
This is an unedited version of an article published in IJBPIM, Vol. 6, No. 2, 2013 1

Mining the low-level behavior of agents in high-level
business processes

Diogo R. Ferreira*
IST – Technical University of Lisbon,
Campus do Taguspark,
Avenida Prof. Dr. Cavaco Silva,
2744-016 Porto Salvo, Portugal
E-mail: diogo.ferreira@ist.utl.pt
*Corresponding author

Fernando Szimanski and Célia Ghedini Ralha
Universidade de Brasília (UnB),
Departamento de Ciência da Computação,
Campus Universitário Darcy Ribeiro,
ICC Ala Norte, Caixa postal 4466,
70904-970 Brasília, DF - Brasil
E-mail: fszimanski@gmail.com
E-mail: ghedini@cic.unb.br

Abstract: Currently there is a gap between the high level of abstraction at which business
processes are modeled and the low level nature of the events that are recorded during process
execution. When applying process mining techniques, it is possible to discover the logic behind
low-level events but it is difficult to determine the relationship between those low-level events
and the high-level activities in a given process model. In this work, we introduce a hierarchical
Markov model to capture both the high-level behavior of activities and the low-level behavior
of events. We also develop an Expectation-Maximization technique to discover that kind of
hierarchical model from a given event log and a high-level description of the business process.
We use this technique to understand the behavior of agents in business processes, from the
control-flow perspective and from the organizational perspective as well. Using an agent-based
simulation platform (AOR), we implemented a purchasing process and generated an event log
in order to illustrate the benefits of the proposed approach and to compare the results with
existing process mining techniques, namely the ones that are available in the ProM framework.

Keywords: Process Mining, Agent-Based Simulation, Hierarchical Markov Model, Expectation-
Maximization, Agent-Object-Relationship (AOR)

Reference to this paper should be made as follows: Ferreira, D.R., Szimanski, F., Ralha,
C.G. (2013) ‘Mining the low-level behavior of agents in high-level business processes’, Int. J.
Business Process Integration and Management, Vol. 6, No. 2, pp.146–166.

Biographical notes: Diogo R. Ferreira is professor of information systems at the Technical
University of Lisbon, and he is an active researcher in the field of business process management,
particularly in the area of process mining.

Fernando Szimanski is an adjunct professor at University Center UNIRG, and a PhD student
at the University of Brasília. His research focuses on using agent-based simulation and process
mining for business process improvement.

Célia Ghedini Ralha is an associate professor at the Computer Science Department, University
of Brasília, and she is an active researcher in the field of intelligent information systems,
particularly using agent-based models.

This work is a revised and expanded version of a paper entitled ‘A Hierarchical Markov Model
to Understand the Behaviour of Agents in Business Processes’ presented at the 8th International
Workshop on Business Process Intelligence (BPI 2012), Tallinn, Estonia, 3 September 2012.

Copyright © 2013 Inderscience Enterprises Ltd.

2 D.R. Ferreira et al.

1 Introduction

When a business process is performed over a systems
infrastructure, it is possible to record all events that
occur during process execution. These events can then
be extracted as an event log for further analysis. Process
mining (van der Aalst, 2011) is an emerging field which
concerns the development of techniques to discover process
models that explain the behavior found in an event log. In
the context of process mining, an event log is usually a list
of events in chronological order, where each event refers to
an activity that has been performed by some agent during
the execution of some process instance.

As illustrated in Figure 1(a), each event in the event log
contains the following elements: a case id which identifies
the process instance; the activity that has been executed in
that process instance; the agent who performed the activity;
and the timestamp of when the event occurred. By applying
process mining techniques it is possible to extract different
kinds of behavioral models from such an event log. An
example is the control-flow model depicted in Figure 1(b),
which has been obtained by analyzing the sequence of
activities recorded in the activity column.

Each state in the control-flow model of Figure 1(b)
represents a different activity and the arrows between states
represent the transitions that have been observed in the
event log (where each transition is between two consecutive
events with the same case id). Some transitions have
occurred only once, while others occurred multiple times,
in different process instances. Let the state where an arrow
begins be called the source state and the state where the
arrow ends be called the target state. The label next to
each arrow indicates the number of times the transition
has occurred divided by the total number of times that the
source state was recorded in the event log. In a frequentist
interpretation, this can be taken as a measure of probability
of going from the source state to the target state, and so this
model can be regarded as a form of Markov chain.

The special states marked with “◦” (for “open”) and
“•” (for “closed”) are used to designate the beginning and
end of a process instance. These states are not explicitly
recorded in the event log, but they can be figured out
from the point where a case id appears for the first time
and for the last time, respectively. In practice, the events
from different process instances may be interleaved in time
and therefore appear interleaved in the event log, but it is
possible regroup them according to case id.

Figure 1(c) shows the result of a similar analysis carried
out for the agent column. Here, each state represents a
different agent and the transitions represent the handover of
work between agents, i.e. a transition represents the fact that
an agent performs an activity before handing the process
instance over to another agent. In this example, there are
cases where the same agent performs two consecutive
activities, and this is the reason why there are self-loops in
Figure 1(c). In any case, the method that was used to build
this model was the same as in Figure 1(b), and again the
transition labels can be taken as a measure of probability of
going from a source state into a target state.

1.1 The problem of high-level activities

In Figure 1(a) the events that are recorded in the event log
refer to high-level activities such as Requisition, Dispatch
Product, Approve Purchase, etc. These are activity labels
that could be used in a high-level description of the business
process. However, in practice it often happens that the
events that can be captured by the supporting systems are of
a low-level nature, such as e.g. “agent X sent a message M
to agent Y ”, without an explicit connection to the high-level
activity that is being performed. In addition, each activity
may be the cause of several events, so there is clearly a
gap between the high level of abstraction at which business
processes are defined and the low-level nature of events that
are recorded during process execution.

In such scenario, analyzing the event log alone will
provide little insight into how a process, defined in
terms of high-level activities, is being performed at run-
time, because the mapping between low-level events and
high-level activities is missing. In this work, we present
an approach that is able to discover such mapping,
under certain assumptions. We assume that a high-level
description of the process is available and that such
description can be translated into a high-level behavioral
model (i.e. a control-flow model). On the other hand, we
have seen in Figure 1 that it is possible to extract a low-
level behavioral model from an event log (either a control-
flow or an interaction model, as in Figures 1(a) and 1(b),
respectively). Our approach is based on the idea that when
the low-level behavioral model is being discovered from
the event log, the high-level model should also be provided
as input, so that not only the low-level model but also the
relationship between the low-level model and the high-level
model can be discovered at the same time.

A more formal definition of the problem can be found
in Section 3, and a solution to the problem is developed
in Section 4. In Section 5 we show that the proposed
solution is able to deal with workflow patterns that are
commonly found in practice, and in Section 6 we present
a case study application involving a purchasing process
implemented using agent-based simulation.

1.2 The role of agent-based simulation

To study the problem above and to develop the proposed
solution, we found it very useful to have a way to
simulate the generation of low-level events from high-
level activities. Traditional process simulation tools are
not entirely appropriate for this purpose, since one needs
to simulate not only the high-level process, but also the
way in which a set of participants execute the process,
thereby generating a sequence of non-deterministic, low-
level events within the scope of each activity. Agent-
based platforms are especially convenient for this purpose,
since agents can have interesting characteristics, namely
autonomy and pro-activity (Wooldridge and Jennings,
1995), that can be used to mimic the way humans interact
while performing their tasks.

Mining the low-level behavior of agents in high-level business processes 3

case id activity agent timestamp
1 Requisition Employee 2012-06-14 10:23
1 Dispatch Product Warehouse 2012-06-14 15:45
2 Requisition Employee 2012-06-15 11:21
2 Approve Purchase Purchasing 2012-06-19 14:34
3 Requisition Employee 2012-06-21 09:31
3 Approve Purchase Purchasing 2012-06-23 10:22
3 Order Product Purchasing 2012-06-23 11:53
3 Receive Product Warehouse 2012-06-27 12:07
3 Dispatch Product Warehouse 2012-06-28 08:25
...

(a) Event log (b) Control-flow model (c) Interaction model
Figure 1 An example of an event log together with the extracted control-flow model

In this work we make use of a particular agent-based
platform, namely the Agent-Object-Relationship (AOR)
framework (Wagner, 2004). This platform allowed us to
fully implement a purchasing process by specifying a set
of agents and their behavior within the scope of each high-
level activity. The AOR framework itself has the ability
to record all events that are generated during simulation in
an XML file, and with some processing it is possible to
transform this file into an event log that is similar to the
kind of event logs used for process mining. Provided with
the event log and with a model for the high-level process,
our approach successfully discovers the low-level behavior
associated with each high-level activity.

Although in Section 6 we turn our attention to a
practical scenario involving a purchase process, the same
approach can be used to simulate and discover business
processes in a wider range of applications. Section 5
presents the results of a set of experiments with workflow
patterns; these experiments provide an indication that the
proposed approach can handle general patterns of behavior.
Through agent-based simulation, it is possible to generate
non-deterministic behavior. On the other hand, the use
of Markov models provides resilience to noise. Therefore,
the approach described in this paper – particularly, the
algorithms described in Section 4 – can be used in realistic
scenarios to discover the run-time behavior of business
processes for which a high-level model is known.

1.3 Previous work

This work is an extension of (Ferreira et al., 2012). In
particular, Section 5, which reports on a set of experiments
with basic workflow patterns, is entirely new, and Section 6
has been expanded with experiments using the ProM
framework (Section 6.6) in order to compare the results
obtained with our approach to those obtained using existing
process mining techniques. Basically, the difference is in
the fact that it becomes possible to capture a separate model
of low-level behavior for each higher-level activity, rather
than capturing all the low-level behavior at once in a single

model which, in general, is hard to understand and interpret
in terms of a set of high-level activities.

2 Related work

The gap between high-level activities and low-level
events is a well-known problem in the field of process
mining (Greco et al., 2005; Günther and van der Aalst,
2007; Günther et al., 2010; Bose et al., 2012). Despite the
development of a wide range of process mining techniques,
most of these are able to discover behavioral models that
are at the same level of abstraction as the events recorded in
the event log. However, with an increasing general interest
in process mining, end users are looking for solutions to
analyze event data and visualize the results at a higher
level of abstraction, preferably at the same level as they are
accustomed to when modeling their business processes.

Recently, the research community has been looking into
this problem and, while it is still a topic of ongoing
research, a few approaches have already been proposed to
be able to produce more abstract models from an event log.
These approaches can be divided into two main groups:

(a) First, there are techniques that work on the basis of
models, by extracting a low-level model from the event
log and then creating more abstract representations of
that model. Examples are (Greco et al., 2005) and
(Günther and van der Aalst, 2007). Basically, these
techniques work by aggregating nodes in the model,
in order to produce a simplified and more abstract
picture of the process. In general, these approaches
allow a stepwise simplification of the process until, in
the limit, everything is aggregated into a single node.
It is the end user who must know how far to carry
the simplification in order to obtain meaningful results.
A disadvantage of these approaches is that it is not
possible to automatically identify aggregated nodes as
meaningful business activities (they are simply labeled
as “Cluster A”, “Cluster B”, etc.), so it may be difficult
for the end user to understand and analyze the results.

4 D.R. Ferreira et al.

(b) Second, there are techniques that work on the basis of
the events, by translating the event log into a more
abstract sequence of events and then producing a model
from that translated event log. Examples are (Günther
et al., 2010) and (Bose et al., 2012). Basically, these
techniques work by identifying frequent patterns of
events in the event log, and then substituting each of
these patterns by a single, higher-level event. After all
substitutions have been made, the event log becomes
a sequence of more abstract events. As a final step,
it is possible to extract a model by usual techniques,
such as the α-algorithm (van der Aalst et al., 2004),
the heuristics miner (Weijters et al., 2006), or the
genetic miner (de Medeiros and Weijters, 2005). As
with other approaches, it is possible to perform this
abstraction in multiple stages, but there is no guarantee
that the patterns of events that are identified in the
event log correspond to meaningful business activities,
so it is up to the end user to determine whether such
correspondence actually exists.

The problem with these approaches is that, although
they represent powerful mechanisms of abstraction, they do
not take into account that often there is already an abstract
notion of the process. This abstract notion, if translated into
a high-level process model, can provide valuable input as
to what are the main blocks (i.e. high-level activities) to
be expected when building abstractions over the behavior
observed in the event log.

In this work, we introduce a hierarchical Markov
model to capture both the high-level behavior of the
business process and the low-level behavior that can be
extracted from the event log. The advantage of using such
hierarchical model is that it captures also the relationship
between high-level activities and low-level events, so that
when a pattern of low-level behavior is discovered, it can
be identified with a certain high-level activity.

To the best of our knowledge, hierarchical Markov
models have been used in image processing (Collet
and Murtagh, 2004; Zhao et al., 2006; Provost et al.,
2004; Demonceaux and Kachi-Akkouche, 2006), wireless
communications (Karande et al., 2003; Yang and Alouini,
2002; Khayam and Radha, 2003; Tao et al., 2001), and data
mining (Youngblood and Cook, 2007; Liao et al., 2007; Wu
and Aberer, 2005; Cook et al., 2006), but this is the first
time that such kind of model is being applied to the analysis
of business processes, and process mining in particular.

3 The hierarchical Markov model

A hierarchical Markov model is basically a Markov chain
where each state contains another Markov chain. While the
upper-level Markov chain is in a certain state (let us call
it “macro” state), the lower-level Markov chain for that
macro state can be switching between “micro” states. A
hierarchical Markov model may have an arbitrary number
of layers, but for our purposes if suffices to use a model
with just two layers: one to represent the high-level process,

and another to represent the low-level behavior associated
with each high-level activity.

To illustrate a simple example of the proposed
hierarchical Markov model, consider a business process that
can be described on a high level as comprising the sequence
of activities A, B, and C. This sequence of activities
represents the control-flow model for the high-level process,
and is depicted in Figure 2. On the other hand, consider
that when each of these activities is performed, this results
in some sequence of low-level events being recorded in
the event log. We will refer to these low-level events as
X, Y and Z. These low-level events may represent one of
several different things: for example, they may represent a
set of low-level tasks being performed by agents; they may
represent the agents themselves; or they may represent a set
of low-level messages exchanged between agents.

A B C

ZYYX Z XZ Y

Figure 2 A simple example of a hierarchical process model

Whatever the meaning of the low-level events X, Y
and Z, we consider that activity A results in the sequence
of events XYZ. In a similar way, activity B results in a
sequence of events in the form YZZ..., where there may be
multiple Z’s until a certain condition becomes true. Finally,
activity C results in a sequence of events in the form ZXY.
These sequences of events are represented as low-level
Markov chains in Figure 2.

Executing this model corresponds to performing the
sequence of activities ABC. However, in the event log we
find traces such as XYZYZZZXY without having any idea of
how this sequence of events can be mapped to the sequence
of activities ABC. The sequence ABC will be called the
macro-sequence, and the high-level model for the business
process in terms of the activities A, B, and C is referred
to as the macro-model. On the other hand, the sequence of
events XYZYZZZXY will be called the micro-sequence, and
the low-level Markov chain that describes the behavior of
each macro-activity in terms of the events X, Y and Z is
referred to as a micro-model.

The problem addressed in this work is how to discover
the macro-sequence and the micro-models from a given
macro-model and micro-sequence. In other words:

• The inputs are the macro-model and the micro-
sequence. The macro-model represents the prior
knowledge about the business process in terms of a
set of high-level activities; it is a macro-level control-
flow model expressed as a Markov chain. On the
other hand, the micro-sequence represents a trace of
low-level events that can be observed in an event log.
If there are multiple process instances, there will be
multiple micro-sequences in the event log.

Mining the low-level behavior of agents in high-level business processes 5

• The outputs are the macro-sequence and the micro-
models. The macro-sequence represents the actual
path in the macro-model (i.e. the sequence of macro-
states) that explains how a given micro-sequence
was generated during execution. If there are multiple
process instances, there will be multiple micro-
sequences, and there will be a separate macro-
sequence for each micro-sequence. On the other hand,
the micro-models represent the behavior of low-level
events for each macro-level activity. Each micro-
model is expressed as a Markov chain.

3.1 Definitions

Let S be the set of possible states in a Markov chain,
and let i and j be any two such states. Then P(j | i) is
the probability that the next state will be j given that the
current state is i. For convenience, this will be referred to
as the transition probability from the current state i to a
subsequent state j. In this work, as in (Veiga and Ferreira,
2010), we extend the set S with two special states – a
start state (◦) and an end state (•) – in order to include
the probability of the Markov chain starting and ending in
certain states. We represent this augmented set of states as
S = S ∪ {◦, •}. For example, P(i | ◦) is the probability of
the Markov chain starting in state i. Similarly, P(• | i) is
the probability of the Markov chain ending in state i.

By definition, P(◦ | i) , 0,∀i∈S since nothing can come
before the start state. In the same way, P(i | •) , 0, ∀i∈S
since nothing can come after the end state. Also, P(• | ◦) ,
0 since the Markov chain cannot start and end immediately
without going through any observable state.

A Markov chain is represented by a matrix T = {pij} of
transition probabilities, where pij = P(j | i), ∀i,j∈S. More
formally, a Markov chain M = ⟨S,T⟩ is defined as a
tuple where S is the augmented set of states and T is the
transition matrix between those states. The Markov chain
is subject to the stochastic constraint

∑
j∈S P(j | i) = 1 for

all states i ∈ S \ {•}. In other words, there is always some
subsequent state to the current state i, except when the end
state has been reached. For the particular case of the end
state, we have

∑
j∈S P(j | •) = 0.

The fact that ∀j∈S : P(j | •) = 0 means that the last row
in matrix T is zero. Also, the fact that ∀i∈S : P(◦ | i) = 0
means that the first column in matrix T is zero. Finally,
the fact that P(• | ◦) = 0 means that the last element in the
first row of the matrix is zero. These facts are illustrated in
Figure 3, in the elements marked as 0.

In a hierarchical Markov model, there is a Markov chain
to describe the macro-model (upper level in Figure 2), and
there is a set of Markov chains to describe the micro-model
for each activity (lower level in Figure 2).

The macro-model is defined as a Markov chain M′ =
⟨S′,T′⟩ where S′ is the set of states that represent the
activities in the high-level description of the business
process. On the other hand, the micro-models are defined as
a set of Markov chains {M′′

i : i ∈ S′} where each M′′
i =

T = ◦ 1 2 ... n •
◦ 0 p01 p02 ... p0n 0
1 0 p11 p12 ... p1n p1(n+1)

2 0 p21 p22 ... p2n p2(n+1)

...
n 0 pn1 pn2 ... pnn pn(n+1)

• 0 0 0 ... 0 0

(Σjp0j = 1)
(Σjp1j = 1)
(Σjp2j = 1)
...
(Σjpnj = 1)
(Σjp(n+1)j = 0)

Figure 3 General form of a transition matrix

⟨S′′i ,T′′
i ⟩ is a Markov chain that describes the behavior of

agents when performing activity i ∈ S′.
For the example in Figure 2, one possible model is

shown in Figure 4. In this figure, the macro-model is
denoted by M′ and the micro-models are denoted by
M′′

A, M′′
B and M′′

C, respectively. In particular, in T′′
B it is

assumed that the probability of going from state Z to the
same state Z is equal to the probability of terminating the
Markov chain in that state, since both are ½.

3.2 Execution

In general, the execution semantics for a hierarchical
Markov model can be described as follows:

(a) Run the macro-model M′ = (S′,T′) as Markov chain,
beginning with the start state (◦) and going through
some sequence of states according to the transition
probabilities in T′, until the end state (•) is reached.

(b) For each state i that the macro-model M′ goes into,
run the corresponding micro-model M′′

i as a Markov
chain, again beginning with the start state (◦) and
going through some sequence of states according to the
transition probabilities in T′′

i , until the end state (•) is
reached. Only then can the macro-model proceed to the
next state.

(c) The micro-sequence s′′ is obtained by concatenating
every state observed at the micro-level. An example
is s′′ = XYZYZZZXY. Clearly, every such micro-
state belongs to some macro-state, in the sense that
each micro-state was produced by some micro-model
associated with a macro-state. In s′′ = XYZYZZZXY,
the first micro-states XYZ belong to A; the middle YZZ
belong to B; and the last ZXY belong to C. Let s′ be the
macro-sequence defined as the sequence of states that
the macro-model was in at the time when each micro-
state was generated. Then s′ = AAABBBCCC.

Our goal is to find the macro-sequence s′ and the micro-
models {M′′

i } for each macro-state i ∈ S′. For this purpose,
only the micro-sequence s′′ and the macro-model M′ are
known. Knowing the macro-model M′ does not solve the
problem since, in general, the macro-model may be able
to generate several possible macro-sequences, and one does
not know which macro-sequence has actually occurred for
a given micro-sequence. On the other hand, knowing the
micro-sequence s′′ does not solve the problem either, since

6 D.R. Ferreira et al.

M′ = ⟨S′,T′⟩ S′ = {◦,A,B,C, •} T′ = ◦ A B C •
◦ 0 1 0 0 0
A 0 0 1 0 0
B 0 0 0 1 0
C 0 0 0 0 1
• 0 0 0 0 0

M′′
A = ⟨S′′A,T′′

A⟩ M′′
B = ⟨S′′B,T′′

B⟩ M′′
C = ⟨S′′C,T′′

C⟩

S′′A = {◦,X,Y,Z, •} S′′B = {◦,Y,Z, •} S′′C = {◦,X,Y,Z, •}

T′′
A = ◦ X Y Z •

◦ 0 1 0 0 0
X 0 0 1 0 0
Y 0 0 0 1 0
Z 0 0 0 0 1
• 0 0 0 0 0

T′′
B = ◦ Y Z •

◦ 0 1 0 0
Y 0 0 1 0
Z 0 0 ½½
• 0 0 0 0

T′′
C = ◦ X Y Z •

◦ 0 0 0 1 0
X 0 0 1 0 0
Y 0 0 0 0 1
Z 0 1 0 0 0
• 0 0 0 0 0

Figure 4 An example of a hierarchical Markov model

there is no idea about how the observed micro-sequence
should be partitioned into a set of macro-activities. An
algorithm to find an estimate for both s′ and {M′′

i } from
M′ and s′′ is developed in the next section.

4 Algorithms

The problem above is equivalent to that of finding the
unknown parameters {M′′

i } for a model that produces both
observed data (s′′) and unobserved data (s′). Such type
of problem fits well into the framework of Expectation-
Maximization (Dempster et al., 1977; McLachlan and
Krishnan, 2008). If the missing data s′ were known, then
it would be possible to calculate {M′′

i } directly from s′
and s′′. On the other hand, if the model parameters {M′′

i }
were known, then it would be possible to determine the
missing data s′. What makes the problem especially difficult
is the fact that both {M′′

i } and s′ are unavailable. For this
kind of problem, it is possible to devise an Expectation-
Maximization (EM) procedure along the following lines:

(a) Obtain, by some means, an initial estimate for the
missing data s′.

(b) With the current estimate for the missing data, obtain an
improved estimated for the unknown model parameters
{M′′

i }.

(c) With the current estimate for the model parameters,
obtain an improved estimate for the missing data s′.

(d) Repeat the sequence of steps (b) and (c) above until the
missing data and the model parameters converge.

Algorithm 1 describes an adaptation of the above
procedure to solve our main problem. We start by
randomizing the macro-sequence s′ (step 1) and then use
this sequence to obtain an estimate for the micro-models
{M′′

i } (step 2). After that, we use the current estimate of

{M′′
i } to obtain a better estimate for s′ (step 3), and then

use this s′ to obtain a better estimate for {M′′
i } (step 2),

and so on, until both estimates converge.

Algorithm 1 Estimate the micro-models {M′′
i } and the

macro-sequence s′ from the macro-model M′ and the
micro-sequence s′′

1. Draw a random sequence ~s from the Markov chain
M′ and use this sequence as the basis to build a
macro-sequence s′ with the same length as s′′ (for
example, if ~s = ABC and s′′ = XYZYZZZXY then
s′ = AAABBBCCC)

2. Given the micro-sequence s′′, the macro-model M′

and the current estimate for s′, find an estimate for
{M′′

i } (see Algorithm 2 in Section 4.2)

3. Given the micro-sequence s′′, the macro-model M′

and the current estimate for {M′′
i }, find an estimate

for s′ (see Algorithm 3 in Section 4.3)

4. Go back to step 2 and repeat from there until the
estimates for s′ and {M′′

i } converge.

The problem now is how to perform steps 2 and 3 in
Algorithm 1. A solution to these sub-problems is described
in Sections 4.2 and 4.3, respectively.

4.1 Sequence expansion

In the example of step 1 in Algorithm 1, the random
sequence ~s = ABC extracted from the macro-model M′ has
been expanded to s′ = AAABBBCCC, which includes an
equal number of A’s, B’s and C’s. Nothing establishes that
~s should be expanded in this way. Other expansions are
possible (e.g. s′ = AAAABBBBC or s′ = ABCCCCCCC), as
long as the expansion complies with the given sequence of

Mining the low-level behavior of agents in high-level business processes 7

macro-states (i.e. ~s = ABC). In this work we expand the
sequence ~s by repeatedly choosing a state at random from
that sequence and inserting an equal symbol next to it, until
the sequence length reaches the same length as the given
micro-sequence. For example, for the sequence ~s = ABC,
we pick a random number of A’s, B’s and C’s to expand this
sequence into a macro-sequence with the same length as
s′′ = XYZYZZZXY. The general procedure can be described
as follows:

• For a micro-sequence s′′ of length m = |s′′| and a
sequence of macro-states ~s of length n = |~s|, draw
a sequence of random numbers r = ⟨r1, ..., rn⟩ such
that their overall sum is equal to the length of s′′ (i.e.∑n

i=1 ri = m).

• Assemble the macro-sequence s′ from ~s and r =
⟨r1, ..., rn⟩ by concatenating r1 copies of ~s[1] with r2
copies of ~s[2] with r3 copies of ~s[3], and so on.

4.2 Finding {M′′
i } when s′ is known

In this section we suppose that the macro-sequence s′ is
known, for example s′= AAABBBCCC. Then what is left
to find out is M′′

i for all states i ∈ S′. This is described
in Algorithm 2. Basically, one considers the transitions that
occur in the micro-sequence s′′ within each state in macro-
sequence s′. For s′′= XYZYZZZXY and s′= AAABBBCCC,
we have the following mapping between micro-states and
macro-states:

XYZYZZZXY
| | | | | | | | |
AAABBBCCC

Algorithm 2 begins by fetching the substrings subs(i)
for each macro-state i. For example, the substring for
state A is ◦XYZ•; the substring for state B is ◦YZZ•; and
the substring for state C is ◦ZXY•. (Note that if state A
would appear again in s′ then a second substring would
be associated with A, and similarly for other states.) From
the set of substrings associated with each macro-state,
Algorithm 2 counts the number of transitions (step 2b) and,
after normalization (step 2c), the result yields M′′

i .

4.3 Finding s′ when {M′′
i } are known

In this section we suppose that the micro-model M′′
i for

each state i ∈ S′ is available, but the macro-sequence s′
is unknown, so we want to determine s′ from s′′, {M′′

i }
and M′. Note that the macro-sequence s′ is produced by
the macro-model M′, which is a Markov chain, so there
may be several possibilities for s′. In general, we will be
interested in finding the most likely solution for s′.

The most likely s′ is given by the sequence of macro-
states that is able to produce s′′ with highest probability. In
the example above, we had s′′ = XYZYZZZXY. We know
that s′′ begins with X and therefore the macro-sequence s′
must be initiated by a macro-state whose micro-model can

Algorithm 2 Estimate the micro-models {M′′
i } from the

micro-sequence s′′ and the macro-sequence s′

1. Separate the micro-sequence s′′ into a set of
substrings corresponding to the different macro-states
in s′. Let s′′[n1 : n2] denote a substring of s′′ from
position n1 to position n2. Then, for s′ in the form,

s′ = aa...a︸ ︷︷ ︸
na

bb...b︸ ︷︷ ︸
nb

... cc...c︸ ︷︷ ︸
nc

pick the first na elements in the micro-sequence s′′
and create a substring (s′′[1 : na]) associated with
state a, pick the following nb elements of s′′ and
create a substring (s′′[na+1: na+nb]) associated with
state b, and so on. Each substring should include the
start (◦) and end (•) states. In the next step, subs(i)
is used to denote the set of substrings associated with
state i.

2. For each distinct state i found in s′, do the following:

(a) Initialize the corresponding micro-model M′′
i =

(S′′i ,T′′
i) where S′′i is the set of distinct states

found in the substrings of subs(i) and T′′
i is a

transition matrix initialized with zeros.
(b) For every consecutive pair of micro-states

s′′[k : k+1] in each substring of subs(i),
count the transition from micro-state s′′[k]
to micro-state s′′[k+1] by incrementing the
corresponding position in matrix T′′

i . Such
counting includes the start (◦) and end (•) states
as well.

(c) Normalize each row of the transition matrix T′′
i

such that the sum of the values in each row
is equal to 1, except for the last row which
represents the end state and therefore its sum
should be zero as in Figure 3.

begin with X. As it happens, there is a single such macro-
state in Figure 4, and it is A. So now that we have begun
with A, we try to parse the following symbols in s′′ with
the micro-model M′′

A. We find that this micro-model can
account for the substring XYZ, after which a new macro-
state must be chosen to account for the second Y in s′′.

In Figure 4, the only micro-model that begins with Y is
M′′

B. Therefore, the second macro-state is B. We now use
M′′

B to parse the following symbols of s′′, taking us all the
way through YZZZ, when M′′

B cannot parse the following
X. A third macro-state is needed to parse the final XY but
no suitable solution can be found, because the micro-model
M′′

A begins with X but does not end in Y. The problem
is that the parsing of micro-model M′′

B went too far. It
should have stopped on YZZ and let the final ZXY be parsed
by micro-model M′′

C. In this case we would have s′ =
AAABBBCCC.

This simple example is enough to realize that there
may be the need to backtrack and there may be several

8 D.R. Ferreira et al.

s′[1] = A s′′[1] = X T′(◦,A)× T′′
A(◦,X) = 1.0× 1.0

s′[2] = A s′′[2] = Y T′′
A(X,Y) = 1.0

s′[3] = A s′′[3] = Z T′′
A(Y,Z) = 1.0

s′[4] = B s′′[4] = Y T′′
A(Z, •)× T′(A,B)× T′′

B(◦,Y) = 1.0× 1.0× 1.0
s′[5] = B s′′[5] = Z T′′

B(Y,Z) = 1.0
s′[6] = B s′′[6] = Z T′′

B(Z,Z) = 0.5
s′[7] = C s′′[7] = Z T′′

B(Z, •)× T′(B,C)× T′′
C(◦,Z) = 0.5× 1.0× 1.0

s′[8] = C s′′[8] = X T′′
C(Z,X) = 1.0

s′[9] = C s′′[9] = Y T′′
C(X,Y)× T′′

C(Y, •)× T′(C, •) = 1.0× 1.0× 1.0

Figure 5 Example of calculating the total probability of producing both s′ and s′′

possible solutions for s′. With both s′ and s′′, together with
M′ and {M′′

i }, it is possible to calculate the probability
of observing a particular micro-sequence s′′. This is the
product of all transition probabilities in the macro- and
micro-models. Let T(i, j) denote the transition probability
from state i to state j in a transition matrix T. Then, for
the example above, we have the sequence of calculations
shown in Figure 5.

The product of all these probabilities is p = 0.25.
For computational reasons, we use the log-probability
log(p) instead. In general, we choose the solution for s′
which yields the highest value for the log-probability. The
procedure is described in Algorithm 3.

In particular, step 2 in Algorithm 3 is a recursive
function that explores all possibilities for s′ with non-zero
probability. Such recursive exploration has the form of a
tree, since the possibilities for s′[k+1] are built upon the
possibilities for s′[k]. Every path from the root (k = 1) to
a leaf (k = n) in this tree represents a different candidate
for s′. In step 3, the algorithm returns the candidate with
highest log-probability, where this log-probability is the
sum of the log-probabilities along the path in the tree.

To improve efficiency, the best candidate found so far
and its corresponding log-probability can be kept in global
variables. When going down a path in the tree (i.e. when
building a new candidate through the recursion in step
2), as soon as the log-probability for that candidate gets
below the log-probability for the best candidate found so
far, that branch can be pruned and the search can proceed
immediately to the next branch.

4.4 Working with multiple micro-sequences

Up to this point we have considered the use of a
single micro-sequence s′′ (and a macro-model M′) to
determine the micro-models {M′′

i } and the macro-sequence
s′. However, an event log contains events from multiple
process instances, and each process instance corresponds
to a separate micro-sequence. In addition, each micro-
sequence is associated with its own macro-sequence. Let
Ω′′ denote the multiset of micro-sequences (i.e. a set of
micro-sequences that may include repeated elements) and
let Ω′ denote the multiset of the corresponding macro-
sequences. Then Algorithms 1–3 can be easily extended
in order to handle multiple micro-sequences, through the
following adaptations:

Algorithm 3 Determine the most likely macro-sequence s′
for a given micro-sequence s′′ when both M′ and {M′′

i }
are known

1. Let s′′[k] be the micro-state at position k in the micro-
sequence s′′ and let s′[k] be the corresponding macro-
state which is to be determined. Both sequences start
at k = 1 and end at k = n. Run step 2 recursively,
starting from k = 1.

2. Consider the following possibilities for s′[k]:

(a) If k = 1 then s′[k] can be any macro-state i
such that T′(◦, i) > 0 and T′′

i (◦, s′′[k]) > 0. For
every such macro-state i, set s′[k] := i and run
step 2 for k := k+1.

(b) If 1 < k ≤ n then consider the following cases:

i. if both s′′[k−1] and s′′[k] come from the
same micro-model M′′

i then s′[k−1] =
s′[k] = i. Consider this case only if
T′′
i (s′′[k−1], s′′[k]) > 0. If so, set s′[k] := i

and run step 2 for k := k+1.
ii. if s′′[k−1] comes from M′′

i and s′′[k]
comes from M′′

j (with i ̸= j) then
s′[k−1] = i and s′[k] = j. Consider
every possible macro-state j for which
T′′
i (s′′[k−1], •)× T′(i, j)× T′′

j (◦, s′′[k]) >
0. For every such macro-state j, set
s′[k] := j and run step 2 for k := k+1.

(c) If k = n then we have reached the end of s′′ and
now have a complete candidate for s′. Accept
this candidate only if it terminates correctly, i.e.
only if T′′

i (s′′[n], •)× T′(i, •) > 0 where i =
s′[n]. If accepted, store the candidate in a list of
candidates.

3. From all candidates for s′ collected in step 2(c),
return the candidate which provides the highest log-
probability for s′′.

Mining the low-level behavior of agents in high-level business processes 9

(a) In step 1 of Algorithm 1 draw a random sequence
~s from M′ for each micro-sequence s′′ ∈ Ω′′. Also,
in steps 2 and 3 of Algorithm 1 consider the set
of micro-sequences Ω′′ rather than a single micro-
sequence s′′ (see remarks about Algorithms 2 and 3
below). Reinterpret step 4 of Algorithm 1 to mean
“repeat steps 2 and 3 until the estimates for every s′ ∈
Ω′ and {M′′

i } converge”.

(b) In Algorithm 2, step 1, build the substrings subs(i)
for each macro-state i by separating every micro-
sequence s′′ ∈ Ω′′ according to the corresponding
macro-sequence s′ ∈ Ω′. Once all substrings have been
collected in subs(i), step 2 of Algorithm 2 can be run
without change.

(c) Algorithm 3 needs to be run for each micro-sequence
s′′ ∈ Ω′′ in order to determine the corresponding macro-
sequence s′. No changes are necessary to this algorithm.

An important issue when working with multiple micro-
sequences has to do with the initial randomization of
the corresponding macro-sequence. Suppose that a macro-
model is able to generate two sequences AB and ABC
with equal probability. Also, suppose that the observed
micro-sequences are XXXYYY and XXXYYYZZZ. When
randomizing the macro-sequence for each of these micro-
sequences, it seems more appropriate to relate XXXYYY
to AB and XXXYYYZZZ to ABC rather than the other
way around. However, the macro-sequence will be drawn
randomly from AB and ABC so any assignment is possible.
The possible scenarios are the following:

(a) The macro-sequences for XXXYYY and XXXYYYZZZ
are both expansions of AB.

(b) The macro-sequence for XXXYYY is an expansion of
AB and the micro-sequence for XXXYYYZZZ is an
expansion of ABC.

(c) The macro-sequence for XXXYYY is an expansion of
ABC and the micro-sequence for XXXYYYZZZ is an
expansion of AB.

(d) The macro-sequences for XXXYYY and XXXYYYZZZ
are both expansions of ABC.

Clearly, (b) is the most desirable option, since it leads
to the simplest model of all, and the one which is able
to generate the observed micro-sequences with highest log-
probability. In this case, the micro-model for A just emits
X’s, the micro-model for B just emits Y’s, and the micro-
model for C just emits Z’s.

In practice, this issue manifests itself in the different
lengths of traces, where a trace is the (micro-)sequence
of events recorded for a given case id in the event log.
In general, the longest micro-sequences should be assigned
to the longest sequences that are drawn from the macro-
model M′. Therefore, in step 1 of Algorithm 1, rather than
drawing a sequence ~s for each given micro-sequence s′′ ∈
Ω′′, one draws N = |Ω′′| such sequences at once, where
N is the number of given micro-sequences. Then one sorts

the micro-sequences and the random sequences by length
and only then performs the assignment between them. This
simple optimization allows Algorithm 1 to provide better
results, finding micro-models which are able to produce the
given micro-sequences with higher log-probability.

4.5 Running the algorithm multiple times

The first step in Algorithm 1 is to obtain a random
initialization of the macro-sequence (or macro-sequences,
if several micro-sequences are being used). Since this
initialization is random, the algorithm may produce
different solutions across multiple runs. This may yield
slightly different micro-models, where a certain part of the
observed low-level behavior ends up being attributed to one
macro-activity instead of another.

For example, for the micro-sequence s′′ = XYZYZZZXY
the random initialization step in Algorithm 1 may yield the
macro-sequence s′ = AAABBBCCC. Then it becomes clear
which event belongs to which macro-activity:

XYZYZZZXY
| | | | | | | | |
AAABBBCCC

From the mapping above one can immediately derive
the solution (i.e. the micro-models) in Figure 4 by following
the procedure described in Algorithm 2.

However, if the macro-sequence is initialized to s′ =
AABBBBBCC then we will have the following mapping:

XYZYZZZXY
| | | | | | | | |
AABBBBBCC

This mapping originates a different solution, where the
micro-models M′′

A and M′′
C will be two simple models that

produce just XY and M′′
B will be a more complicated model

that begins with Z and from Z it may go to Y, or to Z, or
to the end. The log-probability of the micro-sequence s′′ =
XYZYZZZXY in this solution is −4.16, while in the former
solution the log-probability is −1.39. Therefore, the former
solution is preferred. Again, the preferred solution is the
one that is able to produce the given micro-sequence with
the highest log-probability.

This concept can be easily extended to the case of
multiple micro-sequences. Once a solution is obtained, then
summing up the log-probabilities for all micro-sequences
yields a measure of the relative quality of that solution.
Therefore, another optimization that we use is to run
Algorithm 1 multiple times in order to pick the best
result, i.e. the set of micro-models that are able to produce
the given micro-sequences with the highest overall log-
probability. The number of runs is arbitrary and can be
chosen by the user. In practice, we have found that a
number of runs K somewhere in between

√
N ≤ K ≤ N ,

where N is the number of input micro-sequences, is usually
enough to obtain the best possible solution.

Before we proceed, Algorithm 4 summarizes the
adaptations that have been done to Algorithm 1 in order

10 D.R. Ferreira et al.

to take into account the optimizations from this section
(Section 4.5) and the previous section as well (Section 4.4).
It includes the adaptations to deal with multiple micro-
sequences in steps 1–4; it includes the sorting by length
of micro-sequence and macro-sequences in steps 1(a)–1(d);
and it includes multiple runs and the choice of the best
solution in steps A–B.

Algorithm 4 Estimate the micro-models {M′′
i } and the

macro-sequences Ω′ from the macro-model M′ and the
micro-sequences Ω′′ (replaces Algorithm 1)

A. Run the following steps K times, where K is to be
chosen by the user:

1. Initialize the macro-sequences Ω′ according to the
following procedure:

(a) Draw N = |Ω′′| random sequences from the
Markov model M′, where N is the number of
micro-sequences in Ω′′. Let Ω′ be the multiset of
random sequences just drawn.

(b) Sort the micro-sequences Ω′′ and the sequences
in Ω′ by length.

(c) After sorting, take each sequence in Ω′ to be the
sequence that corresponds to the micro-sequence
at the same position in Ω′′.

(d) Expand each sequence in Ω′ to become the
macro-sequence for the corresponding micro-
sequence in Ω′′ (the expansion procedure is
explained in Section 4.1)

2. Feed all micro-sequences Ω′′ and their corresponding
macro-sequences Ω′ to Algorithm 2. In step 1 of
Algorithm 2, separate all micro-sequences according
to their respective macro-sequences.

3. For each micro-sequence s′′ ∈ Ω′′, run Algorithm 3
in order to determine the most likely macro-sequence
s′. Update Ω′ so that Ω′ contains macro-sequences
obtained from Algorithm 3.

4. Go back to step 2 and repeat until both Ω′ and {M′′
i }

converge.
5. Use the macro-model M′ and the micro-models

{M′′
i } to compute the log-probability of producing

each micro-sequence s′′ ∈ Ω′′. Sum the log-
probabilities for all micro-sequences in Ω′′.

B. Out of the K solutions found in step A, return the
solution that has the highest value for the sum of log-
probabilities.

5 Discovery of basic workflow patterns

The macro-model that was used as a running example in
the previous sections is able to generate just the simple
sequence ABC. However, in practice there are many types

of behavior that a business process model may contain,
such as OR-splits, AND-joins, loops, etc. These types of
behavior have been identified and classified as a set of
workflow patterns (van der Aalst et al., 2003). Given
that these patterns are very common in business process
modeling, it is likely that any high-level process model will
contain at least some of the most basic patterns.

In this section, our goal is to carry out a sanity check
of the proposed approach to ensure that it is possible to
discover the behavior of agents in macro-level processes
that involve more than just a linear sequence of steps.
In particular, we would like to ensure that the proposed
approach is able to deal with at least the most basic
patterns, namely OR-splits, OR-joins, AND-splits, and
AND-joins, as shown in Figure 6.

A

B

C

(a) OR-split

B

C

A

(b) OR-join

A

B

C

(c) AND-split

A

B

C

(d) AND-join

Figure 6 Basic control-flow patterns expressed as Petri nets

5.1 Describing patterns as Markov models

There is no problem in representing an OR-split or an OR-
join by means of a Markov model, as in Figures 6(a) and
6(b), respectively. However, the parallel nature of AND-
splits and AND-joins cannot be captured exactly by a first-
order Markov chain. In Figure 6(c), the AND-split is able
to generate the sequences ABC and ACB. Assuming that
these two sequences can occur with equal probability, we
can derive a Markov model from the sequences ◦ABC•
and ◦ACB•. The resulting Markov model is shown in
Figure 7(c). The model begins always with an A, followed
by either B or C. After B, a C may follow or the sequence
may end. In a similar way, after C a B may follow or the
sequence may end.

The problem with the model in Figure 7(c) is that it
allows for more behavior than just the sequences ABC and
ACB. In fact, this model may produce several iterations
involving B and C before the sequence ends. The model
also allows for shorter sequences, namely ◦AB• and ◦AC•.
In the particular case of an AND-split such as this
one, which involves just two activities in parallel, the
problem could be addressed by making use of a second-
order Markov model. Such model would take into account
the two previous states when determining the next state.
However, increasing the order of the Markov model is not

Mining the low-level behavior of agents in high-level business processes 11

A

B

C

1.0

0.5

0.5

1.0

1.0

(a) OR-split

A

B

1.0

0.5

0.5

1.0

1.0

C

(b) OR-join

A

B

C

1.0

0.5

0.5

0.5

0.5

0.5 0.5

(c) AND-split

A

B

1.0

0.5

0.5

0.5

0.5

C0.5 0.5

(d) AND-join

Figure 7 Basic control-flow patterns expressed as Markov
models

a scalable approach since, in general, a process model may
include an arbitrary number of activities in parallel.

A similar situation occurs with the AND-join pattern
shown in Figure 6(d). Here, the model specifies that either
ABC or BAC may occur. In any case, both A and B must
have been completed before C can occur; hence, this is
also known as the synchronization pattern (van der Aalst
et al., 2003). Assuming that both sequences can occur
with equal probability, one can derive from ◦ABC• and
◦BAC• the Markov model shown in Figure 7(d). Again, this
model allows for more behavior than originally intended,
namely: several A’s and B’s may precede C, and the shorter
sequences AC and BC are also possible.

Both the AND-split model of Figure 7(c) and the
AND-join model of Figure 7(d) suffer from a problem of
underfitting (van der Aalst et al., 2010) since they allow
for more behavior than what can actually be produced by a
true AND-split or AND-join, respectively. Anyway, for the
purpose of our experiments this is not an impeding problem.
On the contrary, if our approach succeeds in discovering
the behavior produced by the models in Figure 7(c) and
Figure 7(d), then it will certainly succeed in discovering the
behavior of an AND-split and an AND-join, since the latter
is a subset of the former. Therefore, in our experiments we
used the four models shown in Figure 7.

5.2 Discovering the micro-models {M′′
i }

In this experiment, the goal is to check whether Algorithm 4
is able to discover the micro-models from a set of
input micro-sequences and a given macro-model, where
the macro-model is one of the models in Figure 7. For
simplicity, we use the same micro-models {M′′

A,M′′
B,M′′

C}
as in Figure 4, together with each macro-model in Figure 7
to obtain a different hierarchical Markov model. From each
of these hierarchical models, we generate N = 100 micro-
sequences by simulation. Then we run Algorithm 4 on
these micro-sequences and the given macro-model to re-
discover the micro-models {M′′

A,M′′
B,M′′

C}. As explained
in Section 4.5, step ‘A’ of Algorithm 4 may be run an

arbitrary number of times K. For this experiment, we have
chosen K = 10.

In all cases, Algorithm 4 discovers the correct micro-
models, where M′′

A generates XYZ, M′′
B generates YZ(Z),

and M′′
C generates ZXY. The transition probabilities

T′′
B(Z,Z) and T′′

B(Z, •) are not exactly equal to ½ as in
Figure 4 since in a random draw of N = 100 sequences
it may happen that there are not exactly as many
transitions from Z to Z as there are from Z to •. In any
case, Algorithm 4 is able to capture the exact transition
probabilities that can be found in the input micro-sequences.

However, there are marked differences in terms of
number of iterations and computation time between OR-
patterns and AND-patterns. In a sense, these differences
are to be expected since the AND-patterns in Figure 7
allow for more (non-deterministic) behavior than the OR-
patterns. Table 1 shows the results of the experiment. The
number of Expectation-Maximization iterations (steps 2–4
of Algorithm 4) are reported for each run of step ‘A’.
Here it is apparent that the AND-patterns require more
iterations for convergence, which is attributed to the fact
that the micro-sequences generated for these models tend to
be longer (9 symbols on average) than the micro-sequences
obtained from the OR-patterns (6 symbols on average).

The most noticeable difference is in the total running
time. While the micro-models for a macro-model that
contains an OR-pattern can be discovered rather quickly,
discovering the same micro-models for a macro-model that
contains an AND-pattern takes significantly longer. The
numbers vary widely: the total running time for AND-
patterns are in the range of a few seconds to a few minutes,
whereas for OR-patterns this is always under one second.

The difference in the number of iterations is not large
enough to explain the difference in running time, so there
must be another factor that explains the relatively long
running times for AND-patterns. Going deeper into the
experimental results reveals that most of that running time
is spent during the first run of step 3 in Algorithm 4.
It seems that when a macro-sequence is being computed
for the first time, the recursive tree that Algorithm 3 goes
across is too large, and therefore most of the time is spent
in determining the best candidate macro-sequence, since
there are many candidates to choose from. But once the
first macro-sequence is obtained, the following iterations
of steps 2–4 in Algorithm 4 run fairly quickly, almost as
quickly as in the case of OR-patterns.

5.3 Macro-models with loop patterns

In the previous experiments there was a loop in one of
the micro-models (specifically, in M′′

B which can produce
YZZ...) but not in the macro-model. Here we investigate
what happens when there is a loop in the macro-model.
Such loop may include an arbitrary number of activities;
when it includes just one or two activities, it is called a
short loop (de Medeiros et al., 2004). For simplicity, using
the three activities A, B, and C as in the previous examples,
it is possible to have loops of length 1, length 2, and

12 D.R. Ferreira et al.

Number of EM iterations for each run
Pattern 1 2 3 4 5 6 7 8 9 10 Avg. Total time
OR-split 3 2 3 3 3 3 3 3 3 3 2.9 < 1s
OR-join 3 2 4 3 4 2 3 3 4 3 3.1 < 1s
AND-split 4 4 3 5 6 5 4 4 3 4 4.2 ∼ 41s
AND-join 3 5 4 4 7 2 5 6 5 7 4.8 ∼ 37s

Table 1 Sample results on the four models of Figure 7 with N = 100 sequences and K = 10 runs

Number of EM iterations for each run
Pattern 1 2 3 4 5 6 7 8 9 10 Avg. Total time
Loop-1 2 2 2 2 2 2 2 2 2 2 2.0 < 1s
Loop-2 4 3 5 5 4 5 5 5 2 3 4.1 ∼ 32s
Loop-3 3 2 2 2 2 2 2 3 3 2 2.3 ∼ 95s

Table 2 Sample results for the three loops in Figure 8 with N = 100 sequences and K = 10 runs

A
1.0 1.0

B
1.0

C
0.7

0.3

(a) Loop-1

A
1.0 1.0

B
1.0

C
0.7

0.3

(b) Loop-2

A
1.0 1.0

B
1.0

C
0.7

0.3

(c) Loop-3

Figure 8 Basic control-flow patterns expressed as Markov
models

length 3. Figure 8 shows an example of each. As before,
we use the micro-models {M′′

A,M′′
B,M′′

C} of Figure 4
together with each macro-model in Figure 8 to obtain a
different hierarchical Markov model. From each of these
models, we generate N = 100 micro-sequences, and we run
Algorithm 4 with K = 10.

The results are shown in Table 2. Algorithm 4 discovers
the correct micro-models fairly quickly for the case of
loop-1, whereas for loop-2 and loop-3 it takes significantly
longer. This can be explained by the fact that M′′

C produces
the simple sequence ZXY, whereas M′′

B contains a loop of
its own (a low-level loop of length 1 where Z repeats in
YZZ...). Since both loop-2 and loop-3 include activity B,
every time B executes it introduces its own repetitions of
Z in the micro-sequence. Finding the best macro-sequence
for such micro-sequence takes longer, since there are more
candidates to choose from. Ultimately, this is the same
reason why it took longer to find the solution for AND-
patterns in Table 1: looking at Figure 7(c) and 7(d), one can
see that these AND-patterns, when expressed as Markov
chains, contain a sort of loop as well.

6 Case study: a purchase process

In this section we turn to the application of Algorithm 4
in a practical scenario that involves a purchase process.
A description of this process (i.e. the macro-model) is
available as a BPMN diagram. At the micro-level, the
process is implemented as a set of interactions between
agents in an agent-based simulation platform. During
simulation, an event log is recorded; this event log
contains the micro-sequences that can be used to discover
the micro-models associated with the behavior of agents
when performing the purchase process. In this scenario,
Algorithm 4 should be able to re-discover the original
micro-models that have been used to implement the
purchasing process in the agent-based platform. In this
case study, we use the Agent-Object-Relationship (AOR)
platform introduced by (Wagner, 2004).

6.1 Agent-based simulation with AOR

Agent-based modeling and simulation (Bonabeau, 2002;
Axelrod, 2006; Davidsson et al., 2007) is an effective
means to study the behavior of systems involving
the actions and interactions of autonomous agents. For
example, agent-based systems have been used to study the
dynamics of financial markets by generating time series
data that resemble the evolution of stock prices (Hoffmann
et al., 2006; Neri, 2012). Here we use an agent-based
system to simulate the execution of a business process,
thereby generating an event log with low-level events.

Although there are several platforms for agent-based
simulation (Railsback et al., 2006), we turn our attention to
the Agent-Object-Relationship (AOR) approach introduced
by (Wagner, 2004), which can be used to model and
simulate business processes (Wagner et al., 2009).

The AOR system is a simulation platform where agents
respond to events in their environment by executing actions
and interacting with each other, which in turn generates
new events. There are basically two different kinds of
events. An exogenous event is an external event (such as the
arrival of a new customer) which does not depend on the

Mining the low-level behavior of agents in high-level business processes 13

Figure 9 Macro-level description of the purchase process

actions of agents. Usually, the occurrence of an exogenous
event is what triggers a simulation run. To run multiple
instances of a business process, the AOR system schedules
the occurrence of exogenous events to trigger the whole
process at different points in time.

The second kind of event is a message and it is the basis
of simulation in the AOR system. Agents send messages
to one another, which in turn generates new messages. For
example, if agent X sends a message M1 to agent Y, then
this may result in a new message M2 being sent from Y to
Z. Such chaining of messages keeps the simulation running
until there are no more messages to be exchanged. At that
point, a new exogenous event is required to trigger a new
simulation run. In this work, we represent the exchange of
a message M being sent from agent X to agent Y as:

X M−−−−→ Y

In the AOR system, the specification of a new
simulation scenario begins by defining a set of entity types.
These entity types include the types of agents, messages and
events that will be used in the scenario. The behavior of
agents is specified by means of agent rules. Typically, an
agent rule defines that when a certain message is received,
another message is produced and sent to some other agent.
Since the rules for each agent are defined separately,
the simulation scenario is effectively implemented in a
decentralized way by the combined behavior of agents.

Another kind of rules that exist in the AOR system
are environment rules. Basically, these have to do with
the occurrence of exogenous events and they define what
should be done when such events occur. Typically, an
environment rule specifies that when a certain event occurs,
a message should be sent to some agent. Sending this
message then triggers a rule of the receiving agent, which
creates a chain of message exchanges that puts the whole
simulation in motion.

Environment rules also have the ability to create and
destroy agents. This is especially useful to simulate, for
example, the arrival (or leaving) of new customers. The
agents that are created dynamically at run-time must be of
a certain type that has already been defined before. These
agents also have rules and they participate in the simulation
by exchanging messages with other agents. A set of
initial conditions for the simulation scenario specifies which
agents already exist at the beginning of the simulation. The
initial conditions also include a schedule for the occurrence
of at least one exogenous event to trigger the simulation.

All of these constructs (i.e. entity types, agent rules,
environment rules, and initial conditions) are specified
using an XML-based language known as AOR Simulation
Language (AORSL) (Nicolae et al., 2010). This language
also allows embedding Java code in order to implement
auxiliary functions and expressions. In fact, the scenario
specification in AORSL is transformed into Java code
by the AOR system. Running the simulation amounts to
compiling and running the auto-generated Java code.

6.2 Implementing the purchase process

Our case study is based on the implementation of a
purchase process in the AOR system. At the macro-level,
the process is represented as a BPMN model in Figure 9
and can be described as follows:

In a company, an employee needs a certain commodity
(e.g. a printer cartridge) and submits a request for that
product to the warehouse. If the product is available
at the warehouse, then the warehouse dispatches the
product to the employee. Otherwise, the product must
be purchased from an external supplier. All purchases
must be approved by the purchasing department. If the
purchase is not approved, the process ends at that point.
On the other hand, if the purchase is approved, the

14 D.R. Ferreira et al.

Figure 10 The AOR Simulator application with the purchasing scenario specification

purchasing department orders and pays for the product
from the supplier. The supplier delivers the product to the
warehouse, and the warehouse dispatches the product to
the employee.

This process was implemented in the AOR system,
using AORSL to specify the message exchanges between
agents. There are four types of agents: Employee, Warehouse,
Purchasing, and Supplier. There is one pre-existing instance
of the Warehouse agent and one pre-existing instance of
the Purchasing agent. However, there are multiple instances
of the Employee agent created at run-time (each instance
is created at the start of the simulation run and destroyed
when the run finishes). We could have done the same for
the Supplier agent, but for simplicity we considered only one
instance of Supplier, since this has no effect in the results.

The process includes the following message exchanges:

Requisition

{
Employee

StockRequest−−−−−−−−−−→ Warehouse

Warehouse
StockResponse−−−−−−−−−−−→ Employee

Dispatch product

Employee FetchProduct−−−−−−−−−−→ Warehouse

Warehouse
ProductReady−−−−−−−−−−→ Employee

Employee ProductReceived−−−−−−−−−−−−→ Warehouse

Approve purchase

Employee

PurchaseRequest−−−−−−−−−−−−→ Purchasing

Purchasing
InfoRequest−−−−−−−−−→ Employee

Employee
InfoResponse−−−−−−−−−−→ Purchasing

Purchasing
ApprovalResult−−−−−−−−−−−→ Employee

Order product

Purchasing PurchaseOrder−−−−−−−−−−−→ Supplier

Supplier
PaymentTerms−−−−−−−−−−−→ Purchasing

Purchasing
PaymentVoucher−−−−−−−−−−−−→ Supplier

Receive product

{
Supplier

DeliveryNote−−−−−−−−−−→ Warehouse

Warehouse ProductAvailable−−−−−−−−−−−−→ Employee

It should be noted that the AOR system has no
knowledge about the macro-level activities on the left-
hand side. Instead, the agents have rules to implement the
message exchanges on the right-hand side. In addition, we
suppose that:

• For the purchase request to be approved, the
purchasing department may enquire the employee
an arbitrary number of times to obtain further info
about the purchase request. This means that the
exchanges InfoRequest and InfoResponse may occur
multiple times (or even not occur at all).

• The purchasing department may not be satisfied with
the payment terms of a particular supplier, and may
choose to negotiate those terms or get in contact with
another supplier. This means that PurchaseOrder and
PaymentTerms may occur multiple times (but they
must occur at least once).

Figure 10 shows a screenshot of the resulting AORSL
specification in the AOR simulation environment. At the
top of Figure 10, the “Build” menu is used to generate
the Java code from the AORSL specification shown in
the middle pane. The “play” button in the toolbar is used
to launch the simulation with the parameters that can be
configured to the right-hand side of that button. From these,
the most important parameter is the number of simulation
steps, since this controls how long the simulation will
run (in the agents’ time scale). The remaining parameters,
“simulation iterations” and “step time delay”, are used to
run the simulation multiple times and to insert a time delay
between consecutive steps, respectively.

6.3 Generating the event log

Simulating this process in AOR produces an event log
with an AOR-specific XML structure. Basically, this XML-
based event log has an entry for each simulation step.

Mining the low-level behavior of agents in high-level business processes 15

Each of these entries records: which agents were active at
that point in time; which exogenous events (if any) were
received by the environment and which environment rules
were activated by those events; which messages (if any)
were received by each agent and which agent rules were
activated by those messages; and, finally, which messages
were produced as a result of activating any of those rules.

In the event log, it is possible to recognize each process
instance as being associated with a different instance of
the Employee agent. When the AOR system creates a new
Employee agent, it assigns a unique number to that agent,
and this number increases automatically for each new
Employee being created. The numbers are usually negative
for dynamically created agents, in order to distinguish from
pre-existing agents which are typically assigned positive
numbers. For example, Warehouse is agent no. 1, Purchasing
is agent no. 2, and Supplier is agent no. 3. On the other
hand, the Employee agents have numbers such as -1, -2, -
3, etc., and these values are used as the case id for the
corresponding process instances.

The AOR system records in the event log which agent
(no.) sends each message and which agent receives it. Since
Employee agents have no communication with each other
in this process, whenever a message is being sent to or
received from an Employee agent it is possible to figure
out immediately the process instance to which the message
belongs. In messages that are exchanged between agents
other than Employee agents, our implementation specifies
that these messages must carry a property called CaseId
which contains the Employee number that corresponds to
that process instance. This way, it is possible to determine
the process instance for every message.

These conventions make it possible to convert the
AOR event log automatically into an event log in the
form of Table 3. As explained above, the case id column
corresponds to the Employee number; the sender and
receiver columns could be agent numbers as well, but
instead they have been converted to the corresponding agent
types; and the timestamp refers to the time step of the
AOR simulation when the event occurred (if needed, this
timestamp can be converted to a more usual format with
date and time). For this case study, we ran a simulation with
10,000 steps. This produced an event log with 140 process
instances and a total of 1136 events.

case id sender message receiver timestamp
-1 Employee StockRequest Warehouse 2
-1 Warehouse StockResponse Employee 4
-1 Employee FetchProduct Warehouse 5
-1 Warehouse ProductReady Employee 6
-1 Employee ProductReceived Warehouse 7
-2 Employee StockRequest Warehouse 82
-2 Warehouse StockResponse Employee 84
-2 Employee PurchaseRequest Purchasing 85
-2 Purchasing InfoRequest Employee 86
-2 Employee InfoResponse Purchasing 87
-2 Purchasing ApprovalResult Employee 88
-2 Purchasing PurchaseOrder Supplier 89
...

Table 3 Example of an event log obtained from a simulation in
the AOR system

6.4 Mining the event log: control-flow perspective

From an event log in the form of Table 3 it is possible to
get different types of micro-sequences, depending on which
column is chosen for analysis. Here there are three possible
choices: the sender column, the message column, and the
receiver column. The message column can be used to study
the sequence of messages, while the sender and receiver
columns can be used to derive interaction models.

In any case, the events can be grouped by case id and
sorted by timestamp. For example, for case id -1 we have
the sequence of messages,

StockRequest → StockResponse → FetchProduct →
ProductReady → ProductReceived

and the sequence of senders,

Employee → Warehouse → Employee → Warehouse →
Employee

and the sequence of receivers,

Warehouse → Employee → Warehouse → Employee →
Warehouse.

These different kinds of micro-sequences allow us to
study both the control-flow perspective (from the sequence
of messages) and the organizational perspective (from either
the sequence or senders or the sequence or receivers).
Both of these perspectives are well-known in the process
mining literature (Mans et al., 2008; Bozkaya et al., 2009).
While the control-flow perspective addresses the sequence
of activities in the process, the organization perspective
allows studying other aspects such as the handover of work
between agents (Song and van der Aalst, 2008).

Our goal is to use Algorithm 4 to discover the micro-
model for each macro-level activity in Figure 9. We
start with the sequences of messages exchanged between
agents. There are 140 process instances in the event log
and therefore there are 140 such micro-sequences. But in
addition to the set of micro-sequences Ω′′, Algorithm 4
also requires the macro-model M′. This we obtained by
producing a Markov-chain representation of the macro-level
process shown in Figure 9, where we assumed alternative
branches to be equally likely to occur (i.e. 0.5 probability
for both branches coming out of a two-way gateway).

Feeding the N = 140 micro-sequences and the macro-
model to Algorithm 4, and setting a number of K = 50
runs, we obtained the micro-models shown in Figure 11.

The results in Figure 11 represent the correct behavior,
except for the fact that PurchaseOrder, PaymentTerms and,
PaymentVoucher appear in Figure 11(e) (“Receive product”)
rather than only in the Figure 11(d) (“Order product”).
Since these two macro-level activities always occur together
and sequentially in the model of Figure 9, there is no way
to determine that those events belong to the first activity
and not to the second. In the random initialization (step 1 of
Algorithm 4), some of these events are assigned to “Order
product” and others are assigned to “Receive product”
indistinctly. Also, when the loop between PurchaseOrder

16 D.R. Ferreira et al.

(a) Requisition

(b) Dispatch product

(c) Approve purchase

(d) Order product

(e) Receive product
Figure 11 Results obtained for an AOR simulation with 10,000 steps

and PaymentTerms repeats, it becomes more likely that
those events are distributed evenly between “Receive
product” and “Order product”.

6.5 Mining the event log: organizational perspective

Regarding the organizational perspective, with the micro-
sequences for senders and the micro-sequences for
receivers we obtained the results shown in Figure 12 and
Figure 13, respectively. The results in Figure 12 have
a few mismatches in comparison to the actual sequence
of message exchanges associated with each macro-level
activity. For example, the loop between Employee and
Warehouse that appears in Figure 12(a) (“Requisition”)
should have appeared instead in Figure 12(b) (“Dispatch
product”). Again, this is related to the way macro-sequences
are being initialized and to the solution that Algorithm 4
converges to. Also, the Warehouse has been captured in
Figure 12(c) (“Approve purchase”), but it should not have
been. The interaction between Purchasing and Supplier in
Figure 12(d) (“Order product”) is correct, but these same
agents appear in Figure 12(e) (“Receive product”), where
only Warehouse and Employee should appear.

The results in Figure 13 are more accurate. The micro-
models in Figure 13(a), Figure 13(b) and Figure 13(c)
are absolutely correct. The micro-model in Figure 13(d)
(“Order product”) is also correct, except that in reality
the activity ends with Supplier receiving a message
(PaymentVoucher) rather than Purchasing. The message
exchange that is missing in “Order product” ended up being
captured in “Receive product”. In fact, the micro-model
in Figure 13(e) (“Receive product”) has an extra Supplier
which belongs to the “Order product” activity. This is
similar to what happened in the results of Figure 11, where

(a) Requisition

(b) Dispatch product

(c) Approve purchase

(d) Order product

(e) Receive product
Figure 12 Interaction between agents from the perspective of

message senders

part of the exchanges for “Order product” ended up being
captured by “Receive product”, as previously explained.

6.6 Comparison with ProM

In the field of process mining, the ProM framework (van
Dongen et al., 2005) is a reference tool that includes
an implementation of many process mining techniques
available today. ProM is called a “framework” since it
is an application that can be extended with third-party

Mining the low-level behavior of agents in high-level business processes 17

(a) Requisition

(b) Dispatch product

(c) Approve purchase

(d) Order product

(e) Receive product
Figure 13 Interaction between agents from the perspective of

message receivers

plug-ins, where each plug-in implements a different mining
technique. In this section, our aim is to compare the
mining techniques available in ProM with the approach
developed in this work, in order to highlight the differences.
Although ProM includes numerous plug-ins with advanced
capabilities, here we make use of only the most basic
features that are related to the perspectives analyzed above,
namely the control-flow perspective and the organizational
perspective. For this purpose, we use the heuristics miner
(Weijters et al., 2006) and the social network miner (Song
and van der Aalst, 2008), respectively.

First, we converted the AOR event log into the MXML
format used by ProM (van Dongen and van der Aalst,
2005). Then we opened the file in ProM and invoked
the heuristics miner plug-in, which produced the model
shown in Figure 14. In this figure, we have all the low-
level behavior captured in a single model. It is possible
to recognize some features of the business process: for
example, the loop between InfoRequest and InfoResponse
is immediately recognizable, as well as the loop between
PurchaseOrder and PaymentTerms. By following the flow it
is also possible to recognize an OR-split in StockResponse
and an OR-join in FetchProduct. However, from this model
it is hard to identify the relationship between these low-
level events and the high-level activities in Figure 9.

In contrast, our approach produces the results shown
in Figure 11, where each graph describes the low-level
behavior that occurs within each high-level activity. It
is this sort of advantage that we wished to highlight in
comparison with the traditional process mining techniques
available in ProM. In practice, the analysis of behavior
based exclusively on micro-level events recorded in an
event log (as in Figure 14) often leads to very large and
complex models that are difficult to interpret and that are
referred to as spaghetti models (van der Aalst and Günther,

2007). An advantage of our approach is that this behavior
is partitioned across a set of macro-level activities and
therefore becomes easier to understand and interpret.

An analysis of the same event log with the social
network miner available in ProM is presented in Figure 15.
These results were obtained using the metric handover of
work (van der Aalst et al., 2005) both for the sender and
for the receiver columns in the event log of Table 3. In
both graphs of Figure 15 it is clear that the employee
has an interaction with the warehouse, and a separate
interaction with the purchasing department. On the other
hand, the warehouse and the purchasing department do
not interact directly. In a similar way, the employee does
not interact with the supplier directly; it is the purchasing
department who interacts with the supplier. Hence, some
useful conclusions can be drawn about the process, even
from models that are obtained from low-level events alone.
However, the micro-models in Figure 12 and 13 have the
distinct advantage of showing the interactions that take
place within each high-level activity. Again, as in the case
of the control-flow perspective, partitioning the observed
behavior into a set of high-level activities facilitates the
analysis of what actually takes place at run-time.

7 Conclusion

In this work we have introduced a hierarchical Markov
model to capture the relationship between the macro-level
activities in a business process model and the micro-level
events recorded in an event log. We have also developed
an Expectation-Maximization procedure to estimate the
parameters of such model. This approach can be used as a
process mining technique in scenarios where an event log
is available, together with a high-level description of the
business process.

In this context, we have shown that the proposed
technique (Algorithm 4) is able to discover the micro-
models for each macro-activity. This was demonstrated in
experiments with a set of basic workflow patterns, as well
as in a case-study application where we used a state-
of-the-art agent-based platform to implement a purchase
process and to generate the event log through simulation.
As illustrated in the case study, the approach can be used
to analyze both the control-flow and the organizational
perspectives.

In future work, we will be looking at the possibility of
using additional heuristics in the random initialization step
of Algorithm 4. Sorting the micro- and macro-sequences
by length, as explained in Section 4.4, provides a major
improvement in terms of the log-likelihood of the solutions
found by the algorithm. It is possible that additional
heuristics, based on the fact that the macro-model is known,
will contribute to find the best possible solution in fewer
runs. On the other hand, we will also be looking forward to
further developing the possible connections and interplay
between process mining and agent-based simulation for the
discovery and analysis of business processes.

18 D.R. Ferreira et al.

StockRequest
(complete)

140

StockResponse
(complete)

140

FetchProduct
(complete)

108

ProductReady
(complete)

108

ProductReceived
(complete)

108

PurchaseRequest
(complete)

68

InfoRequest
(complete)

67

InfoResponse
(complete)

67

ApprovalResult
(complete)

68

PurchaseOrder
(complete)

77

PaymentTerms
(complete)

77

PaymentVoucher
(complete)

36

DeliveryNote
(complete)

36

ProductAvailable
(complete)

36

 0,993
 140

 0,986
 72

 0,986
 68

 0,991
 108

 0,991
 108

 0,971
 33

 0,972
 35

 0,324
 67

 0,986
 34

 0,971
 33

 0,973
 36

 0,303
 77

 0,988
 41

 0,973
 36

 0,973
 36

 0,973
 36

 0,973
 36

Figure 14 Result obtained using the heuristics miner plug-in in ProM

Warehouse

Employee

Purchasing Supplier0,078
0,090

0,290

0,126

0,078

0,090

(a) sender perspective

Warehouse

Employee

Purchasing Supplier0,158
0,090

0,126

0,252

0,078

0,048

(b) receiver perspective
Figure 15 Results obtained using the social network miner in

ProM

References

Axelrod, R. (2006). Agent-based modeling as a bridge
between disciplines. In Tesfatsion, L. and Judd,
K. L., editors, Handbook of Computational Economics,
volume 2, chapter 33, pages 1565–1584. Elsevier.

Bonabeau, E. (2002). Agent-based modeling: Methods
and techniques for simulating human systems. PNAS,
99(Suppl 3):7280–7287.

Bose, R. P. J. C., Verbeek, H. M. W., and van der Aalst, W.
M. P. (2012). Discovering hierarchical process models
using ProM. In CAiSE Forum 2011, volume 107 of
LNBIP, pages 33–48. Springer.

Bozkaya, M., Gabriels, J., and van der Werf, J. (2009).
Process diagnostics: A method based on process mining.
In International Conference on Information, Process, and
Knowledge Management (eKNOW ’09), pages 22–27.

Collet, C. and Murtagh, F. (2004). Multiband segmentation
based on a hierarchical markov model. Pattern
Recognition, 37(12):2337–2347.

Cook, D., Youngblood, M., and Das, S. (2006). A multi-
agent approach to controlling a smart environment. In
Designing Smart Homes, volume 4008 of LNCS, pages
165–182. Springer.

Davidsson, P., Holmgren, J., Kyhlbäck, H., Mengistu,
D., and Persson, M. (2007). Applications of agent
based simulation. In 7th International Workshop on
Multi-Agent-Based Simulation, volume 4442 of LNCS.
Springer.

de Medeiros, A. K. A., van Dongen, B., van der Aalst, W.
M. P., and Weijters, A. J. M. M. (2004). Process mining:
Extending the α-algorithm to mine short loops. BETA
Working Paper Series WP 113, Eindhoven University of
Technology.

de Medeiros, A. K. A. and Weijters, A. J. M. M. (2005).
Genetic process mining. Lecture Notes in Computer
Science, 3536:48–69.

Demonceaux, C. and Kachi-Akkouche, D. (2006). Motion
detection using wavelet analysis and hierarchical markov
models. In Spatial Coherence for Visual Motion Analysis,
volume 3667 of LNCS, pages 64–75. Springer.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
39(1):1–38.

Ferreira, D. R., Szimanski, F., and Ralha, C. G. (2012). A
hierarchical Markov model to understand the behaviour
of agents in business processes. In 8th International
Workshop on Business Process Intelligence, Tallinn,
Estonia.

Greco, G., Guzzo, A., and Pontieri, L. (2005). Mining
hierarchies of models: From abstract views to concrete
specifications. In 3rd International Conference on
Business Process Management, volume 3649 of LNCS,
pages 32–47. Springer.

Mining the low-level behavior of agents in high-level business processes 19

Günther, C. W., Rozinat, A., and van der Aalst, W. M. P.
(2010). Activity mining by global trace segmentation.
In BPM 2009 International Workshops, volume 43 of
LNBIP, pages 128–139. Springer.

Günther, C. W. and van der Aalst, W. M. P. (2007). Fuzzy
mining – adaptive process simplification based on multi-
perspective metrics. In 5th International Conference on
Business Process Management, volume 4714 of LNCS,
pages 328–343. Springer.

Hoffmann, A. O. I., Delre, S. A., von Eije, J. H., and
Jager, W. (2006). Artificial multi-agent stock markets:
Simple strategies, complex outcomes. In Bruun, C.,
editor, Advances in Artificial Economics, volume 584 of
Lecture Notes in Economics and Mathematical Systems.
Springer.

Karande, S., Khayam, S. A., Krappel, M., and Radha, H.
(2003). Analysis and modeling of errors at the 802.11b
link layer. In Proceedings of the 2003 International
Conference on Multimedia and Expo - Volume 2, pages
673–676. IEEE Computer Society.

Khayam, S. A. and Radha, H. (2003). Markov-based
modeling of wireless local area networks. In Proceedings
of the 6th ACM International Workshop on Modeling
Analysis and Simulation of Wireless and Mobile Systems,
pages 100–107. ACM.

Liao, L., Patterson, D. J., Fox, D., and Kautz, H. (2007).
Learning and inferring transportation routines. Artificial
Intelligence, 171(5�6):311–331.

Mans, R. S., Schonenberg, M. H., Song, M., van der
Aalst, W. M. P., and Bakker, P. J. M. (2008). Process
mining in healthcare: A case study. In Proceedings
of the International Conference on Health Informatics
(HEALTHINF’08), pages 118–125. INSTICC.

McLachlan, G. J. and Krishnan, T. (2008). The EM
Algorithm and Extensions. Wiley Series in Probability
and Statistics. Wiley-Interscience.

Neri, F. (2012). A comparative study of a financial agent
based simulator across learning scenarios. In Cao, L.,
Bazzan, A., Symeonidis, A., Gorodetsky, V., Weiss, G.,
and Yu, P., editors, Agents and Data Mining Interaction,
volume 7103 of LNCS, pages 86–97. Springer.

Nicolae, O., Wagner, G., and Werner, J. (2010). Towards
an executable semantics for activities using discrete event
simulation. In BPM 2009 International Workshops,
volume 43 of LNBIP, pages 369–380. Springer.

Provost, J.-N., Collet, C., Rostaing, P., P�rez, P.,
and Bouthemy, P. (2004). Hierarchical markovian
segmentation of multispectral images for the
reconstruction of water depth maps. Computer Vision
and Image Understanding, 93(2):155–174.

Railsback, S. F., Lytinen, S. L., and Jackson, S. K.
(2006). Agent-based simulation platforms: Review
and development recommendations. Simulation,
82(9):609–623.

Song, M. and van der Aalst, W. M. (2008). Towards
comprehensive support for organizational mining.
Decision Support Systems, 46(1):300–317.

Tao, T., Lu, J., and Chuang, J. (2001). Hierarchical
markov model for burst error analysis in wireless
communications. In IEEE 53rd Vehicular Technology
Conference, volume 4, pages 2843–2847.

van der Aalst, W. M. P. (2011). Process Mining: Discovery,
Conformance and Enhancement of Business Processes.
Springer.

van der Aalst, W. M. P. and Günther, C. W. (2007). Finding
structure in unstructured processes: The case for process
mining. In Proceedings the 7th International Conference
on Applications of Concurrency to System Design (ACSD
2007), pages 3–12. IEEE Computer Society Press.

van der Aalst, W. M. P., Reijers, H. A., and Song, M.
(2005). Discovering social networks from event logs.
Computer Supported Cooperative Work, 14(6):549–593.

van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W.,
van Dongen, B., Kindler, E., and Günther, C. (2010).
Process mining: a two-step approach to balance between
underfitting and overfitting. Software and Systems
Modeling, 9:87–111.

van der Aalst, W. M. P., ter Hofstede, A. H. M.,
Kiepuszewski, B., and Barros, A. P. (2003). Workflow
patterns. Distributed and Parallel Databases, 14(3):5–51.

van der Aalst, W. M. P., Weijters, A. J. M. M., and
Maruster, L. (2004). Workflow mining: Discovering
process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16:1128–1142.

van Dongen, B., de Medeiros, A. K. A., Verbeek, H. M. W.,
Weijters, A. J. M. M., and van der Aalst, W. M. P. (2005).
The ProM framework: A new era in process mining tool
support. In Application and Theory of Petri Nets 2005,
volume 3536 of LNCS, pages 444–454. Springer.

van Dongen, B. F. and van der Aalst, W. M. P. (2005). A
meta model for process mining data. In Proceedings of
the CAiSE’05 Workshops (EMOI-INTEROP Workshop),
volume 2, pages 309–320.

Veiga, G. M. and Ferreira, D. R. (2010). Understanding
spaghetti models with sequence clustering for ProM.
In BPM 2009 International Workshops, volume 43 of
LNBIP, pages 92–103. Springer.

Wagner, G. (2004). AOR modelling and simulation:
Towards a general architecture for agent-based discrete
event simulation. In 5th International Bi-Conference
Workshop on Agent-Oriented Information Systems,
volume 3030 of LNCS, pages 174–188. Springer.

20 D.R. Ferreira et al.

Wagner, G., Nicolae, O., and Werner, J. (2009). Extending
discrete event simulation by adding an activity concept
for business process modeling and simulation. In
Proceedings of the 2009 Winter Simulation Conference,
pages 2951–2962.

Weijters, A. J. M. M., van der Aalst, W. M. P., and
de Medeiros, A. K. A. (2006). Process mining with the
HeuristicsMiner algorithm. BETA Working Paper Series
WP 166, Eindhoven University of Technology.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent
agents: Theory and practice. Knowledge Engineering
Review, 10(2):115–152.

Wu, J. and Aberer, K. (2005). Using a layered markov
model for distributed web ranking computation. In
Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems, pages 533–542. IEEE
Computer Society.

Yang, H. and Alouini, M.-S. (2002). A hierarchical markov
model for wireless shadowed fading channels. In IEEE
55th Vehicular Technology Conference, volume 2, pages
640–644.

Youngblood, G. M. and Cook, D. J. (2007). Data mining
for hierarchical model creation. IEEE Transactions on
Systems, Man, and Cybernetics, Part C, 37(4):561–572.

Zhao, N., Chen, S.-C., and Shyu, M.-L. (2006). Video
database modeling and temporal pattern retrieval using
hierarchical markov model mediator. In Proceedings of
the 22nd International Conference on Data Engineering
Workshops. IEEE Computer Society.

