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Abstract. Many end users will expect the output of process mining to
be a model they can easily understand. On the other hand, knowing
which objects were accessed in each operation can be a valuable input
for process discovery. From these two trends it is possible to establish an
analogy between process mining and the discovery of program structure.
In this paper we present an approach for extracting process control-
flow from a trace of read and write operations over a set of objects.
The approach is divided in two independent phases. In the first phase,
Fourier analysis is used to identify periodic behavior that can be rep-
resented with loop constructs. In the second phase, a match-and-merge
technique is used to produce a control-flow graph capable of generating
the input trace and thus representing the process that generated it. The
combination of these techniques provides a structured and compact rep-
resentation of the unknown process, with very good results in terms of
conformance metrics.
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1 Introduction

Since the publication of [1], Petri nets became the preferred formal framework
for the analysis [2], modeling [3], verification [4], mining [5] and conformance
checking [6] of business processes. However, most workflow and Business Pro-
cess Management (BPM) systems typically make use of proprietary modeling
languages [7]. Despite efforts such as the development of workflow patterns [8],
a vast community of end users still makes use of informal languages and nota-
tions, some of which have their origin in flowcharting [9], and many of which are
reminiscent of basic programming concepts such as decision and loop constructs.

There is a number of reasons for the continuing use of such languages. First, it
is often the case that the goal is to discuss process models with domain experts
rather actually pursuing process analysis or enactment [10]. Second, there is
often a perceived notion that process modeling is a kind of programming [11],
hence the resemblance between modeling and programming constructs. Third,
recent developments in Web service technology and SOA3 have also contributed
3 SOA: Service-Oriented Architecture
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to shorten the distance between process modeling and programming, as business
processes may be implemented as compositions of web services [12]. Fourth,
business analysts may be encouraged to use graphical languages when there are
mechanisms to automatically translate them to executable models; for example,
it is possible to translate process models in BPMN4 to executable descriptions
in BPEL5 [13].

This sort of top-down implementation of business processes is in some way
available in every BPM system (see for example [14]). But if we look at bottom-
up approaches, and in particular to the problem of discovering business processes
from event logs, we realize that current process mining techniques are able to re-
cover process models in a representation that might not always match what the
end users may be familiar with. Some techniques generate dependency graphs
[15, 16], others use probabilistic models [17, 18], and most of the current tech-
niques are geared towards retrieving Petri net models [19]. To communicate with
end users, it may be necessary to translate Petri nets into other kinds of models,
including business process notations such as EPC6 [20, 21].

In this paper we present a technique for extracting process behavior directly
as a structure of programming constructs. Although we make use of just a couple
of basic constructs, namely decisions and loops, it is possible to extend the same
technique to more intricate elements. The goal is to extract a control-flow graph
whose structure and building blocks resemble those of a computer program writ-
ten in an imperative programming language. The nature and scope of business
processes are obviously quite different from those of software programs, but a
representation in terms of programming constructs may help the end user relate
more easily to the results of process mining over a given event log.

The analogy can be extended even further when we consider the content of
the input log. Typically, process mining techniques require that each event in the
input log is associated with a specific process instance [5]; in some scenarios this
context may be unavailable. On the other hand, process mining techniques focus
mainly on the control-flow perspective and only recently have begun to take
into account information about data or objects being accessed, which makes it
possible to identify data dependencies between events [22]. The availability of
such information becomes critical when the process models must comply with
known object life-cycles [23].

In this work we consider that the input event log is available as a trace of all
read and write operations over a set of objects. Such read and write operations
could have been recorded, for example, as accesses to document repository, or
even to a version-control system. They can also be regarded as low-level events
such as memory, disk, or database accesses. The objects that are accessed in these
operations can be regarded either as workflow-relevant data [24] or as program
variables. The log contains no information about activity, process instance, or

4 BPMN: Business Process Modeling Notation
5 BPEL: Business Process Execution Language for Web Services
6 EPC: Event-Driven Process Chain
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business context; it is simply a trace of all I/O operations performed by an
unknown process, whose structure is to be determined.

The remainder of this paper is structured as follows. In section 2 we provide
an overview of the overall approach, comprising two phases: the first phase which
finds the boundaries of loops and their control variables, and the second phase
which merges the sub-traces of each loop into a well-structured control-flow graph
(CFG). These algorithms are explained in detail in sections 3 and 4, respectively.
In section 5 we present experimental results on the application of the described
approach to a set of sample traces, and evaluate the results according to a set
of conformance metrics defined in [6]. Finally, section 6 concludes the paper.

2 Overview

In the following sections we describe an approach for automatically uncovering
a possible control-flow representation from a sequential input trace of I/O op-
erations. In this context, the input trace is regarded as a numbered sequence of
basic read and write operations on a set of variables. Each variable, vi ∈ V
represents an object in the specific domain of objects for the process (e.g., a
document, or a database table or row) that is read or updated (written).

The approach is structured into two major phases as depicted in figure 1. In
a first phase, we rely on Fourier analysis of the input trace to detect operations
that occur in repeatable patterns or time slots in the trace thus exhibiting some
periodic behavior. This analysis determines if periodic behavior is present and
which variable(s) are possible loop control variables, i.e. variables that control
the execution of loop constructs in the process structure that generated the
observed trace.

At the end of the first phase, the approach has identified the runs of existing
loops and separated them into sub-traces of the original input trace. In a second
and completely separate phase, the algorithm creates a CFG by matching and
merging identical operations in the different sub-traces, while respecting the
sequential relation between the operations in each sub-trace and in the resulting
CFG.
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Fig. 1. Overall approach.
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3 The Loop-Finding Algorithm

The first phase of the algorithm aims at finding loop constructs. We first describe
the basic algorithm to uncover a single loop construct and then describe how to
use this approach to find nested loop structures.

3.1 Fourier Transformation

To find a loop construct in a given section of a large trace the algorithm makes
use of a digital signal processing technique – the Discrete Fourier Transform
(DFT). Fourier techniques [25] translate periodic time-domain signals to the
frequency domain. A periodic time-domain signal such as a sine function is rep-
resented in the frequency domain by a single magnitude and phase coefficient as
depicted in figure 2(a). The Fourier transform of a generic periodic time-domain
signal is a series of magnitude and phase coefficients, each corresponding to one
of the harmonic frequencies of the given signal. This frequency-domain represen-
tation is called the spectrum of the input signal; a high-frequency composition
on the spectrum reveals a fast changing signal and a low-frequency composition
reveals a slow changing signal. For discrete periodic signals the same Fourier
decomposition is possible and a periodic discrete signal with periodicity of T
will have a frequency-domain representation exhibiting peaks separated by 1/T
as illustrated in figure 2(b).

frequency

magnitude

time

T
1/T

amplitude

time

amplitude

frequency

magnitude1st harmonic

2nd harmonic

(a) continuous time domain signals and spectral representation (b) discrete time domain signal and spectral representation

Fig. 2. Illustrative examples of Fourier Transformations (FT/DFT).

3.2 Algorithm Rationale and Description

The basis for the loop-finding algorithm relies on the observation that if a specific
operation over a variable has a predominately periodic behavior, its signature
signal must have a frequency-domain representation exhibiting clearly spaced
peaks reflecting the periodicity of the time-domain signature signal. As such,
one is able to uncover the periodicity associated with a specific variable and
operation by examining its spectral representation.

For a given variable v and operation op (either read or write) the algorithm
computes its signature signal sigv,op(k) as a time-domain discrete signal. This
discrete signal is composed of N samples 0 ≤ k ≤ N−1, one for each time sample
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in the input trace. The signature signal sigv,op(k) has value 1 for positions in
the trace with an operation op over the v variable, and 0 otherwise. Figure 4(b)
depicts a sample signature for the variable i and the write operation. The
algorithm computes the Fourier transform of the signature signal for the variable
v. It derives its spectral representation as a set of N complex coefficients, Sv,op(k)
with 0 ≤ k ≤ N − 1 and computes the corresponding magnitude ‖Sv,op(n)‖ of
the coefficients given by the norm-2 of its real and imaginary components as
depicted by the equation in figure 3 (left).

Once the spectral representation is computed, the algorithm examines the
peaks in the spectrum and determines the distances between peaks to discover
the various base frequencies of the original time-domain signal. To accomplish
this step, the algorithm selects the middle point in the spectral representation
(i.e., the coefficient at N/2) and measures the distance from that middle point
to the next peak7. The inverse of this distance d is the frequency with which the
operation op on variable v occurs in the time-domain signal.

In figure 3 (right) we illustrate an example of a spectral representation of a
periodic signal corresponding to an input trace with 21 operations. Excluding the
zero-frequency component (which corresponds to the average or DC component
of the signal) the spectral information for the signal exhibits distinct spikes sep-
arated by 3 time units in the frequency axis. In the time domain, this frequency
mode corresponds to a repetition interval of approximately (N−1)/d = (21−1)/3
time units, i.e. between 6 and 7 events.

Sv,op(n) = 1
N

∑N−1

k=0
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Fig. 3. DFT calculation expressions (left) and spectral example (right) where sigv,op is
the discrete signature signal for variable v and operation op and Sv,op(n) is its spectral
representation for N spectral frequencies n/N for 0 ≤ n ≤ N − 1.

7 A practical complication arises regarding the ability to clearly identify the peaks in
the Fourier representation. The algorithm uses a thresholding step where all values
below a specific percentage τ of the maximum value are eliminated. To select the
value of threshold τ , the algorithm applies the Fourier analysis with values of τ = 1.0
down to τ = 0.1 and stops when it uncovers a feasible time-domain period.
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Once the period(s) for each variable in the input trace has been identified,
the algorithm selects as the loop-controlling variable the variable with the short-
est period but with the highest number of occurrences in the trace8. Given this
control variable the algorithm then scans the input trace selecting the occur-
rences of the variable that are located at approximate intervals corresponding
to the identified period. As there can be some slight variations to the location of
the occurrences of this control variable in the trace, the algorithm uses a simple
windowing scheme to sync-up their occurrences in the trace.9

3.3 Example

Figure 4(a) presents an example of an input trace with a total of 21 read and
write operations over a set of variables. For the variable i and operation write
the algorithm uses Fourier analysis as depicted in figure 3 to uncover a period
of approximately 6 time units, the period of i as the control variable for a loop
construct. The algorithm then performs a linear scan over the input trace and
splits the input trace into 4 sub-traces corresponding to the ranges of operations
depicted in figure 4(c). The algorithm also detects a common initial operation
read i in addition to the common final operation write i thus defining the
entry and exit nodes of the CFG loop structure depicted in figure 4(d).
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Fig. 4. Sample illustrative trace with 21 operations.

8 So that a spurious variable that occurs often but randomly is not selected.
9 Spurious occurrences of an operation at time stamps that are not lined up with the

recognized interval are not critical, as the second phase of the algorithm absorbs
these instances by taking them into account as different paths in the loop control
flow.
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3.4 Handling Nested Loops

The approach described above enables the same algorithm to discover nested
loops. The algorithm works inside-out by first finding shorter loops in the trace,
corresponding to inner-loops. These loops have control variables with high spec-
tral frequencies, as they occur more frequently than the control variables of outer
loops. In order to recognize successive outer loops, the algorithm collapses the
operations within an inner loop as a single aggregate macro operation and then
performs a new Fourier analysis on the collapsed trace, attempting to uncover
the next innermost loop. This procedure is repeated until the structure of nested
loops is found and the trace collapses to a small segment where no more loops
can be detected.

4 The Control-Flow Algorithm

In this second phase, the algorithm uses the sub-traces extracted during the first
phase to create a well-structured CFG that can generate the entire input trace.

4.1 Algorithm Outline

The algorithm is structured into two iterative, greedy refinements phases. It
terminates when it cannot refine the CFG any further. The algorithm begins by
building a CFG with all the sub-traces as possible (disjoint) paths. These paths
are connected to the same source and sink nodes, which represent the entry and
exit nodes of a loop construct. In a first pass, the algorithm works bottom-up
against the flow of the sub-traces, creating nodes in a new CFG that correspond
to the operations in the sub-traces, and whenever possible it merges two identical
nodes that share a common descendant node in the graph.10 In a second pass
the algorithm works top-down along the flow, this time in the CFG resulting
from the first pass, and merges any two identical nodes with a common ancestor
node. At the end of these two match-and-merge phases the resulting CFG is
augmented by a back edge which connects two nodes, respectively the head and
tail of a loop, thus reflecting the iterative structure of the input trace.

There is no reason not to invert the order of these two passes as both ways
will allow the algorithm to derive valid but possibly different CFGs. This may
produce a slight difference in the placement of decision points, without a notice-
able impact in the metrics presented ahead in section 5.

4.2 Backward Match-and-Merge

In this pass the algorithm attempts to merge nodes from each sub-trace with
nodes from other traces as close as possible in the linear sequence within each
trace. The merged nodes become a single node shared between sub-traces as
10 It should be noted that at the beginning of this first pass the sink node is a common

descendant of all paths.
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Fig. 5. Backward Match-and-merge operation with 4 illustrative traces.

depicted in figure 5(b). The current greedy strategy for matching and merging
of nodes gives preference to matches that are chronologically closer, as that in-
creases the likelihood of merging more nodes across the sub-traces. For example,
although there is a match in figure 5(a) between the operation read c in the
sub-trace t1 and the same operation in the sub-trace t3, the algorithm does not
merge these two operations as there is a match from an operation read b in
sub-trace t3 that occurs later along the control flow than that first match. As a
result, the first read c is only matched with the same operation in sub-trace t2
and the operation in read b is matched with the same operation in sub-trace t4.
Such greedy matching process continues as depicted in figure 5(b) and 5(c) until
there are no more possible matches, resulting in the CFG depicted in figure 5(d).

4.3 Forward Match-and-Merge

After having constructed a CFG in the first backward pass, the algorithm per-
forms a forward match-and-merge to attempt to merge nodes that might have
been left unmatched in the first phase11. This forward pass is also a greedy pro-
cess where the algorithm iteratively merges consecutive adjacent nodes along
the control flow until no further merges are possible or the end of sub-traces
is reached. For the CFG derived at the end of the first step as depicted in
figure 5(d), there are no opportunities for this particular transformation. The
algorithm merges no nodes in this second pass and the final CFG with loop
control-flow is shown in figure 6(a). As an illustrative example we depict in this
final CFG two execution paths corresponding to the sub-traces t1 and t4 in the
input sub-traces.

4.4 Structured Control-Flow

While the algorithm described above is effective in finding common subsequences
among all traces preserving the sequential execution of the control flow, it can
generate control-flow structures that in the lexical sense are not perfectly nested.

11 A typical scenario occurs when two or more sub-traces get out-of-sync and the cor-
responding nodes are then left unmatched.
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Fig. 6. Complete CFG with loop as derived by the algorithm.

These imperfectly nested control-flow structures cannot be described using high-
level programming constructs without the use of goto or other arbitrary control-
flow transfer primitives [26]. More importantly, in the context of process flows,
it substantially complicates conformance checking between processes.

To overcome this problem we developed a variant of the control-flow algo-
rithm that always generates structured CFGs at the expense of the loss of some
sharing of nodes between sub-traces. The revised algorithm keeps the match-
ing of nodes confined to a subset of traces that have been already matched in
a previous matching step. The algorithm thus partitions the input traces into
disjoint subset of traces which are then refined as the matching progresses. As
a result, the matching and thus the merging is always done between traces that
have a common descendant towards the sink node. The resulting CFG is thus
less compact than the CFG generated by the first control-flow algorithm.

Figure 6 illustrates the CFGs resulting from the two variants of the algorithm
for the same 4 illustrative sub-traces used in figure 5. Figure 6(a) presents the
CFG resulting from the application of the first algorithm, whereas figure 6(b)
presents the CFG obtained using the variant of the algorithm that generates
structured CFGs. For this second CFG we depict the corresponding high-level
program description that can generate the various traces in figure 6(c).

4.5 Algorithmic Complexity

Given that both the backward and the forward passes traverse and advance
through each sub-trace at least one operation at a time in each iteration, the
algorithm eventually terminates. At each iteration the algorithm performs in the
worst case O(n2) when matching operations between the k sub-traces. On the
other hand, each sub-trace is O(n) long and this length is linearly related to
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the length of the input trace. Considering book-keeping and the manipulation of
auxiliary data structures as a constant, the worst-case time complexity becomes
O(n3) where n is the number of operations in each sub-trace.

Despite this worst-case complexity behavior, we do anticipate the algorithm
to perform well given that at each step more than one node can be processed.12

5 Results

We have implemented the above algorithms in approximately 4, 000 lines of C
code. In this section we describe a series of experiments with sample traces to
evaluate the ability of the algorithm to extract a CFG for each input trace. In all
these experiments we have used the revised version of the algorithm in order to
derive structured CFGs. We then evaluated each of the derived CFGs according
to a set of fitness and appropriateness metrics defined in [6].

5.1 Sample Traces

To support our experiments we generated a set of 4 traces with read and write
operations over a set of scalar variables such as i or a.13 Each trace is generated
by a different C program that outputs the various operations reflecting its own
execution.14

Table 1 presents the experimental results for the various traces. In the left
section of the table we have a series of results characterizing the traces used,
whereas on the right section we have results regarding metrics as discussed in
the next section.

In table 1 we characterize each trace by its length or number of operations,
and also by the number of variables that each trace contains. These are shown in
columns 2 and 3, respectively. Column 4 presents the control variables extracted
by the Fourier analysis phase of our algorithm, indicating for each variable the
uncovered period (as an interval of two values). In column 5 we report the number
of sub-traces identified for each control variable, and in column 6 we indicate the
nested structure of the discovered CFG. Figure 7 shows the CFGs discovered for
the 4 sample traces.

12 Common string-matching algorithms such as the longest common sub-sequence
(LCS) or the shortest common super-sequence (SCS) problems are impractical. Both
LCS [27] and SCS [28] problems require O(n2) solutions for two sequences of length
n, but are NP-hard for k strings. An incremental 2-at-a-time approach would lead
to a time complexity of O(nk).

13 The various input traces and CFG outputs are available at the following location:
http://www.dei.ist.utl.pt/∼ped/submissions/BPM08

14 For example, in the execution of loop constructs the trace generator will output the
operations required to evaluate the loop control predicate. Updating the loop control
variable, say i = i + 1; involves a read operation followed by a write operation.
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(a) CFG for input0

      trace 1

(b) CFG for input0

      trace 2

(c) CFG for input0

      trace 3

(d) CFG for input0

      trace 4

Fig. 7. Complete CFGs for the 4 sample traces.
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Table 1. Characteristics of the sample traces used in experiments, and metrics for the
derived CFG solutions.

Characteristics Metrics
Trace number number control var. number nesting cE cT f aB a′B aS a′S

operations variables and period sub-traces structure

#1 52 7 i:[8,9] 5 single loop 1.000 1.000 1.000 0.988 0.924 0.588 1.000

#2 109 6 i:[12,13] 8 single loop 1.000 1.000 1.000 0.994 0.849 0.458 1.000

#3 1034 6 i:[101,102] 10 doubly 1.000 1.000 1.000 0.998 1.000 0.407 1.000
j:[8,9] 101 nested

#4 1108 7 i:[121,122] 10 doubly 1.000 1.000 1.000 0.996 0.953 0.311 1.000
j:[8,9] 82 nested

5.2 Metrics

The algorithms described above produce a CFG that is in effect one possible
explanation for the behavior observed in the input trace. To assess the interest
and potential of this approach, and to be able to compare it with other process
mining algorithms, it is necessary to determine the extent to which the produced
CFG is actually a good explanation for the original behavior. This assessment
can be done by applying a set of metrics to compare the behavior allowed in
the model with the behavior observed in the input trace. Such analysis can be
done, for example, by checking if the process model would allow all events in the
trace to occur in the same order. This is the underlying rationale for the fitness
metric [6]. Other metrics – such as behavioral appropriateness and structural
appropriateness [6] – are also useful to check that the model is a compact and
non-redundant representation of the intended process.

Even though these metrics have been defined for Petri net models, it is pos-
sible to apply them to CFGs with small adaptations. The only metric that
requires a significant adaptation is the fitness metric, as it is based on replaying
the trace in the model. While the execution semantics of Petri nets are formally
well-established (via tokens, places and transitions), those of CFGs may vary; for
example, splits and joins could be given different interpretations. In the CFGs
we use above, there are only OR-splits and OR-joins so the semantics become
quite simple. We therefore redefined the fitness metric as the percentage of trace
events that can be successfully replayed in the CFG in the same order.

Table 1 shows the results obtained for each trace and metric. Table 2 summa-
rizes the purpose of each metric and provides a brief explanation of the typical
results obtained in several runs of the algorithm for different input traces. A
detailed description of these metrics can be found in [6].
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Table 2. Applying the metrics defined in [6].

Metric Results

Log coverage:

cE =
|{e∈E|lE(e)∈LT }|

|E|

This metric checks if each event in the input trace is represented as a
node label in the CFG. Since they all are, the metric is always 100%.

Model coverage:

cT =
|{t∈TV |lT (t)∈LE}|

|TV |

This metric checks if each label in the CFG appears as an event in
the trace. Since they all do, the metric is always 100%.

Fitness:
f = 1

2

(
1− m

c

)
+ 1

2

(
1− r

p

) This metric checks whether events can be replayed in the model in
the same order as they appear in the trace. It is originally defined in
terms of consumed (c) and produced tokens (p), as well as missing
tokens (m) during replay and remaining tokens (r) after replay. Since
we are using CFGs rather than Petri nets, this metric has been
redefined as the percentage of trace operations that can be replayed
in the same order in the CFG. As the trace is always a possible path
in the resulting CFG, the metric is always 100%.

Simple behavioral
appropriateness:

aB =
|TV |−x

|TV |−1

This metric uses the number of visible tasks |TV | (which in our case
is the number of CFG nodes) and the mean number (x) of possible
transitions at each step when replaying the trace. As the produced
CFGs usually have a few decision points, at some steps there is more
than one option for the next step, and hence the metric is usually
close but not equal to 100%. Depending on trace length and the
number of decision points, it is usually above 99%.

Advanced behavioral
appropriateness:

a′B =
|Sl

F
∩Sm

F
|

2·|Sm
F
| +

|Sl
P
∩Sm

P
|

2·|Sm
P
|

This metric computes the follows and precedes relations both for the
trace (Sl

F and Sl
P ) and for the CFG (Sm

F and Sm
P ). These relations

basically say whether any given pair of operations always, sometimes
or never follow each other. Based on these relations, the metric
checks whether the CFG allows for more variability in behavior than
that observed in the trace. Due to the presence of decision points,
the CFG usually does allow for more variability, hence the metric is
typically in the range 85%-95%.

Simple structural

appropriateness: aS =
|L|
|N|

This metric checks the amount of duplicate nodes in the CFG (i.e.
nodes with the same label) by dividing the number of distinct labels
|L| by the number of nodes |N |. As the match-and-merge procedure
avoids merging nodes that would cause the model to become
unstructured, it is usually the case that a number of duplicate nodes
remain in the CFG. In relatively complex CFGs, the metric can be as
low as 30%. It should be noted, however, that the true model (i.e.
the program that generated the input trace) may have duplicate
operations, so this simple metric is not a reliable measure of accuracy
in our experiments.

Advanced structural
appropriateness:

a′S =
|T |−(|TDA|+|TIR|)

|T |

This metric penalizes the model when there are redundant invisible
tasks (TIR) or alternative duplicate tasks (TDA). An invisible task
is an operation that is represented in the model but is not present in
the trace; in our CFGs there are no invisible tasks. Two CFG nodes
are said to be alternative duplicate tasks if they have the same label
but there is no possibility that they could occur in the same trace.
The match-and-merge steps in our algorithm eliminate these
alternative duplicate nodes, hence the value for this metric is always
100%.
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6 Conclusion

The analogy between process modeling and programming suggests that it should
be possible to approach process mining from the perspective of discovering pro-
gram structure. This is useful not only because process modeling and execution
languages make use of building blocks that resemble programming constructs,
but also because the way a program operates on variables can be seen as being
analogous to the way workflow participants manipulate documents and other
data objects.

In this paper we described a combination of techniques to extract process
behavior directly as a control-flow graph from a trace of all read and write oper-
ations over a set of objects. The approach is divided in two main phases where, in
the first phase, signal processing techniques are used to detect periodic behavior
that can be potentially represented with loop constructs. This is an interesting
challenge since the problem of delimiting repeating behavior is not addressed by
current process mining techniques, and the DFT proves to be an effective tool
for this purpose. It also enables the algorithm to uncover nested loops, which can
be abstracted as sub-processes. Furthermore, as a signal processing technique it
is inherently more robust to noise than discrete algorithmic approaches.

In the second phase, the algorithm proceeds with a set of unsupervised match-
and-merge steps to produce a structured graph by consolidating the behavior of
different sub-traces, and by reducing their differences to a set of decision points.
This technique can be used as a process mining algorithm by itself, if several
traces of the same process are provided as input. In this case, the algorithm
would be equivalent to beginning with M3 in [6] and proceed by merging nodes
until an appropriate model is found. The match-and-merge procedure described
in section 4.4 ensures that the outcome is a structured model.

Overall, the combination of these techniques is able to produce compact and
accurate models of control-flow behavior, and exhibits very good results in terms
of conformance metrics. Although only loops and decision constructs have been
addressed in the present work, we are currently studying techniques to support
other behavioral patterns, in particular parallel constructs.
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