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Abstract. The ability to infer user context based on a mobile device
together with a set of external sensors opens up the way to new context-
aware services and applications. In this paper, we describe a mobile con-
text provider that makes use of sensors available in a smartphone as well
as sensors externally connected via bluetooth. We describe the system
architecture from sensor data acquisition to feature extraction, context
inference and the publication of context information to well-known social
networking services such as Twitter and Hi5. In the current prototype,
context inference is based on decision trees, but the middleware allows
the integration of other inference engines. Experimental results suggest
that the proposed solution is a promising approach to provide user con-
text to both local and network-level services.

1 Introduction

The processing capabilities of mobile devices coupled with portable and wear-
able sensors provide the basis for new context-aware services and applications
tailored to the user environment and its daily activities. To enable such kind of
services, mobile devices must be able to clearly and accurately identify specific
user contexts [1, 2]. For this purpose, mobile devices can be augmented with
sensors that yield information such as position, lighting or sound, from which
specific user contexts can be determined.

In this paper we present a prototype system consisting of a smartphone
augmented with an array of sensors connected via bluetooth, and we describe
the use of this system as a context provider for social networks. The system is
an evolution of a previous prototype [3] and it is able to learn a set of given
contexts and to identify the user context dynamically at run-time. The new
prototype described in this paper is also able to publish context information
to social networking services. The success of social networking services such as
Facebook, Hi5, LinkedIn and Twitter and their increasing use via mobile devices
suggest that there is an interest and potential in providing users with mechanisms
to automatically keep up to date with their peers.

The paper is organized as follows. We begin with a description of related work
in the area of sensing and context inference. Then we present the approach and
the implemented system: its sensors, architecture, and operation through data
acquisition, preprocessing, feature extraction, and context inference. Finally, we



describe how the system publishes user context to well-known social networking
services, namely Twitter and Hi5.

2 Related Work

Context identification has been recognized as an enabling technology for proac-
tive applications and context-aware computing [4, 5]. Early context-aware appli-
cations were predominantly based on user location defined as typical user places
(e.g., “at home”, “in a museum”, “in a shopping center”). Projects such as
GUIDE [6] and Cyberguide [7] addressed the use of information about location
and situation to guide the user when visiting tourist attractions. Recent work
has addressed techniques to identify a richer set of contexts or activities. These
include simple user activities (e.g., “walking”, “running”, “standing”), environ-
ment characteristics (e.g., “cold”, “warm”), or even emotional condition of the
user (e.g., “happy”, “sad”, “nervous”).

Usually, the identification of contexts is performed in several stages. Pro-
cessing raw data from sensors may require a wide variety of techniques such
as noise reduction, mean and variance calculation, time- and frequency-domain
transformations, estimation of time series, and/or sensor fusion. Then context in-
ference itself has been addressed using different techniques such as Kohonen Self-
Organizing Maps (KSOMs) [8], k-Nearest Neighbor [9], Neural Networks [10],
and Hidden Markov Models (HMMs) [11]. Some approaches also combine several
of these techniques, as described in [12].

Regarding the inference of user activities such as “walking” or “running”,
there have been a myriad of approaches, ranging from simple processing steps
and threshold operations [13, 14, 2] to the use of neural networks as a clustering
algorithm [10]; or even using non-supervised time-series segmentation [15]. As an
example, the work presented in [1] infers activities such as “walking”, “running”,
“standing”, and “sitting” with a single 3-axis accelerometer.

With the increasing popularity of social networking services, context informa-
tion finds a new role in enabling interaction between members in a community. In
[16], for example, the authors present the Meeting Room Assistant application,
a hyper-local facilitator where context is used to enrich communication between
participants in real-life meetings, in a similar way to what social networking
services achieve on the web.

In the work presented in this paper, we extract signal features using tech-
niques similar to those described in [2, 14]. For context inference we combine
signal-processing and machine-learning techniques, using decision trees [17] to
fuse features and to identify user activities. All data preprocessing and context
inference is performed on the mobile device. The results can be published to
a remote server in order to aggregate information from multiple users, thus al-
lowing for more advanced and possibly non-local context inferences. Our work
focuses in particular on the publication of context information to well-known
social networking services.



3 System Prototype

The driving goal for this work is the ability to identify user context using a set of
sensors connected to a mobile phone. The sensors should be relatively small in
order to be embedded in clothes or personal items such as backpacks or purses.
Sensors include accelerometers, light, sound, humidity, temperature and GPS
sensors, and also virtual sensors to acquire information such as time of day and
calendar events, which can be retrieved directly from the mobile device.

Figure 1(a) depicts the main components of the system prototype: the mobile
device, a sensor-aggregating node, and a set of sensors. The black box contains
the batteries (the 1-Euro coin is shown to provide an idea of scale). Figures 1(b)
and 1(c) depict experimental setups where the components are embedded in a
backpack and on a vest, respectively. The vest prototype is an evolution from
the earlier backpack model. These experimental prototypes were used for testing
purposes and therefore have deliberately unconcealed sensors in order to better
evaluate sensitivity to the environment to ensure that the sensors experience
approximately the same conditions as the user.

(a) System components. (b) Backpack prototype. (c) Vest prototype.

Fig. 1. System components and experimental prototypes.

Currently, the system is being used with either the Sony Ericsson W910i
mobile phone or the Nokia N95 mobile phone, but it can be easily deployed
to other smartphones as well. There is a BlueSentry external sensor node that
communicates with the smartphone via bluetooth to provide sensor readings,
thus avoiding the need for physical connection between the two. With respect to
sensors, the prototype includes sound, temperature, light, and humidity sensors,
and a 3-axis accelerometer, all wired to the sensor node. In addition to these,
there are three other sensors being used, namely the internal accelerometer of
the smartphone, a virtual time sensor to provide the time of day from the system
clock, and an additional external node which is a bluetooth GPS receiver.

3.1 System Architecture

The system makes use of supervised learning techniques to determine user con-
text. During a training period, the system collects a sufficient number of manu-



ally classified examples in order to induce a decision tree that will be used for con-
text identification. After this training phase the system operates autonomously
and unobtrusively by automatically determining the present context from sensor
readings. The overall system architecture is presented in Figure 2.

Fig. 2. System architecture with layer description and communication connections.

At the lowest level, sensors gather data from the environment and provide it
as raw analog signals to the sensor node, which in turn converts them to digital
form and transmits them to the smartphone via bluetooth. The application
layer has been developed using the J2ME platform. The mobile phone runs
a proprietary operating system which supports J2ME MIDlets. With the help
of a Mobile Information Device Profile (MIDP), the application acquires raw
sensor data from both the internal sensors and external sensor nodes, namely
the BlueSentry aggregating node and the bluetooth GPS sensor.

The system operates according to four main stages: a sensor data acquisition
stage; a preprocessing and feature extraction stage; a context inference stage;
and a publication stage. Sensor data acquired from the available sensors are fed



to the preprocessing stage, which is responsible for extracting signal features
to be used in the upper layers of the system architecture. The inference stage
gathers these features and determines the present context according to a set of
rules. These rules are available in the form of a decision tree that has been built
during the training phase. Finally, the mobile device, upon having recognized a
specific context, can provide that information to network-level services.

3.2 Application Layer

Figure 3 provides some screenshots of the application running on the smart-
phone. It presents a simple user interface, allowing different modes to be chosen
from a list of available options (Figure 3(a)). It also includes the possibility of
editing existing contexts (Figure 3(b)) and printing the decision tree for debug-
ging purposes. Figure 3(c) presents an example of the initial configuration for
the continuous training mode which acquires sensor data during a period of time
when a certain context is active. In Figure 3(d) shows the different sensor read-
ings and the identified context, as well as a confidence value calculated as the
percentage of total records for the displayed context within a fixed-size buffer
window. A suggestive icon, when available, is also presented to the user.

(a) (b) (c) (d)

Fig. 3. The application in selection mode (a), in context-editing mode (b), in learning
mode (c) and in operation mode (d).

3.3 Sensor Data Acquisition

Sensor data are acquired at a fixed rate. At regular intervals, the smartphone
sends a request to the sensor node in order to retrieve data from the connected
sensors. The sensor readings are buffered in the smartphone in order to allow
a time-framed window preprocessing stage. It is worth noting that sensors may
have different acquisition rates. The difference in sampling frequency may force
the acquisition to run at the slowest rate, or at individual rates for each sensor.
Currently, the system is using the same acquisition rate for all sensors, except for



the internal accelerometer of the smartphone, which is being sampled at twice
the rate of other sensors.

3.4 Preprocessing and Feature Extraction

The preprocessing stage prepares the raw sensor data to be converted into a
finite set of features or categories. While for some sensors the raw sensor value
can be mapped directly to a category, other sensors such as the accelerometer
need more elaborate preprocessing. Typically, preprocessing involves a set of
techniques such as averaging, filtering or transforming values. Rather than using
instant values, the system averages signals over a buffer window in order in
order to minimize jitter and to provide a more accurate categorization. Table 1
presents the categories and their corresponding value range for each sensor.

Sensor Category Calculation

very silent 0% — 20%
silent 20% — 40%

sound moderate 40% — 60%
loud 60% — 80%

very loud 80% — 100%

very dark 0 lx — 200 lx
dark 200 lx — 400 lx

light normal 400 lx — 600 lx
bright 600 lx — 800 lx

very bright 800 lx — 1000 lx

indoor no signal
GPS outdoor signal

position lying gravity xz-plane
accelerometer standing gravity y-axis

Sensor Category Calculation

very cold −50◦ — 0◦

cold 0◦ — 15◦

temperature mild 15◦ — 25◦

hot 25◦ — 30◦

very hot 30◦ — 150◦

dawn 0h — 5h
morning 6h — 11h

time afternoon 12h — 17h
night 18h — 23h

movement not moving low variance
accelerometer moving high variance

moving fast variance- and FFT-based

low 0% — 30%
humidity medium 30% — 70%

high 70% — 100%
Table 1. Categorization of sensor values after acquisition.

For the movement accelerometer, which is internal to the smartphone, the
system has more complex preprocessing. It computes the variance for each axis
within a time-framed window which captures the last 16 samples. The three axis
variances are compared to a threshold in order to identify the “moving” and “not
moving” categories. When “moving” is detected, the system performs an FFT
(Fast Fourier Transform) over the last 32 samples and adds up the amplitude of
the harmonics for frequencies within the range from 0.5Hz to 2Hz. If the resulting
value is greater than a specific threshold value then a category of “moving fast”
is reported. Otherwise, the output will be reported simply as “moving”.

3.5 Context Inference

At any given moment, the collected set of sensor readings will bear some re-
lationship to the current user activity. The purpose of context inference is to



discover this relationship so that when similar readings occur the device will
recognize the same context.

The current prototype uses decision trees for context inference. They are
fast to build and process, making them attractive for implementation on mobile
devices. From a set of training examples it is possible to induce a decision tree
in order to classify contexts according to sensor readings. The implementation
is based on the ID3 algorithm [18], which uses information entropy to build the
smallest tree that can correctly represent all branches.

Figure 4 depicts an example of an induced decision tree. The contexts de-
picted in this decision tree are an example of the type of activities that the
system can be trained to recognize. The tree has paths from root to leaf nodes
that effectively provide the rules for context identification based on sensor read-
ings. For example, if the user is not moving and the sound level is moderate, then
the context is “working”. In this example, the movement accelerometer provides
the most distinctive feature, followed by the sound and GPS sensors, and only
then by the position accelerometer and the virtual time sensor.

Movement
Accelerometer

Sound

Not
Moving

Walking

 Moving

GPS

Moving Fast

Position
Accelerometer

Very
Silent

Meeting

 Loud

Working

Moderate

Time

Lying

Reading

Standing

Sleeping

Night Dawn

Resting

Afternoon

Exercising

 Indoors

Running

Outdoors

Fig. 4. Example of an induced decision tree depicting several contexts and the sensor
readings through which they can be identified.

The decision tree shown in Figure 4 can be induced from a set of training
examples collected during a training period. One such example is, for instance:
{sound = moderate; light = very bright ; temperature = mild ; humidity =
medium; pos.acc. = standing ; mov.acc. = not moving ; time = afternoon; gps
= indoors; context = working}. When the user sets a context and a training
period as in Figure 3(c), the system collects sensor readings during that period
and classifies the readings as training examples for the specified context. The
training examples are then used to update the decision tree.



At runtime, the context identified via the decision tree is stored in a buffer
window which gathers a finite number of records and returns the context that
has been recorded more often within that time window. This avoids momentary
conditions that would make the context change unexpectedly, and also provides
a mechanism for the system to assign a confidence level to the context that has
been inferred. Together with sensor data buffering, this provides another layer
to mitigate errors due to faulty sensor readings or due to activities that are
detected for only a brief moment within a different context.

3.6 Context Publication

The context can be published, upon user permission, to an external server. This
has several advantages. First, it is possible to enable, disable or change the be-
havior of value-added services that depend on user context. Second, user context
can be augmented with information available at the network level, such as traffic
conditions or special services available at the user location. Third, the publica-
tion and availability of user context at the network level opens up the way to
other applications such as social networking, remote monitoring, health assis-
tance, etc. Context publication also provides network services with the ability to
gather aggregated data on multiple users in order to study different user profiles.

4 Application to Social Networking

Social networking has become increasingly popular with the rise of web-based
communities in which users interact with their peers on a regular basis. Social
networking services such as Facebook, Hi5, LinkedIn or Twitter nowadays bring
together a large number of users. Most of these services provide public APIs
with the means to access, configure and update the user profile, status, etc. This
allows external systems to publish content to a user profile.

Twitter is a well-known social networking and micro-blogging service on
which users can interact using short messages, no longer than 140 characters. We
use the above system prototype to publish the current user context to a Twit-
ter account. Periodically, the present context is submitted via HTTP through a
Wi-Fi or GPRS/3G connection to the Twitter servers. The publication is accom-
plished using a REST API. Figure 5(a) presents a screenshot from the Twitter
service, showing contexts published automatically by the system.

The same approach can also be used with other social networking services
such as Hi5. This is one of the most successful web-based social networks with
around 60 million users. The service allows users to create an online profile
and populate it with information about interests, age and location, along with
personal photo albums and music preferences, to be shared with friends.

Similar to Twitter, the Hi5 service allows the user to post a status message to
the network with information about the current activity the user is doing. Our
system automates this task by publishing the user context periodically, so that
the user profile is always up-to-date. For this purpose the system uses a Wi-Fi



(a) Twitter website. (b) Hi5 personal user profile.

Fig. 5. User context publication to Twitter and Hi5.

or GPRS/3G connection, whichever is available at the moment, and makes a
remote call using the official REST API. Figure 5(b) presents a screenshot from
a Hi5 profile page, where the status message is being published automatically
by the system. Other possibilities include changing the user photo or changing
the online/offline/away/busy state according to the present context, as well as
tagging content with the current user context.

5 Conclusion

Being able to gather and publish information about user context can be very
useful for social networking, as it enables real-time interaction between peers. In
this paper we described a prototype system based on a set of general-purpose,
inexpensive sensors connected to a smartphone via a bluetooth-enabled sensor
node. The current prototype is implemented in a vest and executes all stages
from sensing to context inference in the smartphone. It is now a fully opera-
tional context provider that operates in an unobtrusive manner after an initial
training period, and that is able to publish the user context to well-known social
networking services such as Twitter and Hi5. In ongoing work, we are evaluating
the use of other context inference techniques, and we are also investigating the
possibility of inferring emotional contexts such as happy, calm, unhappy, and
hungry, in order to publish this information to social networks.
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