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ABSTRACT

Plasma tomography consists in reconstructing the 2D ra-
diation profile in a poloidal cross-section of a fusion device,
based on line-integrated measurements along several lines of
sight. The reconstruction process is computationally inten-
sive and, in practice, only a few reconstructions are usually
computed per pulse. In this work, we trained a deep neural
network based on a large collection of sample tomograms that
have been produced at JET over several years. Once trained,
the network is able to reproduce those results with high accu-
racy. More importantly, it can compute all the tomographic
reconstructions for a given pulse in just a few seconds. This
makes it possible to visualize several phenomena — such as
plasma heating, disruptions and impurity transport — over the
course of a discharge.

INTRODUCTION

One way to measure plasma radiation is through the use
of bolometers, in particular foil bolometers [1]. These bolome-
ters consists of a thin metal foil (about 10 um) coupled with
a temperature-sensitive resistance. As the metal foil absorbs
radiation power, its temperature changes and there is a pro-
portional change in resistance. This can be measured using a
standard setup, such as a Wheatstone bridge. Overall, such
system provides a linear response to the absorbed power, in
the range from ultraviolet (UV) to soft X-ray [2].

At the Joint European Torus (JET) there is a multi-channel
bolometer system comprising a horizontal camera and a ver-
tical camera, with 24 bolometers each [3]. The horizontal
camera has a pinhole structure that defines the lines of sight
for each of its 24 bolometers. The vertical camera, on the other
hand, uses a collimator block to achieve the same purpose [4].
In addition, the vertical camera has an extra 8 bolometers that
can be used as reserve channels, so in total the system can
provide 56 lines of sight over the plasma, as illustrated in
Figure 1.

This two-camera bolometer system is the basis for many
tomographic reconstructions that are routinely performed at
JET during post-pulse analysis. The method that is used to
compute such reconstructions has been developed by Ingesson
et al. [5] and actually predates the current bolometer system,
having been used with previous generations of soft X-ray
diagnostics at JET. In essence, it is an iterative constrained
optimization method that minimizes the error with respect to
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Fig. 1. Lines of sight for the vertical and horizontal cameras
(left) and a sample tomographic reconstruction for pulse 89065
at t=47.8s (right)

the observed measurements, while requiring the solution to
be non-negative. To do so, it solves a generalized eigenvalue
problem in order to find a solution as a function of Lagrange
multipliers, and then adjusts these Lagrange multipliers itera-
tively until the non-negativity constraints are satisfied [6].

Both the solution to the generalized eigenvalue problem
(which can be computed using a standard numerical library)
and the iterative adjustments to the Lagrange multipliers take
a significant amount of computation time. The total run-time
depends on the actual data but, with the code available at JET,
it can take more than 1h to produce a reconstruction. This
makes it impractical to compute more than a few reconstruc-
tions per pulse. There is hardly an opportunity to see how the
radiation profile develops across an entire pulse.

To appreciate the computational effort involved, consider
the following: the bolometer system at JET has a sampling
rate of 5 kHz; for the purpose of noise reduction, a window
average of 5 ms is usually applied, which corresponds to 25
samples; subsampling by a factor of 25 yields an effective
sampling rate of 200 Hz; so, in principle, it should be possible
to have as much as 200 reconstructions per second of pulse
time; for a pulse of about 30 seconds, this means a total of
6000 reconstructions; at an average of 1h per reconstruction,
this would require 250 days.

Clearly, another way to compute the reconstructions for an
entire pulse should be found. The following sections describe
how a deep neural network was devised and trained on existing
tomograms to produce the same results. A small amount
of error is more than compensated by a large computational
speedup (both to be quantified below). With this approach, it



becomes possible to analyze the time evolution of the radiation
profile in great detail. The pulses discussed at the end of this
paper, which illustrate disruptions and impurity transport, are
only a few examples of what can be done.

DEEP NEURAL NETWORKS

Deep learning [7, 8] is having a tremendous impact in
fields such as image processing and natural language process-
ing. In particular, convolutional neural networks (CNNs) have
been very successful at classifying input images into a set of
output classes. This has been demonstrated in the recogni-
tion of hand-written digits [9], in the classification of Web
images [10] and in the annotation of online videos [11], to cite
only a few applications.

In general, CNNs have a common overall structure, which
is depicted in Figure 2. This comprises, namely:

e An input layer, which receives an image, a multi-channel
image (in case of color images), or a set of video frames.

o One or more convolutional layers, where multiple filters
(in the form of a sliding window) are applied to the same
input. Each filter produces a different feature map.

o A subsampling layer after each convolution or, alterna-
tively, some form of subsampling applied during the con-
volution itself, namely by making the sliding window
stride in larger steps across the input.

e One or more densely-connected layers at the end to per-
form classification based on the features extracted by the
convolutional layers.

e An output layer with the same number of nodes as the
number of output classes.

The idea is to have a first stage of convolutional layers to
extract meaningful features from the input image, and a second
stage of dense layers to perform the actual classification based
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on those features. Every time a convolutional filter is applied,
it produces a new feature map as output. The first convolu-
tional layer operates directly on the input image; subsequent
layers operate on the feature maps produced by the previous
convolutional layer. The purpose of having subsampling (or a
stride greater than 1) is to make the feature maps smaller and
allow their number to progressively increase, while keeping
the network under a manageable size.

In a typical CNN, the input is a 2D image and the output is
a 1D vector of class probabilities. In tomography, however, the
scenario is the opposite: the input is a 1D vector of bolometer
measurements and the output is a 2D image of the plasma
radiation profile. Therefore, for the purpose of tomographic
reconstruction, it makes sense to think of the inverse of a
CNN, i.e. a kind of “deconvolutional” network that is able to
reconstruct a 2D image from its 1D projections.

In the literature, deconvolutional neural networks have
been used for image generation [12, 13]. By specifying the
class label and the camera position (1D data), the network is
able to generate an object (2D image) of the specified class
from the given camera view. In this case, the network architec-
ture is basically the reverse of a CNN, with a couple of dense
layers at the beginning, and a series of convolutional layers
(with upsampling) to generate the output image.

In previous work [14], we have shown that such kind
of network can produce tomographic reconstructions with
high accuracy when trained on certain subsets of JET pulses.
In the present work, we improved the network architecture
by replacing the convolution+upsampling layers with proper
deconvolutional layers (i.e. transposed convolutions [15]) in
order to obtain the logical inverse of a CNN. We have also
removed the requirement for any data preprocessing, so the
measurement data coming from the bolometers can be fed di-
rectly to the network. These improvements allow the network
to be trained much faster and with larger amounts of data.

The resulting network architecture is depicted in Figure 3.
After the input layer for the 56 bolometer channels, there are
two dense layers with 7500 nodes, which can be reshaped

dense dense

output

A 4

flatten

Fig. 2. Typical structure of a convolutional neural network (CNN)
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Fig. 3. Deconvolutional neural network for tomographic reconstruction

into a 3D structure of size 25x15%20. This structure can be
regarded as comprising 20 features maps of size 25x15. By
applying a series of transposed convolutions, these features
maps can be brought up to a size of 200x120, from which the
output image is generated by one last convolution.

The transposed convolution is the inverse of the convolu-
tion in the sense that, if a sliding window would be applied
to the output, the result would be the feature map given as
input. It can be shown that learning a transposed convolution
is equivalent to learning a weight matrix that is the transpose
of a regular convolution [15], hence the name of this operation.

In Figure 3, the upsampling of the feature maps from
25x15 to 200x120 is achieved by having each transposed
convolution operate with a stride of two pixels (i.e. one pixel
is being skipped between each two consecutive positions of the
sliding window). This means that the output is two times larger
and taller than the input, except for the very last convolution
which uses a stride of one to keep the same size.

TRAINING AND ACCURACY

In order to train the network in Figure 3, we gathered as
many sample reconstructions as possible. For this purpose, we
collected every single reconstruction that has been produced
at JET since the installation of the ITER-like wall (ILW) in
2011 [16]. This yielded a total of 24203 sample tomograms,
which have been separated into 90% (21783) for training and
10% (2420) for validation.

The network was trained using an adaptive gradient de-
scent algorithm [17] with a relatively small learning rate (10™)
and a large batch size (411). The batch size was chosen in
order to have about 50 batches, and in order to avoid having
any partially filled batch in the training set. Since 411 is a
divisor of 21783, this gives 21783/411=53 batches, and there-
fore there are 53 updates per epoch, where an epoch is one run
through the whole training set.

The network was trained on an Nvidia Titan X graphics

processing unit (GPU) until the error in the validation set no
longer improved. After 60 hours (12652 epochs) the minimum
error on the validation set was achieved at epoch 6911, and
there was no improvement after that. In fact, after that point the
error on the validation set started to increase (this is marginally
visible in Figure 4), which should be taken as a symptom of
overfitting. Therefore, we kept the network weights from
epoch 6911.
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Fig. 4. Loss and validation loss during training

The minimum error on the validation set, measured as
(pixel-wise) mean absolute error, was about 10 kW m~>. The
relatively small size of this error can be appreciated by com-
paring it to the dynamic range of the sample reconstruction in
Figure 1.

As an example of the results that can be obtained with the
trained network, Figure 5 shows three reconstructions from
pulse 92213. On the left is the reconstruction produced by the
iterative constrained optimization method, and on the right is
the reconstruction produced by the neural network. It should
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Fig. 5. Three reconstructions from pulse 92213 at t=49.7s
(top), t=49.9s (middle) and t=50.0s (bottom). Original recon-
struction (left) vs. neural network (right).

be noted that these particular reconstructions were not part of
the training set or the validation set.

Despite some perceptible differences, it is clear that the
neural network knows exactly where the focus of radiation is
(top and middle row) and can adapt even to small changes in
shape (middle and bottom row). To quantify the differences
between each pair of reconstructions, it is possible to use
image quality metrics such as structural similarity (SSIM) [18],
peak signal-to-noise ratio (PSNR) [19] and normalized root
mean square error (NRMSE) [20]. Table I shows the kind of
results that can be expected with these metrics.

The examples in Figure 5 have not been carefully selected
to yield particularly good results and, in practice, it might be
possible to obtain even better results. For example, Table II
shows the results obtained on the validation set, where all

time SSIM PSNR NRMSE
t=49.7s 09354 30.386  0.06925
t=499s 09239 28.161  0.08437
t=50.0s 09134 28.864 0.07750

TABLE I. Quality metrics on the reconstructions of Fig. 5

SSIM PSNR NRMSE
mean 0.9573 33.791 0.0678
std. dev.  0.0609 6.064 0.0415

TABLE II. Quality metrics on the validation set

metrics are, on average, slightly better. Also, in previous
work [14] we obtained even better results but it should be
noted that, in that case, the network was trained separately on
smaller and more uniform subsets of data.

In this work, the network was trained on a wide range of
pulses, from 80000 (Aug. 2011, after the installation of the
ILW) to 92504 (Nov. 2016, the last pulse at the time of this
writing). It is possible that, during these 5 years, the bolometer
system suffered some degradation (some channels might be
broken or malfunctioning occasionally) and yet the neural
network can make sense of the bolometer data to provide
accurate reconstructions across this wide range of pulses.

FULL-PULSE RECONSTRUCTION

Once trained, the network can be used to generate the
reconstruction for any given pulse and time. In fact, on the
same GPU that has been used before, the trained network
can produce about 3000 reconstructions per second (or 100
reconstructions per second on a standard quad-core CPU).
This means that the computation time for 6000 reconstructions
(which would take 250 days, as mentioned in the introduction)
can be brought down to just 2s, making it possible to generate
at once all the reconstructions for an entire pulse.

Figure 6 shows the reconstruction of pulse 92213 from
t=49.62s onwards, with a time increment of 0.1s (due only to
space restrictions). The first row shows a focus of radiation
developing on the outer wall, as we have seen in Figure 5.
However, Figure 6 also shows what happens afterwards: the
focus of radiation seems to slowly fade away (rows 1, 2), only
to reappear later at the core with particularly strong intensity
(rows 2, 3). (The dynamic range of these frames is the same
as in Figure 5, i.e. 0to 1.5 MW m™3.)

The radiation peaking stays in the core for a relatively
long time (at least from t=52.32s to t=53.42s), while changing
slightly in shape during that interval. Eventually, it also fades
away as the heating systems are being turned off. However,
just as it seemed that the plasma was about to soft land, there
is a disruption at t=53.72s.

Clearly, there are phenomena of impurity sputtering, trans-
port and accumulation in this pulse. Heavy ions (e.g. tungsten)
coming from the wall and the divertor can lead to significant
radiation losses, and these phenomena are especially notice-
able in the radiation profile. It is therefore not surprising
that bolometer systems are one of the key diagnostics used in
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Fig. 6. Reconstruction of pulse 92213 from t=49.62s to t=54.02s with a time step of 0.1s

disruption studies [21, 22, 23, 24], either by providing a mea-
surement of total radiation across the pulse, or by providing
the tomographic reconstruction at specific points of interest,
e.g. during the thermal or current quench.

With full-pulse reconstruction, it is possible to carry out
such analysis in more detail. For example, we can zoom into
the final moments of pulse 92213 to observe what happens at
the onset of (and even during) the disruption. Figure 7 shows
the reconstruction from t=53.688s to t=53.732s with a time
increment of just 1ms. In these frames, there is an apparent
swing from the outer wall to the inner wall, before the divertor
lightens and a full-blown disruption occurs.

Although the dynamics of disruptions are not yet fully
understood, one of the main causes is impurity accumulation
in the core, which decreases the core temperature, creating a
hollow temperature profile that eventually leads to core col-
lapse [25, 26]. There are a number of experiments at JET
where impurities are deliberately injected into the plasma in
order to study impurity transport and how impurities get to the
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core [27, 28, 29, 30]. In these experiments, the impurities are
created by laser ablation of metal plate, and are subsequently
injected into the plasma from the outer wall.

Figure 8 shows an excerpt of the full-pulse reconstruction
for an impurity-injection experiment (92286). Initially, the
pulse is relatively quiet, but in the second row there is a no-
ticeable change, with the formation of a ring around the edge.
This is the moment when impurities (in this case, tungsten)
have been injected into the plasma (around t=43.1s). The ring
turns into a cloud and, as the cloud dissipates, the impurities
appear to have concentrated at the core.

This impurity transport can be analyzed in more detail by
decreasing the time step, and also by decreasing the dynamic
range of these plots in order to have a better visualization.
Figure 9 shows a reconstruction with a time increment of 4ms
and with a relatively low dynamic range of 0 to 30 kW m™3
On the second frame in the top row (t=43.110s), the injection
of tungsten is clearly visible at a midpoint on the outer wall.

Following the injection, the impurities flow in clockwise
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Fig. 7. Reconstruction of pulse 92213 around disruption time with a step of 0.001s
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Fig. 8. Reconstruction of pulse 92286 from t=42.95s to t=43.39s with a time step of 0.01s

direction towards the divertor and along the separatrix until
forming a closed ring at t=43.122s. The ring thickens and
the particles appear to follow a spiral movement towards the
center. In the last row, a separate clump of radiation is already
well established in the core, with another focus of activity
going on in the divertor region.

CONCLUSION

A deep neural network, with an architecture that resem-
bles the inverse of a traditional CNN, can be trained to pro-
duce tomographic reconstructions much faster than traditional
methods. This makes it possible to reconstruct entire pulses,
providing a detailed visualization of several phenomena, such
as impurity transport and disruptions.

The same neural network approach can be applied to other
diagnostics in the same machine, or to similar diagnostics
in other machines, provided that there is sufficient training
data. However, it should be noted that the neural network
cannot produce better results than the method that was used to
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Fig. 9. Reconstruction of 92286 pulse from t=43.106s to t=43.282s with a time step of 0.004s

t=43.134s

.\

t=43.194s

t=43.254s

generate the training data itself. In general, the neural network
is just an approximation with arbitrarily good precision and, as
such, its results may suffer from the same problems or artifacts
that are present in the training data.

The tomographic routines at JET have been stable and
have been widely used for a number of years. This provided
a consistent a relatively large training dataset. In other ma-
chines, such as ITER, it will not be possible to use neural
network methods from the start of operations, for lack of train-
ing data. However, it may be possible to train a neural network
based on the part of the physics that is understood and can
be simulated, such as the large-scale simulations provided by
magnetohydrodynamics and impurity transport codes.

As future work, we intend to use the full-pulse recon-
structions to analyze the precursors of disruptions in order
to be able to mitigate, or even avoid those disruptions, if at
all possible. As a testbed for ITER, JET is perhaps the last
opportunity to tackle this problem before having to deal with
it on a much larger scale.
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