
Learning, planning, and the life cycle of workflow management

Diogo R. Ferreiraa, Hugo M. Ferreirab
aFaculty of Engineering U. P., Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

bINESC Porto, Rua Dr. Roberto Frias 378, 4200-465 Porto, Portugal
{drf@fe.up.pt, hmf@inescporto.pt}

Abstract

This paper describes an approach towards workflow
management based on the combination of learning and
planning. Assuming that processes cannot be fully
described at build-time, the approach makes use of
learning techniques, namely Inductive Logic
Programming (ILP), in order to discover workflow
activities as planning operators. These operators will
be subsequently fed to a partial-order planner in order
to find the process model as a planning solution. The
continuous interplay between learning, planning and
execution aims at arriving at a feasible plan by
successive refinement of the operators. The approach
is illustrated in two simple scenarios. The paper
concludes by relating the proposed approach with
previous developments in this area.

1. Introduction

For the past decade, workflow management as the
“procedural automation of a business process by
management of the sequence of work activities” [1]
has mostly been thought as a one-way endeavor – first
model, then execute – with its main assumption being
that processes can be represented as an explicit model
and that they can be repeatedly executed in a
predictable, controlled way.

Despite its conceptual simplicity, or perhaps
because of it, workflow management has long been
facing challenges such as the coordination of
unstructured/ad-hoc processes [2], the ability to handle
exceptions [3], or the need to support process
adaptation and evolution [4], some of which are still
topics of current research today. All of these efforts
aim at providing workflow management systems with
more flexibility [5].

The search for flexibility, however, as it collides
with fundamental assumptions – namely, that
processes do not change over time – suggests either
that flexibility deserves further study, or that the

assumptions of workflow management should be
thought over again. It is the second option that we
explore in this paper. First, we challenge the
assumption that all process modeling can be done prior
to execution. Then we challenge the notion that a
single process model is useful to be run more than
once.

2. Learning workflow activities

It has since long been known the importance of tacit
knowledge in human activities [6], i.e., knowledge that
people employ in performing their tasks, but that they
cannot fully explain. Since much of organizational
work relies on tacit knowledge (see for example [7]),
we should not rely on the assumption that people will
be able to describe their work exactly as they do it.

In this case, it may be necessary to actually observe
work practices, create a process model, and then check
with the users to see if it is correct. Exceptions or
changes in procedures will throw us back to the
starting point, requiring us to gather further feedback
from the users in order to come up with a refined or
modified process model.

Let us assume that a process model Π is a partially-
ordered set of activities where each activity αi ∈ Π
transforms a world state Si into a world state Si+1. In
general, activity αi can only be performed in a state S if
and only if Pi ⊆ S where Pi are the preconditions of the
activity. Each activity has also a set of effects that
change the current state Si into a state Si+1. For reasons
to be explained in the next section, it is convenient to
describe the effects of αi as a set of clauses Ri that αi

removes from Si and another set of clauses Ai that αi
adds to Si so that the overall result as the new state Si+1.
Ri is called the remove-list of αi whereas Ai is called
the add-list of αi. These entities are illustrated in
Figure 1.

Figure 1. Anatomy of a workflow activity

Ahead in this paper we describe an auto insurance

claim process. One of the activities in that process is
repairing a damaged vehicle. This activity can only be
done if the vehicle (V) is actually damaged and the
amount of damage has already been assessed for the
claim (C). The effects of this activity are that the
vehicle is not damaged anymore and becomes repaired.
This can be described by the following operator:

Now, for the above reasons, we will assume that

users won’t be able to accurately describe Pi, Ri and Ai
for the activities they perform. They will be able to
say, however, given a state Si, if they can perform the
activity or not. We will call Si >> αi >> Si+1 a positive
example when αi can be done in state Si, and Si >< αi a
negative example when it can not.

Provided we can collect a proper set of positive and
negative examples, it is then possible to infer Pi, Ri and
Ai using standard AI techniques. Inductive Logic
Programming (ILP) [8] seems particularly useful for
this purpose. The technique is applied
straightforwardly in the following way:

▫ Pi is learned by specialization (top-down
search) using all available positive and
negative examples, where Si is the
background knowledge for each example.

▫ Ri is learned by generalization (bottom-up
search) using all available positive examples,
where Si\{Si ∩ Si+1} is the background
knowledge for each example. {Si ∩ Si+1}
represents the set of clauses that remain
unchanged when αi is performed.

▫ Ai is learned by generalization (bottom-up
search) using all available positive examples,
where Si+1\{Si ∩ Si+1} is the background
knowledge for each example.

It should be noted that Ri and Ai
 can rely only on

positive examples, since a negative example does not
produce a state Si+1. Hence these rules must be learned
by generalization. This can be simplified, however, if
we assume that it is possible to collect a set of initial
positive examples in a closed environment, where a
single user performs a single activity. In this case, Ri

and Ai can be inferred immediately from Si and Si+1
without having to learn at all.

3. Planning workflow processes

Once every activity is described in terms of its
preconditions and effects – effectively, as a planning
operator – then developing a process model is a matter
of creating a plan, i.e. a sequence of activities that
transforms an initial state SI into a final state SO called
the goal state. This is only possible if, when describing
activities as operators, we make use of a common
vocabulary – a set of predicates with the same
semantics for all activities – so that the effects of one
activity can match the preconditions of another.

In general, users will have to be assisted, on an
initial stage, by an “expert modeler” who defines the
predicates to be used to describe world states. Later on,
users are expected to be able to provide a rough
description of their activities using those predicates,
and a few examples before those descriptions are
improved by learning. Given that a world state is
defined based on the amount and kind of information
available at a certain moment in time – for example, a
set of records in a database –, the problem of coming
up with an appropriate set of predicates from existing
data sources in an enterprise information system
becomes an interesting research challenge, to be
explored in future work.

Once the operator definitions have been settled,
then the plan for reaching a goal state from an initial
state can be created, again using standard AI
techniques. Partial Order Planning (POP) [9] seems
particularly useful for this purpose. An obvious
advantage is that partial-order planning, as opposed to
total-order planning, generates plans with a maximum
degree of parallelism, which is essential for long-
running workflow processes. But there are several
other reasons for choosing POP:

▫ it generates plans with a higher degree of
flexibility [10];

▫ the planning information is easily understood
by humans and allows interactive plan
analysis and repair [10,11];

▫ it facilitates the analysis and repair of failed
plans (see for example [11]);

▫ it facilitates the handling of domains with
durative actions and temporal and resource
constraints [12];

▫ it allows easier integration with execution,
information gathering and scheduling
architectures [12].

An important point about making use of planning
techniques is that the process model is generated on

repair_vehicle(C,V)
 PRECOND: damaged(V), assessed(C)
 REMLIST: damaged(V)
 ADDLIST: repaired(V)

αi Si
Pi

+Ai

−Ri
Si+1

demand, as soon as there is a goal to achieve. The plan
is valid only for that goal, and will be generated again
when the planning algorithm is given the same goal.
On the other hand, a different goal will possibly lead to
a different plan. This is in contrast with the idea –
common in workflow management – of having a
process model fully described by build-time, and
launching it unchanged several times at run-time.

Another point worth noting is that by describing
activities as planning operators and then using those
operators to generate a plan, we are actually building a
process model by chaining activities that have been
studied independently, rather than studying a process
as a whole, as it is common in workflow management.
This approach allows activities to be connected in
unanticipated, hopefully better (more efficient) ways,
which is reminiscent of process re-engineering, but
without an overwhelming analysis effort. If the
operators are properly defined, then planning will
provide the best plan.

4. Towards a new life cycle for workflow
management

If users are not able to accurately describe the
preconditions and effects of their activities, but only a
rough description, and they only provide a few
examples of their applicability, then it is not possible to
have the operators properly defined before starting
planning. And learning won’t help either, due to the
lack of examples.

However, if we nevertheless create a plan and ask
the users for feedback regarding the possibility of
executing the activities in that plan, then we will be
able to collect more examples, allowing us to further
refine the operator definitions. By repeating the same
procedure a few times, eventually the correct operator
definitions will be found, together with the intended
plan. Build-time and run-time thus become
intertwined, as plan execution provides examples for
learning operators, which in turn are used to generate a
new plan.

This life cycle is illustrated in figure 2. The user
selects a goal from a set of predefined goals specified
using a common thesaurus. Then, using the available
operators, the Planner generates a plan. Activities may
be assigned to different users, which manage their
tasks through their own task lists. Trying to execute a
task may turn out to be a possible or impossible action,
which will result in a new positive or negative
example, respectively. If some action cannot be done,
these examples will be used to re-learn the operators,
which will be fed to the Planner again in order to
generate a new plan.

Figure 2. Learning and planning life cycle [13]

In our experiments, the user has been replaced by a

simulator with knowledge about the true operators, so
that it could say whether a given operator could be
applied in a given state or not. Within a blocks world
scenario illustrated in figure 3, the goal was to go from
state SI to state SO using three possible operators:

▫ movebb(X,Y,Z) – Moves a block X that is
on top Y to the top of block Z. Cannot be
done if either X or Z have some block on top
of them.

▫ movebt(X,Y) – Moves a block X that is on
top Y to the table. Cannot be done if X has
some block on top of it.

▫ movetb(X,Y) – Moves a block X that is on
the table to the top of block Y. Cannot be
done if either X or Y have some block on top
of them.

The thesaurus included the predicates on(X,Y)
meaning that block X is on top of block Y, and
clear(X) meaning that there is no block on top of
block X. A single positive example using just three
blocks was given for each operator, which allowed the
Learner to find out immediately its effects, whereas the
preconditions remained unknown (assumed empty).

a
b
c
d

d
c
b
a

SI SO
Figure 3. Blocks world scenario

After six iterations of planning and learning, the

following feasible, linear plan was found:

Tasks Action

Plan
Goal

Operator Preconditions
EffectsPlanner

LearnerThesaurus

Consists-of

Finds
Satisfies

Fed-to

Defines

Means

Selects Executes

Observes

Identifies

Queries Defines

Execute

ModelDeploy

Goals Context CreativityWorld

Tasks Action

Plan
Goal

Operator Preconditions
EffectsPlanner

LearnerThesaurus

Consists-of

Finds
Satisfies

Fed-to

Defines

Means

Selects Executes

Observes

Identifies

Queries Defines

Execute

ModelDeploy

Goals Context CreativityWorld

movebt(X,c), movebb(c,b,d), movebb(b,a,c),
and movetb(a,b). Surprisingly enough, this plan was
found even though the operators were still not
accurately described:

▫ movetb(X,Y) was missing a precondition:
that X must be clear before being moved.

▫ movebt(X,Y) was missing all of its
preconditions, because it was inserted in the
plan only on the last iteration. This explains
why X in movebt(X,c) remained unbound,
since the precondition clear(X) was missing
and so the Planner never attempted to satisfy
it, which would have caused X to become
bound to d.

▫ The preconditions of movebb(X,Y,Z) were
correctly learned. This operator was used in
every planning attempt, so it has collected
more (negative) examples than the other two.

We have conducted further experiments, in which
the initial examples did not allow the Learner to know
the exact operator effects from the beginning. In these
scenarios, however, the algorithm has quickly fallen
into a situation where it was impossible to create a
plan. This is due to the fact that as the preconditions
are being refined (becoming increasingly demanding)
but the effects are still incomplete, POP becomes
unable to link operators and therefore planning fails.

Failure to create a plan then brings the system to a
halt, since it is not possible to collect new examples,
and therefore it becomes impossible to refine the
operators. We are currently developing a best-effort
planning approach that always produces a plan even if
it is known to be incorrect [14], so that the planning-
learning cycle will keep on running in any case.

5. Case study: insurance claim processing

The blocks world scenario is an excellent testbench
since it involves operators that undo one another. In
real-world scenarios, the thesaurus and the operator
definitions may get a lot more elaborate, hence more of
a learning problem, but less of a planning problem,
since most information-based business processes
mostly produce information along the way and do not
undo what previous activities have done. In this section
we briefly present such an example, albeit a very
simple one.

Figure 4 illustrates an overly simplified auto
insurance claim process. The customer calls the
insurance company saying her car is damaged, and the
employee at the call center registers the claim. The
customer is asked to leave the car at a specific garage,
where an insurance expert will assess the damage.
After that, two things will happen: the car is repaired

and the policy rate of the customer increased. Finally,
the claim is closed and filed for later reference.

register_claim

assess_damage

repair_vehicle

pay_repairupdate_rate

close_claim

register_claim

assess_damage

repair_vehicle

pay_repairupdate_rate

close_claim

(a)

(b)

Figure 4. Auto insurance claim processing

There is a separate operator describing each

activity. All of them accept two arguments: the claim
and the vehicle. The thesaurus includes the following
predicates: claim(C), vehicle(V), policy(P,V),
damaged(V), assessed(C), repaired(V),
payed(C), raised(P), bonus(P), open(C),
closed(C). Given a single positive example for each
operator, the algorithm took ten iterations until it came
up with a feasible plan and, like in the blocks world
scenario, this plan was found before all operators were
accurately defined. The true operator definitions are
listed below. The preconditions and effects that have
been learned are shown underlined. Wrongfully
learned operators are shown in square brackets.

register_claim(C,V)
 PRECOND: claim(C), vehicle(V), policy(P,V)
 REMLIST:
 ADDLIST: damaged(V), open(C)

assess_damage(C,V)
 PRECOND: damaged(V)
 REMLIST:
 ADDLIST: assessed(C)

repair_vehicle(C,V)
 PRECOND: damaged(V), assessed(C)
 REMLIST: damaged(V)
 ADDLIST: repaired(V)

pay_repair(C,V)
 PRECOND: repaired(V)
 REMLIST:
 ADDLIST: payed(C)

update_rate(C,V)
 PRECOND: assessed(C), policy(P,V),
 [repaired(V)]

 REMLIST: bonus(P)
 ADDLIST: raised(P)

close_claim(C,V)
 PRECOND: open(C), payed(C), policy(P,V),
 raised(P)
 ADDLIST: closed(C)
 REMLIST: open(C)

Some differences between the true operators and the

learned ones are worth mentioning:
▫ The preconditions of register_claim have

not been learned at all. Since this operator
always appeared in the beginning of the plan,
where it should be, no negative examples
have been generated.

▫ The preconditions of the operators
repair_vehicle and close_claim are
incomplete due to an insufficient number of
negative examples.

▫ The preconditions of update_rate are
actually wrong, containing repaired(V)
instead of assessed(C) and policy(P,V).
This has happened because, after an initial
negative example, the Planner was able to
arrive at a feasible plan without having to
correct those preconditions.

Note, however, the consequence of this last
inaccuracy: as shown in figure 4, the planner actually
arrives at plan version (b) instead of version (a). The
precondition of update_rate is wrong, making this
activity admissible only after repair_vehicle, which
is not really intended to happen that way. This sort of
mistake is hard to eradicate since it depends on the
stepwise modifications that are introduced in the
operators in each planning-learning cycle. Simply
switching the order in which the operators are given to
the Planner, for example, may solve such mistake in
one operator and create a similar mistake in another.

6. Related work

The idea of using AI techniques to aid and enable

workflow management is by no means new, and both
planning and learning techniques have been applied in
this domain. Here are some important developments:

▫ Beckstein and Klausner [15] aim at providing an
adaptable workflow system that can easily handle
exceptions and quickly adapt to changes. To this end
the system consists of a least commitment planner
(LCP) and a reason maintenance system (RMS). Run-
time flexibility and adaptability is attained by the LCP
that is used to create a new plan whenever a goal is set
(process enactment) or re-plan when an environmental
change warrants it (exception causes plan execution
failure). The LCP is also used to facilitate workflow

modeling by enabling interactive definition of the
planning operators and testing plan generation. In this
phase, its efforts are aided by the RMS which can for
example inform the planner of open conditions or the
required ordering of tasks. Besides the overall system
architecture, this article also contributes with the
enumeration of several characteristics required by the
planner such as partial ordering and conditional
planning.

▫ Just as in the case above, Moreno et al [16] also
decide on the use of a partial order planner. However,
the emphasis here is on supporting ad-hoc processes.
Contingency planning is therefore used to deal with
uncertainty as opposed to re-planning. Although
contingency planning provides a means with which to
increase system flexibility, it does suffer from a
number of problems. First and foremost it does not
ease the modeling of the planning operators because no
rule checking is done. Second, the rule provided by the
user must already identify possibly uncertain
outcomes. Lastly, contingency planning itself is time-
consuming and will not guarantee correct execution
under all possible conditions (such as competing
events and changes in background knowledge). Even
so this article contributes with interesting ideas such as
scheduling parallel activities (implicitly handles time
and resource constraints), meta-modeling that deals
with planning explicitly, and suggests that learning be
used for process optimization.

▫ Madhusudan et al [17] present one of the few
attempts to use both planning and learning within a
single process management system. Unlike the two
previous articles, however, the emphasis here is on
supporting efficient workflow design as opposed to
efficient run-time behaviour. The proposed system is
based on three elements: (1) defining a process model
using both standard workflow graph meta-model and
predicate-based situation calculus (for the AI planner),
(2) a similarity flooding algorithm used to retrieve
model cases, and (3) a Hierarchical Task Network
(HTN) planner that can be used to generate plans from
composed and basic tasks. The system then attempts to
generate, classify, index and retrieve case models. A
successfully retrieved model may be used or adapted
for a new problem, thus accelerating process modeling.
In the event that no case is found, the planner may be
used to generate a new plan by composing already
existing processes or using basic tasks descriptions.
Any new plans that are generated are classified,
indexed and stored thereby allowing the system to
learn. Its main contribution is that of attempting to
solve the problems related to model storage, retrieval,
reuse and assembly. It is one of the few research efforts
that provides a means to facilitate the management of
the complete process life-cycle.

▫ Jarvis et al [18] take a much broader view of the
problem of adaptive workflow systems and try to
identify how such a system may be implemented via
the use of AI. Here, adaptive refers to the ability of the
system to modify its behaviour according
environmental changes and exceptions that may occur
during plan execution. For this purpose, a set of five
levels of adaptability are identified (domain, process,
organization, agent and infrastructure) and enumerated
together with their respective applicable AI
technologies (rational maintenance, planning,
capabilities marching, dynamic capability matching,
multi-agent toolkits). Of all these technologies, we
believe that planning and (dynamic) capability
matching are essential for adaptiveness. It is worth
noting, however, that workflow management systems
have always provided some support (albeit limited) for
capability matching. The system described interleaves
planning (using the non-linear planner O-Plan) with
execution and plan refinement. It also investigates plan
patching and plan repair as a means to enhance
flexibility and responsiveness.

The point of comparison is that, in terms of output,
the approaches proposed by Beckstein and Klausner
[15], Moreno et al [16], and Jarvis et al [18] produce
plans that belong to the SNLP family [19] just like the
partial-order plans obtained by POP. An exception is
Madhusudan et al [17] who make use of hierarchical
task networks.

Still, although the references above demonstrate
that the use of planning as a tool to aid workflow
management is not new, it is important to note that
previous efforts tend to focus either on the build-time
or alternatively on the run-time phase. In addition,
these articles show that even though planning and
learning can prove beneficial, none has attempted to
combine learning and planning to foster flexibility in
workflow management systems.

7. Conclusion

This paper proposes a new life cycle for workflow
management based on the continuous interplay
between learning and planning. The approach is based
on learning business activities as planning operators
and feeding them to a planner that generates the
process model. Besides reducing the modeling effort, it
supports process adaptation by allowing the basic
building operators to be refined iteratively according to
user actions. Another point of flexibility is that process
models can be generated on-demand, given the
intended goal state.

Far from proving that the proposed approach really
works, the paper describes our experiments in simple

scenarios, which show as much potential as hindrances
that deserve further discussion and investigation.

8. References

[1] D. Hollingsworth, “The Workflow Reference Model”,
Document Number TC00-1003, WfMC, 1995

[2] M. Voorhoeve, W. Van der Aalst, “Ad-hoc workflow:
problems and solutions”, 8th International Workshop on
Database and Expert Systems Applications (DEXA '97),
September 01 - 02, Toulouse, France, 1997

[3] C. Hagen, G. Alonso, “Exception Handling in Workflow
Management Systems”, IEEE Transactions on Software
Engineering, 26(10), October 2000

[4] W. Sadiq, O. Marjanovic, M. E. Orlowska, “Managing
change and time in dynamic workflow processes”, Intl.
Journal of Cooperative Information Systems, 9(1-2), pp.93-
116, 2000

[5] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, M.
Teschke, “A comprehensive approach to flexibility in
workflow management systems.” Technical report TR-16-
1998-6, University of Erlangen-Nuremberg, Erlangen,
Germany, 1998

[6] H. Garfinkel, Studies in Ethnomethodology, Prentice-
Hall, Englewood Cliffs, NY, 1967

[7] D. Stenmark, “Leveraging Tacit Organisational
Knowledge”, Journal of Management Information Systems,
17(3), pp.9-24, Winter 2000-2001

[8] N. Lavrac, S. Dzeroski, Inductive Logic Programming:
Techniques and Applications, Ellis Harwood, New York,
1994

[9] J. Penberthy, D. Weld, “UCPOP: A sound, complete,
partial order planner for ADL”, Proceedings of the Third
International Conference on Knowledge Representation and
Reasoning, Morgan Kaufmann, 1992

[10] M. Ghallab, D. Nau, P. Traverso, Automated Planning:
theory and practice, Morgan Kaufmann Publishers, 2004

[11] B. Drabble, J. Dalton, A. Tate, “Repairing Plans on the
Fly”, Working Notes of the First International Workshop on
Planning and Scheduling for Space, Oxnard, CA, 1997

[12] X. Nguyen, S. Kambhampati, “Reviving Partial Order
Planning”, Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI 2001), 2001

[13] H. Ferreira, D. Ferreira, “Towards an Integrated Life-
Cycle for Business Process Management based on Learning
and Planning”, Technical Report, INESC Porto, November
2004

[14] A. Garland, N. Lesh, “Plan evaluation with incomplete
action descriptions”, Proc. Eighteenth National Conference
on Artificial Intelligence, Edmonton, Alberta, Canada, 2002

[15] C. Beckstein, J. Klausner, “A Meta Level Architecture
for Workflow Management”, Transactions of the SDPS, 3(1),
pp.15-26, March 1999

[16] M. Moreno, P. Kearney, D. Meziat, “A Case Study:
Using Workflow and AI Planners”, 19th Workshop of the
UK Planning and Scheduling (PLANSIG2000), Milton
Keynes (U.K.), 2000

[17] T. Madhusudan, J. Zhao, B. Marshall, “A case-based
reasoning framework for workflow model management”,
Data & Knowledge Engineering, 50(1), pp. 87-115, 2004

[18] P. Jarvis, J. Moore, J. Stader, A. Macintosh, A. Casson-
du-Mont, P. Chung, “Exploiting AI Technologies to Realise
Adaptive Workflow Systems”, Agent-Based Systems in the
Business Context: Papers from the AAAI Workshop,
Technical Report WS-99-02, AAAI Press, 1999

[19] D. McAllester, D. Rosenblitt, “Systematic Nonlinear
Planning”, Proc. Ninth National Conference on Artificial
Intelligence (AAAI-91), AAAI Press, 1991

