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Abstract. Sequence clustering is a technique of bioinformatics that is used to 

discover the properties of sequences by grouping them into clusters and assigning 

each sequence to one of those clusters. In business process mining, the goal is 

also to extract sequence behaviour from an event log but the problem is often 

simplified by assuming that each event is already known to belong to a given 

process and process instance. In this paper, we describe two experiments where 

this information is not available. One is based on a real-world case study of 

observing a software development team for three weeks. The other is based on 

simulation and shows that it is possible to recover the original behaviour in a 

fully automated way. In both experiments, sequence clustering plays a central 

role. 

Keywords. Process Mining, Sequence Clustering, Task Identification, Process 

Discovery, Workflow Logs 

1   Introduction 

In bioinformatics, sequence clustering algorithms have been used to automatically 

group large protein datasets into different families [12,13], to search for protein 

sequences that are homologous to a given sequence [17], and to map or align a given 

DNA sequence to an entire genome [20], to cite only some of the most common 

applications. In all of these applications, sequence clustering becomes a valuable tool 

to gain insight into otherwise seemingly senseless sequences of data. 

A similar kind of challenge arises in process mining, where the goal is to extract 

meaningful task sequences from an event log, usually resorting to special-purpose 

algorithms that can recover the original workflow that produced the log [1]. 

The idea of applying sequence clustering to process mining comes at a time when 

process mining is still heavily dependent on the assumption that the event log contains 

“sufficient” information [4], i.e., that each event in the log is clearly associated with a 

specific activity and case (process instance) [1]. This comes as a major disadvantage 

since (1) the classes of information systems that are able to generate such logs are 

restricted to process-aware systems, and (2) it becomes impossible to apply and benefit 

from process mining in scenarios where the log data is not available in that form. 
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A sequence clustering approach can alleviate these requirements by grouping similar 

sequences and identifying typical ones without the need to provide any input 

information about the business logic. Of course, the results will bear a degree of 

uncertainty, whereas process mining approaches typically aim at finding exact models. 

Still, sequence clustering can provide valuable insight into the kind of sequences that 

are being executed. 

The paper is structured as follows: section 2 provides an overview of process mining 

approaches, and section 3 presents the sequence clustering algorithm. Then sections 4 

and 5 describe two different experiments and report on the problems encountered and 

the results obtained. 

2   Process mining approaches 

In general, all process mining approaches take an event log as input and as a starting 

point for the discovery of underlying processes. The event log (also called process trace 

or audit trail) is list of records resulting from the execution of some process. For the log 

to be “minable”, each record usually contains information about the activity that was 

executed, the process instance that it belongs to, and the time of execution. The 

requirements on the log, i.e. the kind of information it should contain, varies according 

to the process mining algorithm being used. 

In fact, it is the choice of mining algorithms that often leads to different process 

mining approaches. Some of the algorithms used for process mining include: 

• the α-algorithm [4] – an algorithm that is able to re-create the Petri-net workflow 

from the ordering relations found in the even log. For the algorithm to work, the log 

must contain the process instance identifier (case id) and it must be rather complete 

in the sense that all ordering relations should be present in the log. 

• inference methods [8] – a set of three different algorithms used to infer a finite state 

machine (FSM) from an event log, where the log is regarded as a simple sequence of 

symbols. The three algorithms represent different levels of compromise between 

accuracy and robustness to noise. The MARKOV algorithm, inspired by Markov 

models, seems to be the most promising. The algorithm works by building up an 

event graph as the result of considering Markov chains with increasing order. In the 

last step, the graph is converted to a FSM, which represents the process that was 

found. 

• directed acyclic graphs [5] – an algorithm that is able to generate a dependency 

graph from a workflow system log. The log must contain a relatively high number of 

executions of the same process so that the dependency graph for that process can be 

completely built. Originally, the algorithm was proposed to support the adoption of 

workflow systems rather than actually pursuing process mining. 

• inductive workflow acquisition [16] – an approach in which the goal is to find a 

hidden markov model (HMM) that best represents the structure of the original 

process. The HMM can be found by either top-down or bottom-up refinement of an 

initial HMM structure; these are known as model splitting and model merging 
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algorithms, respectively. The initial HMM structure is built directly from the log, 

which is regarded as a simple sequence of symbols. Reported results suggest that 

model splitting is faster and more accurate than model merging. 

• hierarchical clustering [14] – an algorithm that, given a large set of execution traces 

of a single process, separates them into clusters and finds the dependency graph 

separately for each cluster. The clusters of workflow traces are organized into a tree, 

hence the concept of model hierarchy. After the workflow models for the different 

clusters have been found, a bottom-up pass through the tree generalizes them into a 

single one. 

• genetic algorithm [2] – an algorithm in which several candidate solutions are 

evaluated by a fitness function that determines how consistent each solution is with 

the log. Every solution is represented by a causal matrix, i.e. a map of the input and 

output dependencies for each activity. Candidate solutions are generated by 

selection, crossover and mutation as in typical genetic algorithms. The search space 

is the set of all possible solutions with different combinations of the activities that 

appear in the event log. The log should contain a relatively high number of 

execution traces. 

• instance graphs [10] – an approach that aims at portraying graphical representations 

of process execution, especially using Event-driven Process Chains (EPCs). For 

each execution trace found in the log, an instance graph is obtained for that process 

instance. In order to identify possible parallelism, each instance graph is constructed 

using the dependencies found in the entire log. Several instance graphs can then be 

aggregated in order to obtain the overall model for that log [11]. 

In general, as far as input data is concerned, all these algorithms require an event log 

that contains several, if not a very large number, of execution traces of the same 

process instance. (An exception is the RNET algorithm used in [8] which can receive a 

single trace as training input, but the results can vary widely depending on that given 

input sequence.) Because the log usually contains the traces of multiple instances, it is 

also required to have labelling field – usually called the case id [1] – which specifies 

the process instance for every recorded event.  

Another requirement on the content of the event log is that, for algorithms such as 

[4] and [10], which rely on finding causal relations in the log, task A can be considered 

the cause of task B only if B follows A but A never follows B in the log. Exceptional 

behaviour, errors or special conditions that would make A appear after B could ruin the 

results. These conditions are referred to as noise; algorithms that are able to withstand 

noise are said to be robust to noise [3]. Most algorithms can become robust to noise by 

discarding causal relations with probability below a given threshold; this threshold is 

usually one of the algorithm parameters. 

The problem with these requirements is that they may be difficult to apply in many 

potential scenarios for process mining. For example, in some applications the case id 

may be unavailable if the log is just an unclassified stream of recorded events. In other 

applications, it may be useful to clearly identify and distinguish normal behaviour from 

exceptional one, without ruling out small variations simply as noise. These issues 

suggest that other kind of algorithms could provide valuable insight into the original 

behaviour that produced the log. If there is no case id available, and there is an 



4       Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira 

unpredictable amount of ad-hoc behaviour, then an algorithm that allows us to sort out 

and understand that behaviour could be the first step before actually mining those 

processes. Sequence clustering algorithms are a good candidate for this job. 

3   Sequence clustering 

Sequence clustering is a collection of methods that aim at partitioning a number of 

sequences into meaningful clusters or groups of similar sequences. The development of 

such methods has been an active field of research especially in connection with 

challenges in bioinformatics [7]. Here we will present the basic principles by referring 

to a simple sequence clustering algorithm based on first-order Markov chains [6]. 

In this algorithm, each cluster is associated with a first-order Markov chain, where 

the current state depends only on the previous state. The probability that an observed 

sequence belongs to a given cluster is in effect the probability that the observed 

sequence was produced by the Markov chain associated with that cluster. For a 

sequence x = {x0, x1, x2,…,xL-1} of length L this can be expressed simply as: 

     p (x | ck) = p (x0 , ck) . ∏
1

1

−=

=

Li

i  p (xi | xi-1 , ck) 
(1) 

where p(x0 , ck) is the probability of x0 occurring as the first state in the Markov chain 

associated with cluster ck and p(xi|xi-1 , ck) is the transition probability of state xi-1 to 

state xi in that same Markov chain. Given the way to compute p(x|ck), the sequence 

clustering algorithm can be implemented as an extension to the well-known 

Expectation-Maximization (EM) algorithm [9]. The steps are: 

1. Initialize the model parameters p(x0 , ck) and p(xi|xi-1 , ck) randomly, i.e. for each 

cluster the state transition probabilities of the associated Markov chain are 

initialized at random. 

2. Using the current model parameters, assign each sequence to each cluster with a 

probability given by equation (1). 

3. Use the results of step 2 to re-estimate the model parameters, i.e. recalculate the 

state transition probabilities of each Markov chain based on the sequences that 

belong to that cluster. 

4. Repeat steps 2 and 3 until the mixture model converges. 

This sequence clustering algorithm has been implemented in Microsoft SQL Server 

2005® [19] and is readily available for use either programmatically via an OLE DB for 

Data Mining interface [18] or via a user-friendly interface in Microsoft Visual Studio 

2005®. 

In either case, the algorithm must be provided with two input tables: a case table and 

a nested table. The case table contains one record for each sequence; it conveys the 

number of sequences in the input data set together with some descriptive information 

about each sequence. The nested table contains the steps for all sequences, where each 

step is numbered and labelled. The number is the order of occurrence within the 

sequence, and the label is a descriptive attribute that denotes the state in a Markov 

chain. The case and nested tables share a one-to-many relationship: each sequence in 

the case table is associated with several steps in the nested table. The connecting 
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attribute, which is application-specific, serves as key in the case table and as sequence 

scope delimiter in the nested table. 

For the sake of clarity, let us consider a simple example. Suppose the members of a 

given family have different ways of zapping through TV channels according to their 

own interests. Let us assume that each member always finds the TV switched off, and 

after turning it on, goes through a set of channels before turning it off again. Every time 

it is turned on, the TV generates a new session identifier (session id) and records both 

session-related information as well as the sequence of channel changes. Figure 1 shows 

the case and nested tables for this scenario. The session identifier is both the key to the 

case table and the sequence scope delimiter for the nested table. The case table contains 

descriptive, non-sequence attributes about each session, whereas the nested table 

contains the steps for each sequence, both numbered and labelled. 

 

             

(a)                                                   (b) 

Fig. 1. Case (a) and nested (b) tables for the simple TV usage scenario 

It can be seen from this simple example that the input data to be provided to the 

sequence clustering algorithm already has a form of case id, which is the session 

identifier. Pre-processing techniques will have to be used to assign this case id if it is 

not available in the first place. We will look at this problem ahead in the context of two 

different experiments. What is interesting to note here is the kind of results that the 

sequence clustering algorithm is able to produce. Figure 2 shows four of the clusters 

that the algorithm was able to identify from a given set of 24 sequences for the simple 

TV usage scenario. Each cluster has a different Markov chain that is able to generate 

the sequences assigned to that cluster. This effectively captures the dominant behaviour 

of similar sequences. 

 

 

Fig. 2. The Markov chains in four of the clusters obtained for the simple TV usage scenario. 
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The number of clusters to be found can be set manually or automatically by letting 

the algorithm perform a heuristic to determine the number of clusters for the given 

data. This is usually very useful to use as an initial guess before trying to run the 

algorithm with different parameters. 

To produce the results shown in figure 2 the algorithm performed a number of 

iterations, where each iteration comprises two steps: the expectation step and the 

maximization step. In the expectation step the algorithm assigns each sequence x to the 

cluster ck that gives the highest membership probability p(x|ck) according to equation 

(1). Once this step is complete, the algorithm has a provisional estimate of which 

sequences belong to which cluster. In the maximization step the algorithm re-computes 

the transition probabilities p(xi|xi-1,ck) for each cluster ck based on the sequences that 

belong to that cluster. After the maximization step, the next expectation step will 

produce different results from the previous iteration, since p(x|ck) will now be 

computed with the updated values of p(xi|xi-1,ck). The algorithm converges when there 

is no change in the values of these model parameters. 

4   Experiment #1: Mining human activity observations 

The first experiment is taken from a research project that aims at discovering recurrent 

action patterns from action repositories [25]. This experiment was motivated by the 

difficulties encountered in the manual extraction of action patterns for log sizes of a 

few hundred actions. Thus, the aim was to test the ability of the sequence clustering 

algorithm to support manual identification of recurrent action sequences from action 

logs, where no information of the sequence associated with each individual action was 

available. Rather than finding Markov chains, the goal here was to evaluate the 

soundness of the sequence clusters provided by the algorithm. 

The experimental data represents the actions of a software development team 

comprising four software developers and a project leader [24]. The team develops web 

applications and performs systems analysis, design, programming, test and 

maintenance activities. The action log was collected within an observation period of 

three weeks, during which the team members performed tasks on the following 

applications: (1) Suppliers, (2) Claims, (3) Customer Correspondence (called Mail 

application), (4) Evictions and (5) Marketing Campaigns. The team leader performed 

both system development and project management tasks. 

Team observation was carried out by its own members by registering their actions 

and interactions in chronological order1. Both computer- and non-computer-supported 

actions and interactions were registered, each by means of a summarizing sentence. 

These sentences were first parsed using grammatical rules to separate the subject and 

predicate (verb and its complements). Synonym verbs were replaced by a single verb to 

avoid inconsistencies. Each action and interaction description was augmented with a 

set of application, information and human resources involved. The results were further 

                                                           
1 For details on the modeling concepts of action, interaction and context please refer to [21]. 
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structured as described in [23] into an event table as shown in figure 3. The data 

collected over three weeks led to a table with 534 entries. 

 

 

Fig. 3. Examples of structured actions and interactions collected during observation [22] 

By identifying the action contexts of each actor [23] it was possible to group events 

that belong to the same or to intimately related tasks. This grouping into contexts can 

be done manually or, in case of large data sets, applying a clustering algorithm can 

provide a good starting point [22]. For the team leader alone, 12 different action 

contexts have been identified. Given the chronological order of events within each 

personal context and the interactions that took place between actors, it was possible to 

determine the sequences of events that took place across actors. This led to a number of 

rather long sequences, which were then broken down into shorter, scope-delimited 

tasks. About 140 tasks were found. 

A brief analysis these task sequences revealed two issues. The first was that some of 

these tasks were not actually sequences, but just arbitrary repetitions of the same 

action. For example, all team members had at least one task in which they repeated the 

action “program” from 2 to 20 times. Therefore, consecutive repeating steps within 

each sequence were eliminated, and sequences ending up with just one single step were 

discarded. Figure 4 shows the total number of occurrences of each action, both before 

and after repeating steps were eliminated. 
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Fig. 4. Total number of occurrences for each action, both before (light column) and after (dark 

column) eliminating repeating steps, ordered by decreasing number of the latter. 
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The second issue was that the relatively high number of different actions led to a set 

of very dissimilar sequences, despite the fact that most of them shared a limited set of 

common actions. For example, most tasks involve some form of “request”, whereas the 

action “annotate” happened only once in the entire study. This suggests that the 

emphasis should be put on highly recurrent actions, which provide the skeleton for 

most sequences. The least recurrent actions (in the tail of figure 4) represent ad-hoc 

variations that provide no real insight into the structure of tasks. The last 

pre-processing stage was therefore to decide on a threshold for the number of 

occurrences; only actions above that threshold were allowed to remain in the 

sequences. 

Once these pre-processing stages were complete, it was straightforward to build the 

case and nested tables for the sequence clustering algorithm. In order to present a 

complete result set, here we will use a relatively high threshold of 20 minimum 

occurrences. This means that only the first five actions in figure 4 will be allowed. As a 

consequence, the sequences will also be rather short. Figure 5 shows the results of 

applying the algorithm to the input sequences. The sequences have been grouped into 

five clusters. 

 

c1 

 c5 

 c2 

 

c3 

 

c4 

 

Fig. 5. Results of applying the sequence clustering algorithm to a set of input sequences 

restricted to five different actions only. 

It is arguable whether some sequences should have ended up in a particular cluster. 

Both cluster c1 and cluster c4 contain one sequence that would make as much sense if it 

had shown up in another cluster. The key issue here is that similar sequences actually 

ended up in the same cluster, and that each cluster has its own distinctive features. 
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Since the goal was to determine the effectiveness of the algorithm in obtaining 

meaningful clusters, evaluating the clustering results in this case requires knowledge of 

the problem domain. In terms of the particular business context, and despite the fact 

that the set of actions is so limited, it is still possible to draw meaningful conclusions 

from the results in figure 5: 

• The sequences inform-test (cluster c1) and request-test (cluster c4) concern 

software integration tests. Team members confirmed that integration tests are 

performed either upon explicit request or when the project leader is informed of 

the result of previous tests. Clusters c1 and c4 capture these two scenarios. The 

sequence inform-test actually comprises the states analyze-inform-test, but the 

action “analyze” was not recorded since it is usually performed by an individual 

that was not observed in this study. 

• The sequences request-inform-test-request (cluster c2) and request-inform–test-

inform (cluster c5) concern software publishing activities. These sequences have 

an additional state – request-publish-inform-test-request and request-publish-

inform-test-inform – but the action “publish” is also performed by an unobserved 

member. In all these cases, it is remarkable the algorithm was able to distinguish 

these activities even though such a key action was missing. 

• The sequence ask-answer (cluster c3) occurs in several kinds of tasks, but mostly 

in connection with team members helping each other. 

5   Experiment #2: Mining database system traces 

In the previous experiment, the application of sequence clustering was just the final 

phase after several weeks of collecting and pre-processing data. In this second 

experiment, the goal was to devise a scenario in which all these steps would be as 

automated as possible. Inspired by the bank experiment, we developed an application 

to perform simple operations over a fictitious banking database. Examples of such 

operations are: creating a checking account, creating a savings account, creating a loan, 

paying a loan, etc. Each of these operations comprises several database queries that 

insert, select, update or delete records in several tables. Operations requiring 

transactional control were implemented inside stored procedures, so as not to clutter the 

log. 

Creating a checking account for a new customer involves the following steps: (1) 

create a new customer, (2) create a new account at the branch, (3) save the account as a 

checking account with a certain withdrawal limit, (4) associate the customer as a 

depositor of the account, and (5) associate an employee as account manager for that 

customer. In terms of SQL, this operation would look like: 

 
INSERT INTO Customer VALUES (85045,'John Hayes','North Street','Southampton') 

INSERT INTO Account VALUES (34220,705,'Downtown') 

INSERT INTO Checking_Account VALUES (34220, 207) 

INSERT INTO Depositor VALUES (85045,34220) 

INSERT INTO Cust_Banker VALUES (85045,6,'account manager') 

 

The steps may be performed in this or in a slight different order. In total, there are 

four variations for this sequence. 
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Creating a savings account takes different steps: (1) choose a checking account 

belonging to the customer, (2) create a new account at the branch, (3) save the account 

as a savings account with a certain interest rate, (4) associate the customer as a 

depositor of the account, and (5) transfer the initial funds from the checking account to 

the newly created savings account. There are two variations for this sequence; the steps 

in the order just described correspond to the following queries: 

 
SELECT a.account_number, a.balance 

FROM Depositor AS d, Account AS a, Checking_Account AS c 

WHERE a.account_number = d.account_number 

  AND c.account_number = a.account_number AND d.customer_id = 17214 

INSERT INTO Account VALUES (74652,0,'Downtown') 

INSERT INTO Savings_Account VALUES (74652, 3.5) 

INSERT INTO Depositor VALUES (17214,74652) 

EXEC INTERNAL_ACCOUNT_TRANSFER 7583,74652,189 

 

In this experiment, a simulator generates a large amount of these and other 

operations. The queries from different operations are sent to the database system 

randomly interleaved, in order to simulate the concurrent execution of both different 

and similar operations. As the operations are being performed, they are captured as a 

trace using the SQL Server Profiler, a tool for monitoring the SQL Server Database 

Engine and capturing data about each event. Figure 6 illustrates how the data is 

captured with the Profiler. There is no case id or any other information that explicitly 

indicates that an event belongs to a certain sequence. As it stands, the trace is just an 

unclassified stream of events. 

 

 

Fig. 6. A database system trace as captured by the SQL Server Profiler. The data can be saved to 

a file or to a database table as it is being captured. 

The second stage of this experiment is supported by the SequenceBuilder module, a 

software component that pre-processes the trace in order to create the case and nested 

tables for sequence clustering. However, the algorithm requires a set of independent 

sequences grouped by a case id and sorted by a sequential number (as shown earlier in 

figure 1). This means that SequenceBuilder must figure out where each sequence 

begins and ends, and find the events that belong to the sequence. The database trace 

contains profile information – such as date, username, client application, connection 

identifier, etc. – that could provide an indication of whether two events are related or 

not. But this information is not enough to find an accurate set of sequences. In [15] the 

authors make use of similar event logs, but the case id is given for each event. For the 

log shown in figure 6 some kind of reliable method for sequence identification had to 

be found. 



Approaching Process Mining with Sequence Clustering: Experiments and Findings      11 

The chosen method was to analyze the content of each query in order to determine 

whether it used the same objects of other queries or not. By retrieving the parameter 

values of each query, two queries that are close together in the log and use the same 

customer id, for example, are very likely to belong to the same sequence. And even if 

they do not share the same parameters, but a third query uses both of their parameter 

values, then all the three queries are likely to belong to the same sequence. This led to 

the idea of computing the graph of relations between queries in the trace: events 

connected directly or indirectly through other nodes belong to the same sequence; the 

islands in the graph correspond to different sequences. Figure 7 shows the connecting 

graphs for the queries described earlier. 

 

 

Fig. 7. Links between the queries in the bank operations described earlier. Each link has the 

name of the parameter whose value is equal in the two queries. Separate sub-graphs correspond 

to different sequences. 

The whole graph can be computed at most in O(N
2
) by comparing every pair of 

events in the log. The graph is saved into table form in the database, where each node 

may have many connections to other nodes. A recursive query then retrieves the set of 

nodes in each sub-graph, until there are no more nodes to retrieve. As the nodes are 

being retrieved, they are sorted by the chronological order in which they originally 

appeared in the trace. The incoming nodes are assigned a sequential number and saved 

to a nested table, with a different case id for each sequence. The case table is then 

generated by retrieving the set of all distinct case ids. 

This simple method works well in all cases except one: when the same object – be it 

the customer, account, loan, etc. – shows up in another instance of the same or different 

sequence. This may happen because the same customer opens more than one savings 

account, because the customer sends payment for a previously created loan, etc. The 

problem is illustrated in figure 8, where there should be three sequences but there are 

only two since a link is established to a later sequence that refers to the same object. If 

these long, unintended sequences are left in the input data, they will ruin the sequence 

clustering results since the algorithm will try to find some way to fit these sequences in 

by generating Markov chains that are able to produce them. 
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Fig. 8. When running through the log, links may be established between events that actually 

belong to different sequences. 

Fortunately, this phenomenon can be detected using a simple heuristic based on the 

average length of links between events. A link whose length is noticeably higher than 

the average length of all links is likely to be a spurious connection rather than a 

meaningful relationship between two events. Suppose, for example, that links with 

length over two times the average are rejected. In the example shown in figure 8, the 

average length is (18+ x)/11 where x is the length of the dashed link. We reject the 

dashed link if x ≥ 2*(18+ x)/11 which gives x ≥ 4 which is obviously appropriate in this 

example, where the maximum length of “true” links is 3. Of course, these decisions are 

all but trivial, since the “false” links could actually provide insight into higher-level 

patterns of behaviour, although this possibility in not being pursued at the time of 

writing. 

Figure 9 shows five of the eight clusters found for a database trace with about 100 

sequences. The first three clusters – c2, c4 and c7 – are three of the four variations of 

creating a checking account; clusters c5 and c6 represent the two variations of creating a 

savings account. The remaining clusters had similar results for other kinds of 

operations dealing with loans. The algorithm was able to clearly distinguish all 

operations and their variations, and put each sequence in a separate cluster. As a result, 

the Markov chains turned into deterministic graphs, since all transitions probabilities 

equal 100%. 

 

 
           c2  c4 c7 c5 c6 

Fig. 9. Markov chains associated with five of the eight clusters found in the bank example. 
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In terms of similarity between the sequences, the algorithm was able to find that 

clusters c2, c4, and c7 are very similar, and the same happens with clusters c5 and c6. 

Figure 10 shows the cluster diagram for the same results, where the shading of lines 

that connect two clusters represents the strength of the similarity between those 

clusters, and the shade of each cluster represents its population. From the diagram it 

becomes apparent that there is a cluster c8 which is similar to clusters c2, c4, and c7. 

Indeed, cluster c8 contains the fourth variation of creating a checking account. It 

corresponds to the steps of cluster c4 being executed in the order (1) → (5) → (2) → (3) 

→ (4). 

 

 

Fig. 10. Cluster diagram for the results obtained in the bank example. 

6   Conclusion 

Sequence clustering is a powerful technique to sort out different behaviours and to 

provide insight into the underlying structure of those behaviours. This insight is 

especially useful when approaching new scenarios, that the business process analyst 

may not be familiar with, or where the potential for process mining is yet uncertain. It 

can actually become a valuable tool as a first approach to process mining, when the 

event log is too large to be manually handled and the presence of ad-hoc behaviour 

makes it impossible for automated processing by more deterministic algorithms. 

However, in order to obtain meaningful results via sequence clustering, the input 

data must be carefully prepared and pre-processed. The experiments described in this 

paper show that the challenge is actually in identifying and compiling the set of input 

sequences, rather than applying the algorithm, which is straightforward. In 

experiment #1 the sequences were delimited manually and then streamlined by 

discarding infrequent actions. In experiment #2 the sequences were delimited 

automatically by means of a criterion that allowed links to be established between 

events. In both cases, the case id was assigned based on application-specific heuristics. 

These experiments confirm the ability of sequence clustering to identify different 

tasks and to discover their composition in terms of elemental steps. In future work, 

further sequence analysis over these clusters is expected to provide insight into 

behaviour at the process level. 
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