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Abstract. Low-temperature plasmas are partially ionized gases, where
ions and neutrals coexist in a highly reactive environment. This creates a
rich chemistry, which is often difficult to understand in its full complexity.
In this work, we develop a machine learning model to identify the most
important reactions in a given chemical scheme. The training data are
an initial distribution of species and a final distribution of species, which
can be obtained from either experiments or simulations. The model is
trained to provide a set of reaction weights, which become the basis
for reducing the chemical scheme. The approach is applied to N2–H2

plasmas, created by an electric discharge at low pressure, where the main
goal is to produce NH3. The interplay of multiple species, as well as of
volume and surface reactions, make this chemistry especially challenging
to understand. Reducing the chemical scheme via the proposed model
helps identify the main chemical pathways.

Keywords: Plasma Physics · Plasma Chemistry · Machine Learning.

1 Introduction

The production of ammonia (NH3) is critically important to a wide range of
economic activities in the agricultural and industrial sectors. For example, am-
monia is a key ingredient in the manufacturing of fertilizers, pharmaceuticals,
plastics, textiles, and other chemicals. For more than a hundred years, the main
industrial procedure for the production of ammonia has been the Haber-Bosch
process [6]. However, this procedure requires temperatures in the range of 400
to 500 °C and pressures in the range of 150 to 300 atmospheres, which translate
into considerable requirements in terms of energy consumption. These conditions
are necessary in order to overcome the triple bond of nitrogen molecules (N2),
enabling them to react with hydrogen (H2), via N2 + 3 H2 → 2 NH3.

Low-temperature plasmas have emerged as a more energy efficient and envi-
ronmentally friendly process for ammonia synthesis [2]. In this case, the process
begins by exciting and ionizing a gas mixture of N2 and H2. Several ionization
methods are available, but one of the simplest and most direct is to apply an
electrical discharge [3]. This brings the gas mixture into a partially ionized state,
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containing electrons, ions, radicals, and neutral particles. In this plasma state,
the triple bonds of N2 and the covalent bonds of H2 can be broken more ef-
fectively than in thermal processes, leading to the formation of highly reactive
nitrogen and hydrogen species. A vast and complicated series of reactions then
unfolds, eventually producing NH3. One of the main goals of this work is to
contribute to the understanding of this chain of reactions.

Studying the chemistry of ammonia production is important for additional
reasons. Ammonia is known to be present in the atmosphere of the gas giants
in our solar system, especially in Jupiter, Saturn, and Saturn’s moon Titan [5].
Ammonia has also been detected in interstellar space and in exoplanets [10]. The
complex chemistry that takes place in a planetary atmosphere has prompted
scientists to carry out laboratory experiments, including plasma discharges, to
study the formation of organic molecules and even prebiotic molecules required
for the origin of life [4]. Understanding the production of ammonia in those
environments, through lab experiments and computer-based simulations, is an
integral part of those endeavors. Using machine learning, our goal is to identify
the most important reactions in such complex chemical processes.

The paper is organized as follows. Section 2 provides a brief introduction
to the chemistry of N2–H2 plasmas. Section 3 explains how a chemical scheme
containing many reactions can be represented as a Petri net. This representation
can be translated into matrix form, and we use this matrix form to develop a
machine learning model in Section 4. In Section 5 we describe where the training
data comes from, and how the model is trained. Finally, in Section 6 we analyze
the results and identify the main pathways for NH3 production.

2 Chemistry of N2–H2 Plasmas

The basis of the chemistry of N2–H2 low-temperature plasmas is fairly well doc-
umented in the literature [11]. It consists of over 200 reactions, including vibra-
tional processes, electron impact processes, as well as several reactions involving
heavy (neutral and charged) species. Since it is impractical (and unnecessary)
to reproduce the chemical scheme here in full, we provide only a few examples
of the type of reactions that it includes.

For vibrational processes, there are reactions such as:
• Vibrational excitation or de-excitation, e.g. e + N2(X,v) ⇌ e + N2(X,w),

where an electron collides with a nitrogen molecule in a vibrational level
v, and excites (or de-excites) it to a higher (or lower) vibrational level w.
Similar reactions exist for hydrogen molecules.

• Vibrational energy transfer, e.g. N2(X,v) + H2(X,w) ⇌ N2(X,v + 1) +
H2(X,w − 1), where nitrogen and hydrogen molecules collide, and energy
is transferred from one to the other through their vibrational levels.

For other electron impact processes, there are reactions such as:
• Electronic excitation and de-excitation, e.g. e + N2(X) ⇌ e + N2(A), where

the collision of an electron with a nitrogen molecule causes its excitation
from the ground state (X) to a higher energy state (A), or vice-versa.
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• Dissociation, e.g. e + H2(X) → e + 2H, where the collision of an electron
with a hydrogen molecule breaks its molecular bond and dissociates it into
two hydrogen atoms.

• Ionization, e.g. e + N2(X) → N2
+ + 2e, where the collision of an electron with

a nitrogen molecule ejects an electron from the molecule, thereby ionizing it.
• Attachment and detachment, e.g. e + H2 → H + H– , where the collision of

an electron with a hydrogen molecule causes the dissociation of the molecule,
and the attachment of the electron to one of the resulting hydrogen atoms,
forming a hydride ion (H– ).

• Neutralization, e.g. e + N2
+ → N + N, where the incoming electron recom-

bines with the positively charged nitrogen ion, thereby neutralizing it, and,
in addition, the excess energy of the newly formed molecular state leads to
the breaking of the molecular bond between the two nitrogen atoms.

For heavy-species collisions, there are reactions such as:

• Collisional excitation and de-excitation, possibly with dissociation, e.g. N2(A)
+ H2 → N2(X) + 2 H, where a nitrogen molecule in an excited state transfers
energy to a hydrogen molecule. The nitrogen molecule returns to its ground
state, and the energy transferred breaks the molecular bond between the two
hydrogen atoms.

• Ionization, e.g. N2(A) + N2(a′) → N2(X) + N2
+ + e, where there is an

energy transfer between two nitrogen molecules in different excited states.
One of them returns to the ground state, while the other receives sufficient
energy to eject an electron and ionize.

• Neutral–neutral reactions, e.g. N(D) + H2(X) → H + NH, where an excited
nitrogen atom transfers energy to a hydrogen molecule, enough to break its
molecular bond. The nitrogen atom then forms a new bond with one of the
free hydrogen atoms.

• Ion-molecule reactions, e.g. N2
+ + H2 → N2H+ + H, where the nitrogen ion

breaks the bond of a hydrogen molecule, and a new bond is formed between
the nitrogen ion and one of the hydrogen atoms.

• Ion-ion recombination, e.g. H– + H2
+ → H2 + H, where a hydride ion (H– )

transfers an excess electron to neutralize the charge of the dihydrogen cation
(H2

+), resulting in a hydrogen molecule and a hydrogen atom.

The reactions above illustrate the types of mechanisms at work, and these
mechanisms apply not only to N2 and H2 but also to atoms, radicals and ions
resulting from the various chemical reactions. The chemistry is therefore rich
enough to create a multitude of species (namely H, H+, H2, H2

+, H3
+, N, N+,

N2, N2
+, N3

+, N4
+, NH, NH+, NH2, NH2

+, NH2
– , NH3, NH3

+, NH4
+, N2H+,

N2H2, N2H3, N2H4) and these species can be in different excited states, partic-
ularly electronic and vibrational. For simplicity, we will omit the details about
the electronic/vibrational configuration of those species.

Besides the reactions that take place in the bulk of the plasma – often referred
to as volume processes [7] – there is another set of reactions that take place
at the boundaries of the experiment (at the interface between the gas and its
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surrounding walls), which are referred to as surface processes [8]. The plasma-
surface interaction stimulates the reaction of some species (namely H, N, NH,
NH2) with the surface, by some physical or chemical means. A species may stick
to the surface (physically) or react with the surface (chemically). Subsequently,
there may be reactions between species that have previously adhered to the wall
(involving only surface species), and there may be reactions between species that
have previously adhered to the wall and species that come from the bulk of the
plasma (involving both surface and volume species). In some cases, the products
of these reactions can return to the volume.

To distinguish between volume and surface species, we use the “wall” prefix
for the latter. For example, NH2 refers to the volume species, but wall_NH2
refers to the surface species. In addition, we represent vacant sites where species
can physically attach to the surface as wall_Fv , and vacant sites where species
can chemically bind to the surface as wall_Sv .

The surface chemistry can then be formulated as, for example:

• NH(X) + wall_Sv → wall_NH(S), where NH adheres chemically to the wall.
• NH(X) + wall_H(S) → wall_NH2(S), where an incoming NH molecule re-

acts with a hydrogen atom that is chemically bound to the wall.
• wall_H(F) + wall_NH(S) → wall_NH2(S) + wall_Fv , where a hydrogen

atom that was physically attached to the wall reacts with a NH molecule
that is chemically bound to the wall. The resulting NH2 is bound to the wall
and the physical site that released the hydrogen atom becomes vacant.

• H2(X) + wall_NH(S) → NH3(X) + wall_Sv , where an incoming hydrogen
molecule reacts with a NH molecule that was chemically bound to the wall,
releasing NH3 and leaving the chemical site vacant.

These examples illustrate the surface chemistry that needs to be taken into
account, simultaneously with the reactions that take place in the plasma volume.

3 Petri Net Modeling

One way to model chemical reactions is through the use of Petri nets [14]. In
essence, a Petri net is a graphical model with two types of nodes: places and tran-
sitions. Places connect to transitions, and transitions connect to places, through
directed arcs. In addition, places have tokens. When a transition fires, it removes
tokens from its input places, and adds tokens to its output places. By default, it
removes one token from each of its input places, and adds one token to each of
its output places. However, the number of tokens to be removed from (or added
to) each place can be configured by labeling the arc connecting the place to (or
from) the transition. For a transition to be enabled, each of its input places must
contain a sufficient number of tokens; otherwise, it cannot fire.

Figure 1 shows an example of how a chemical reaction can be represented as
a Petri net transition, with the reactants as input places, and the products as
output places. For illustrative purposes, we use the Haber-Bosch reaction N2 +
3 H2 → 2 NH3. In Fig. 1(a), the transition t is enabled by having a sufficient
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(a) marking before t fires (b) marking after t fires

Fig. 1. A chemical reaction modeled as a Petri net transition t.

number of tokens in each of its input places; this is called the initial marking.
When t fires, one token is subtracted from place N2, three tokens are subtracted
from place H2, and two tokens are added to place NH3. The resulting marking
is shown in Fig. 1(b). In this case, t is no longer enabled but, in a general case,
the presence of tokens in NH3 could enable subsequent transitions.

The same principles can be applied to model chemical reaction networks [13].
The idea is perhaps better explained with an example. For this purpose, we
consider a set of reactions that is by no means a complete description of the N2–
H2 plasma chemistry, but nevertheless includes some of the mechanisms that are
present in such chemistry, with the mere purpose of illustrating an over-simplified
ammonia production process:

• N2 ⇌ 2 N, which can be regarded as two separate (forward and backward)
reactions, to be represented as transitions t1 and t2.

• N2 + H2 → N2 + 2 H, to be represented as transition t3.
• 2 H → H2, to be represented as transition t4.
• N + H → NH, to be represented as transition t5.
• NH + H → NH2, to be represented as transition t6.
• NH2 + H → NH3, to be represented as transition t7.
• NH3 + N → NH2 + NH, to be represented as transition t8.

(In this example, the list of reactions ignores the presence of electrons, ions
and wall species, and accordingly does not consider ionization reactions.)

Figure 2 shows the corresponding Petri net. One can imagine that by placing
a generous amount of tokens in places N2 and H2, such initial marking could
enable a series of transition firings until, eventually, some amounts of NH, NH2
and NH3 are produced. Due to the cyclic chaining of some of these reactions,
such firings could go on indefinitely until the experiment is interrupted, or until
all the hydrogen and/or nitrogen tokens are consumed.

Mathematically, the structure of a Petri net can be represented as a transition
matrix, where each element specifies the number of tokens that are subtracted
from (or added to) a given place by a given transition. For the example in Fig. 2,
the transition matrix is:
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Fig. 2. A chemical reaction network modeled as a Petri net.

A =



t1 t2 t3 t4 t5 t6 t7 t8
0 0 2 −2 −1 −1 −1 0 H
0 0 −1 1 0 0 0 0 H2

2 −2 0 0 −1 0 0 −1 N
−1 1 0 0 0 0 0 0 N2

0 0 0 0 1 −1 0 1 NH
0 0 0 0 0 1 −1 1 NH2

0 0 0 0 0 0 1 −1 NH3


(1)

Let us suppose that, initially, there are two tokens in N2 and two tokens in
H2. This initial marking of the Petri net can be represented as a vector:

b =



0 H
2 H2

0 N
2 N2

0 NH
0 NH2

0 NH3


(2)

From this initial marking, let us suppose that t1 fires once, t3 fires twice, and
t5, t6, t7 each fire once. This can be represented as a firing vector:

x =



1 t1
0 t2
2 t3
0 t4
1 t5
1 t6
1 t7
0 t8


(3)
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Then the final marking of the Petri net can be calculated as Ax+ b:

y = Ax+ b =



1 H
0 H2

1 N
1 N2

0 NH
0 NH2

1 NH3


(4)

(The interested reader might want to check that this is indeed the case by
imagining the movement of tokens in the Petri net of Fig. 2.)

In this formulation, the most important problem for this work is how to find
x given A, b and y. In general, the chemical scheme (i.e. the set of possible
reactions), represented as matrix A, is known. The initial amounts of hydrogen
and nitrogen that are provided at the beginning of the experiment or simulation,
represented as vector b, are also known. The final amounts of species at the end
of the experiment or simulation, represented as vector y, can be measured or
calculated. Therefore, what is left to know is the vector x, which is proxy for
the reaction rates, i.e. the number of times those reactions occur per unit time
and unit volume (or surface). In this work, we will interpret x as a measure of
weight or importance of each reaction in the chemical scheme.

4 Machine Learning Model

As we have seen in the previous section, A is an n×m matrix, where n is the
number of species, and m is the number of reactions. In pratice, depending on
the chemical scheme, the number of reactions m can be (much) larger than the
number of species n. This means that Ax+b = y is an under-determined system.
While there might be many solutions for x, a possible approach would be to find
an approximation x̃ (and its corresponding prediction ỹ = Ax̃+b) that minimizes
the residual ∥ỹ − y∥ and has the smallest norm ∥x̃∥.

In our case, there are additional restrictions to be imposed on the model:

• The first restriction is that every element of the solution (or approximation)
x̃ should be non-negative, i.e. ∀i : x̃i ≥ 0. This means that negative transition
firings (or, in a chemical sense, negative reaction rates) are disallowed.

• The second restriction has to do with how the experimental/calculated data
about the initial and final amounts (i.e. the density) of species are typi-
cally provided. While absolute values for the density of species (in m−3 for
volume species, and in m−2 for surface species) are usually available, it is
quite common to describe an experiment as comprising certain percentages
of molecular hydrogen and nitrogen as input (e.g. 5% of H2 and 95% of N2)
and producing a certain distribution of species as output (also expressed in
percentages). As a result, this means that the model should provide a nor-
malized output ỹ. However, the distributions of volume species and surface
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species should be normalized separately, hence part of ỹ (the partition ỹi∈V
that corresponds to volume species) is normalized to 1, and another part of
ỹ (the partition ỹi∈S that corresponds to surface species) is also normalized
to 1. In other words:{∑

i∈V ỹi = 1 for volume species in V = {H,H2,N,N2, ...}∑
i∈S ỹi = 1 for surface species in S = {wall_H,wall_N, ...}

(5)

The non-negativity restriction on x̃ and the normalization requirements on
ỹ can be implemented via standard machine learning constructs, one of them
being the rectified linear unit (ReLU) and the other being the softmax function.
Both functions are extensively used in the field of machine learning [1].

In particular, ReLU is an element-wise function that can be defined as:

ReLU(x̃) = [. . . , ReLU(x̃i), . . .]
⊤
= [. . . ,max(0, x̃i), . . .]

⊤ (6)

On the other hand, softmax is a normalization function defined as:

softmax(ỹ) = [. . . , softmax(ỹi), . . .]
⊤
=

[
. . . ,

eỹi∑
j e

ỹj
, . . .

]⊤

(7)

The purpose of using these functions is to allow x̃ and ỹ to remain uncon-
strained, while enforcing the non-negativity of x̃ and the normalization of ỹ by
applying ReLU and softmax to them, respectively.

Since softmax is applied separately on volume and surface species, the model
can be expressed as:{

softmax ((A · ReLU(x̃) + b)i∈V) = ỹi∈V

softmax ((A · ReLU(x̃) + b)i∈S) = ỹi∈S
(8)

In the model above, a guess for x̃ will produce predictions for ỹi∈V and ỹi∈S .
The goal is to find the best guess x̃, i.e. the guess x̃ for which the predictions
ỹi∈V and ỹi∈S best approximate, in some sense, the true yi∈V and yi∈S .

Now, if the true yi∈V and the prediction ỹi∈V are both normalized (the same
applies to yi∈S and ỹi∈S), they can be reinterpreted as probability distributions.
This provides the opportunity for using a loss function based on statistical mea-
sures, such as the Kullback–Leibler (KL) divergence, to quantify the difference
between a true probability distribution yi∈V and a predicted probability distri-
bution ỹi∈V (and, similarly, between yi∈S and ỹi∈S).

Specifically, the KL divergence measures how much information is lost when
a true distribution p is approximated by a predicted distribution q. In this case,
the KL divergence is defined as:

DKL(p ∥ q) =
∑
i

pi log

(
pi
qi

)
(9)

where p and q and vectors of probabilities over the same outcomes.
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In our case, the loss function is defined as:

L(x̃) = DKL(yi∈V ∥ ỹi∈V) +DKL(yi∈S ∥ ỹi∈S)

=
∑
i∈V

yi log

(
yi
ỹi

)
+

∑
i∈S

yi log

(
yi
ỹi

)
(10)

The goal is to find x̃ that minimizes L(x̃). For this purpose, the gradient of
L(x̃), denoted as ∇L(x̃), provides the direction in which the loss increases. Since
the objective is to minimize the loss, we update x̃ iteratively via:

x̃(k+1) = x̃(k) − η∇L(x̃(k)) (11)

where η is a positive learning rate. In other words, the model is trained by
gradient descent, or variants thereof [15].

At the end of the training process, x̃ will provide the weights assigned to
the reactions in the chemical scheme. Any negative weight found in x̃, by force
of the ReLU function, will be turned into zero, and therefore the corresponding
reaction does not contribute to the result ỹ. In fact, all those reactions for which
x̃i ≤ 0 can be considered as candidates for removal from the chemical scheme,
and this becomes the basis for chemistry reduction in this work.

5 Chemical Scheme Reduction

In [3], the authors provide an experimental study of N2–H2 discharge plasmas,
based on a low-pressure (50–500 Pa), high-voltage (1–3 kV), direct-current (10-
40 mA) setup. The gas mixture, containing 0–5% H2, is pumped into a 23 cm-
long tube with a 2 cm diameter, and mass spectrometry is used to measure
the formation of neutral species (especially NH3) and many ion species, such as
H+, H2

+, H3
+, N+, N2

+, N3
+, N4

+, NH+, NH2
+, NH3

+, NH4
+, and N2H+.

The formation of NH3 (and of positive ions in the form NHx
+) was found to be

correlated with current and pressure.
An alternative way to study the chemistry of low-temperature plasmas is

through numerical modeling, using computer-based simulation tools, such as
the LisbOn KInetics (LoKI) code [16,9]. LoKI comprises two modules:

• The first module is a solver for the electron Boltzmann equation that pro-
vides the statistical distribution of electrons according to their kinetic energy,
i.e. the so-called electron energy distribution function (often abbreviated as
eedf ). Knowing the eedf is crucial to estimate the rate coefficients at which
electrons excite, dissociate and ionize atoms and molecules in the gas, in
order to study the overall dynamics of the system.

• In a second module, LoKI handles the plasma chemistry by determining
the reaction rates for a provided chemical scheme. The chemical scheme is
specified in a configuration file that contains hundreds of reactions collected
from the literature. A comprehensive list is provided in [11]. The rate coef-
ficients of some reactions are specified in the chemical scheme, while others
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are determined based on the eedf calculated by the first module. The reac-
tion rates are calculated by multiplying the corresponding rate coefficients
by the densities of the reactants intervening in each reaction. By balancing
the creation and destruction rates for the different reactions in the chemical
scheme, LoKI computes the final densities for all the species in the plasma.

LoKI receives the initial densities of species as input fractions in a configura-
tion file (e.g. 5% of H2 expressed as 0.05, and 95% of N2 expressed as 0.95, for a
pure N2–H2 mixture similar to experimental conditions). Then it computes and
saves the final densities in an output file. These final densities can be converted
to fractions, so that input and output fractions can be directly compared.

Table 1 shows an example of the input and output fractions for a LoKI
simulation. For simplicity, we abstract from vibrational levels and electronic
states (e.g. N2 represents all N2(Λ,v) species regardless of vibrational level v and

Table 1. Input and output fractions for a LoKI simulation.

Species Input fraction Output fraction

H 0.045 4.076 311× 10−2

H+ 0 1.521 387× 10−11

H2 0.005 2.821 790× 10−2

H2
+ 0 1.232 711× 10−12

H3
+ 0 1.350 015× 10−10

N 0 1.385 849× 10−2

N+ 0 1.149 678× 10−12

N2 0.95 9.171 353× 10−1

N2
+ 0 1.998 340× 10−11

N2H+ 0 2.301 581× 10−7

N2H2 0 1.186 624× 10−9

N2H3 0 1.913 678× 10−11

N2H4 0 2.236 752× 10−15

N3
+ 0 8.794 668× 10−11

N4
+ 0 1.844 171× 10−13

NH 0 1.477 812× 10−6

NH+ 0 1.616 889× 10−12

NH2 0 1.188 158× 10−8

NH2
+ 0 1.287 649× 10−10

NH2
– 0 6.742 121× 10−9

NH3 0 2.347 209× 10−5

NH3
+ 0 1.444 042× 10−9

NH4
+ 0 2.753 958× 10−8

wall_Fv 0.9976 9.974 761× 10−1

wall_H 0.002 2.313 191× 10−3

wall_N 0.0002 1.184 274× 10−4

wall_NH 0.0002 9.229 275× 10−5

wall_NH2 0 8.429 000× 10−9

wall_Sv 0 1.202 643× 10−8
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electronic state Λ). Therefore, the input/output fractions of each species include
all the electronic and vibrational populations, if applicable. More importantly,
the table shows volume species first, and surface species at the end. As can be
seen, the input fractions are normalized separately, i.e. the fractions for volume
species sum up to 1, and the fractions for surface species also sum up to 1; the
same applies to the output fractions.3

With the previous information, it is possible to apply the model described in
Section 4, which includes matrix A and vectors b and y:

• Matrix A is built from the reactions in the chemical scheme, by following
the same approach that led to Eq. (1). Basically, matrix A contains the sto-
ichiometric coefficients of each reaction, with reactants being represented as
negative values, and products being represented as positive values. Convert-
ing the chemical scheme to A results in a matrix of size 29×160, where there
are 160 reactions involving the 29 species in Table 1.

• As for b and y, these vectors correspond, respectively, to the input and output
fractions presented in Table 1. The conversion of those fractions to b and y
results in two vectors of size 29×1.

In the framework of Ax+ b = y, the goal would be to find the solution x that
explains how much each reaction contributes to transform the input fractions b
into the output fractions y, according to the chemical scheme A. In this context,
x will be a vector of size 160×1 with a weight for each reaction.

However, in Section 4 we have seen that such system in under-determined,
as shown here by the fact that we have 29 equations for 160 unknowns. Besides,
there are certain restrictions to be imposed, namely the non-negativity of any
approximation x̃, and the normalization of any prediction ỹ.

This has led us to an approach in the form softmax(A · ReLU(x̃) + b) = ỹ,
where the objective is to find an approximate solution x̃ via gradient descent,
based on the model in Eq. (8), the loss function in Eq. (10), and a learning rule
similar to Eq. (11). In this work, we use the popular Adam optimizer [12] with
a small learning rate, i.e. η = 10−4.

Figure 3 shows the evolution of the loss values across training. The loss
(i.e. the KL divergence) decreases sharply during the first few thousand itera-
tions, and then continues to improve, although at a much slower pace, until it
eventually converges to a value on the order of 10−6.

At the end of the training process, we extract x̃ and analyze the weights
assigned to reactions. Reactions with a positive weight will be kept in the chem-
ical scheme, as they are found to play a role in transforming the input fractions
into the output fractions. On the other hand, reactions with zero or negative
weight are considered as candidates for removal from the chemical scheme since,
by force of the ReLU function, their contribution will be zero.
3 The input fractions may be different for a simulation and for a lab experiment. For

example, simulations usually define not only the fractions of molecular species (e.g.
H2 and N2) but also of atomic species (e.g. H and N) and wall species (e.g. wall_H,
wall_N, etc.). On the other hand, in a lab experiment, the input for the gas mixture
is limited to the actual fraction of gases available in commercial bottles.
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Fig. 3. Loss curve obtained during training.

Fig. 4. Petri net representation of the chemical scheme, with reactions to be kept (in
blue), and reactions to be removed (in orange) [colors available in the online version].
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Figure 4 shows a Petri net representation of the chemical scheme, where the
reactions with positive weight (these ones that will be kept) are shown in blue,
and the reactions with zero or negative weight (the ones that will be considered
for removal) are shown in orange. From the 160 reactions in the original chemical
scheme, only about 60 reactions (less than 40%) are guaranteed to survive, with
the rest becoming candidates for removal. This highlights the extent to which
the chemical scheme can be potentially reduced.

6 Analysis of the Results

An analysis of the reduced chemical scheme, based on the machine learning
model described in Section 4, reveals that there are several possible mechanisms
for the production of NH3:

• One of those mechanisms is: wall_H + wall_NH2 → NH3 (simplified form).
In this case, a hydrogen atom attached to the wall reacts with a NH2 molecule
bound to the wall, releasing NH3 into the plasma volume. This requires
the availability of wall_NH2, which can be produced either by the surface
chemistry (wall_H + wall_NH → wall_NH2) or may come from the volume
chemistry (NH2 → wall_NH2). The former depends on the availability of
wall_NH, which can be produced via similar pathways (either from wall_H
and wall_N, or from the volume species NH binding to the wall); the latter
depends on the volume species NH2, which can be produced in a number of
ways, usually involving neutralization of NH2

+ or NH2
– . These ion species

can be traced back to a multitude of volume reactions.
• Another mechanism is H + wall_NH2 → NH3 (simplified form), where a

hydrogen atom reacts with a NH2 molecule bound to the surface, releasing
NH3 into the plasma volume. Much of the same considerations apply here
as well, and this serves to illustrate how the surface chemistry can play an
important role in the production of NH3. Once H and N bind to the wall,
they can react chemically to produce wall_NH, wall_NH2, and eventually
NH3. Another chemical pathway is for the volume species NH and NH2 to
bind to the wall midway through this process.

• In the partially ionized environment of the plasma volume, there are multiple
ion species. Some of these ion species are highly reactive, and can produce
NH3 in a number of different ways. For example, when H3

+ encounters NH2
– ,

they recombine to produce NH3 (via H3
+ + NH2

– → H2 + NH3). If NH2
–

encounters NH4
+, they can also produce NH3 (via NH2

– + NH4
+ → NH2

+ NH3 + H). In this case, a curious fact is that NH4
+ can only exist if it has

been produced from NH3 (e.g. via NH+ + NH3 → N + NH4
+). Therefore,

there is an interplay between ions and neutral species, where they produce
each other recursively with the help of other species. Another example is
when NH3 is produced by neutralization of NH3

+, but NH3
+ itself is pro-

duced from NH3 and other ions (e.g. via H2
+ + NH3 → H2 + NH3

+). All
of these mechanisms contribute to the co-existence and continuous interplay
between ions and neutrals in the plasma volume.
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Fig. 5. Graph representation of the chemical scheme, with reactions to be kept (solid
lines), and reactions to be removed (dashed lines) [colors available in the online version].
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• Besides ion reactions, NH3 can also be produced from neutrals, especially
through reactions that involve NH2 (e.g. NH + NH2 → N + NH3; or 2 NH2
→ NH + NH3). The heavier species N2H2, N2H3 and N2H4, if present, can
also react with NH2 to produce NH3 (e.g. N2H2 + NH2 → H + N2 + NH3).
However, the origin of NH2 is difficult to disentangle, since it appears that
NH2 arises from the neutralization of NH2

+, but NH2
+ itself arises from

the ionization of NH2 when it collides with ions such as N+, H2
+ or NH+.

Another pathway to NH3 is through neutralizing reactions involving NH2
– ,

but this also unclear, since NH2
– itself originates from electron impact on

NH3. In conclusion, these species (i.e. NH2, NH2
+, NH2

– , NH3) seem to
coexist and continuously recreate each other with the help of other species.

Figure 5 shows a graph representation of the chemical scheme that may shed
some light on these intricate mechanisms. Here, each arrow represents a reactant-
product relationship (reactant→product) between two species, so a single reac-
tion (such as H3

+ + NH2
– → H2 + NH3) may be drawn as multiple arrows

(e.g. H3
+→H2; H3

+→NH3; NH2
–→H2; NH2

–→NH3). The solid arrows repre-
sent reactions that are to be kept in the reduced chemical scheme, while the
dashed arrows represent candidates for removal.

One of the main features that can be observed in this graph is the clear
separation between volume and surface chemistry. It is clear that H and N will
attach to the wall and, from there, there is a pathway towards the production
of NH3 through wall_NH2. On the other hand, the volume chemistry shows a
multitude of pathways towards NH3, as well as the reciprocal relationships that
exist among NH3, NH2, NH2

– , NH2
+, and even NH4

+. This visual portrayal is
in agreement with our analysis above.

7 Conclusion

In this work, we developed a machine learning model inspired by a Petri net
representation of the chemical scheme. When such representation is converted
to matrix form, it becomes possible to use standard machine learning constructs.
Here, we defined a learning model based on matrix-vector multiplication, and
on the ReLU and softmax functions. Such model is trained by minimizing the
Kullback–Leibler divergence in order to find a set of reaction weights. These
weights become the basis for reducing the chemical scheme.

The model was applied to the chemistry of low-temperature N2–H2 plasmas.
Despite being a relatively simple setup, this gas discharge exhibits a rich chem-
istry, where both ions and neutrals, as well as volume and surface species, have
an interconnected role. With the proposed model, it was possible to identify the
main reactions and chemical pathways involved in the production of NH3. In
future work, we plan to further develop the approach by comparing the simula-
tion results obtained with the full and the reduced chemical schemes, and also
validate them against experimental results obtained in the lab.
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