Full-pulse tomographic reconstruction with deep neural networks

Diogo R. Ferreira, Pedro J. Carvalho, Horácio Fernandes, and JET Contributors

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, UK

IPFN/IST, University of Lisbon, Portugal

The KB5 diagnostic at JET

• 2 cameras with 24 bolometers each + 8 reserve channels (total 56)

A. Huber et al, Fusion Eng. Des. 82, 1327 (2007)

McCormick et al, Fusion Eng. Des. 74, 679 (2005)

Tomographic reconstruction

• iterative constrained optimization method

A. Huber et al, Fusion Eng. Des. 82, 1327 (2007)

Some facts

- KB5 sampling rate: 5 kHz
 - window average of 5 ms (25 samples)
 - 5 kHz / 25 = 200 Hz
- pulse duration: ~30 sec
 - 30 sec × 200 Hz = 6000 reconstructions/pulse
 - in practice, only a few (0-99)
- time per reconstruction
 - >1h on average
 - 6000 × 1h = 250 days

Deep neural networks

• traditional CNNs (convolutional neural networks)

Krizhevsky et al, Adv. Neural Inf. Proc. Sys. 25, 1097 (2012)

Deep neural networks

• inverse of a CNN ~ "deconvolutional" neural network

Training

dataset

- range of pulses: 79886 to 92504 (post-ILW)
- 24203 sample reconstructions
- 90% training (21783), 10% validation (2420)
- training
 - adaptive gradient descent (Adam)
 - learning rate: 0.0001 (10⁻⁴)
 - batch size: 411 (21783 / 411 = 53.0)
 - 53 batches = 53 updates/epoch

Hardware: Nvidia Titan X GPU memory usage: 3759 MB

Training time: 60 hours 12652 epochs

Min. val. loss: 0.01010275 epoch 6911

• Pulse 92213 t=49.70s (true vs. prediction)

• Pulse 92213 t=49.90s (true vs. prediction)

• Pulse 92213 t=50.00s (true vs. prediction)

• speed

- 3000 reconstructions/sec (on GPU)
- 250 days => 2 sec
- viewing the results
 - plot the reconstructions
 - encode as video frames
 - use lossless compression
 - processing speed ~ 40 frames/sec
 - 6000 frames ~ 150 sec

92213 (baseline high power)

time range: t=47.00s to t=54.19s dynamic range: $0 \le P_{rad} \le 1.5$ MW m⁻³

92213 disruption

time range: t=53.668s to t=53.747s dynamic range: $0 \le P_{rad} \le 1.5 \text{ MW m}^{-3}$

92286 (tungsten ablation)

time range: t=41.00s to t=45.79s dynamic range: $0 \le P_{rad} \le 150 \text{ kW m}^{-3}$

92286 tungsten event

time range: **t=43.1060s** to **t=43.1177s** dynamic range: $0 \le P_{rad} \le 40 \text{ kW m}^{-3}$

Conclusion

some remarks

- speed, accuracy, usefulness
- generally applicable, with training data
- thanks to
 - EUROfusion
 - CCFE/UKAEA
 - FCT.pt
 - Ewa Pawelec (Uni. Opole)
 - Peter Lomas (JET)
 - Marco Sertoli (JET)
 - NVIDIA Corporation