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Abstract—Sequences that can be assumed to have been gener-
ated by a number of Markov models, whose outputs are randomly
interleaved but where the actual sources are hidden, occur in
a number of practical situations where data is captured as
an unlabeled stream of events. We present a practical method
for estimating model parameters on large data sets under the
assumption that all sources are identical. Results on representa-
tive examples are presented, together with a discussion on the
accuracy and performance of the proposed estimation algorithms.
Finally, we describe a real-world case study where we apply the
technique to the sequence of events recorded in the technical
support database of an IT vendor.

I. INTRODUCTION

In many situations, data generated by a number of distinct
processes can only be observed as a single sequence of
interleaved events, with no information on which source a
particular event originated from. Such sequences may occur in
a variety of logs, such as records over financial transactions,
business processes, or production system events in industrial
plants. To be able to understand the processes that generate
this type of data, we need to be able to estimate the parameters
of a model representing this situation from example sequences.

We present a statistical model consisting of a mixture of
Markov chains for describing this type of interleaved sequence
data, and we focus on the specific problem of how to estimate
the parameters of such model.

Directly related model descriptions are not common. A
recent work by [1] addresses a similar kind of model with
a focus on activity recognition, where the model is first
trained with complete data and then applied to a test set
of incomplete data. Here we aim at estimating the model
parameters from an single, unlabeled stream of data. In [2],
the authors discuss the problem of inferring mixtures of
Markov chains and the complexity thereof by incrementally
dividing an observed sequence into disjoint subsets. Although
similar model assumptions are made, the authors propose very
different algorithms for parameter estimation compared to the
ones we discuss here.

Somewhat analogous to the model we describe here are
Hidden Markov Models (HMMs), which are commonly used
to model sequential patterns [3]. However, a HMM represents
a stochastic process generated by an underlying Markov chain
that is observed through a distribution of the possible output
states. These are model assumptions that are indeed rather

different from the randomly interleaved mixture of Markov
models studied here. More similar is the hierarchical hidden
Markov model (HHMM) [4]. It generalizes the HMM by
representing each of the hidden states with a HHMM in itself,
making most states output sequences rather than single sym-
bols. Another relevant extension to the HMM is the factorial
hidden Markov model [5], which uses multiple independent
chains of hidden variables, and the distribution of the observed
variable is conditional on the states of all hidden variables at
the same time step. However, none of these models effectively
express the interleaved nature of our problem.

In applications such as user click-stream analysis [6], [7]
and recent applications in economics such as wage mobility
[8], the term mixture of Markov models has been used in
connection with the problem of sequence clustering, where
the goal is to classify a set of given sequences into different
groups. Also, the mover-stayer model – with a wide range
of applications from economics [9], [10] to health care [11],
[12] and for which an EM algorithm has been devised [13] –
is sometimes referred to as a mixture, while it can be regarded
as an extended Markov model.

By mixture of Markov models we understand, in this paper,
the result of interleaving events coming from several unknown
Markov sources. The goal is to estimate the parameters of
the sources in terms of selection probabilities and transition
probabilities, when the source that produced each event is
unknown. We study a special case of mixtures of Markov
chains, namely when all sources have identical transition
probability matrices. In section II we introduce the problem
and notation, and in section III describes how estimate the
model parameters. Section IV presents test results on both
synthetic models and a real-world application.

II. PROBLEM STATEMENT

In the general case, let us assume that there is a set of
K distinct sources, and that the behavior of each source
can be captured by a Markov chain. Each of these Markov
chains M1, . . . ,MK is time-homogeneous, ergodic, and has a
finite state space. Let Ak where k = 1, 2, . . . ,K be the state
transition matrix for each source, where an element Ak(a, b)
represents the probability of source k moving from state a
to state b, or Ak(a, b) = P (b | a;Mk). Let each state be
assigned a different symbol, such as “A”, “B”, “C”, etc. Each



source produces an output when it changes to a new state;
the output is the symbol that corresponds to that state. A
series of transitions will result in an output stream of symbols
containing the states that the source went through in a certain
period of time. The current state of the source at the start of
the observation is unknown.

The system is such that the output of all sources is written
to a single stream, where the symbols produced by each
source become interleaved with symbols coming from other
sources. Let the output stream be denoted by the sequence
x = {x1, . . . , xN} with length N , where each symbol xn
comes from one of the K sources. The process of mixing
the outputs of all K sources into a single output sequence
x is modeled as a stationary source selection process with
probabilities {π1, π2, . . . , πK}, as shown in Fig. 1. At each
step n it is as if one source k is being selected with probability
πk(n) = P (sn = k) = πk, which is independent of n. The
observable sequence x is then created by randomly selecting
a source, drawing the next symbol from this source, and
repeating this process for each subsequent position.

Fig. 1. The model consists of K identical Markovian sources and a
source selection mechanism. In the observed output sequence, the source that
produced each symbol is unknown.

The only observable output from this system is the symbol
sequence x. Here, we will study the special case of identical
sources with Ak(a, b) = A(a, b) and equal source selection
probabilities πk = π = 1/K. Under these assumptions, all
model parameters can be efficiently estimated directly from a
symbol sequence.

III. MIXTURES OF IDENTICAL MARKOV MODELS

A. Estimating the source parameters

To estimate the parameters of the Markov chains
Ak(xi, xj) = A(xi, xj) in a mixture of identical sources, we
make use of a first-order Markov chain A+(xi, xj) that can be

estimated directly from the symbol sequence x. The Markov
chain A+(xi, xj) captures the transition probabilities in the
observed symbol sequence x as if this sequence had been
generated by a single Markov model. The relationship between
A+(xi, xj) and A(xi, xj) can be obtained by considering that

P (xn|xn−1) =
∑
k

πkP (xn|xn−1, sn = k)

=
∑
k

∑
l

πkπlP (xn|xn−1, sn = k, sn−1 = l)

=
∑
k

π2
kA(xn−1, xn) +

∑
k

∑
l 6=k

πkπle(xn) (1)

where π represents the source selection probability and e(xn)
is the steady-state emission probability of xn. Eq. (1) can be
further simplified if we assume that all source probabilities are
equal, i.e. πk = π = 1/K where K is the number of sources.
In that case,

A+(xn−1, xn) = πA(xn−1, xn) + (1− π)e(xn) (2)

Estimating the discrete Markov model A+(xi, xj) from
an example sequence equates to estimating the probabilities
pij from the number of state transitions i → j observed in
sequence x. The maximum-likelihood estimate can be shown
to be p̂ij = nij/ni, where nij is the number of transitions
i → j observed in x and ni =

∑
j nij [14]. For a more

robust estimate, here we use a Bayesian approach where pij
are estimated as the posterior expectation of Pij . Using a
Hyper-Dirichlet prior, this estimate can be shown to be [15]

p̂ij =
αij + nij
αi + ni

(3)

where αij are hyper-parameters of the prior, selected to
represent a prior belief about the distribution. Note that from
A+(xi, xj) = p̂ij one can obtain the steady-state distribution
for each symbol as e+(xi) = p̂i.

If the number of sources K is known and the sources are
identical, then it is apparent that π = 1

K and e+(xi) = e(xi),
i.e. the marginal probability of each symbol is the same if we
draw the symbols from a single source or from a set of K
sources that are all identical to the single one. Eq. (1) can
then be reworked to yield,

A(xi, xj) = K ·A+(xi, xj)− (K − 1) · e+(xj) (4)

Thus, the parameters A(xi, xj) of the model can be easily
determined from simple observed frequencies when K is
known. Due to imprecise estimates of p̂ij and p̂j from finite
sequences, in practice there is the possibility that some ele-
ments of A(xi, xj) become negative. This can be handled by
simply enforcing a minimum value of zero and normalizing:

A(xi, xj) =

{ A(xi,xj)P
j:A(xi,xj)>0 A(xi,xj)

A(xi, xj) > 0

0 A(xi, xj) ≤ 0
(5)

We then use A(xi, xj) as the estimate for the transition
probabilities of the generating Markov models.



B. Estimating the number of sources

Assuming that an example sequence was generated by a
mixture of identical Markov models, we can use a straightfor-
ward approach to, from this sequence, estimate the most likely
number of sources K when the actual number of sources is
unknown. We write the probability distribution over K as

P (K|x) =
P (K) · P (x|K)

P (x)

meaning that we can find the value of K for which this
expression is maximized through

arg max
K

= P (K)P (x|K)

Using Eq. (5), it is possible to show that P (x|K) can be
approximated by

P (x|K) =
∏
n

[
e(xn) ·

(
1− 1

K

)n−1

+

+
∑
j

A(xj , xn) ·
1
K
·
(

1− 1
K

)n−j−1
]

(6)

where the sum over j goes over all previous symbols before
xn. Note that the terms of this sum tend to zero as the
difference between n and j increases so we can reliably ignore
terms with large j to keep the computational complexity low.

Here we will assume the prior distribution P (K) to be a
Poisson distribution truncated at the origin (see [16]),

P (K) =
λK

(eλ − 1)K!
, K = 1, 2, . . .

The expected number of components λ is selected in accor-
dance with the prior belief on the number of components in
the generating system.

IV. EXPERIMENTS

The above estimation algorithms will find applications in
problems that can be seen as having concurrent Markov
processes, for example in process mining [17] where the goal
is to find the process model (usually as a Petri net) that best
describes the behavior recorded in an event log.

To measure the distance between the generating and esti-
mated models, we will use the relative entropy rate that has
also been used to measure the distance between two hidden
Markov models [18]. Let D(P (N)

β ||P (N)
γ ) be the relative

entropy between two probability distributions,

D(P (N)
β ||P (N)

γ ) =
∑

x1,...,xN

Pβ(x1, . . . , xN )·

· log
Pβ(x1, . . . , xN )
Pγ(x1, . . . , xN )

(7)

Then the relative entropy rate can be defined as:

D(β||γ) , lim
N→∞

1
N
·D(P (N)

β ||P (N)
γ ) (8)

which in turn can be computed through the conditional relative
entropy using,

D(β||γ) = lim
N→∞

∑
x1,...,xN

Pβ(x1, . . . , xN )·

· log
Pβ(xN |x1, . . . , xN−1)
Pγ(xN |x1, . . . , xN−1)

(9)

Intuitively, the relative entropy rate can be interpreted as
the average information loss per symbol if we compress
data generated by β while assuming it was generated by γ.
Here we use a Monte-Carlo approach to approximate Eq. (9)
by sampling from Pβ(x1, . . . , xN ) and calculating the mean
estimate of the logarithm.

A. Estimation results on example models

As a first test case, we investigate the similarity between
estimated source models and the true source models. Specif-
ically, we compute the estimated model using a symbol se-
quences produced from an example source model. The purpose
of these experiments is to investigate how the similarity
between the true and the estimated models depends on the
number of sources K and the length N of the input symbol
sequence x.

In each experiment, a sequence x of length N was drawn
from an example model θ′ containing K identical sources
and having a transition matrix A′(xi, xj). From the symbol
sequence x, a model θ′′ with K identical sources and transition
matrix A′′(xi, xj) was estimated under the assumption that K
being known. A sample symbol sequence is shown in Fig. 2.

DCFCAEEADBEEACDFCFFAFAAFCCDADEBDAADFCFBEEAFDFCAFE

AACADDEBBBCDCFDADEBFFACDFEFFCCCEEBAFCEFBBDCBBEEDF

CECDFDEFCEEEBECBBDCDECACBEFACBEEBCCFBCDDCEFEDAABF

BCDEDACAFEFBAEEBFDEDECDFACAFAEBDCECFCBBEEDE...

Fig. 2. Example of an input symbol sequence generated from a model with
K = 5 sources.

All the experiments were performed based on both deter-
ministic and non-deterministic source models containing 6
different states from A-F. The deterministic models allow only
one transition to take place for a given state; that transition has
probability 1.0 and all other transitions from the same state
have zero probability. In the non-deterministic, or stochastic
models, there may be several possible transitions from a given
state; the outgoing transition probabilities from a given state
add up to 1.0.

The true models used in these experiments – both the deter-
ministic and the stochastic ones – were generated randomly.
Fig. 3 shows one of the stochastic models together with its
estimated counterpart.

For the purpose of investigating the similarity between the
true model θ′ and the estimated model θ′′, we have used
different similarity measures. In general, it is well known that
similarity is difficult to measure accurately, since different
measures fit different purposes. Therefore, most similarity
measures are often used in an ad-hoc manner, depending on the
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Fig. 3. Example of a true model and the corresponding estimated model
obtained from a generated symbol sequence of length N = 20000 symbols
when using K = 5 sources.

application domain. Here, we have used four methods to obtain
different similarity measures. The first similarity measure is
based on the absolute difference between the models, summed
over all state transitions and sources:

D(θ′; θ′′) ,
1
2
·
∑
a

∑
b

| e′(a) ·A′(a, b)−

− e′′(a) ·A′′(a, b) | (10)

Due to the stochastic constraints that apply to the model
parameters e(a) and A(a, b), the value of D(θ′; θ′′) will be
at most 1.0. The second similarity measure is simply the
log-likelihood `(θ) of the model θ producing the symbol
sequence x and is obtained by calculating the probability
of observing each new symbol xn given previous symbols
in a sequence. The third similarity measure is based on the
Kullback-Leibler divergence DKL, defined in Eq. (7). Finally,
the fourth method is based on the reduction in relative entropy
Dθ′||θ′′ as described in Eq. (9). The results are shown in
Tables I and II as the mean of 10 runs.

For both stochastic and deterministic source models, we
observe that the similarity improves with longer input se-
quences for all the different types of measures (Tables I
and II). Naturally, the estimation accuracy improves with the
amount of available data. Further, we observe that the degree
of similarity also depends on the number of sources. For
example, we see in Table I that for models estimated from a
sequence of N = 5000 symbols, the difference between true
and estimated models increases with K. Finally, we see that
the same difference is in general greater for stochastic models
rather than for deterministic models. The reason is that in the
stochastic case the input symbol sequence must be longer than

K N Dθ′,θ′′ `(θ′) `(θ′′) DKL Dθ′||θ′′

5 5000 0.1302 -8681 -8691 7.2043 0.0073
10000 0.0945 -17330 -17345 3.7571 0.0038
20000 0.0716 -35019 -35033 1.9728 0.0020

10 5000 0.2509 -8775 -8823 13.8268 0.0140
10000 0.1583 -17509 -17542 5.6429 0.0056
20000 0.1336 -35087 -35131 3.3417 0.0034

20 5000 0.3572 -8795 -8871 18.6068 0.0187
10000 0.3236 -17641 -17759 14.0188 0.0140
20000 0.2366 -35238 -35382 8.1781 0.0081

TABLE I
SIMILARITY RESULTS BETWEEN ESTIMATED AND TRUE STOCHASTIC

MODELS.

K N Dθ′,θ′′ `(θ′) `(θ′′) DKL Dθ′||θ′′

5 5000 0.1068 -7563 -7661 21.0240 0.0211
10000 0.0830 -15152 -15285 14.3354 0.0144
20000 0.0531 -30264 -30435 8.9143 0.0090

10 5000 0.2019 -8325 -8427 22.7431 0.0230
10000 0.1478 -16580 -16731 15.7120 0.0158
20000 0.1123 -33171 -33396 11.4560 0.0116

20 5000 0.2969 -8649 -8772 26.2697 0.0265
10000 0.2373 -17260 -17433 17.4408 0.0177
20000 0.1991 -34549 -34781 11.8434 0.0120

TABLE II
SIMILARITY RESULTS BETWEEN ESTIMATED AND TRUE DETERMINISTIC

MODELS.

in the deterministic case in order to achieve the same level of
accuracy. In any case, the results suggest that the proposed
method is an effective way to rediscover the true model, and
that accuracy can be improved by increasing the length of the
input symbol sequence.

B. Estimating the number of sources

To illustrate estimation of the number of sources from a
symbol sequence, here we will study the model likelihood
P (x|K) as a function of the assumed number of sources. The
models, both deterministic and stochastic, were generated as
in the previous section, and the likelihoods calculated on a
sequence of N = 200000 symbols, for improved accuracy.

Fig. 4 shows the varying log-likelihoods over different
assumed numbers of sources for models with 5, 10, and 20
sources for both deterministic and stochastic models. In the
deterministic case, there is a peak in the likelihood at 5 and 10
sources for the models with exactly these numbers of sources.
For the model using 20 sources, the likelihood curve is very
level but has a peak at 18 sources, somewhat lower than the
actual number of sources.

In the stochastic case, estimation is more difficult. The
likelihoods peak at 5, 11, and 18 for the models with 5,
10, and 20 sources, respectively. As the likelihood curves are
very smooth, the prior would have a definitive impact here,
especially if the symbol sequences where shorter. Still, it is
possible to achieve a reasonable estimate of the number of
sources even for the rather difficult case of the stochastic
model.
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Fig. 4. Model likelihood as a function of the number of assumed sources
for synthetic deterministic and stochastic models.

C. Rediscovering the behavior of a technical support process

This case study comes from a medium-sized IT vendor that
offers an advanced software platform for rapid application
development. The platform is being improved continuously by
successive release versions that add new functionality, improve
existing features, and correct existing bugs. Besides extensive
manual and automated in-house testing, end users have an
active role in pointing out desired improvements and problems
to be solved. Each request originates a new so-called issue that
is recorded in the system and handled by the technical support
team.

In order to keep track of all issues and to handle them appro-
priately, the support team stores all the information available
in a central database, and it records all changes in state as a
solution to the each problem is developed. Fig. 5 illustrates the
sequence of states that the handling process of each issue is
supposed to go through, according to management guidelines.
When a new request is received, it will be recorded in the
system as New. Then a team member will look at it and check
whether it is a duplicate issue, whether it is relevant, what
priority level it should be assigned, whether there is enough
information for the issue to be handled, whether there are other

issues that could be related to the one submitted, etc. In some
cases, the issue may end up being Discarded or being labeled
as Duplicated. In most cases, it will follow a mainstream
process: the issue is Assigned to a specific team member and
the state will be changed to Open when that team member
starts working on it. At this point, it will generally be a
matter of time until either a solution or a workaround is found
and the issue becomes Resolved. An issue is automatically
Closed when a new product version that includes the bug fix
is released.

Fig. 5. State changes within the issue handling process.

For the purpose of this case study, we had access to a
subset of the event history recorded in the database between
September 28, 2006 and September 28, 2007. At its peak, the
system reported 284 issues were active simultaneously, for a
total of 1211 issues recorded during the observation period
of one year. We used all the state changes recorded in the
system database as a single, unlabeled sequence of input data.
In this symbol sequence the events are given in chronological
order, but without any information about the issue (i.e. source)
that each event belongs to. The complete input sequence has
a length of N = 3127 symbols. Also, we assume that we
do not know how many sources (i.e. issues) there are. Thus,
we estimate all model parameters including the number of
sources from the input symbol sequence. In this experiment,
the parameter α from Eq. (3) was selected as 300, or roughly
one tenth of the length of the observed sequence.
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Fig. 6. Model likelihood as a function of the number of assumed sources
for the technical support data.

Fig. 6 shows the model likelihood for a varying number of
sources. The likelihood clearly peaks for three sources, and
then falls as the number of sources increases. The prior over
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Fig. 7. Estimated model from the technical support data when assuming 3 sources.

the number of components has little effect on this sequence
length, thus we estimate the number of concurrent sources to
be K = 3. Note that the total number of issues is 1211, but 3
sources with repeating behavior seem to be enough to account
for the whole symbol sequence.

Fig. 7 shows the resulting estimated model. In the graph,
some transitions with very low probability have been removed
to improve readability. The model captures the dominant
behavior of the issue handling process, with separate paths
from New to Duplicated, Discarded, and Assigned. After the
Assigned state, the dominant path is to Open and then to
Resolved. However, this path does not include the Closed state
as would be expected. This is due to the fact that the behavior
associated with the closed state actually does not match the
model assumptions at all: in practice, it is only when a large
number of issues have been resolved that a new version of the
software is released, and at that point all resolved issues are
closed simultaneously. Even in this case, the estimated model
effectively captures the true behavior of the original process.

V. CONCLUSIONS

In this paper we have presented a method to estimate the
parameters of randomly interleaved Markov models directly
from a symbol sequence under the assumption that all sources
are identical. A method to estimate the actual number of
sources has also been proposed. Results indicate that when
the number of sources or symbols increases, a longer input
sequence is required for more reliable estimates.

The algorithm is very fast and scales linearly in the se-
quence length, meaning that it is suitable for large databases
found in practical applications. Additional experiments on both
synthetic and real-world data are being carried out to further
investigate the performance and accuracy of the proposed
method in discovering the hidden logic behind unlabeled
symbol sequences.
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