
A Workflow Management System for Coordinating
Distributed Information-Based Business Processes

Diogo Ferreiraa, J. J. Pinto Ferreirab

aFEUP/INESC, bFEUP-DEEC/INESC-UESP
Rua José Falcão 110 • 4000 Porto • Portugal

Phone: +351 2 209 43 00 • Fax: +351 2 200 84 87
E-mail: jjpf@fe.up.pt

Abstract
 In its on-going effort to define, specify and build a
telework co-ordination system, the Telework Interest Group
(GIT) at FEUP1-DEEC2 has realized the need for a
workflow management system that must be able to support
business processes that rely on geographically distributed
co-operative work. Telework is an innovative form of work
organization for decentralized or information-based
organizational structures whose tasks are independent of
their location of execution. However, this organizational
practice demands an efficient business process co-
ordination or, to be more specific, demands a workflow
management system.
 The initial goal of our group was to develop a prototype
of a workflow enactment service for telework coordination.
That prototype, however, has turned out to be a sufficiently
generic tool capable of coping with a broad range of
distributed information-based processes.
 In this paper, we present the main components of the
software service we have developed, we discuss its
principles and its simple architecture and we offer some
insight into how it may be used as a workflow management
system for coordinating distributed information-based
business processes.

1. Introduction
 The Telework Interest Group (GIT) was formed in
September 1997 and since then some major steps have
been taken towards the construction of a Telework Co-
ordination System. Along this project, the Telework
Interest Group has focused its efforts on the so-called
"small information-based organizations" where all
activities are concerned with information processing and
transfer, usually among sub-contracted teleworkers. In this
scenario, a company would run by managing several
concurrent processes, maybe several instances of the same
business process, each requiring remote task execution by
teleworkers.

1 Engineering Faculty of Porto University
2 Department of Electrical Engineering and Computers

 As reflected in our earlier approaches such as [Silva and
Ferreira, 1998] the GIT promptly recognized the need for a
workflow management system and has established the
development of such system as its ultimate goal. The
starting point was to specify and implement a workflow
enactment service, i.e., a software service capable of
creating, managing and executing telework-related
workflow instances. The workflow enactment service
[Ferreira et al., 1999] would be a core component of the
workflow management system.
 As we will show, we have added to that enactment
service some modeling features, a messaging system and
the support of a client application. The end result is that we
have surpassed the scope of the enactment service and
we've come closer to the actual management system we
intended to build. Also, we have attempted to maintain
flexibility through simplicity and, as a consequence, the
resulting software service is not bound to telework
purposes. In fact, we believe that it may serve as well any
distributed information-based business process.

2. The Process Definition
 A business process is often represented as an activity
network, each activity demanding the services of one or
more functional entities, e.g. teleworkers, in order to
accomplish an overall business goal. Even though each
activity is to be carried out by an appropriate functional
entity, the process definition refers to organizational
entities and role functions rather than specific participants.
Each activity in the activity network of a business process
stands for a particular operation that must be executed by a
single functional entity and whose subdivision into smaller
activities is of no interest.
 Upon instantiation of the process, each activity is
assigned to a particular functional entity such as a
particular teleworker, which is to comply with the activity
demands, transforming an input state into an output state.
In figure 1 is depicted a simple activity network.

Figure 1. Representation of a business process

 On its own, each activity is a self-contained module or
construct that cannot be dissociated from its data such as:
(1) name or identification number; (2) name or
identification of the process to which it belongs; (3) launch
and deadline dates; (4) entry and exit criteria; (5)
description; (6) input and output files or data; (7) needed
expertise and (8) assigned teleworker.
 Activities are to be connected in their order of
precedence between each other.
 During its life cycle, an activity goes through different
states and possibly ends up completed. We say possibly
because there may be times when, depending on some sort
of condition particular to the business process, the
execution of other activities may be preferred. For
example, if the purpose of one activity is to calculate a
budget, then the execution of the following activities may
be dependent on this result. These types of conditions are
to be part of the entry and exit criteria of each activity. In
order to accomplish this feature we introduced the concept
of state variables. A "state variable" stands for a numeric
attribute or state that is known to all process activities.
Some activities may determine the value of any state
variable while other activities will rely on that value as
their entry criteria. In the context of the preceding
example, we could define a state variable named "budget"
that carries a value set by a particular activity and which is
used as entry condition of others. For a large number of
activities, however, their entry condition may only depend
on the completion of the preceding ones.
 Figure 2 depicts the state diagram or dynamic model of
an activity, using the syntax of [Rumbaugh, 1991].

Figure 2. Dynamic model of an activity

 The state diagram shows that, when created, an activity
starts in an "inactive" state waiting to be assigned to a
teleworker. After being assigned, and even during
execution, the activity may be re-assigned. Before the
activity is put under execution, the possibility of re-
assignment allows negotiation to take place, although we
are not concerned with the nature of the contract celebrated
with the teleworkers; this means that we're trying to
maintain a high degree of flexibility and organizational
structure independence. Our interest is indeed focused on
the workflow enactment. During execution and in the
presence of adverse circumstances, re-assignment may be
the last resort to employ in an attempt to complete the
activity.
 At any time during the execution of the activity, the
process, or the activity itself, can be interrupted; in that
case, the "suspended" state becomes the state of the
activity which will remain idle until the process is
resumed. For delayed activities, however, we do not allow
a state of interruption; because the activity may be
suspended temporarily, acknowledging an interruption to
the teleworker would serve no purpose other than
increasing the completion delay. We are assuming, of
course, that the teleworker will be notified, during the
predicted period of execution (but not under delay), if the
execution of the activity is to be interrupted.
 In general, the life cycle of an activity ends when the
teleworker has completed his/her job and the exit criteria
become verified. Nevertheless, there may be occasions
when an activity is abruptly terminated: the process to
which the activity belongs is aborted – activity becomes
"ceased" – or the activity is simply expunged from the
activity network. The final state reflects the cause of such
termination.

3. The Workflow Management System
Components

 The workflow management system for telework
coordination should comprise the following components:
 (1) a modeling tool in the form of a business process
editor, able to provide a process definition, i.e., a computer
representation of the workflow logic which shall drive the
process execution during run time;
 (2) a workflow engine, providing the run time execution
environment for each process instance;
 (3) a messaging system, allowing asynchronous
communication with teleworkers over a communication
infrastructure and
 (4) a workflow client application, providing an interface
between the workflow engine and the teleworker and
possibly also some form of managing the teleworker's
obligations.
 Figure 3 illustrates the scope and relationships between
these main components [Lawrence, 1997].

Figure 3. Scope of the management system components

 The management system contains a business process
model editor allowing its definition, i.e., the creation of the
actual activity network and its refinement with the
pertinent data of each activity.
 Even though the process definition is what drives the
execution of the workflow, there will be the need to
dynamically adjust the process instance properties either
because of missed deadlines, task re-assignment or other
unpredictable circumstances.
 However, since the modeling phase and execution
phases do not overlap, we found it convenient to merge the
process editor and the workflow engine inside the same
software service. In this way, the same computer
representation supports planning and controlling of the
process within the same environment, therefore making it
easier to adjust the process definition during run time.
 The workflow engine iterates through each activity in
accordance with the process definition, triggering and
managing each task execution by sending and receiving
messages and data over a communication infrastructure.
 Although we have taken care to be able to cope with
unpredictable circumstances or with deviations from the
planned course of actions, we have not yet stated clearly
who is in charge of acting towards solving these problems.
A human coordinator will be the one whose intervention
shall be requested in order to solve the difficulties that may
arise. He or she should be qualified and responsible for
decision-making such as: (1) choosing the teleworker,
based on his/her expertise and availability, to carry out a
given activity and assign him/her to that activity; (2)
negotiating with alternative teleworkers the execution of
some activity and re-assign that activity; (3) evaluating
complaints of the teleworkers (possibly related with the

work of each other) and taking the appropriate actions
upon that evaluation and (4) terminating or suspending
activities or process instances. Process

Analysis,
Design and
Definition

Process
Instanciation,
Control and
Monitoring

Workflow
Engine

Workflow
Client Application

Process
Definition

Teleworker Application

Process adjustments

Process
Editor

Messaging System

3.1. The Process Editor

 Just as an activity, a process also has a life cycle.
Besides the inactive and running states, a process also has
a "suspended" state which causes all running activities to
be suspended (all but the delayed ones) and at any time
during execution, a process can be terminated which
causes all running activities to be "ceased". A process is
said to be "complete" when there are no remaining
activities left to be executed.
 But in the first place, a process should be defined by
analyzing, identifying and characterizing its different
components and by proposing a plan of action for its
execution, taking into consideration existing constraints.
As soon as the process definition becomes available, the
computer representation of the process can be constructed
using the process editor that is part of the management
system. To facilitate comprehension and structure to that
representation, we provided the process editor with the
capability of nesting sub-processes into processes or other
sub-processes, producing a hierarchical perspective of the
activity network. Also, to further enhance the perception of
the time relationships between activities, we have provided
a Gantt chart view for each sub-process. Figure 4
illustrates the hierarchical and Gantt chart views with an
example.

Figure 4. Enhancements to the process representation

 To provide reusability, we introduced two types of
process representations: the "process template" and the
"process instance". Although similar when observed from
within the process editor, they are conceptually different: a
process template cannot be put under execution whereas a
process instance, the one that can be released for runtime
execution, must be obtained by instantiating a process
template. The idea is that the process definition should be
created as a process template, remaining as a reusable
representation of a particular activity network. From a
process template, we may obtain as many instances as we

wish and put them under execution concurrently.
Notwithstanding, instances of the same process template
may present differences since it is still possible to edit the
activity network even after it has been instantiated. Also
after instantiating, direct changes in the process template
may be reflected onto its instances or not, depending on
the user's choice. When a particular instance is put under
execution, however, the link to its parent template is
broken, and that process instance begins a life of its own.
From that moment, it is no longer possible to modify that
process representation beyond some restricted adjustments
such as re-assignment and rescheduling of activities.
 The coordinator environment that comprises the process
editor and the workflow engine was implemented as a
Microsoft3 Windows3 (95, 98 or NT) application using the
C++ programming language and the Microsoft Foundation
Classes for the following reasons: (1) the process editor
would benefit from a user-friendly, well-established
graphic user interface, for both process editing and
monitoring; (2) Microsoft Windows already supports
workflow applications through its Messaging API (MAPI);
(3) the Microsoft Foundation Classes (MFC), which
constitute an extensive set of C++ classes supporting all
aspects of Windows programming and providing a fully
object-oriented development framework and (4) previous
knowledge and experience favoured the usage of C++; we
also had some experience working with Microsoft Visual
C++3 and the MFC.

3.2. The Workflow Engine and the Messaging System

 Clearly, the workflow engine must rely on some
communication infrastructure in order carry out the
execution of each process instance. The communication
needs of the engine are the following:

(1) requesting the execution of an activity from a
teleworker;

(2) receiving an answer from that teleworker
expressing acceptance or rejection;

(3) inquiring teleworkers about work throughput;
(4) issuing alerts for missed deadlines;
(5) receiving complaints from teleworkers;
(6) receiving acknowledgements for completed

activities;
(7) requesting correction or revision of work from a

teleworker;
(8) exchanging files and
(9) informal communication between coordinator and

teleworkers.
 Because the enactment service engine relies heavily on
the ability to communicate with the teleworkers, we had
also to decide what communication infrastructure should
be used and whether or not the development tool supported
it. Keeping in mind the intention to reach the broadest
range of teleworkers geographically distributed and the

3 Microsoft, Windows and Visual C++ are registered trademarks of
Microsoft Corporation

need to transfer binary data, we chose a widely accepted
asynchronous communication infrastructure: the e-mail.
Also, we have allowed transactions through FTP whenever
it becomes more convenient, such as when transferring
large amounts of data that would be inappropriate to attach
to an e-mail message.
 We have already emphasized that the workflow engine
should carry out the execution of the process instances on
its own, requesting if necessary the intervention of a
human coordinator. That is, we are looking forward to
automate the task of putting the various process instances
under execution maintaining, however, a wide range of
applicability regarding the business processes which could
benefit from this workflow management system. Because
the workflow engine generates and receives e-mail
messages automatically, there has to be a pre-defined
message format to convey the necessary information in
both directions. The following message format has been
agreed upon.
 Every message should include a keyword that identifies
its type and possibly its purpose. The keyword appears on
the subject field of the e-mail message, following a unique
string of characters that identifies this message as being
telework-related. That identifying string is "TLW" (from
TeLeWork); after this string and an arbitrary number of
space or tab characters, the keyword is placed. Figure 5
illustrates the message format.

 From: coordinator@somewhere.com

To: teleworker@somewhere.com
Subject: TLW keyword
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
#Company Telework Company Name
#Process Process ID
#Activity Activity ID
#Startdate dd/mm/yy hh:mm
#Finishdate dd/mm/yy hh:mm
#Status Activity Status
#Description ...
..….
#Inputdata
_FILES file1; file2;…
_ATTACH
…
#Outputdata
_FILES file3; file4; file5; …
_SITE ftp.somewhere.com
_USER username
_PASS password
…
#Statevar variable1; variable2; …

#Text ...………

Figure 5. Message Format

 In the body of the message, several tags (similar in
appearance to C/C++ preprocessor directives) indicate the
presence of pertinent data; its use is self-explanatory.
Although figure 5 lists all possible tags, no message needs
to contain all tags; any tag should be used if and only if its
corresponding data is available and is of interest. This

rudimentary set of tags should be enough to cover all our
needs.
 There are special tags (_FILES, _SITE, _USER, _PASS
and _ATTACH) whose purpose is to deal with file input
and output. The tag _ATTACH means that the preceding
files are included as attachment to this same message;
otherwise the username and password are specified for
download from a given server. Following the tags
#Description and #Text any text excerpt may appear; in
particular, the tag #Text may be used for any unspecified
communication purpose between coordinator and
teleworker or vice versa. The purpose of the #Statevar tag
is to enumerate those process state variables which will be
assigned a new value after the activity is complete. The
appearance of some tags is somewhat related with the
keyword on the "subject" field. Moreover, some keywords
are used in messages from the workflow engine (or
coordinator) towards the teleworkers – request, warning
and reply – while others appear in messages that flow in
the opposite direction – accept, reject, done, status and
problem. Some keywords – complaint and informal – may
appear in either way. The possible keywords may be
summarized as follows:

(1) request: the workflow engine requests the
execution of an activity from a teleworker;

(2) warning: the workflow engine acknowledges the
teleworker of some change to the properties of the
activity that he/she has been assigned;

(3) complaint: the teleworker expresses
dissatisfaction regarding the work performed by a
preceding colleague; this keyword is also used by
the coordinator to inform the preceding
teleworkers of those problems;

(4) problem: the teleworker is experiencing some
kind of problem that is not related with the work
of any other colleague;

(5) reply: the coordinator informs a teleworker that
the problems have been solved and that he/she
may resume his/her work;

(6) informal: used to exchange messages that are not
to be parsed or interpreted and whose contents
should reach the receiver without modification;

(7) accept: the teleworker compromises him/herself
to carry out the requested activity;

(8) reject: the teleworker refuses to assume
responsibility for executing the requested activity;

(9) done: the teleworker reports to the workflow
engine or coordinator the completion of his/her
activity and finally

(10) status: the teleworker retrieves information
regarding the execution of the activity.

 When the process is instantiated, teleworkers will have
to be acquainted with the activities that they have been
assigned; depending on the nature of the contract
celebrated with the teleworkers, it may follow a
negotiation phase or not. In any case, teleworkers should

acknowledge the request arrival by answering "accept" or
"reject". The appropriate time to request the execution of
an activity may depend on the expected duration of the
execution of the process. To illustrate this, we have
envisaged two possible scenarios:
 (1) if the execution of a process instance is expected to
take several months, then maybe it should be appropriate
to request execution of an activity two weeks before its
launch date, allowing the teleworker to manage his/her
obligations or allowing for some sort of negotiation;
 (2) if the execution of a process instance is to take a
couple of days, then maybe two or three days before
launching the process into execution all teleworkers should
be aware of their duties in order to avoid any execution
delay.
 Thus, the coordinator must choose the right time to
request the execution of each activity, after which he/she
should expect an "accept" or "reject" answer from the
corresponding teleworker. In case of a rejection, further
requests may be sent to other teleworkers though, once
again, those details do not concern us; our aim is to
provide the most flexible means to fulfill any coordinator's
needs.
 When an activity becomes delayed, the teleworker
should be reminded of that fact. Notwithstanding, a certain
delay – the "slack" when speaking in terms of PERT/CPM
– of some activities may not compromise the completion
date of the entire process if those activities do not belong
to the critical path of the process. Here the coordinator
may choose between two different policies:
 (1) letting the teleworker know the latest time for
completion of his/her activity or
 (2) letting the teleworker know only the earliest time for
that same completion; in this case we can afford a delay no
longer than the slack of the activity, if the preceding
activities are to be completed on time.
 The messaging protocol becomes highly useful when a
teleworker issues a complaint about a colleague's work.
With #Inputdata, the teleworker specifies the offending
files and the workflow engine will forward the complaint
message to the immediately preceding teleworkers whose
activity dealt with those files. The #Text directive and all
that follows after it shall also be forwarded to the
preceding teleworkers, letting them know of the reasons
for dissatisfaction. Those preceding teleworkers should
then answer with a "reply" message that contains the
corrected data which will be forwarded to the teleworker
that issued the complaint. This sequence of events is
depicted on figure 6 under a Message Sequence Chart [van
der Aalst, 1998].
 This is a peaceful scenario; teleworkers may as well start
disagreeing about each other's work. The coordinator,
however, is witnessing the entire situation and is free to
intervene whenever appropriate; if not, all the coordinator
has to do is to consult the log file that the workflow engine
maintains to be aware of the situation.

Figure 6. Sequence of events after a complaint

3.3. The Workflow Client Application

 In the preceding section, we have defined the
communication infrastructure that we shall use – e-mail
and FTP – and the message format of the workflow engine.
We must not expect, however, that every time the
teleworker wishes to send a message he/she should choose
the right keyword and include the appropriate tags and
text. In addition, when receiving an incoming message, the
teleworker shouldn't have to interpret its contents.
Although the message format is quite evident, there should
be some means of interpreting the message and presenting
its contents to the teleworker in a user-friendly way.
Therefore, the workflow client application is basically a
special purpose e-mail client that identifies a telework-
related message by looking at its subject field and
interprets, or more precisely, parses its content so as to
present it in a meaningful way.
 The same e-mail client also provides the reverse
functionality: when a teleworker wishes to send a message
he/she specifies the type of the message, which is related
with the keyword, and introduces its content disregarding
tags or other format details. The application will then
generate and send the message with the appropriate
keyword and tags, so that the workflow engine can
promptly understand it.
 Besides this interface role, the application also
implements some primitive means of managing the
teleworker's tasks, further allowing some kind of time
management facility.
 Because each teleworker might have his/her preferred
working environment, the key issue about this workflow
client application is platform independence. To implement
this application we chose the Java4 programming language
for the following reasons: (1) the Java programming
language and its "virtual machine" provide a high degree
of platform independence; (2) the Java Development Kit
(JDK), Sun's Java development tool, is freely available

4 Sun and Sun Microsystems are registered trademarks and Java is a
trademark of Sun Microsystems, Inc.

from Sun Microsystems4 and (3) already some knowledge
and experience existed working with Java.

3.4. Architecture Overview

 Figure 7 illustrates the architecture of our workflow
management system, which has been implemented as an
integrated set of two lightweight software applications: the
enactment service (that comprises the process editor and
the workflow engine) and the workflow client.

Process Editor

Instantiated
Process

User-defined
Templates

Basic
BuildingBlocks
(Activity and
Subprocess)

Generic Tools Partial Model Particular Model

Process
execution and

monitoring
Release

Workflow Engine

Messaging System

E-mail FTP

Workflow
Client Application

Figure 7. Architecture of the management system

4. Towards a Multi-Purpose
Coordination Tool

 While presenting the management system components,
we have focused mainly on telework coordination because
we were assuming that our functional entities were
restricted to teleworkers. But as far as our management
system is concerned a teleworker remains as being
someone whose work is independent of location and time,
the only restriction being a pre-established deadline. Our
management system, we believe, is still able to support the
coordination of any distributed process that concerns
information processing and transfer among a group of
people geographically.
 In the future, we intend to make the enactment service
capable of interfacing not only teleworkers but also other
applications or application servers. To that end, we are
evaluating the possibility of developing a new version of
the management system using the Common Object
Request Broker Architecture (CORBA). We are also
considering the enhancement of the present version with
special-purpose workflow clients that would interface
other applications (instead of teleworkers) allowing us to
maintain the same messaging system.

5. Conclusion
 This paper presented our approach to the construction of
a workflow management system supporting the
coordination of decentralized activities over the electronic

mail messaging infrastructure. Although our initial goal
was to develop a workflow enactment service as the first
step towards a workflow management system for telework
coordination, we believe that our software service remains
sufficiently generic to support the coordination of a
broader range of distributed business processes that
concern information processing and transfer.
 Finally, it is our strong belief that the simplicity of the
presented solution is key factor for its effectiveness. In
fact, not only did we manage to have a most simple
modeling language and modeling interface, but also a
widely used communication infrastructure and an open
messaging protocol. Overall, we hope to address the wide
community of e-mail users by providing them with the
means for structuring some of their most typical business
processes.

References
van der Aalst, W. M. P. 1998, Interorganizational
Workflows, Proceedings of the Tenth International IFIP
WG 5.2/5.3 Conference PROLAMAT 98, Trento, Italy

Ferreira, D., Rei, J., Mendonça, J. M., Ferreira, J. J. Pinto
1999, Building a Workflow Enactment Service for
Telework Co-ordination, Proceedings of the First
International Conference on Enterprise Information
Systems, Setúbal, Portugal

Lawrence, Peter 1997, Workflow Handbook 1997, John
Wiley & Sons, ISBN 0-471-96947-8

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
Lorensen, W. 1991, Object-Oriented Modeling and
Design, Prentice-Hall International Inc., Englewood Cliffs,
New Jersey

Silva, J. A. & Ferreira, J. J. Pinto 1998, From Telework
Project Planning to Project Co-ordination, An integrated
Approach, IFIP International Conference PROLAMAT
'98, Trento, Italy

Vernadat, F. B. 1996, Enterprise Modelling and
Integration, Principles and Applications, Chapman & Hall,
London

