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1 Introduction

Business processes can be seen as being composed of
patterns, which have been thoroughly studied in the
literature (van der Aalst et al., 2003a; ter Hofstede
and Dietz, 2003). There have been also attempts at
explaining business processes by means of a single
pattern, such action-workflow (Medina-Mora et al.,
1992) or a transaction pattern (Dietz, 2006). In any
case, these patterns fulfil a double role of facilitating
the understanding of processes on one hand, and on the
other hand providing the building blocks from which
new processes can be designed. Most of the previous
work has therefore focused on identifying these building
blocks and deciding which of them are most appropriate
to capture common structures in business processes.

Here we take a different viewpoint of assuming that
these patterns have been already defined, and instead
we focus on the problem of determining whether a given
set of patterns is present in a given business process. In
particular, we are interested in recognising the presence
of patterns by making use of the semantics of the
business process, i.e. we are looking not only at the
structural behaviour of business processes, but especially
at the meaning of the activities contained in a process.
For example, if we know that a certain activity can be
interpreted as an approval step, then it is possible that
the process contains an approval pattern.

We are dealing with the so-called Workflow Activity
Patterns (WAPs) (Thom et al., 2009) which represent
business functions that typically occur in every business
process, such as activity execution; decision making ;

Copyright c⃝ 2012 Inderscience Enterprises Ltd.



2 D.R. Ferreira and L.H. Thom

notification; approval ; etc. These business functions
cannot be identified solely by looking at the structure of
a process; it is necessary to understand the purpose of
each activity in order to decide whether it corresponds
to a known business function. In addition, we cannot
say that the process contains an approval pattern just
because it has an approval step; all of the required
elements of the approval pattern must be present in
order to consider that the process contains such pattern.
Section 2 provides a summary of these patterns.

Discovering workflow activity patterns in business
processes is typically done manually by the analyst,
working over diagrams of the process model. Such
analysis is non-trivial since the meaning and purpose of
any given activity can be given different interpretations.
Also, in addition to semantics, the analyst must be
able to correctly interpret the control-flow in the model
to ensure that the observed behaviour corresponds to
the structure of the candidate patterns. Overall, this
becomes a difficult and error-prone task. Our goal is
to provide automated means to assist the analyst in
the discovery of WAPs. Since, to a large extent, such
discovery is based on semantics, we turn to an ontology-
based approach, as described in Section 3. In addition,
to facilitate the verification of the sequential behaviour
in the control-flow, we make use of the event log
generated during process execution, rather than original
the process model, as explained in Section 4.

Throughout the presentation we use the example of
a travel booking process introduced in (Thom et al.,
2009). An experimental evaluation of the proposed
approach in a more realistic process is provided in
Section 5. By describing the principles, implementation
and applications of the proposed approach, the reader
will get a sense for the potential of using ontologies and
automated reasoning to address challenging problems
in the area of Business Process Management, especially
those which, like the problem addressed here, rely on
semantics to a large extent.

2 Workflow Activity Patterns

Workflow activity patterns (WAPs) (Thom et al., 2009)
are common structures that can be found in a variety of
business processes. These structures involve control-flow
constructs as well as interactions between participants,
and also the semantics of the activities being performed.
Our starting point will be the seven WAPs as defined
in (Thom et al., 2009). These comprise the following
behaviors:

1. Approval : An object (e.g. a document) has to be
approved by some organisational role. A requester
sends the approval request to a reviewer, who
performs the approval and returns a result.

2. Question-Answer : When performing a process, an
actor might have a question before working on the
process or on a particular activity. This pattern

allows to formulate such question, to identify an
organisational role who is able to answer it, to send
the question to the respective actor filling this role,
and to wait for response.

3. Unidirectional Performative: A sender requests the
execution of a particular activity from a receiver
(e.g., a human or a software agent) involved in the
process. The sender continues execution of his part
of the process immediately after having sent the
request.

4. Bidirectional Performative: A sender requests the
execution of a particular activity from another role
(e.g., a human or a software agent) involved in the
process. The sender waits for a notification from
the receiver that the requested activity has been
performed.

5. Notification: The status or result of an activity
execution is communicated to one or more process
participants.

6. Information Request : An actor requests certain
information from a process participant. He
continues process execution after having received
the desired information.

7. Decision: During process enactment, the
performance of an activity is requested. Depending
on the result of the requested activity, the process
continues execution with one or several branches.
This pattern allows the inclusion of a decision
activity which connects to different subsequent
execution branches (each of them associated with
a specific transition condition). Exactly those
branches whose transition condition evaluates to
true are selected for execution.

Figure 1 provides a summary of these workflow
activity patterns in graphical form. The patterns are
composed of certain elements, namely signals (send
and receive), activities (e.g. “Perform approval”) and
messages (e.g. “Approval request”). For example, WAP1
begins by a send signal with an approval request
message; then there is a receive signal for that same
message; after, an activity to perform the approval; and
finally the exchange of the approval result by another
pair of send and receive signals.

For simplicity, we have deliberately omitted some
elements from these patterns. For example, WAP2
as originally defined in (Thom et al., 2009) contains
additional activities before “Send question”, namely
an activity “Describe question” and another activity
“Identify role habilities”. These elements could be used,
in effect, to distinguish WAP2 from other patterns.
By omitting some elements, the patterns become very
similar in terms of structure, as can be seen in Figure 1.
However, there are some clear differences in purpose
and semantics between them, and it is precisely these
semantics, in addition to structure, that we will use to
discover them in business processes.
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WAP1: Approval WAP2: Question-Answer

WAP3: Unidirectional Performative WAP4: Bidirectional Performative

WAP5: Notification WAP6: Information Request

WAP7: Decision

Figure 1 Simplified versions of the seven WAPs defined in (Thom et al., 2009)
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3 Semantics of Model Elements

Figure 3 shows an example of a travel booking process
that has been modelled using the same kind of elements
that were used to define the seven workflow activity
patterns. However, the process makes use of its own
vocabulary, which is specific to this application domain.
Our goal is to understand the semantics of each activity
and to reason about these elements in order to determine
which patterns are present in this process. Note that
Figure 3 already includes an indication of the patterns
that were found manually by an analyst. Our goal is to
discover these patterns automatically, provided that the
model elements have been appropriately annotated.

3.1 Defining the WAP Ontology

In order to reason about concrete examples such as the
one depicted in Figure 3, we need an ontology that
provides a description of the patterns to be discovered,
and we need to annotate the elements in the given
process with the concepts defined in that ontology. For
example, one should understand that the shape “Send
request for booking” in Figure 3 is in effect a send
signal with an activity request message as in WAP4; one
should also realise that “Authorize trip” corresponds to
a “Perform approval” activity as in WAP1; and so on.
In order to do this, we introduce an ontology to specify
these pattern elements.

Figure 2 Class hierarchy for the WAP ontology.

Figure 2 shows the class hierarchy for the WAP
ontology that has been developed in this work, as
it appears in Protégé1. Basically, there are two top-
level classes, Element and Pattern, with Element being
the superclass for the various pattern elements, and
Pattern being the superclass for the definitions of the
several WAPs. The rationale for this ontology can be
summarized as follows:

• Each Pattern is defined as containing certain
elements of the classes Signal and Activity. For this
purpose, we define the object property hasElement

with domain Pattern and range Element. Example:
PatternApproval hasElement ActivityPerformApproval.

• Each Signal has a certain kind of Message and
for this purpose we define the object property
hasMessage with domain Signal and range Message.
Example: PatternApproval hasElement (SignalSend and

(hasMessage MessageApprovalRequest)).

Each subclass of Pattern is defined by an equivalent
class expression, which specifies the elements that the
pattern contains. For example, the definition for WAP1
can be written as follows:

PatternApproval ≡

Pattern
and hasElement some (SignalSend

and hasMessage
some MessageApprovalRequest)

and hasElement some (SignalReceive
and hasMessage

some MessageApprovalRequest)
and hasElement some ActivityPerformApproval
and hasElement some (SignalSend

and hasMessage
some MessageApprovalResult)

and hasElement some (SignalReceive
and hasMessage

some MessageApprovalResult)

In general, a process may contain many elements,
with only some of them matching the elements of a
given pattern. Therefore, we make use of the keyword
some, meaning that it is necessary for a pattern/signal
to have at least one element/message of that kind, but
possibly more. The definitions for the remaining patterns
are analogous, and they are omitted for brevity; those
definitions are similar to the one above, but make use
of different elements. In particular, the definitions for
WAP3 and WAP5 are shorter, while WAP7 has an
additional activity.

We should mention that this is not the first time
that an ontology for workflow activity patterns has
been devised. In (Thom et al., 2008) the authors make
use of a WAP ontology for the purpose of supporting
process modelling; in this case the ontology describes the
patterns and the relationships between them in order

1Protégé is available at: http://protege.stanford.edu
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Figure 3 Travel booking example, adapted from (Thom et al., 2009)
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to produce recommendations about the possible use of
other patterns in the same model; ultimately, it is the
user who decides whether a given pattern should be
inserted in the model. Here, we have built a different
ontology for the specific purpose of being able to infer
which patterns are present in a given process model; we
have therefore focused more on specifying the elements
of these patterns, and on how these patterns are defined
in terms of the elements they contain.

3.2 Semantic Annotation of Model Elements

While the ontology above defines the classes, a given
process model will contain the elements that can be
seen as individuals of those classes. For example, the
first shape “Send request for booking” in Figure 3
corresponds to two elements: a signal and a message. The
signal is an individual of SignalSend and the message is an
individual of MessageActivityRequest. We have therefore:

Element1 : SignalSend
Element2 : MessageActivityRequest
Element1 hasMessage Element2

As another example, the shape “Authorize trip” is an
individual of ActivityPerformApproval, so we could have:

Element3 : ActivityPerformApproval

Now, the whole process is represented as an
individual of Pattern so that from the above we would
have:

Process1 : Pattern
Process1 hasElement Element1
Process1 hasElement Element3

Note that there is no need to assert Process1

hasElement Element2 since Element2 is a message and it is
associated with Element1 via the hasElement property.

Once the shapes in the model have been annotated
with the corresponding classes from the ontology,
creating these individuals is straightforward and can be
done automatically. Then a reasoner can be invoked to
infer the patterns that the process contains.

The critical point here is precisely in correctly
annotating the elements, e.g. knowing that “Send
request for booking” corresponds to two classes
(SignalSend and MessageActivityRequest) and “Authorize
trip” corresponds to ActivityPerformApproval. This
annotation must be done manually by the analyst; in
terms of effort, it is similar to other approaches that
involve semantic annotation of business processes, e.g.
(Born et al., 2007; Zouggar et al., 2008; Filipowska
et al., 2009). Still, the annotation is made difficult by
the fact that the shapes in a process model make use
of a domain-specific vocabulary and are often labelled
in different ways. To facilitate this task, it would be
desirable to have the shapes in a process model labelled
in a consistent way, such as using verb-object style, as
recommended by (Mendling et al., 2010).

For the process in Figure 3, we would have:

Send request for booking
:: SignalSend MessageActivityRequest

Receive request for booking
:: SignalReceive MessageActivityRequest

Verify if there are available flights and book the trip
:: ActivityExecute

Send notification of flight booking
:: SignalSend MessageActivityResult

Receive notification of flight booking
:: SignalReceive MessageActivityResult

Send notification of no available flights
:: SignalSend MessageNotify

Receive notification of no available flights
:: SignalReceive MessageNotify

Submit booking for approval
:: SignalSend MessageApprovalRequest

Receive booking for approval
:: SignalReceive MessageApprovalRequest

Authorize trip
:: ActivityPerformApproval

Send notification with approval result
:: SignalSend MessageApprovalResult

Receive result of approval
:: SignalReceive MessageApprovalResult

Send notification trip not authorized
:: SignalSend MessageNotify

Receive notification
:: SignalReceive MessageNotify

Send request to buy tickets
:: SignalSend MessageActivityRequest

Receive request to buy tickets
:: SignalReceive MessageActivityRequest

Buy the tickets
:: ActivityExecute

Send notification of activity completed
:: SignalSend MessageActivityResult

Receive electronic ticket
:: SignalReceive MessageActivityResult

Send electronic ticket to requestor
:: SignalSend MessageNotify

Receive ticket
:: SignalReceive MessageNotify
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Provided with this annotation, the individuals and
their properties can be generated automatically. For each
class in the annotation, a new individual is created
from that class. If the first class is a Signal and the
second class is a Message, we add the property hasMessage

which relates those two individuals. Finally, we create an
individual of Pattern to represent the whole process, and
we associate all signals and activities to the process via
the property hasElement.

3.3 Pattern Discovery through Reasoning

Through the use of reasoning, it is possible to obtain
additional statements that can be inferred from the
available classes and individuals. The type of inference
we will be most interested in is class membership. As
explained above, each WAP is defined by an equivalent
class expression that specifies the elements that the
pattern contains. If a process has all the elements that
satisfy a given pattern expression, then the process will
become a member of that class (a subclass of Pattern). In
general, a process may end up being a member of several
classes, which means that one can find in that process
all the elements required by those patterns.

As an example, let us consider the following excerpt
of the travel booking process:

Submit booking for approval
:: SignalSend MessageApprovalRequest

Receive booking for approval
:: SignalReceive MessageApprovalRequest

Authorize trip
:: ActivityPerformApproval

Send notification with approval result
:: SignalSend MessageApprovalResult

Receive result of approval
:: SignalReceive MessageApprovalResult

These will result in the following individuals being
created:

Element1 : SignalSend
Element2 : MessageApprovalRequest
Element1 hasMessage Element2

Element3 : SignalReceive
Element4 : MessageApprovalRequest
Element3 hasMessage Element4

Element5 : ActivityPerformApproval

Element6 : SignalSend
Element7 : MessageApprovalResult
Element6 hasMessage Element7

Element8 : SignalReceive
Element9 : MessageApprovalResult
Element8 hasMessage Element9

Process1 : Pattern
Process1 hasElement Element1
Process1 hasElement Element3
Process1 hasElement Element5
Process1 hasElement Element6
Process1 hasElement Element8

From the WAP ontology and the individuals above,
a semantic reasoner is able to infer the following
statements:

Process1 rdf:type Thing
Process1 rdf:type PatternApproval

The process is a member of Thing since it is a Pattern

and a Pattern is a subclass of Thing. The reasoner is
also able to infer that the process is a member of
PatternApproval since, by the elements it contains, it
satisfies the expression for that class.

It should be noted that even before the individuals
are created, invoking a reasoner on the WAP ontology
produces the following statements:

PatternBidirectionalPerformative
rdfs:subClassOf PatternUnidirectionalPerformative

PatternDecision
rdfs:subClassOf PatternBidirectionalPerformative

This can be easily understood by inspection of
Figure 1. In fact, WAP4 contains all the elements of
WAP3 and therefore WAP4 satisfies the definition of
WAP3. The same happens with WAP7 and WAP4;
WAP7 extends WAP4 and therefore it fits the definition
of WAP4. This means that any process that contains
WAP4 will also be listed as containing WAP3, and
any process containing WAP7 will contain WAP4, and
therefore WAP3 as well.

3.4 Retrieving the Patterns with SPARQL

From the WAP ontology and the individuals created
from a given process, a reasoner is able to produce a
large number of statements. Not all of these statements
will be equally interesting. For example, knowing that
a process is a Thing is trivial; also, if a process contains
both WAP3 and WAP4, the most interesting statement
is that it contains WAP4, since we know that any process
that contains WAP4 also contains WAP3. In general, we
are interested in class memberships that are closer to
the leafs of the class hierarchy, as this represents more
specific knowledge about the process and the patterns it
contains.

In order to retrieve the patterns that a process (e.g.
Process1) contains, we use the following SPARQL query:

1: PREFIX wap: ...
2: PREFIX rdf: ...
3: PREFIX rdfs: ...
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4: SELECT ?pattern WHERE {wap:Process1 rdf:type ?pattern .
5: ?pattern rdfs:subClassOf wap:Pattern .
6: FILTER (?pattern != wap:Pattern) .
7: OPTIONAL { ?pattern2 rdfs:subClassOf ?pattern .
8: wap:Process1 rdf:type ?pattern2 }
9: FILTER (!bound(?pattern2)) }

The query determines all class memberships of
Process1 (line 4) where the class must be a subclass of
Pattern (line 5). According to the OWL standard, a class
is by definition a subclass of itself, so Pattern will also
appear in the results; we exclude this case with the filter
expression in line 6. In lines 7-9 we exclude the case
when the result indicates that the process contains both
a pattern and a subclass of that pattern (as in WAP3
and WAP4). Lines 7-8 check if there is a subclass (e.g.
WAP4) of the pattern (e.g. WAP3) that the process also
contains. If so, then we are interested in the subclass
(WAP4) rather than in the original class (WAP3). Line
9 excludes the result when there is such case.

Running this query on the travel booking example
produces the following results:

Process1 rdfs:subClassOf PatternApproval
Process1 rdfs:subClassOf PatternBidirectionalPerformative
Process1 rdfs:subClassOf PatternNotification

Note that PatternUnidirectionalPerformative is excluded
by lines 7-9 since PatternBidirectionalPerformative is a
subclass of PatternUnidirectionalPerformative.

These results indicate that the process contains
enough elements to satisfy the definition of three
different patterns: WAP1, WAP4 and WAP5. However,
when comparing these results with Figure 3, we note the
absence of WAP7 and WAP3. This can be explained as
follows:

• With regard to WAP7, this pattern is not
detected since the process does not include an
ActivityMakeDecision. The analyst considered that
such activity is implicit in the diamond shape, and
did not include it in the annotation.

• With regard to WAP3, that part of the process
in Figure 3 is inferred as an instance of WAP5
rather than WAP3. This is because the message
has been annotated as MessageNotify. However, it
appears that the analyst originally thought that it
was a MessageActivityRequest.

4 Capturing the Sequence of Events

In the previous section we have shown how it is possible
to discover, through the use of reasoning, the presence
WAPs in a process model, provided that a suitable
annotation of the model elements is available. In this
section we address the problem of checking not only that
the pattern elements are present, but also that they are

present in the correct order, as specified in the original
WAPs of Figure 1.

For this purpose, and rather than analysing the
control-flow of the process model, we resort to the
sequence of events recorded during process execution.
The use of event logs is very common in the area of
process mining (van der Aalst et al., 2003b), for example
to discover control-flow models (van der Aalst et al.,
2004) and social networks (van der Aalst et al., 2005), or
to study conformance (Rozinat and van der Aalst, 2008),
among other issues. Here we use the event log as a means
to retrieve the sequential behaviour of the process.

4.1 Translating the Event Log

An event log is a list of recorded events, where each
event typically contains a reference to an activity (task
id) that has been performed, the process instance (case
id) that the activity belongs to, the user (originator)
who performed the activity, and the time and date
(timestamp) of when the activity was completed (van der
Aalst et al., 2007). Such event log is usually retrieved
from the execution of a business process on a workflow
system, but it can also be obtained by simulation of the
given process (Medeiros and Günther, 2005).

For our purpose, the event log needs to contain only
the case id and task id, in chronological order. The
sequence of tasks executed within a process instance, i.e.
the sequence of task-ids associated with the same case-
id, is called a trace (van der Aalst et al., 2004). A sample
trace of the process in Figure 3 is as follows:

Send request for booking
Receive request for booking
Verify if there are available flights and book the trip
Send notification of flight booking
Receive notification of flight booking
Send notification of no available flights
Receive notification of no available flights

Provided with the mapping of Section 3.2, this trace
can be translated into the following sequence:

SignalSend MessageActivityRequest
SignalReceive MessageActivityRequest
ActivityExecute
SignalSend MessageActivityResult
SignalReceive MessageActivityResult
SignalSend MessageNotify
SignalReceive MessageNotify

Since the control-flow in Figure 3 admits only 3
possible paths, there are a limited number of possible
traces (the parallel execution of the branches beginning
with “Send notification trip not authorized” may
generate some additional traces). These traces can be
translated in a similar way as above, and this translation
can be done automatically for all traces based on the
provided annotation of the model elements.

For the trace above, the approach described in the
previous section would detect the presence of WAP4 and



A Semantic Approach to the Discovery of WAPs in Event Logs 9

WAP5 regardless of the order in which the elements
appear in the trace. However, these patterns should only
be detected if their elements appear in the correct order.
For this purpose, we introduce the notion of an order
relation, to be included in the WAP ontology.

4.2 Adding an Order Relation

In the trace above, the events that belong to the same
WAP were recorded not only in sequence, but also
consecutively in the event log. In practice, this may
not be the case, as the events may become interspersed
with other activities, namely those originated by parallel
branches. The order relation for pattern elements should
therefore make use of the notion of weak (rather than
strict) order. The notion of weak (vs. strict) order has
already been used extensively to capture the behavioural
profiles of business processes from the sequence of events
recorded in an event log (Weidlich et al., 2011).

In the present context, the definition of weak order
applies to any pair of activities that follow one another,
not necessarily in consecutive order. Formally, two
activities ai and aj in a trace σ = ⟨a1, . . . , an⟩ are in
weak order if and only if 1 ≤ i < j ≤ n. To express this
relation, we introduce the object property followedBy with
domain Element and range Element, and we redefine the
class expressions for the WAPs using this property. The
definition for WAP1 becomes:

PatternApproval ≡

Pattern
and hasElement some

(SignalSend
and hasMessage some MessageApprovalRequest
and followedBy some

(SignalReceive
and hasMessage some MessageApprovalRequest
and followedBy some

(ActivityPerformApproval
and followedBy some

(SignalSend
and hasMessage some MessageApprovalResult
and followedBy some

(SignalReceive
and hasMessage some MessageApprovalResult
)

)
)

)
)

The definitions for the remaining patterns are
analogous. It should be noted that the property
followedBy is transitive, so that if A followedBy B and
B followedBy C hold, then it can be inferred that A

followedBy C holds as well. Such transitivity facilitates
the specification of the order relations in the event log,
since it is necessary to specify only the order relation
between consecutive events for the reasoner to infer the
order relation between all pairs of events.

4.3 Creating the Individuals

As before, in Section 3.3, the individuals can be created
automatically from the event log. For example, the trace
in Section 4.1 will result in the following individuals
being created:

Element01 : SignalSend
Element02 : MessageApprovalRequest
Element01 hasMessage Element02

Element03 : SignalReceive
Element04 : MessageApprovalRequest
Element03 hasMessage Element04

Element05 : ActivityPerformApproval

Element06 : SignalSend
Element07 : MessageApprovalResult
Element06 hasMessage Element07

Element08 : SignalReceive
Element09 : MessageApprovalResult
Element08 hasMessage Element09

Element10 : SignalSend
Element11 : MessageNotify
Element10 hasMessage Element11

Element12 : SignalReceive
Element13 : MessageNotify
Element12 hasMessage Element13

Trace1 : Pattern
Trace1 hasElement Element01
Trace1 hasElement Element03
Trace1 hasElement Element05
Trace1 hasElement Element06
Trace1 hasElement Element08
Trace1 hasElement Element010
Trace1 hasElement Element012

Element01 followedBy Element03
Element03 followedBy Element05
Element05 followedBy Element06
Element06 followedBy Element08
Element08 followedBy Element10
Element10 followedBy Element12

Due to the transitivity of the property followedBy, all
order relations between non-consecutive elements will be
inferred. Also, from these statements and the new class
expressions, as defined in Section 4.2, the reasoner is able
to infer:

Trace1 rdfs:subClassOf PatternBidirectionalPerformative
Trace1 rdfs:subClassOf PatternNotification

Similar results can be obtained for other traces with
additional patterns. The SPARQL query of Section 3.4
needs no modification other than replacing Process1 by
Trace1. Now, however, changing the order of events in the
event log leads to different order relations, and therefore
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different assertions involving the property followedBy. A
pattern will only appear in the result if the corresponding
elements follow each other in the same order as defined
in the class expression.

4.4 Implementation

The WAP ontology was developed and tested in Protégé
together with the Pellet Reasoner Plug-in2. Using Java
code, we load the ontology and create the individuals
with the Jena framework3. The Pellet reasoner4 is
invoked through Jena to perform reasoning over the
ontology together with the individuals. The SPARQL
query is also executed through Jena.

Basically, using Jena we load the ontology file
created with Protégé into an ontology model (a Java
object implementing the OntModel interface). Then
we read a text file containing the annotation of the
process elements. For each class in the annotation,
we retrieve a class reference (OntClass) from the
ontology model, and create an individual of that class
by invoking OntClass.createIndividual(). The relations
between individuals are established by retrieving
references to the appropriate object properties. Finally,
using the Pellet reasoner, we create an inference model
(InfModel) and then run the SPARQL query over this
new model. Iterating through the results provides the
subclasses of Pattern contained in the process.

5 Case Study: A Purchase Process

The following case study is based on the purchase process
of a Portuguese company, implemented in a commercial
workflow system (BizAgi5). The process is structured
according to the following main stages:

• An employee fills out a requisition form for a
certain product and sends it to the warehouse,
which checks how many units are available in stock
and returns the result.

• After receiving the result from the warehouse, the
employee checks if there are enough units and,
in that case, asks the warehouse to dispatch the
product, receiving a confirmation in the end.

• However, in case the stock level is insufficient, the
employee creates and submits a purchase request
for approval by a manager. If approval is not
granted, the process ends immediately. Otherwise,
the process continues with the employee relaying a
purchase order to the purchase department.

• The purchase department orders the product from
a supplier and makes the warehouse aware of

2http://clarkparsia.com/pellet/protege/
3http://jena.sourceforge.net/
4http://clarkparsia.com/pellet/
5http://http://www.bizagi.com/

Figure 4 Event log for a trace of the purchase process

the incoming merchandise. Once the warehouse
receives the product, it notifies the employee and
forwards the invoice to the purchase department.

• The purchase department takes care of paying to
the supplier and, once this is finished, notifies the
employee that the requisition can be closed.

• Upon receiving note that payment is done, the
employee closes the requisition and notifies the
manager that the purchase request that had been
previously approved is now complete.

For the purpose of this case study, the process has
been augmented with additional activities in order to
represent send and receive signals. The inclusion of
these activities was necessary because the system event
log does not record the exchange of messages between
participants, only that some participant has performed
some task. To make it easier to demonstrate the proposed
approach, we modelled these exchanges explicitly. The
send and receive signals are included as extra, “do-
nothing” activities that do not affect the overall flow
of the process, except for the fact that each user will
visualise the same form for a second time, either after
completing the current task (when sending the output
to others) or before completing the current task (when
receiving the input from others).

Figure 5 and Figure 6 show the overall structure of
the purchase process. Since the activity labels are in
Portuguese, we will not delve further into it, and instead
we just note that the first lane is the employee, the
second one is the warehouse, the third one represents
the manager, and the fourth stands for the purchase
department.

During this study we were able to collect two kinds
of traces: one where the desired product was available in
stock and was therefore dispatched immediately from the
warehouse; and another where the product was not in
stock and a purchase request was submitted, approved,
and processed to the end (there were no instances of
purchase requests that were not approved). Figure 4
shows a screenshot for a trace of the first kind, as
recorded in the event log.

Based on the process model, we established a
mapping between the activity labels and the classes in
the WAP ontology, which is effectively equivalent to
a semantic annotation of those activities. Using such
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Figure 5 Purchase process as implemented in BizAgi (part 1 of 2)
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Figure 6 Purchase process as implemented in BizAgi (part 2 of 2)
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Figure 7 WAPs discovered in Trace1 of the purchase process

Figure 8 WAPs discovered in Trace2 of the purchase process

annotation, we translated the event logs mechanically,
by replacing each event by its corresponding class or
classes, as described in Section 4.1. Since only two kinds
of traces were observed in the event log, we picked up one
instance of each, which we denoted by Trace1 and Trace2.
Figure 7 and Figure 8 highlight the path of each trace
in the process model, and show the WAPs discovered in
each of those traces.

It should be noted that a different annotation of the
model elements may lead to the discovery of different
WAPs. For example, Figure 9 illustrates the effect of a
different annotation for the part of the process where the
warehouse receives a request to dispatch the product and
then returns a confirmation that the product has been
dispatched. If this confirmation is taken as a notification,
then the annotation becomes:

SignalSend MessageActivityRequest
SignalReceive MessageActivityRequest
ActivityExecute
SignalSend MessageNotification
SignalReceive MessageNotification

The annotation above leads to the discovery of
WAP3 and WAP5, as in the original trace depicted in
Figure 7. The first three events become a unidirectional
performative (WAP3) and the last two events are a
notification pattern (WAP5). On the other hand, if the
confirmation from the warehouse is interpreted as a
result, the annotation becomes:

SignalSend MessageActivityRequest

(a) Original annotation (b) Alternative annotation

Figure 9 WAPs discovered with different annotations

SignalReceive MessageActivityRequest
ActivityExecute
SignalSend MessageActivityResult
SignalReceive MessageActivityResult

In this case, the five events fit into the definition
of a bidirectional performative (WAP4), as shown in
Figure 9(b). In practice, it is up to the analyst to decide
which annotation is more correct. At the present stage,
establishing the semantics of the activities in a process
requires human interpretation, so different results may
arise from the same process. In any case, the approach
described here is able to discover the presence of WAPs
in a way that is consistent with the provided annotation.
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6 Conclusion

In this work we have introduced an approach to
automate the discovery of WAPs in business processes
by means of reasoning over an ontology. In this ontology,
the classes define the elements that each pattern
contains, and the individuals represent the elements of
the given process. These individuals can be generated
automatically from an event log recorded during process
execution. Both the semantics and the sequence of events
are used to determine whether a given pattern is present
in the process.

In future work, we intend to focus on tool support
for the semantic annotation of model elements, and
in particular on facilitating the annotation of elements
which have a mapping to ontology classes other than one-
to-one, such as one-to-many or many-to-one. This would
avoid the need to insert artificial activities in the process,
as we did in the case study to represent signals. Another
branch for future work is to support more elaborate
versions of the same patterns, including the iterative and
concurrent versions of certain WAPs.
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