results

Construct

Transform

Request
ReqID
ProductRef
Quantity

A

Querying the database

• For this purpose, we use a transformation map

Source schema Target schema

Request
ReqID
ProductRef
Quantity

InProduct
ProductRef

Querying the database

• Our orchestration looks like this

Request
Receive

Send

Receive

Receive
port

SQL
Adapter

Port

…

Construct

Transform

Source schema Target schema

Request
ReqID
ProductRef
Quantity

InProduct
ProductRef

Database

invokes stored procedure

gets the results

Request
ReqID
ProductRef
Quantity

InProduct
ProductRef

OutProduct
Products

ProductDesc
UnitPrice

A

Approving the purchase

• With the original request and the response from the
database, we construct a purchase order for approval

Request
ReqID
ProductRef
Quantity

OutProduct
Products

ProductDesc
UnitPrice

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Approving the purchase

• Again, we use a transformation map

Request
ReqID
ProductRef
Quantity

Source schemas

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc

Quantity
UnitPrice
TotalPrice

Target schema

OutProduct
ProductDesc
UnitPrice

x

Approving the purchase

Send

Receive

SQL
Adapter

Port

…

Construct

Transform

Request
ReqID
ProductRef
Quantity

Source schemas

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc

Quantity
UnitPrice
TotalPrice

Target schema

OutProduct
ProductDesc
UnitPrice

x

…

Database

invokes stored procedure

gets the results

• Our orchestration now looks like this

Approving the purchase

• Sending the purchase for approval

Construct

Transform

Send

Receive

Send
port

Receive
port

PurchaseOrder

Approval

approval_requests

approval_responses

Manager

…

…

Request
ReqID
ProductRef
Quantity

Source schemas

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc

Quantity
UnitPrice
TotalPrice

Target schema

OutProduct
ProductDesc
UnitPrice

x

C

C

Approving the purchase

• Sending the purchase for approval

Construct

Transform

Send

Receive

Send
port

Receive
port

PurchaseOrder

Approval

approval_requests

approval_responses

Manager

…

…

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Approval
ReqID
Approved (yes/no)

C

C

Approving the purchase

• The manager has an application to approve the
purchase order

– receives a message (PurchaseOrder) from the
approval_requests queue

– shows the purchase order and asks whether it should be
approved or not

– sends a message (Approval) to the approval_responses
queue

approval_requests

approval_responses

Manager

Approving the purchase

• Using C# and MSMQ

using System;
using System.IO;
using System.Xml;
using System.Messaging;

namespace ConsoleApproval
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Waiting for message...");

string queueName = @".\private$\approval_requests";
MessageQueue mq = new MessageQueue(queueName);

Message msg = mq.Receive();
Console.WriteLine("Message has been received!");

StreamReader reader = new StreamReader(msg.BodyStream);
string request = reader.ReadToEnd();
Console.WriteLine(request);

XmlDocument doc = new XmlDocument();
doc.LoadXml(request);
string ReqID = doc.GetElementsByTagName("ReqID")[0].InnerText;

string Approved = "";
while ((Approved != "yes") && (Approved != "no"))
{

Console.Write("Approve? (yes/no) ");
Approved = Console.ReadLine().ToLower();

}

string response = "<ns0:Approval xmlns:ns0=\"http://OfficeSupplies.Approval\">";
response += "<ReqID>" + ReqID + "</ReqID>";
response += "<Approved>" + Approved + "</Approved>";
response += "</ns0:Approval>";
Console.WriteLine(response);

queueName = @".\private$\approval_responses";
mq = new MessageQueue(queueName);

msg = new Message();

StreamWriter writer = new StreamWriter(msg.BodyStream);
writer.Write(response);
writer.Flush();

mq.Send(msg);

Console.WriteLine("Message has been sent!");
}

}
}

Approving the purchase

Approving the purchase

Approving the purchase

Approving the purchase

• Checking if the purchase is approved

Send

Receive

Send
port

Receive
port

PurchaseOrder

Approval

approval_requests

approval_responses

Manager

…

Condition

…

Else

…

Approval
ReqID
Approved

Approval.Approved == "yes"

C

C

Invoking the Web Service

…

Condition Else

Construct

Message
Assignment

Send

Receive

Web
Service

Port

Approval.Approved == "yes"

Supplier
Web Service

Invoking the Web Service

• The Supplier Web Service

– has a single method OrderProduct()

Supplier
Web Service

string OrderProduct(int ProductRef, int Quantity)
{

...

return DeliveryDate;
}

OrderProduct(ProductRef, Quantity)

DeliveryDate

Invoking the Web Service

• The Supplier Web Service

– a simple implementation in ASP.NET and C#

using System;
using System.Web.Services;

[WebService(Namespace = "http://OfficeSupplies")]
public class Service : WebService
{

[WebMethod]
public string OrderProduct(int ProductRef, int Quantity)
{

string DeliveryDate = DateTime.Now.AddDays(2).ToString("yyyy-MM-dd");

return DeliveryDate;
}

}

<%@ WebService Language="C#" CodeBehind="~/App_Code/Service.cs" Class="Service" %>

Service.asmx

Service.cs

Invoking the Web Service

Invoking the Web Service

Invoking the Web Service

Invoking the Web Service

Invoking the Web Service

…

Condition Else

Construct

Message
Assignment

Send

Receive

Web
Service

Port

Supplier
Web Service

WSRequest.ProductRef =
msgPurchaseOrder.Item.ProductRef;

WSRequest.Quantity =
msgPurchaseOrder.Item.Quantity;

PurchaseOrder
Header

ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Invoking the Web Service

• How do we know if the orchestration called the WS?

– insert some "debugging" code

using System;
using System.Web.Services;

[WebService(Namespace = "http://OfficeSupplies")]
public class Service : WebService
{

[WebMethod]
public string OrderProduct(int ProductRef, int Quantity)
{

string DeliveryDate = DateTime.Now.AddDays(2).ToString("yyyy-MM-dd");

string entry = String.Format("ProductRef = {0}, Quantity = {1},
DeliveryDate = {2}", ProductRef, Quantity, DeliveryDate);

System.Diagnostics.EventLog.WriteEntry("SupplierWebService", entry);

return DeliveryDate;
}

}

Invoking the Web Service

Send

Receive

Construct

Transform

Send
Send
port

PurchaseOrder

Request
Receive

Receive
port

Construct

Transform

…

SQL
Adapter

Port

Overview
A

C

Condition Else

Construct

Message
Assignment

Send

Receive

Web
Service

Port

Receive
Receive

portApproval

…Overview
C

Tool support

• There are several tools available

– Apache ODE

– Microsoft BizTalk Server

– JBoss Enterprise SOA Platform

– OpenESB / Glassfish

– Oracle Fusion Middleware

– IBM WebSphere

– TIBCO BusinessWorks

– Software AG webMethods

– etc.

Conclusion

• Current tools for Enterprise Systems Integration draw
heavily from BPM and BPM systems

– similar concepts, similar constructs, similar execution

– orchestrations can be seen as "low-level" processes

• The concepts of services and SOA are a powerful
mechanism to raise the level of abstraction

– low-level services and low-level orchestrations vs. high-
level services and high-level orchestrations

Conclusion

• BPM concepts together with services and
orchestrations provide a systematic approach to
implement business processes on top of enterprise
systems

System SystemSystem System

