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Abstract 
 
This paper describes an approach towards workflow 
management based on the combination of learning and 
planning. Assuming that processes cannot be fully 
described at build-time, the approach makes use of 
learning techniques, namely Inductive Logic 
Programming (ILP), in order to discover workflow 
activities as planning operators. These operators will 
be subsequently fed to a partial-order planner in order 
to find the process model as a planning solution. The 
continuous interplay between learning, planning and 
execution aims at arriving at a feasible plan by 
successive refinement of the operators. The approach 
is illustrated in two simple scenarios. The paper 
concludes by relating the proposed approach with 
previous developments in this area. 
 
1. Introduction 
 

For the past decade, workflow management as the 
“procedural automation of a business process by 
management of the sequence of work activities” [1] 
has mostly been thought as a one-way endeavor – first 
model, then execute – with its main assumption being 
that processes can be represented as an explicit model 
and that they can be repeatedly executed in a 
predictable, controlled way. 

Despite its conceptual simplicity, or perhaps 
because of it, workflow management has long been 
facing challenges such as the coordination of 
unstructured/ad-hoc processes [2], the ability to handle 
exceptions [3], or the need to support process 
adaptation and evolution [4], some of which are still 
topics of current research today. All of these efforts 
aim at providing workflow management systems with 
more flexibility [5]. 

The search for flexibility, however, as it collides 
with fundamental assumptions – namely, that 
processes do not change over time – suggests either 
that flexibility deserves further study, or that the 

assumptions of workflow management should be 
thought over again. It is the second option that we 
explore in this paper. First, we challenge the 
assumption that all process modeling can be done prior 
to execution. Then we challenge the notion that a 
single process model is useful to be run more than 
once. 
 
2. Learning workflow activities 
 

It has since long been known the importance of tacit 
knowledge in human activities [6], i.e., knowledge that 
people employ in performing their tasks, but that they 
cannot fully explain. Since much of organizational 
work relies on tacit knowledge (see for example [7]), 
we should not rely on the assumption that people will 
be able to describe their work exactly as they do it. 

In this case, it may be necessary to actually observe 
work practices, create a process model, and then check 
with the users to see if it is correct. Exceptions or 
changes in procedures will throw us back to the 
starting point, requiring us to gather further feedback 
from the users in order to come up with a refined or 
modified process model. 

Let us assume that a process model Π is a partially-
ordered set of activities where each activity αi ∈  Π 
transforms a world state Si into a world state Si+1. In 
general, activity αi can only be performed in a state S if 
and only if Pi ⊆ S where Pi are the preconditions of the 
activity. Each activity has also a set of effects that 
change the current state Si into a state Si+1. For reasons 
to be explained in the next section, it is convenient to 
describe the effects of αi as a set of clauses Ri that αi 

removes from Si and another set of clauses Ai that αi 
adds to Si so that the overall result as the new state Si+1. 
Ri is called the remove-list of αi whereas Ai is called 
the add-list of αi. These entities are illustrated in 
Figure 1. 



 
Figure 1. Anatomy of a workflow activity 

 
Ahead in this paper we describe an auto insurance 

claim process. One of the activities in that process is 
repairing a damaged vehicle. This activity can only be 
done if the vehicle (V) is actually damaged and the 
amount of damage has already been assessed for the 
claim (C). The effects of this activity are that the 
vehicle is not damaged anymore and becomes repaired. 
This can be described by the following operator: 

 
Now, for the above reasons, we will assume that 

users won’t be able to accurately describe Pi, Ri and Ai 
for the activities they perform. They will be able to 
say, however, given a state Si, if they can perform the 
activity or not. We will call Si >> αi >> Si+1 a positive 
example when αi can be done in state Si, and Si >< αi a 
negative example when it can not. 

Provided we can collect a proper set of positive and 
negative examples, it is then possible to infer Pi, Ri and 
Ai using standard AI techniques. Inductive Logic 
Programming (ILP) [8] seems particularly useful for 
this purpose. The technique is applied 
straightforwardly in the following way: 

▫ Pi is learned by specialization (top-down 
search) using all available positive and 
negative examples, where Si is the 
background knowledge for each example. 

▫ Ri is learned by generalization (bottom-up 
search) using all available positive examples, 
where Si\{Si ∩ Si+1} is the background 
knowledge for each example. {Si ∩ Si+1} 
represents the set of clauses that remain 
unchanged when αi is performed. 

▫ Ai is learned by generalization (bottom-up 
search) using all available positive examples, 
where Si+1\{Si ∩ Si+1} is the background 
knowledge for each example. 

It should be noted that Ri and Ai
 can rely only on 

positive examples, since a negative example does not 
produce a state Si+1. Hence these rules must be learned 
by generalization. This can be simplified, however, if 
we assume that it is possible to collect a set of initial 
positive examples in a closed environment, where a 
single user performs a single activity. In this case, Ri 

and Ai can be inferred immediately from Si and Si+1 
without having to learn at all. 

 
3. Planning workflow processes 
 

Once every activity is described in terms of its 
preconditions and effects – effectively, as a planning 
operator – then developing a process model is a matter 
of creating a plan, i.e. a sequence of activities that 
transforms an initial state SI into a final state SO called 
the goal state. This is only possible if, when describing 
activities as operators, we make use of a common 
vocabulary – a set of predicates with the same 
semantics for all activities – so that the effects of one 
activity can match the preconditions of another. 

In general, users will have to be assisted, on an 
initial stage, by an “expert modeler” who defines the 
predicates to be used to describe world states. Later on, 
users are expected to be able to provide a rough 
description of their activities using those predicates, 
and a few examples before those descriptions are 
improved by learning. Given that a world state is 
defined based on the amount and kind of information 
available at a certain moment in time – for example, a 
set of records in a database –, the problem of coming 
up with an appropriate set of predicates from existing 
data sources in an enterprise information system 
becomes an interesting research challenge, to be 
explored in future work. 

Once the operator definitions have been settled, 
then the plan for reaching a goal state from an initial 
state can be created, again using standard AI 
techniques. Partial Order Planning (POP) [9] seems 
particularly useful for this purpose. An obvious 
advantage is that partial-order planning, as opposed to 
total-order planning, generates plans with a maximum 
degree of parallelism, which is essential for long-
running workflow processes. But there are several 
other reasons for choosing POP: 

▫ it generates plans with a higher degree of 
flexibility [10]; 

▫ the planning information is easily understood 
by humans and allows interactive plan 
analysis and repair [10,11]; 

▫ it facilitates the analysis and repair of failed 
plans (see for example [11]); 

▫ it facilitates the handling of domains with 
durative actions and temporal and resource 
constraints [12]; 

▫ it allows easier integration with execution, 
information gathering and scheduling 
architectures [12]. 

An important point about making use of planning 
techniques is that the process model is generated on 
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demand, as soon as there is a goal to achieve. The plan 
is valid only for that goal, and will be generated again 
when the planning algorithm is given the same goal. 
On the other hand, a different goal will possibly lead to 
a different plan. This is in contrast with the idea – 
common in workflow management – of having a 
process model fully described by build-time, and 
launching it unchanged several times at run-time. 

Another point worth noting is that by describing 
activities as planning operators and then using those 
operators to generate a plan, we are actually building a 
process model by chaining activities that have been 
studied independently, rather than studying a process 
as a whole, as it is common in workflow management. 
This approach allows activities to be connected in 
unanticipated, hopefully better (more efficient) ways, 
which is reminiscent of process re-engineering, but 
without an overwhelming analysis effort. If the 
operators are properly defined, then planning will 
provide the best plan. 
 
4. Towards a new life cycle for workflow 
management 
 

If users are not able to accurately describe the 
preconditions and effects of their activities, but only a 
rough description, and they only provide a few 
examples of their applicability, then it is not possible to 
have the operators properly defined before starting 
planning. And learning won’t help either, due to the 
lack of examples. 

However, if we nevertheless create a plan and ask 
the users for feedback regarding the possibility of 
executing the activities in that plan, then we will be 
able to collect more examples, allowing us to further 
refine the operator definitions. By repeating the same 
procedure a few times, eventually the correct operator 
definitions will be found, together with the intended 
plan. Build-time and run-time thus become 
intertwined, as plan execution provides examples for 
learning operators, which in turn are used to generate a 
new plan. 

This life cycle is illustrated in figure 2. The user 
selects a goal from a set of predefined goals specified 
using a common thesaurus. Then, using the available 
operators, the Planner generates a plan. Activities may 
be assigned to different users, which manage their 
tasks through their own task lists. Trying to execute a 
task may turn out to be a possible or impossible action, 
which will result in a new positive or negative 
example, respectively. If some action cannot be done, 
these examples will be used to re-learn the operators, 
which will be fed to the Planner again in order to 
generate a new plan. 

 
Figure 2. Learning and planning life cycle [13] 

 
In our experiments, the user has been replaced by a 

simulator with knowledge about the true operators, so 
that it could say whether a given operator could be 
applied in a given state or not. Within a blocks world 
scenario illustrated in figure 3, the goal was to go from 
state SI to state SO using three possible operators: 

▫ movebb(X,Y,Z) – Moves a block X that is 
on top Y to the top of block Z. Cannot be 
done if either X or Z have some block on top 
of them. 

▫ movebt(X,Y) – Moves a block X that is on 
top Y to the table. Cannot be done if X has 
some block on top of it. 

▫ movetb(X,Y) – Moves a block X that is on 
the table to the top of block Y. Cannot be 
done if either X or Y have some block on top 
of them. 

The thesaurus included the predicates on(X,Y) 
meaning that block X is on top of block Y, and 
clear(X) meaning that there is no block on top of 
block X. A single positive example using just three 
blocks was given for each operator, which allowed the 
Learner to find out immediately its effects, whereas the 
preconditions remained unknown (assumed empty). 
 

a
b
c
d

d
c
b
a

SI SO  
Figure 3. Blocks world scenario 

 
After six iterations of planning and learning, the 

following feasible, linear plan was found: 
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movebt(X,c), movebb(c,b,d), movebb(b,a,c), 
and movetb(a,b). Surprisingly enough, this plan was 
found even though the operators were still not 
accurately described: 

▫ movetb(X,Y) was missing a precondition: 
that X must be clear before being moved. 

▫ movebt(X,Y) was missing all of its 
preconditions, because it was inserted in the 
plan only on the last iteration. This explains 
why X in movebt(X,c) remained unbound, 
since the precondition clear(X) was missing 
and so the Planner never attempted to satisfy 
it, which would have caused X to become 
bound to d. 

▫ The preconditions of movebb(X,Y,Z) were 
correctly learned. This operator was used in 
every planning attempt, so it has collected 
more (negative) examples than the other two. 

We have conducted further experiments, in which 
the initial examples did not allow the Learner to know 
the exact operator effects from the beginning. In these 
scenarios, however, the algorithm has quickly fallen 
into a situation where it was impossible to create a 
plan. This is due to the fact that as the preconditions 
are being refined (becoming increasingly demanding) 
but the effects are still incomplete, POP becomes 
unable to link operators and therefore planning fails. 

Failure to create a plan then brings the system to a 
halt, since it is not possible to collect new examples, 
and therefore it becomes impossible to refine the 
operators. We are currently developing a best-effort 
planning approach that always produces a plan even if 
it is known to be incorrect [14], so that the planning-
learning cycle will keep on running in any case. 
 
5. Case study: insurance claim processing 
 

The blocks world scenario is an excellent testbench 
since it involves operators that undo one another. In 
real-world scenarios, the thesaurus and the operator 
definitions may get a lot more elaborate, hence more of 
a learning problem, but less of a planning problem, 
since most information-based business processes 
mostly produce information along the way and do not 
undo what previous activities have done. In this section 
we briefly present such an example, albeit a very 
simple one. 

Figure 4 illustrates an overly simplified auto 
insurance claim process. The customer calls the 
insurance company saying her car is damaged, and the 
employee at the call center registers the claim. The 
customer is asked to leave the car at a specific garage, 
where an insurance expert will assess the damage. 
After that, two things will happen: the car is repaired 

and the policy rate of the customer increased. Finally, 
the claim is closed and filed for later reference. 
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Figure 4. Auto insurance claim processing 
 
There is a separate operator describing each 

activity. All of them accept two arguments: the claim 
and the vehicle. The thesaurus includes the following 
predicates: claim(C), vehicle(V), policy(P,V), 
damaged(V), assessed(C), repaired(V), 
payed(C), raised(P), bonus(P), open(C), 
closed(C). Given a single positive example for each 
operator, the algorithm took ten iterations until it came 
up with a feasible plan and, like in the blocks world 
scenario, this plan was found before all operators were 
accurately defined. The true operator definitions are 
listed below. The preconditions and effects that have 
been learned are shown underlined. Wrongfully 
learned operators are shown in square brackets. 
 

 
register_claim(C,V) 
   PRECOND: claim(C), vehicle(V), policy(P,V) 
   REMLIST: 
   ADDLIST: damaged(V), open(C) 
 
assess_damage(C,V) 
   PRECOND: damaged(V) 
   REMLIST:  
   ADDLIST: assessed(C) 
 
repair_vehicle(C,V) 
   PRECOND: damaged(V), assessed(C) 
   REMLIST: damaged(V) 
   ADDLIST: repaired(V) 
 
pay_repair(C,V) 
   PRECOND: repaired(V) 
   REMLIST:  
   ADDLIST: payed(C) 
 
update_rate(C,V) 
   PRECOND: assessed(C), policy(P,V),   
            [repaired(V)] 



   REMLIST: bonus(P) 
   ADDLIST: raised(P) 
 
close_claim(C,V) 
   PRECOND: open(C), payed(C), policy(P,V),   
            raised(P) 
   ADDLIST: closed(C) 
   REMLIST: open(C) 

 
Some differences between the true operators and the 

learned ones are worth mentioning: 
▫ The preconditions of register_claim have 

not been learned at all. Since this operator 
always appeared in the beginning of the plan, 
where it should be, no negative examples 
have been generated. 

▫ The preconditions of the operators 
repair_vehicle and close_claim are 
incomplete due to an insufficient number of 
negative examples. 

▫ The preconditions of update_rate are 
actually wrong, containing repaired(V) 
instead of assessed(C) and policy(P,V). 
This has happened because, after an initial 
negative example, the Planner was able to 
arrive at a feasible plan without having to 
correct those preconditions. 

Note, however, the consequence of this last 
inaccuracy: as shown in figure 4, the planner actually 
arrives at plan version (b) instead of version (a). The 
precondition of update_rate is wrong, making this 
activity admissible only after repair_vehicle, which 
is not really intended to happen that way. This sort of 
mistake is hard to eradicate since it depends on the 
stepwise modifications that are introduced in the 
operators in each planning-learning cycle. Simply 
switching the order in which the operators are given to 
the Planner, for example, may solve such mistake in 
one operator and create a similar mistake in another. 
 
6. Related work 

 
The idea of using AI techniques to aid and enable 

workflow management is by no means new, and both 
planning and learning techniques have been applied in 
this domain. Here are some important developments: 

▫ Beckstein and Klausner [15] aim at providing an 
adaptable workflow system that can easily handle 
exceptions and quickly adapt to changes. To this end 
the system consists of a least commitment planner 
(LCP) and a reason maintenance system (RMS). Run-
time flexibility and adaptability is attained by the LCP 
that is used to create a new plan whenever a goal is set 
(process enactment) or re-plan when an environmental 
change warrants it (exception causes plan execution 
failure). The LCP is also used to facilitate workflow 

modeling by enabling interactive definition of the 
planning operators and testing plan generation. In this 
phase, its efforts are aided by the RMS which can for 
example inform the planner of open conditions or the 
required ordering of tasks. Besides the overall system 
architecture, this article also contributes with the 
enumeration of several characteristics required by the 
planner such as partial ordering and conditional 
planning. 

▫ Just as in the case above, Moreno et al [16] also 
decide on the use of a partial order planner. However, 
the emphasis here is on supporting ad-hoc processes. 
Contingency planning is therefore used to deal with 
uncertainty as opposed to re-planning. Although 
contingency planning provides a means with which to 
increase system flexibility, it does suffer from a 
number of problems. First and foremost it does not 
ease the modeling of the planning operators because no 
rule checking is done. Second, the rule provided by the 
user must already identify possibly uncertain 
outcomes. Lastly, contingency planning itself is time-
consuming and will not guarantee correct execution 
under all possible conditions (such as competing 
events and changes in background knowledge). Even 
so this article contributes with interesting ideas such as 
scheduling parallel activities (implicitly handles time 
and resource constraints), meta-modeling that deals 
with planning explicitly, and suggests that learning be 
used for process optimization. 

▫ Madhusudan et al [17] present one of the few 
attempts to use both planning and learning within a 
single process management system. Unlike the two 
previous articles, however, the emphasis here is on 
supporting efficient workflow design as opposed to 
efficient run-time behaviour. The proposed system is 
based on three elements: (1) defining a process model 
using both standard workflow graph meta-model and 
predicate-based situation calculus (for the AI planner), 
(2) a similarity flooding algorithm used to retrieve 
model cases, and (3) a Hierarchical Task Network 
(HTN) planner that can be used to generate plans from 
composed and basic tasks. The system then attempts to 
generate, classify, index and retrieve case models. A 
successfully retrieved model may be used or adapted 
for a new problem, thus accelerating process modeling. 
In the event that no case is found, the planner may be 
used to generate a new plan by composing already 
existing processes or using basic tasks descriptions. 
Any new plans that are generated are classified, 
indexed and stored thereby allowing the system to 
learn. Its main contribution is that of attempting to 
solve the problems related to model storage, retrieval, 
reuse and assembly. It is one of the few research efforts 
that provides a means to facilitate the management of 
the complete process life-cycle. 



▫ Jarvis et al [18] take a much broader view of the 
problem of adaptive workflow systems and try to 
identify how such a system may be implemented via 
the use of AI. Here, adaptive refers to the ability of the 
system to modify its behaviour according 
environmental changes and exceptions that may occur 
during plan execution. For this purpose, a set of five 
levels of adaptability are identified (domain, process, 
organization, agent and infrastructure) and enumerated 
together with their respective applicable AI 
technologies (rational maintenance, planning, 
capabilities marching, dynamic capability matching, 
multi-agent toolkits). Of all these technologies, we 
believe that planning and (dynamic) capability 
matching are essential for adaptiveness. It is worth 
noting, however, that workflow management systems 
have always provided some support (albeit limited) for 
capability matching. The system described interleaves 
planning (using the non-linear planner O-Plan) with 
execution and plan refinement. It also investigates plan 
patching and plan repair as a means to enhance 
flexibility and responsiveness. 

The point of comparison is that, in terms of output, 
the approaches proposed by Beckstein and Klausner 
[15], Moreno et al [16], and Jarvis et al [18] produce 
plans that belong to the SNLP family [19] just like the 
partial-order plans obtained by POP. An exception is 
Madhusudan et al [17] who make use of hierarchical 
task networks. 

Still, although the references above demonstrate 
that the use of planning as a tool to aid workflow 
management is not new, it is important to note that 
previous efforts tend to focus either on the build-time 
or alternatively on the run-time phase. In addition, 
these articles show that even though planning and 
learning can prove beneficial, none has attempted to 
combine learning and planning to foster flexibility in 
workflow management systems. 

 
7. Conclusion 
 

This paper proposes a new life cycle for workflow 
management based on the continuous interplay 
between learning and planning. The approach is based 
on learning business activities as planning operators 
and feeding them to a planner that generates the 
process model. Besides reducing the modeling effort, it 
supports process adaptation by allowing the basic 
building operators to be refined iteratively according to 
user actions. Another point of flexibility is that process 
models can be generated on-demand, given the 
intended goal state. 

Far from proving that the proposed approach really 
works, the paper describes our experiments in simple 

scenarios, which show as much potential as hindrances 
that deserve further discussion and investigation. 
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