
Approaching Process Mining with Sequence Clustering:

Experiments and Findings

Diogo Ferreira1,3, Marielba Zacarias2,3, Miguel Malheiros3, Pedro Ferreira3

1 IST – Technical University of Lisbon, Taguspark, Portugal
2 Universidade do Algarve, ADEEC-FCT, Faro, Portugal

3 Organizational Engineering Center, INOV, Lisbon, Portugal

diogo.ferreira@ist.utl.pt, mzacaria@ualg.pt, {miguel.malheiros, pedro.romeu}@gmail.com

Abstract. Sequence clustering is a technique of bioinformatics that is used to

discover the properties of sequences by grouping them into clusters and assigning

each sequence to one of those clusters. In business process mining, the goal is

also to extract sequence behaviour from an event log but the problem is often

simplified by assuming that each event is already known to belong to a given

process and process instance. In this paper, we describe two experiments where

this information is not available. One is based on a real-world case study of

observing a software development team for three weeks. The other is based on

simulation and shows that it is possible to recover the original behaviour in a

fully automated way. In both experiments, sequence clustering plays a central

role.

Keywords. Process Mining, Sequence Clustering, Task Identification, Process

Discovery, Workflow Logs

1 Introduction

In bioinformatics, sequence clustering algorithms have been used to automatically

group large protein datasets into different families [12,13], to search for protein

sequences that are homologous to a given sequence [17], and to map or align a given

DNA sequence to an entire genome [20], to cite only some of the most common

applications. In all of these applications, sequence clustering becomes a valuable tool

to gain insight into otherwise seemingly senseless sequences of data.

A similar kind of challenge arises in process mining, where the goal is to extract

meaningful task sequences from an event log, usually resorting to special-purpose

algorithms that can recover the original workflow that produced the log [1].

The idea of applying sequence clustering to process mining comes at a time when

process mining is still heavily dependent on the assumption that the event log contains

“sufficient” information [4], i.e., that each event in the log is clearly associated with a

specific activity and case (process instance) [1]. This comes as a major disadvantage

since (1) the classes of information systems that are able to generate such logs are

restricted to process-aware systems, and (2) it becomes impossible to apply and benefit

from process mining in scenarios where the log data is not available in that form.

2 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

A sequence clustering approach can alleviate these requirements by grouping similar

sequences and identifying typical ones without the need to provide any input

information about the business logic. Of course, the results will bear a degree of

uncertainty, whereas process mining approaches typically aim at finding exact models.

Still, sequence clustering can provide valuable insight into the kind of sequences that

are being executed.

The paper is structured as follows: section 2 provides an overview of process mining

approaches, and section 3 presents the sequence clustering algorithm. Then sections 4

and 5 describe two different experiments and report on the problems encountered and

the results obtained.

2 Process mining approaches

In general, all process mining approaches take an event log as input and as a starting

point for the discovery of underlying processes. The event log (also called process trace

or audit trail) is list of records resulting from the execution of some process. For the log

to be “minable”, each record usually contains information about the activity that was

executed, the process instance that it belongs to, and the time of execution. The

requirements on the log, i.e. the kind of information it should contain, varies according

to the process mining algorithm being used.

In fact, it is the choice of mining algorithms that often leads to different process

mining approaches. Some of the algorithms used for process mining include:

• the α-algorithm [4] – an algorithm that is able to re-create the Petri-net workflow

from the ordering relations found in the even log. For the algorithm to work, the log

must contain the process instance identifier (case id) and it must be rather complete

in the sense that all ordering relations should be present in the log.

• inference methods [8] – a set of three different algorithms used to infer a finite state

machine (FSM) from an event log, where the log is regarded as a simple sequence of

symbols. The three algorithms represent different levels of compromise between

accuracy and robustness to noise. The MARKOV algorithm, inspired by Markov

models, seems to be the most promising. The algorithm works by building up an

event graph as the result of considering Markov chains with increasing order. In the

last step, the graph is converted to a FSM, which represents the process that was

found.

• directed acyclic graphs [5] – an algorithm that is able to generate a dependency

graph from a workflow system log. The log must contain a relatively high number of

executions of the same process so that the dependency graph for that process can be

completely built. Originally, the algorithm was proposed to support the adoption of

workflow systems rather than actually pursuing process mining.

• inductive workflow acquisition [16] – an approach in which the goal is to find a

hidden markov model (HMM) that best represents the structure of the original

process. The HMM can be found by either top-down or bottom-up refinement of an

initial HMM structure; these are known as model splitting and model merging

Approaching Process Mining with Sequence Clustering: Experiments and Findings 3

algorithms, respectively. The initial HMM structure is built directly from the log,

which is regarded as a simple sequence of symbols. Reported results suggest that

model splitting is faster and more accurate than model merging.

• hierarchical clustering [14] – an algorithm that, given a large set of execution traces

of a single process, separates them into clusters and finds the dependency graph

separately for each cluster. The clusters of workflow traces are organized into a tree,

hence the concept of model hierarchy. After the workflow models for the different

clusters have been found, a bottom-up pass through the tree generalizes them into a

single one.

• genetic algorithm [2] – an algorithm in which several candidate solutions are

evaluated by a fitness function that determines how consistent each solution is with

the log. Every solution is represented by a causal matrix, i.e. a map of the input and

output dependencies for each activity. Candidate solutions are generated by

selection, crossover and mutation as in typical genetic algorithms. The search space

is the set of all possible solutions with different combinations of the activities that

appear in the event log. The log should contain a relatively high number of

execution traces.

• instance graphs [10] – an approach that aims at portraying graphical representations

of process execution, especially using Event-driven Process Chains (EPCs). For

each execution trace found in the log, an instance graph is obtained for that process

instance. In order to identify possible parallelism, each instance graph is constructed

using the dependencies found in the entire log. Several instance graphs can then be

aggregated in order to obtain the overall model for that log [11].

In general, as far as input data is concerned, all these algorithms require an event log

that contains several, if not a very large number, of execution traces of the same

process instance. (An exception is the RNET algorithm used in [8] which can receive a

single trace as training input, but the results can vary widely depending on that given

input sequence.) Because the log usually contains the traces of multiple instances, it is

also required to have labelling field – usually called the case id [1] – which specifies

the process instance for every recorded event.

Another requirement on the content of the event log is that, for algorithms such as

[4] and [10], which rely on finding causal relations in the log, task A can be considered

the cause of task B only if B follows A but A never follows B in the log. Exceptional

behaviour, errors or special conditions that would make A appear after B could ruin the

results. These conditions are referred to as noise; algorithms that are able to withstand

noise are said to be robust to noise [3]. Most algorithms can become robust to noise by

discarding causal relations with probability below a given threshold; this threshold is

usually one of the algorithm parameters.

The problem with these requirements is that they may be difficult to apply in many

potential scenarios for process mining. For example, in some applications the case id

may be unavailable if the log is just an unclassified stream of recorded events. In other

applications, it may be useful to clearly identify and distinguish normal behaviour from

exceptional one, without ruling out small variations simply as noise. These issues

suggest that other kind of algorithms could provide valuable insight into the original

behaviour that produced the log. If there is no case id available, and there is an

4 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

unpredictable amount of ad-hoc behaviour, then an algorithm that allows us to sort out

and understand that behaviour could be the first step before actually mining those

processes. Sequence clustering algorithms are a good candidate for this job.

3 Sequence clustering

Sequence clustering is a collection of methods that aim at partitioning a number of

sequences into meaningful clusters or groups of similar sequences. The development of

such methods has been an active field of research especially in connection with

challenges in bioinformatics [7]. Here we will present the basic principles by referring

to a simple sequence clustering algorithm based on first-order Markov chains [6].

In this algorithm, each cluster is associated with a first-order Markov chain, where

the current state depends only on the previous state. The probability that an observed

sequence belongs to a given cluster is in effect the probability that the observed

sequence was produced by the Markov chain associated with that cluster. For a

sequence x = {x0, x1, x2,…,xL-1} of length L this can be expressed simply as:

 p (x | ck) = p (x0 , ck) . ∏
1

1

−=

=

Li

i p (xi | xi-1 , ck)
(1)

where p(x0 , ck) is the probability of x0 occurring as the first state in the Markov chain

associated with cluster ck and p(xi|xi-1 , ck) is the transition probability of state xi-1 to

state xi in that same Markov chain. Given the way to compute p(x|ck), the sequence

clustering algorithm can be implemented as an extension to the well-known

Expectation-Maximization (EM) algorithm [9]. The steps are:

1. Initialize the model parameters p(x0 , ck) and p(xi|xi-1 , ck) randomly, i.e. for each

cluster the state transition probabilities of the associated Markov chain are

initialized at random.

2. Using the current model parameters, assign each sequence to each cluster with a

probability given by equation (1).

3. Use the results of step 2 to re-estimate the model parameters, i.e. recalculate the

state transition probabilities of each Markov chain based on the sequences that

belong to that cluster.

4. Repeat steps 2 and 3 until the mixture model converges.

This sequence clustering algorithm has been implemented in Microsoft SQL Server

2005® [19] and is readily available for use either programmatically via an OLE DB for

Data Mining interface [18] or via a user-friendly interface in Microsoft Visual Studio

2005®.

In either case, the algorithm must be provided with two input tables: a case table and

a nested table. The case table contains one record for each sequence; it conveys the

number of sequences in the input data set together with some descriptive information

about each sequence. The nested table contains the steps for all sequences, where each

step is numbered and labelled. The number is the order of occurrence within the

sequence, and the label is a descriptive attribute that denotes the state in a Markov

chain. The case and nested tables share a one-to-many relationship: each sequence in

the case table is associated with several steps in the nested table. The connecting

Approaching Process Mining with Sequence Clustering: Experiments and Findings 5

attribute, which is application-specific, serves as key in the case table and as sequence

scope delimiter in the nested table.

For the sake of clarity, let us consider a simple example. Suppose the members of a

given family have different ways of zapping through TV channels according to their

own interests. Let us assume that each member always finds the TV switched off, and

after turning it on, goes through a set of channels before turning it off again. Every time

it is turned on, the TV generates a new session identifier (session id) and records both

session-related information as well as the sequence of channel changes. Figure 1 shows

the case and nested tables for this scenario. The session identifier is both the key to the

case table and the sequence scope delimiter for the nested table. The case table contains

descriptive, non-sequence attributes about each session, whereas the nested table

contains the steps for each sequence, both numbered and labelled.

(a) (b)

Fig. 1. Case (a) and nested (b) tables for the simple TV usage scenario

It can be seen from this simple example that the input data to be provided to the

sequence clustering algorithm already has a form of case id, which is the session

identifier. Pre-processing techniques will have to be used to assign this case id if it is

not available in the first place. We will look at this problem ahead in the context of two

different experiments. What is interesting to note here is the kind of results that the

sequence clustering algorithm is able to produce. Figure 2 shows four of the clusters

that the algorithm was able to identify from a given set of 24 sequences for the simple

TV usage scenario. Each cluster has a different Markov chain that is able to generate

the sequences assigned to that cluster. This effectively captures the dominant behaviour

of similar sequences.

Fig. 2. The Markov chains in four of the clusters obtained for the simple TV usage scenario.

6 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

The number of clusters to be found can be set manually or automatically by letting

the algorithm perform a heuristic to determine the number of clusters for the given

data. This is usually very useful to use as an initial guess before trying to run the

algorithm with different parameters.

To produce the results shown in figure 2 the algorithm performed a number of

iterations, where each iteration comprises two steps: the expectation step and the

maximization step. In the expectation step the algorithm assigns each sequence x to the

cluster ck that gives the highest membership probability p(x|ck) according to equation

(1). Once this step is complete, the algorithm has a provisional estimate of which

sequences belong to which cluster. In the maximization step the algorithm re-computes

the transition probabilities p(xi|xi-1,ck) for each cluster ck based on the sequences that

belong to that cluster. After the maximization step, the next expectation step will

produce different results from the previous iteration, since p(x|ck) will now be

computed with the updated values of p(xi|xi-1,ck). The algorithm converges when there

is no change in the values of these model parameters.

4 Experiment #1: Mining human activity observations

The first experiment is taken from a research project that aims at discovering recurrent

action patterns from action repositories [25]. This experiment was motivated by the

difficulties encountered in the manual extraction of action patterns for log sizes of a

few hundred actions. Thus, the aim was to test the ability of the sequence clustering

algorithm to support manual identification of recurrent action sequences from action

logs, where no information of the sequence associated with each individual action was

available. Rather than finding Markov chains, the goal here was to evaluate the

soundness of the sequence clusters provided by the algorithm.

The experimental data represents the actions of a software development team

comprising four software developers and a project leader [24]. The team develops web

applications and performs systems analysis, design, programming, test and

maintenance activities. The action log was collected within an observation period of

three weeks, during which the team members performed tasks on the following

applications: (1) Suppliers, (2) Claims, (3) Customer Correspondence (called Mail

application), (4) Evictions and (5) Marketing Campaigns. The team leader performed

both system development and project management tasks.

Team observation was carried out by its own members by registering their actions

and interactions in chronological order1. Both computer- and non-computer-supported

actions and interactions were registered, each by means of a summarizing sentence.

These sentences were first parsed using grammatical rules to separate the subject and

predicate (verb and its complements). Synonym verbs were replaced by a single verb to

avoid inconsistencies. Each action and interaction description was augmented with a

set of application, information and human resources involved. The results were further

1 For details on the modeling concepts of action, interaction and context please refer to [21].

Approaching Process Mining with Sequence Clustering: Experiments and Findings 7

structured as described in [23] into an event table as shown in figure 3. The data

collected over three weeks led to a table with 534 entries.

Fig. 3. Examples of structured actions and interactions collected during observation [22]

By identifying the action contexts of each actor [23] it was possible to group events

that belong to the same or to intimately related tasks. This grouping into contexts can

be done manually or, in case of large data sets, applying a clustering algorithm can

provide a good starting point [22]. For the team leader alone, 12 different action

contexts have been identified. Given the chronological order of events within each

personal context and the interactions that took place between actors, it was possible to

determine the sequences of events that took place across actors. This led to a number of

rather long sequences, which were then broken down into shorter, scope-delimited

tasks. About 140 tasks were found.

A brief analysis these task sequences revealed two issues. The first was that some of

these tasks were not actually sequences, but just arbitrary repetitions of the same

action. For example, all team members had at least one task in which they repeated the

action “program” from 2 to 20 times. Therefore, consecutive repeating steps within

each sequence were eliminated, and sequences ending up with just one single step were

discarded. Figure 4 shows the total number of occurrences of each action, both before

and after repeating steps were eliminated.

0

25

50

75

100

125

150

re
q
u
e
st

in
fo
rm te
st

a
sk

a
n
sw

e
r

p
ro
g
ra
m

d
is
c
u
ss

p
ro
p
o
se

so
lv
e

a
c
c
e
p
t

se
n
d

e
ll
a
b
o
ra
te

h
e
lp

re
se
a
rc
h

p
ro
m
is
e

a
ss
is
t

re
je
c
t

fi
n
d

u
p
d
a
te

p
re
p
a
re

d
e
te
c
t

p
e
rf
o
rm

e
v
a
lu
a
te

re
m
in
d

m
o
d
if
y

c
a
lc
u
la
te

a
n
a
ly
ze

d
e
c
id
e

su
p
e
rv
is
e

p
ri
n
t

o
b
ta
in

in
st
a
ll

a
n
n
o
ta
te

Fig. 4. Total number of occurrences for each action, both before (light column) and after (dark

column) eliminating repeating steps, ordered by decreasing number of the latter.

8 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

The second issue was that the relatively high number of different actions led to a set

of very dissimilar sequences, despite the fact that most of them shared a limited set of

common actions. For example, most tasks involve some form of “request”, whereas the

action “annotate” happened only once in the entire study. This suggests that the

emphasis should be put on highly recurrent actions, which provide the skeleton for

most sequences. The least recurrent actions (in the tail of figure 4) represent ad-hoc

variations that provide no real insight into the structure of tasks. The last

pre-processing stage was therefore to decide on a threshold for the number of

occurrences; only actions above that threshold were allowed to remain in the

sequences.

Once these pre-processing stages were complete, it was straightforward to build the

case and nested tables for the sequence clustering algorithm. In order to present a

complete result set, here we will use a relatively high threshold of 20 minimum

occurrences. This means that only the first five actions in figure 4 will be allowed. As a

consequence, the sequences will also be rather short. Figure 5 shows the results of

applying the algorithm to the input sequences. The sequences have been grouped into

five clusters.

c1

 c5

 c2

c3

c4

Fig. 5. Results of applying the sequence clustering algorithm to a set of input sequences

restricted to five different actions only.

It is arguable whether some sequences should have ended up in a particular cluster.

Both cluster c1 and cluster c4 contain one sequence that would make as much sense if it

had shown up in another cluster. The key issue here is that similar sequences actually

ended up in the same cluster, and that each cluster has its own distinctive features.

Approaching Process Mining with Sequence Clustering: Experiments and Findings 9

Since the goal was to determine the effectiveness of the algorithm in obtaining

meaningful clusters, evaluating the clustering results in this case requires knowledge of

the problem domain. In terms of the particular business context, and despite the fact

that the set of actions is so limited, it is still possible to draw meaningful conclusions

from the results in figure 5:

• The sequences inform-test (cluster c1) and request-test (cluster c4) concern

software integration tests. Team members confirmed that integration tests are

performed either upon explicit request or when the project leader is informed of

the result of previous tests. Clusters c1 and c4 capture these two scenarios. The

sequence inform-test actually comprises the states analyze-inform-test, but the

action “analyze” was not recorded since it is usually performed by an individual

that was not observed in this study.

• The sequences request-inform-test-request (cluster c2) and request-inform–test-

inform (cluster c5) concern software publishing activities. These sequences have

an additional state – request-publish-inform-test-request and request-publish-

inform-test-inform – but the action “publish” is also performed by an unobserved

member. In all these cases, it is remarkable the algorithm was able to distinguish

these activities even though such a key action was missing.

• The sequence ask-answer (cluster c3) occurs in several kinds of tasks, but mostly

in connection with team members helping each other.

5 Experiment #2: Mining database system traces

In the previous experiment, the application of sequence clustering was just the final

phase after several weeks of collecting and pre-processing data. In this second

experiment, the goal was to devise a scenario in which all these steps would be as

automated as possible. Inspired by the bank experiment, we developed an application

to perform simple operations over a fictitious banking database. Examples of such

operations are: creating a checking account, creating a savings account, creating a loan,

paying a loan, etc. Each of these operations comprises several database queries that

insert, select, update or delete records in several tables. Operations requiring

transactional control were implemented inside stored procedures, so as not to clutter the

log.

Creating a checking account for a new customer involves the following steps: (1)

create a new customer, (2) create a new account at the branch, (3) save the account as a

checking account with a certain withdrawal limit, (4) associate the customer as a

depositor of the account, and (5) associate an employee as account manager for that

customer. In terms of SQL, this operation would look like:

INSERT INTO Customer VALUES (85045,'John Hayes','North Street','Southampton')

INSERT INTO Account VALUES (34220,705,'Downtown')

INSERT INTO Checking_Account VALUES (34220, 207)

INSERT INTO Depositor VALUES (85045,34220)

INSERT INTO Cust_Banker VALUES (85045,6,'account manager')

The steps may be performed in this or in a slight different order. In total, there are

four variations for this sequence.

10 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

Creating a savings account takes different steps: (1) choose a checking account

belonging to the customer, (2) create a new account at the branch, (3) save the account

as a savings account with a certain interest rate, (4) associate the customer as a

depositor of the account, and (5) transfer the initial funds from the checking account to

the newly created savings account. There are two variations for this sequence; the steps

in the order just described correspond to the following queries:

SELECT a.account_number, a.balance

FROM Depositor AS d, Account AS a, Checking_Account AS c

WHERE a.account_number = d.account_number

 AND c.account_number = a.account_number AND d.customer_id = 17214

INSERT INTO Account VALUES (74652,0,'Downtown')

INSERT INTO Savings_Account VALUES (74652, 3.5)

INSERT INTO Depositor VALUES (17214,74652)

EXEC INTERNAL_ACCOUNT_TRANSFER 7583,74652,189

In this experiment, a simulator generates a large amount of these and other

operations. The queries from different operations are sent to the database system

randomly interleaved, in order to simulate the concurrent execution of both different

and similar operations. As the operations are being performed, they are captured as a

trace using the SQL Server Profiler, a tool for monitoring the SQL Server Database

Engine and capturing data about each event. Figure 6 illustrates how the data is

captured with the Profiler. There is no case id or any other information that explicitly

indicates that an event belongs to a certain sequence. As it stands, the trace is just an

unclassified stream of events.

Fig. 6. A database system trace as captured by the SQL Server Profiler. The data can be saved to

a file or to a database table as it is being captured.

The second stage of this experiment is supported by the SequenceBuilder module, a

software component that pre-processes the trace in order to create the case and nested

tables for sequence clustering. However, the algorithm requires a set of independent

sequences grouped by a case id and sorted by a sequential number (as shown earlier in

figure 1). This means that SequenceBuilder must figure out where each sequence

begins and ends, and find the events that belong to the sequence. The database trace

contains profile information – such as date, username, client application, connection

identifier, etc. – that could provide an indication of whether two events are related or

not. But this information is not enough to find an accurate set of sequences. In [15] the

authors make use of similar event logs, but the case id is given for each event. For the

log shown in figure 6 some kind of reliable method for sequence identification had to

be found.

Approaching Process Mining with Sequence Clustering: Experiments and Findings 11

The chosen method was to analyze the content of each query in order to determine

whether it used the same objects of other queries or not. By retrieving the parameter

values of each query, two queries that are close together in the log and use the same

customer id, for example, are very likely to belong to the same sequence. And even if

they do not share the same parameters, but a third query uses both of their parameter

values, then all the three queries are likely to belong to the same sequence. This led to

the idea of computing the graph of relations between queries in the trace: events

connected directly or indirectly through other nodes belong to the same sequence; the

islands in the graph correspond to different sequences. Figure 7 shows the connecting

graphs for the queries described earlier.

Fig. 7. Links between the queries in the bank operations described earlier. Each link has the

name of the parameter whose value is equal in the two queries. Separate sub-graphs correspond

to different sequences.

The whole graph can be computed at most in O(N
2
) by comparing every pair of

events in the log. The graph is saved into table form in the database, where each node

may have many connections to other nodes. A recursive query then retrieves the set of

nodes in each sub-graph, until there are no more nodes to retrieve. As the nodes are

being retrieved, they are sorted by the chronological order in which they originally

appeared in the trace. The incoming nodes are assigned a sequential number and saved

to a nested table, with a different case id for each sequence. The case table is then

generated by retrieving the set of all distinct case ids.

This simple method works well in all cases except one: when the same object – be it

the customer, account, loan, etc. – shows up in another instance of the same or different

sequence. This may happen because the same customer opens more than one savings

account, because the customer sends payment for a previously created loan, etc. The

problem is illustrated in figure 8, where there should be three sequences but there are

only two since a link is established to a later sequence that refers to the same object. If

these long, unintended sequences are left in the input data, they will ruin the sequence

clustering results since the algorithm will try to find some way to fit these sequences in

by generating Markov chains that are able to produce them.

12 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

Fig. 8. When running through the log, links may be established between events that actually

belong to different sequences.

Fortunately, this phenomenon can be detected using a simple heuristic based on the

average length of links between events. A link whose length is noticeably higher than

the average length of all links is likely to be a spurious connection rather than a

meaningful relationship between two events. Suppose, for example, that links with

length over two times the average are rejected. In the example shown in figure 8, the

average length is (18+ x)/11 where x is the length of the dashed link. We reject the

dashed link if x ≥ 2*(18+ x)/11 which gives x ≥ 4 which is obviously appropriate in this

example, where the maximum length of “true” links is 3. Of course, these decisions are

all but trivial, since the “false” links could actually provide insight into higher-level

patterns of behaviour, although this possibility in not being pursued at the time of

writing.

Figure 9 shows five of the eight clusters found for a database trace with about 100

sequences. The first three clusters – c2, c4 and c7 – are three of the four variations of

creating a checking account; clusters c5 and c6 represent the two variations of creating a

savings account. The remaining clusters had similar results for other kinds of

operations dealing with loans. The algorithm was able to clearly distinguish all

operations and their variations, and put each sequence in a separate cluster. As a result,

the Markov chains turned into deterministic graphs, since all transitions probabilities

equal 100%.

 c2 c4 c7 c5 c6

Fig. 9. Markov chains associated with five of the eight clusters found in the bank example.

Approaching Process Mining with Sequence Clustering: Experiments and Findings 13

In terms of similarity between the sequences, the algorithm was able to find that

clusters c2, c4, and c7 are very similar, and the same happens with clusters c5 and c6.

Figure 10 shows the cluster diagram for the same results, where the shading of lines

that connect two clusters represents the strength of the similarity between those

clusters, and the shade of each cluster represents its population. From the diagram it

becomes apparent that there is a cluster c8 which is similar to clusters c2, c4, and c7.

Indeed, cluster c8 contains the fourth variation of creating a checking account. It

corresponds to the steps of cluster c4 being executed in the order (1) → (5) → (2) → (3)

→ (4).

Fig. 10. Cluster diagram for the results obtained in the bank example.

6 Conclusion

Sequence clustering is a powerful technique to sort out different behaviours and to

provide insight into the underlying structure of those behaviours. This insight is

especially useful when approaching new scenarios, that the business process analyst

may not be familiar with, or where the potential for process mining is yet uncertain. It

can actually become a valuable tool as a first approach to process mining, when the

event log is too large to be manually handled and the presence of ad-hoc behaviour

makes it impossible for automated processing by more deterministic algorithms.

However, in order to obtain meaningful results via sequence clustering, the input

data must be carefully prepared and pre-processed. The experiments described in this

paper show that the challenge is actually in identifying and compiling the set of input

sequences, rather than applying the algorithm, which is straightforward. In

experiment #1 the sequences were delimited manually and then streamlined by

discarding infrequent actions. In experiment #2 the sequences were delimited

automatically by means of a criterion that allowed links to be established between

events. In both cases, the case id was assigned based on application-specific heuristics.

These experiments confirm the ability of sequence clustering to identify different

tasks and to discover their composition in terms of elemental steps. In future work,

further sequence analysis over these clusters is expected to provide insight into

behaviour at the process level.

14 Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira

References

1. W. van der Aalst, “Workflow mining: A survey of issues and approaches”, Data &

Knowledge Engineering, 47, pp. 237–267, 2003

2. W. van der Aalst, A. Medeiros, A. Weijters, ”Genetic Process Mining”,

Applications and Theory of Petri Nets 2005, LNCS 3536, pp.48-69, Springer, 2005

3. W. van der Aalst, A. Weijters, “Process Mining: A Research Agenda”, Computers

in Industry, 53(3):231-244, 2004

4. W. van der Aalst, T. Weijters, L. Maruster, “Workflow Mining: Discovering

Process Models from Event Logs”, IEEE Transactions on Knowledge and Data

Engineering, 16(9):1128-1142, September 2004

5. R. Agrawal, D. Gunopulos, F. Leymann, “Mining Process Models from Workflow

Logs”, Proceedings of the 6th International Conference on Extending Database

Technology: Advances in Database Technology, LNCS 1377, pp.469-483,

Springer, 1998

6. I. Cadez, D. Heckerman, C. Meek, P. Smyth, S. White, “Model-Based Clustering

and Visualization of Navigation Patterns on a Web Site”, Data Mining and

Knowledge Discovery, 7(4): 399-424, October 2003

7. Y. Chen, K. Reilly, A. Sprague, Z. Guan, “SEQOPTICS: a protein sequence

clustering system”, BMC Bioinformatics, 7(Suppl 4):S10, 2006

8. J. Cook, A. Wolf, “Automating process discovery through event-data analysis”,

Proceedings of the 17th International Conference on Software Engineering, pp.73-

82, ACM Press, 1995

9. A. Dempster, N. Laird, D. Rubin, “Maximum Likelihood from Incomplete Data

via the EM Algorithm”, Journal of the Royal Statistical Society, Series B, 39(1):1-

38, 1977

10. B. van Dongen, W. van der Aalst, “Multi-Phase Process Mining: Building Instance

Graphs”, International Conference on Conceptual Modeling, LNCS 3288, pp.362-

376, Springer, 2004

11. B. van Dongen, W. van der Aalst, “Multi-Phase Mining: Aggregating Instances

Graphs into EPCs and Petri Nets”, Proceedings of the Second International

Workshop on Applications of Petri Nets to Coordination, Workflow and Business

Process Management, pp.35-58, 2005

12. A. Enright, S. van Dongen, C. Ouzounis, “An efficient algorithm for large-scale

detection of protein families”, Nucleic Acids Research, 30(7):1575-1584, 2002

13. A. Enright, C. Ouzounis “GeneRAGE: a robust algorithm for sequence clustering

and domain detection”, Bioinformatics, 16(5): 451-457, 2000

14. G. Greco, A. Guzzo, L. Pontieri, “Mining Hierarchies of Models: From Abstract

Views to Concrete Specifications”, Proceedings of the 3rd International

Conference on Business Process Management, BPM 2005, pp. 32-47, 2005

15. C. Günther, W. van der Aalst, “Mining Activity Clusters from Low-Level Event

Logs”, BETA Working Paper Series, WP 165, Eindhoven University of

Technology, Eindhoven, 2006

16. J. Herbst, D. Karagiannis, “Integrating Machine Learning and Workflow

Management to Support Acquisition and Adaptation of Workflow Models”,

Proceedings of the 9th International Workshop on Database and Expert Systems

Applications, pp.745-752, 1998

Approaching Process Mining with Sequence Clustering: Experiments and Findings 15

17. W. Li, L. Jaroszewski, A. Godzik, “Sequence clustering strategies improve remote

homology recognitions while reducing search times”, Protein Engineering, 15(8):

643-649, August 2002

18. Microsoft Corporation, “OLE DB for Data Mining Specification”, Version 1.0,

July 2000

19. Z. Tang, J. MacLennan, “Data Mining with SQL Server 2005”, Wiley, 2005

20. T. Wu, C. Watanabe, “GMAP: a genomic mapping and alignment program for

mRNA and EST sequences”, Bioinformatics, 21(9):1859-1875, 2005

21. M. Zacarias, A. Caetano, H. Pinto, J. Tribolet, “Modeling Contexts for Business

Process Oriented Knowledge Support”, Workshop on Knowledge Management for

Distributed Agile Processes: Models, Techniques, and Infrastructure, April 2005

22. M. Zacarias, R. Gomes, J. Coimbra, H. Pinto, J. Tribolet, “Discovering Personal

Action Contexts with SQL Server Integration and Analysis Services”, Proceedings

of the 2nd International Conference on Innovative Views of .NET Technologies,

October 2006

23. M. Zacarias, A. Marques, H. Pinto, J. Tribolet, “Enhancing Collaboration Services

with Business Context Models”, International Workshop on Cooperative Systems

and Context, 5th International and Interdisciplinary Conference on Modeling and

Using Context, July 2005

24. M. Zacarias, H. Pinto, J. Tribolet, “A Context-based Approach to Discover

Multitasking Behavior at Work”, Proceedings of the 5th International Workshop

on Task Models and Diagrams for User Interface Design, October 2006

25. M. Zacarias, H. Pinto, J. Tribolet, “Reverse-engineering of Personal and Inter-

personal Work Practices: A Context-Based Approach”, International Workshop on

Role of Contextualization in Human Tasks: Enriching Actors (CHUT-07) held in

conjunction with CONTEXT 07, Denmark, August 2007

