
1

Using Deep Learning to Design High Aspect
Ratio Fusion Devices

P. Curvo1∗, D. R. Ferreira1, R. Jorge2

1Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisbon, Portugal

2Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

The design of fusion devices is typically based on computationally expensive simulations.
This can be alleviated using high aspect ratio models that employ a reduced number of
free parameters, especially in the case of stellarator optimization where non-axisymmetric
magnetic fields with a large parameter space are optimized to satisfy certain performance
criteria. However, optimization is still required to find configurations with properties
such as low elongation, high rotational transform, finite beta, and good fast particle
confinement. In this work, we train a machine learning model to construct configurations
with favorable confinement properties by finding a solution to the inverse design problem,
that is, obtaining a set of model input parameters for given desired properties. Since the
solution of the inverse problem is non-unique, a probabilistic approach, based on mixture
density networks, is used. It is shown that optimized configurations can be generated
reliably using this method.

1. Introduction
Stellarators are a type of magnetic confinement fusion device that have toroidal

geometry and are non-axisymmetric (see Fig. 1). Stellarators are inherently current-free,
enabling steady-state plasma operation. Because of this, they are one of the leading candi-
dates for future fusion energy power plants (Boozer 2020). In these devices, the magnetic
field is twisted by a rotation of the poloidal cross-section of stretched flux surfaces around
the torus, and by making the magnetic axis non-planar (Spitzer 1958; Mercier 1964). Stel-
larators are inherently current-free, enabling steady-state plasma operation. Because of
this, they are one of the leading candidates for future fusion energy power plants (Boozer
2020). Due to their complex geometries, stellarators may present difficulties in confining
charged particles, especially alpha particles resulting from fusion reactions (Helander
2014). Therefore, they need accurately shaped magnetic fields to confine trapped particles
effectively. To achieve this, their configurations are usually optimized using numerical
methods. However, the optimization process is complex due to the high-dimensional space
of plasma shapes, which includes numerous local minima (Bader et al. 2019). While local
optimization algorithms can find specific configurations, they do not offer a global view
of the solution space. The high dimensionality makes global optimization challenging and
renders comprehensive parameter scans impractical (Landreman 2022).

To address these challenges, a near-axis method is commonly employed (Garren &
Boozer 1991a; Landreman et al. 2021; Landreman & Jorge 2020). This method makes
use of an approximate magnetohydrodynamic (MHD) equilibrium model by expanding
in powers of the distance to the axis, leading to a small set of one-dimensional ordinary

∗ Email address for correspondence: pedro.curvo@tecnico.ulisboa.pt

2 P. Curvo, D. R. Ferreira, R. Jorge

Figure 1. Plasma boundary of a quasisymmetric stellarator with three field periods, nfp = 3.
The colors represent the magnetic field strength at the boundary and a magnetic field line is
shown in black.

differential equations (Landreman 2022), therefore reducing the computational costs sig-
nificantly (Mercier 1964; Solov’ev & Shafranov 1970; Garren & Boozer 1991b). As a result,
physical intuition can be more easily obtained, and high-resolution multidimensional
parameter scans become more feasible, facilitating the generation of extensive databases
of stellarator configurations.

In this work, we use the near-axis expansion to second order to generate configurations
with finite plasma β = 2µ0p/B

2 where p is the plasma pressure andB is the magnetic field
strength. This allows us to find Mercier stable configurations by selecting devices that
satisfy the Mercier criterion, DMerc > 0 (Landreman & Jorge 2020). Such configurations
have a positive magnetic well and are robust against certain MHD instabilities. In
addition to MHD stability, we will also target configurations with low aspect ratio, small
elongation, large rotational transform, and quasisymmetry, i.e., good particle confinement
(Paul et al. 2022). Such quantities can be computed using already available software
packages such as pyQSC,† which receives a set of design parameters (such as axis shape)
and computes a set of properties (such as level of quasisymmetry). However, not all
configurations are desirable. For most input parameters, the resulting configuration may
be unacceptable due to factors such as a too-small volume of plasma, varying levels
of quasisymmetry, low rotational transform, or overly large elongation. Therefore, it is
essential to verify whether the configurations meet specific criteria. This verification can
be time-consuming and often requires running the near-axis method multiple times to
achieve a viable configuration or resort to numerical optimization. This prompts the
question of whether it is possible to perform inverse design, i.e., to determine the input
parameters from a given set of desired properties, hence creating a more convenient and
efficient method for generating optimized stellarator configurations. This is the main goal
of this work.

Since analytically inverting the equations in the near-axis method is not feasible due
to their differential integral character, a practical solution involves employing a machine
learning model, specifically a neural network as a universal approximator (Hornik et al.
1989) to tackle the inverse problem. By training on a dataset of near-axis configurations,
the neural network can learn either a forward mapping, from design parameters to
configuration properties, or an inverse mapping, from configuration properties to de-
sign parameters. However, this inverse problem is ill-posed as multiple sets of design
parameters can yield the same configuration properties (this was also observed in the
database used in this work). This means that the standard stellarator design formulation
is not bijective, in that it lacks a unique, one-to-one correspondence between design
parameters and configuration properties. As with other inverse design problems, using
a neural network in this context can result in predictions that represent an average of

†https://github.com/landreman/pyQSC

https://github.com/landreman/pyQSC

Using Deep Learning to Design High Aspect Ratio Fusion Devices 3

multiple possible design parameter sets for given configuration properties, rather than a
specific solution. This averaging effect, described by Bishop (1994), can lead to inaccurate
outcomes, as the network generalizes over multiple valid solutions instead of a unique
parameter set. To overcome this challenge, we approximate the probability distribution
of the design parameters conditioned on the configuration properties. This distribution,
which can be multimodal (McLachlan & Basford 1988), allows us to sample design
parameters based on the desired configuration properties. To achieve this, a probabilistic
machine learning model, namely the Mixture Density Networks (MDNs) model (Bishop
1994), is used to solve the inverse problem of stellarator optimization, together with the
near-axis expansion method.‡

2. Physical Model
In this section, we describe the near-axis expansion method used to find quasisymmetric

stellarators. Quasisymmetry is an effective strategy for confining trapped particles (He-
lander 2014; Nuhrenberg & Zille 1988) and consists of a continuous symmetry of the
magnitude B of the magnetic field B that yields a conserved quantity and enhances
particle confinement. Near the magnetic axis, two types of quasisymmetry are possible,
namely quasi-axisymmetry (QA), where B = B(r, θ) and quasi-helical symmetry (QH),
where B = B(r, θ−Nφ). Here, (θ, φ) are the Boozer poloidal and toroidal angles (Boozer
1981), N is an integer, r is defined as r =

√
2ψ/B0 where ψ represents the magnetic

toroidal flux and acts as a radial coordinate and B0 is the magnetic field strength on the
magnetic axis.

The method for generating stellarator configurations in a near-axis expansion comple-
ments traditional stellarator optimization, which typically involves parameterizing the
boundary shape of a finite aspect ratio plasma and using a 3D MHD equilibrium code to
evaluate the objective function. The magnetic field equilibrium and plasma pressure are
related via the ideal MHD equation J×B = ∇p with J = ∇×B/µ0 the plasma current.
Instead, in the near-axis method, we parameterize the axis curve and find the Taylor
series coefficients of B in powers of r that allow for quasisymmetry (Garren & Boozer
1991b; Landreman & Sengupta 2019; Jorge et al. 2020). While the near-axis method is
necessarily approximate, it is orders of magnitude faster than standard methods, with a
reduced parameter space, therefore allowing for broader parameter scans. Ultimately
combining both approaches can be advantageous: the near-axis method can identify
viable configurations, which can then be refined through conventional optimization.

In the near-axis expansion method, the magnetic axis r0 = R(ϕ)eR+Z(ϕ)ez is typically
represented in cylindrical coordinates (R,Z, ϕ) using a finite Fourier series,

R(ϕ) =

NF∑
n=0

Rcn cos(nfpnϕ), Z(ϕ) =

NF∑
n=1

Zsn sin(nfpnϕ), (2.1)

where nfp is the number of field periods and a finite maximum Fourier number NF

is chosen. Stellarator symmetry is assumed. The remaining input parameters are the
coefficients of the magnetic field strength

B =B0[1 + rη̄ cos(ϑ)] + r2[B20 +B2c cos(2ϑ)], (2.2)

‡The code developed during this work is available at https://github.com/pedrocurvo/
MLStellaratorDesign

https://github.com/pedrocurvo/MLStellaratorDesign
https://github.com/pedrocurvo/MLStellaratorDesign

4 P. Curvo, D. R. Ferreira, R. Jorge

Input Description

Rc1 First Fourier coefficient of R(ϕ) in Eq. (2.1).
Rc2 Second Fourier coefficient of R(ϕ) in Eq. (2.1).
Rc3 Third Fourier coefficient of R(ϕ) in Eq. (2.1).
Zs1 First Fourier coefficient of R(ϕ) in Eq. (2.1).
Zs2 Second Fourier coefficient of R(ϕ) in Eq. (2.1).
Zs3 Third Fourier coefficient of R(ϕ) in Eq. (2.1).
η̄ First order Taylor series coefficient of B in Eq. (2.2)
B2C Second order Taylor series coefficient of B in Eq. (2.2).
nfp Number of field periods of the device.
p2 Second order Taylor series coefficient of p in Eq. (2.3).

Table 1. Input parameters for the near-axis model

Output Description

axis length Length of the magnetic axis
ι Rotational transform on-axis.
max elongation Ratio of the major to minor semi-axis cross-section.
min L∇B Scale length of the magnetic field gradient.
min R0 Minimum of the radial coordinate R of the axis.
rsingularity Maximum allowed radial coordinate for the boundary.
L∇∇B Scale length of the magnetic field Hessian.
B20variation Degree of quasisymmetry.
β Volume-averaged plasma beta ⟨β⟩ = −µ0p2r

2
singularity/B

2
0 .

DMerc × r2 Lowest order Mercier criterion coefficient.

Table 2. Output parameters from the near-axis model

namely B0, η̄ and B2c, and the plasma pressure

p = p2r
2, (2.3)

with ϑ = θ − Nφ. Here, B0 is chosen to be 1T and, following Landreman & Sengupta
(2019), B20 is taken to be a function of φ, with exact quasisymmetry corresponding to B20

being a scalar constant. The total plasma current on-axis is taken to be I2 = 0. Hence-
forth, the input parameter space for optimization consists of {Rcn, Zsn, nfp, η̄, B2c, p2}, as
described in Table 1. The output properties are presented in Table 2. The magnetic field
equilibrium and plasma pressure are related via the ideal MHD equation J × B = ∇p
with J = ∇×B/µ0 the plasma current. The proxy used for the maximum plasma radius
is rsingularity (see Landreman (2021)), and the proxy used for the plasma β is the volume-
averaged ⟨β⟩ = −µ0p2r

2
singularity/B0 (see Landreman (2022)). The number of degrees of

freedom used to optimize stellarator devices has then been reduced from typically ∼100
plasma boundary coefficients to ∼ 10 near-axis coefficients.

Although the near-axis expansion substantially reduces the number of free parameters,
the optimization process may be computationally expensive, depending on the target
parameters. Furthermore, it is necessary to compute the mapping between Boozer and
Cartesian coordinates for a given surface to identify if the configuration possesses self-
intersecting surfaces, making the process both time-consuming and resource-intensive.
For this work, a viable configuration is one that meets the specific criteria outlined

Using Deep Learning to Design High Aspect Ratio Fusion Devices 5

Output Property Range

axis length > 0.0
|ι| ⩾ 0.2
max elongation ⩽ 10.0
min L∇B ⩾ 0.1
min R0 ⩾ 0.3
rsingularity ⩾ 0.05
L∇∇B ⩾ 0.1
B20variation ⩽ 5.0
β ⩾ 10−4

DMerc × r2 > 0.0

Table 3. Criteria for good stellarators with the major radius fixed at Rc0 = 1m and magnetic
field on-axis of B0 = 1T

in Table 3. Such parameters are similar to the ones outlined in Landreman (2022). Those
parameters also benefit the overall stability of the stellarators, e.g., L∇B is positively
correlated with the coil-to-plasma distance, as demonstrated by Kappel et al. (2024),
hence by constraining to larger values, we can obtain solutions with improved stability.
Informally, we will refer to stellarators that meet these criteria as good stellarators, and
those that do not as bad stellarators.

3. Mixture Models and Density Networks
When dealing with non-unique inverse problems, we often encounter situations where

there are multiple possible solutions for a given input. To effectively address these
problems, it is essential to have a statistical distribution over the possible solutions rather
than a single deterministic answer. The normal distribution is a common way to construct
probability distributions, but in cases with multiple solutions, we require a multi-modal
distribution, which can be achieved through a mixture model (McLachlan & Basford
1988). This model provides concentrated probabilities at various points, representing the
different solutions. In this section, we describe the probabilistic models used in this work,
namely mixture models, Gaussian models, and multivariate Gaussian mixtures.

A mixture model (McLachlan & Basford 1988) is a statistical tool used to describe
a population comprised of multiple subgroups without prior knowledge of individual
data point memberships. It constructs a combined probability distribution for the entire
population by integrating the probability distributions of each subgroup. Mixture models
enable us to understand the characteristics of these subgroups using data from the entire
population, even when the subgroup for each data point is unknown. These models are
typically applied in clustering tasks, where data points are grouped into clusters, and
density estimation, which involves estimating the distribution of the data itself.

A typical finite-dimensional mixture model p(y|λ) is a combination of simple distribu-
tions pi(y) that can be represented as follows

p(y|λ) =
K∑
i=1

πipi(y), (3.1)

where pi is the ith component distribution, πi is the mixture weight of the ith component,

6 P. Curvo, D. R. Ferreira, R. Jorge

andK is the number of components in the mixture. The mixture weights are non-negative
and sum to 1, i.e., 0 ⩽ πi ⩽ 1 and

∑
i πi = 1.

To better understand mixture models, we re-express the model in a hierarchical
framework. This involves introducing a latent variable z ∈ {1, ...,K} representing the
component from which each data point is generated. This hierarchical approach not
only provides a clear structure but also facilitates the inference process. Henceforth,
each data point y is associated with a latent variable z that indicates the component
it originates from. The prior distribution over the latent variables is governed by the
parameters π = (π1, ..., πK), where πi represents the probability that a data point belongs
to component i. Formally, we write

p(z = k|λ) = πk.

Given that a data point y comes from component i, it is generated according to a
component-specific distribution p(y|λi). Thus, the conditional distribution of y given
the latent variable z and the parameters λ is

p(y|z = i, λ) = pi(y) = p(y|λi).
The complete set of parameters for this hierarchical model is λ = (π1, ..., πK , λ1, ..., λK),
where π represents the mixing proportions and λi represents the parameters specific to
the ith component.

The generative process for the data involves first selecting a specific component z and
then drawing a sample y from the chosen component. By marginalizing over the latent
variable, i.e., by summing over all possible states of z, we obtain the marginal distribution
p(y|λ) of the observed data

p(y|λ) =
K∑
i=1

p(z = i|λ)p(y|z = i, λ) =

K∑
i=1

πip(y|λi). (3.2)

This formulation allows us to model complex, multi-modal data distributions effectively,
capturing the diverse characteristics of the data through the combined influence of
multiple simple components.

One of the most widely used mixture models, due to its simplicity and effectiveness in
modeling complex data distributions, is the Gaussian Mixture Model (GMM), a specific
type of mixture model where the component distributions are Gaussian distributions.
The GMM is defined as

p(y|λ) =
K∑
i=1

πiN (y|µi, σ
2
i), (3.3)

where N (y|µi, σ
2
i) is a Gaussian distribution with mean µi and variance σ2

i , namely

N (y|µi, σ
2
i) =

1√
2πσ2

i

e
− (y−µi)

2

2σ2
i . (3.4)

The GMM can approximate any continuous distribution to any arbitrary degree of
accuracy by using a sufficient number of components (Goodfellow et al. 2016). It is
particularly useful for clustering and density estimation tasks, where the data distribution
is complex and multi-modal. An example of a GMM with two components and different
mixture weights is shown in Fig. 2. This figure illustrates how the GMM combines two
Gaussian distributions with distinct means and variances, demonstrating three separate
mixtures where each mixture is characterized by specific mixing coefficients, π1 and
π2. These coefficients determine the relative influence of each Gaussian component in

Using Deep Learning to Design High Aspect Ratio Fusion Devices 7

4 2 0 2 4 6 8 10
y

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

De
ns

ity

Gaussian 1
Gaussian 2
Mixture with

1 = 0.3, 2 = 0.7
Mixture with

1 = 0.6, 2 = 0.4
Mixture with

1 = 0.9, 2 = 0.1

Figure 2. Example of mixture models with two components, each represented by a Gaussian
distribution, illustrating how a mixture model forms from two distributions and the influence of
mixture weights on data distribution modeling.

modeling the observed data distribution, showcasing the GMM’s ability to represent
complex data patterns through weighted combinations of simpler Gaussian distributions.

A generalization of the one-dimensional Gaussian distribution to multiple dimensions
is called multivariate normal (MVN), also known as the multivariate Gaussian distri-
bution. The MVN is one of the most widely used joint probability distributions for
continuous random variables (Murphy 2023). This popularity is due to its mathematical
convenience and versatile applicability across a wide range of scenarios. Indeed, if we
know the mean and variance of a dataset, but do not have other information such as, for
example, skewness, kurtosis, domain-specific constraints, temporal dependencies, spatial
correlations, or known outliers, the Gaussian distribution is the most unbiased choice
because it maximizes entropy under these constraints (Cover & Thomas 2012).

The multivariate Gaussian distribution is defined as

N (y|µ,Σ) =
1

(2π)D/2|Σ|1/2 e
− 1

2 (y−µ)TΣ−1(y−µ), (3.5)

where y is a D-dimensional vector, µ = E[y] is the mean vector, and Σ = Cov[y] is
the D ×D covariance matrix. The normalization constant is given by (2π)D/2|Σ|1/2 to
ensure that the distribution has a unit volume integral. The covariance matrices Σ, in the
context of multivariate Gaussian distributions, can be categorized into three groups. First,
full covariance matrices are matrices with D(D+ 1)/2 parameters, which are symmetric
and positive definite, allowing them to capture existing correlations between variables.
Second, diagonal covariance matrices are matrices with D parameters, which are diagonal
with zero off-diagonal elements. These matrices assume that the variables are independent
of each other. Lastly, there are spherical covariance matrices with one parameter, which
are a scalar multiple of the identity matrix in the form σ2ID. These matrices assume
that the variables have equal variance and are isotropic.

The full covariance matrix is the most general form of the multivariate Gaussian
distribution, and it can represent existing correlations between variables. However, it
is also the most computationally expensive, since it requires the inversion of a D × D
matrix. The diagonal covariance matrix, on the other hand, assumes that the variables are
independent, and the spherical covariance matrix assumes that the variables are isotropic,
both simplifying computation but potentially oversimplifying real-world correlations.

Using multiple MVNs as components in a Mixture Model results in what is known as
the Multivariate Gaussian Mixture Model (MGMM). This model is a generalization of

8 P. Curvo, D. R. Ferreira, R. Jorge

the GMM to the multivariate case and is defined as

p(y|λ) =
K∑
i=1

πiN (y|µi, Σi), (3.6)

where N (y|µi, Σi) is the multivariate normal distribution with mean vector µi and
covariance matrix Σi. This capability allows MGMMs to accurately capture complex data
structures where variables are interdependent, providing a more realistic representation
of real-world data distributions McLachlan & Peel (2004). Unlike univariate models that
assume independence, MGMMs are particularly effective in scenarios requiring flexible
and scalable modeling of multidimensional data, such as in image processing Bueno &
Kragic (2006). By accommodating these correlations, MGMMs enhance clustering and
classification tasks, enabling more meaningful groupings in several applications where
multiple correlated features influence outcomes. Furthermore, MGMMs excel in accurate
density estimation for multivariate data, which is crucial in fields like environmental
science for modeling spatial distributions of pollutants or genetics to analyze complex
gene expression profiles.

This work involves the use of multivariate data containing intrinsic correlations between
the variables, making MGMMs one of the best options to accurately estimate the density
of our data. By leveraging the ability of MGMMs to model these correlations through
covariance matrices, we can achieve a more realistic and precise representation of the
data distribution, which is crucial for our analysis. Furthermore, we can enhance our
modeling capabilities by combining the approximation properties of neural networks with
the flexibility of mixture models (Bishop 1994). This approach allows us to model complex
density estimations without requiring any prior knowledge of their distributions.

4. Mixture Density Networks
Neural networks are computer models inspired by the structure of the human

brain (Hornik et al. 1989). They are made up of layers of connected neurons or nodes.
Such layers are used to process input data, with each neuron applying an activation
function and a weighted sum to produce an output. Through training, neural networks
can discover intricate patterns and relationships in data.

However, in problems involving continuous variables where the same input values may
produce different output values, neural networks tend to predict the mean of the target
variable. This can be regarded as an approximation to the conditional average of the tar-
get variable given the input. This conditional average provides a very limited description
of the statistical properties of the data and is often inadequate for many applications.
This is particularly true for non-unique inverse problems, where a conventional neural
network with a least-squares approach might yield an inaccurate solution as the mean of
multiple, possibly more accurate solutions.

In our case, averaging parameters such as Rcn and Zsn tends to yield suboptimal results
due to their complex interdependencies. Both variables exhibit multimodal distributions
centered around symmetric values. Averaging these values tends to converge toward zero,
which may lead to the generation of bad stellarator designs. Consequently, there is a
need for a neural network to be capable of probabilistically selecting Rcn or Zsn from
their respective subdistributions, depending on the context. This leads to the use of
a probabilistic model capable of representing multimodal distributions. Such a model
would not average the distributions but instead sample from them, thereby preserving

Using Deep Learning to Design High Aspect Ratio Fusion Devices 9

the distinct characteristics of each mode and enabling more accurate predictions and
good stellarator designs.

To address these requirements, Mixture Density Networks (MDNs) (Bishop 1994)
present a compelling solution. MDNs are a class of neural networks designed to overcome
the limitations of conventional neural networks in modeling complex, multi-modal data
distributions. They combine the flexibility of neural networks with the robustness of
mixture models, where the neural network estimates the parameters for the mixture
model. MDNs allow a neural network to learn arbitrary conditional distributions as
opposed to only learning the mean. This enables MDNs to provide a more comprehensive
and accurate modeling approach for complex data distributions.

In MDNs, the probability density of the target data is represented as a linear com-
bination of components, as in Eq. (3.1). Various choices for these components are
possible, but for the purpose of this work, we focus on MGMMs, as in Eq. (3.6), to
approximate the conditional distribution of the target variables given the inputs, because,
as seen in Section 3, it effectively captures complex data structures where variables are
interdependent, and excels in accurate density estimation for multivariate data, which is
crucial for our case.

For any given values of the input x, the MDN provides a systematic method for
modeling an arbitrary conditional distribution p(y|x). The model parameters, namely the
mixing coefficients πi, the mean vectors µi, and the covariance matrices Σi, are modeled
as continuous functions of x. This is achieved by having πi, µi, Σi as the outputs of
a conventional neural network, which takes x as its input. The combined structure of a
feed-forward network and a mixture model is the essence of an MDN. The basic structure
of the feedforward neural network responsible for modeling the parameters of the mixture
as a continuous function of the input parameters is illustrated in Fig. 3. This architecture
enables the network to dynamically adjust the mixture parameters based on the input
data while capturing complex, nonlinear relationships in the data.

By choosing a mixture model with a large enough number of components, and a neural
network with a large enough number of hidden units (Uzair & Jamil 2020), the MDN
can approximate any conditional density p(y|x) as closely as desired (Lu & Lu 2020).
In this work, we use a mixture model with 62 components. This choice was empirically
determined to provide an optimal balance between model complexity and performance.
It was observed that increasing both the number of layers and the width of each layer, as
well as incorporating more components, provided severe improvements in the model’s
performance. The architecture of the mixture density network used in this work is
illustrated in Fig. 3 and in Table 4, showcasing the detailed configuration and activation
functions employed at various layers.

The neural network’s input layer contains 10 neurons, corresponding to the 10 input
parameters. This is followed by a series of hidden layers with progressively increasing
sizes, namely 64, 128, 256, 512, 1024, and 2048. The output layer consists of 4092
nodes that are allocated as follows: 62 nodes represent the mixture weights of the 62
components; 620 nodes represent the mean vector of the 10 outputs for each of the 62
components; 3410 nodes represent the 55 parameters (the upper triangular part) of the
10× 10 covariance matrix for each of the 62 components.

The calculation for the number of parameters for each covariance matrix uses the
formula D(D + 1)/2, where D is the dimension of the covariance matrix. With D = 10,
each covariance matrix requires 55 parameters, resulting in a total of 3410 parameters for
the 62 components. We employ the hyperbolic tangent, tanh, activation function to the
hidden layers to prevent numerical issues that may arise from large values propagating

10 P. Curvo, D. R. Ferreira, R. Jorge

μi

Σi

πi

Input Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁷ Output Layer ∈ ℝ⁹

...

...

...

...

...

...

...
...

}
}
}

Input Layer

Hidden Layer
Output Layer

μi

Σi
πi

x

Mixture Model

p(y |x)

Near-Axis MethodInput
Parameters

Output
Properties

Neural Network

Figure 3. (left) Sketch of the neural network architecture used in this work to estimate the
parameters of a mixture model. (right) Architecture of the Mixed Density Network as an inverse
model for the near-axis method.

Layer Size Activation function

Input 10 –

Hidden 1 64 tanh
Hidden 2 128 tanh
Hidden 3 256 tanh
Hidden 4 512 tanh
Hidden 5 1024 tanh
Hidden 6 2048 tanh

Output 4092
tanh for µ and Σij,j>i,
ELU + 1 for Σij,i=j ,

softmax for π

Table 4. Layers of the Mixture Density Network used in this work.

through the network, which could lead to unstable computations and vanishing gradients,
causing non-positive definite covariance matrices.

In the output layer, the neural network uses different activation functions tailored to the
nature of each parameter type. The means of the Gaussian components are mapped to the
range]−1, 1[using the tanh activation function, benefiting from the data normalization
process (a standard scaler) which is applied to the input data, i.e., when normalized,
we expect the data to become centered around zero, which agrees with the zero-centered
nature of the tanh activation function and, at the same time, limits the potential for large
numerical values propagating through the network. The mixture weights are computed
using the softmax function (Bridle 1990; Jacobs et al. 1991) to ensure that they sum to
1. The covariance matrices are computed with the diagonal elements using a modified
ELU (Clevert et al. 2016) function (ELU + 1) function to ensure positivity, and the
off-diagonal elements are constrained between]−1, 1[using the tanh activation function,
for the same reasons presented before. With this established architecture, the next step
involves training the MDN on a dataset of stellarator configurations to adjust the network
weights, thereby enhancing the model’s predictive capabilities.

Using Deep Learning to Design High Aspect Ratio Fusion Devices 11

Input Parameter Range

Rc1 [−1, 1] (= [−Rc0, Rc0])
Rc2 [−|Rc1|, |Rc1|]
Rc3 [−|Rc2|, |Rc2|]
Zs1 [−1, 1] (= [−Rc0, Rc0])
Zs2 [−|Zs1|, |Zs1|]
Zs3 [−|Zs2|, |Zs2|]
|η̄| [0.01, 3.0]
|B2C | [0.01, 3.0]
nfp [0, 10]
p2 [−4× 106, 0.0]

Table 5. Uniform distributions defining the input parameter ranges used for dataset
generation. Each parameter is sampled within the interval shown in the second column.

5. Data Generation and Training
To train the MDN, we generate a dataset of stellarators using the near-axis expansion

method. The dataset is a collection of records containing the input parameters provided to
the near-axis method and corresponding output properties generated from these inputs.
These are listed in Tables 1 and 2.

To generate the dataset, we sample the input parameters from uniform distributions,
with the ranges listed in Table 5 and find the output parameters listed in Table 2. The
range of parameters Rc2, Rc3, Zc2 and Zc3 follows the empirical observation in previous
near-axis configurations and in the parameter scans done here that the Fourier coefficients
generally decrease with increasing order. This allows us to restrict the database to feasible
designs. By sampling the input parameters from uniform distributions, we find that most
configurations consist of bad stellarators. In fact, by applying the set of criteria shown
in Table 3, it is seen that the percentage of good stellarators is extremely low, with only
1 in approximately 100,000 samples found to comply with all the desired criteria. This
illustrates how difficult it is to find good stellarators by random search, and is one of the
main drivers of the use of an inverse model to find the input parameters from a set of
desired properties.

Following the generation of the dataset, we begin by normalizing the dataset using a
standard scaler to account for the different scales of the input and output parameters.
The dataset was then split into training and validation sets with an 80% and 20% split,
respectively. Next, we initialize the weights of the neural network using the Glorot-Xavier
initialization method (Glorot & Bengio 2010), which is effective for deep neural networks
as it helps prevent vanishing or exploding gradients during training. Additionally, we
employ the Adam optimizer (Kingma & Ba 2017) with a learning rate of 10−3 and a
batch size of 10,000 samples.

The output properties are then sampled from the mixture model. We compute the
negative log-likelihood of these samples, which serves as the loss function to be mini-
mized during training. Since we use a mixture model composed of multiple Gaussian
components, the loss function is given by

Loss = − 1

N

N∑
j=1

log

(
K∑
i=1

πiN (yj |µi, Σi)

)
, (5.1)

where N is the number of samples, i.e., the batch size, and yj is an output vector.

12 P. Curvo, D. R. Ferreira, R. Jorge

0 20 40 60 80 100
Epoch

6

4

2

0

2

4

6

8
Lo

ss
Model 01
Model 02
Model 03
Model 04
Model 05

0 20 40 60 80 100
Epoch

6

4

2

0

2

4

6

Lo
ss

Model 01
Model 02
Model 03
Model 04
Model 05

Figure 4. Loss (left) and validation loss (right) curves during training for the different models.
The initial learning rate, 1× 10−3, was decreased with a scheduler in epochs 10, 20, 30, 40, 50
with a γ = 0.5.

Dataset Good Stellarators (%)

Before training (uniform sampling) 0.0018
After the first training iteration 0.0406
After the second training iteration 1.3788
After the third training iteration 9.0024
After the fourth training iteration 12.3903
After the fifth training iteration 20.2670

Table 6. Percentage of good stellarators in each iteration dataset.

Despite using the Adam optimizer (Kingma & Ba 2017), the training process was more
challenging than anticipated due to numerical instabilities, such as vanishing gradients,
that caused the covariance matrices to become non-positive definite. To address this issue,
a multi-step learning rate scheduler was employed, which adjusted the learning rate at
specific training epochs (10, 20, 30, 40, and 50) by a factor of 0.5. This schedule initially
allowed the model to explore the parameter space with a higher learning rate, then
gradually refined as training progressed. By reducing the learning rate in steps, the model
avoided abrupt changes in parameter updates, leading to a more stable convergence. The
loss and validation curves can be seen in Fig. 4. Notably, the curves indicate that as the
learning rate decreases, the loss function values also decrease. This trend suggests that
lower learning rates contribute to a more stable and gradual convergence, resulting in
better model performance and lower loss.

However, as mentioned earlier, the percentage of good stellarators obtained by random
sampling was very low. To address this issue, we adopted an iterative training approach,
where the trained model was used to support the generation of a new dataset. This new
dataset can be used to re-train the model, which in turn can be used to support the
generation of a further dataset.

The uniform distributions in Table 3 have been used only once to generate the initial
dataset. Once the model is trained, we use it to draw samples of input parameters of good
stellarators to then provide to the near-axis method. At first, the model only had a small
number of good stellarators (0.04% after the first training). However, over the course
of several training iterations, the percentage of good stellarators in the dataset keeps
increasing. This is shown in Table 6 where, at the end of the fifth iteration, the percentage
of good stellarators reaches approximately 20%. The resulting model is analyzed in the
next section.

Using Deep Learning to Design High Aspect Ratio Fusion Devices 13

−6 −4 −2 0 2 4
Rc1

10−5

10−4

10−3

10−2

10−1

100
D

en
si

ty
Before training
(uniform sampling)

First iteration

Second iteration

Third iteration

Fourth iteration

Fifth iteration

−4 −2 0 2 4
Rc1

10−4

10−3

10−2

10−1

100

D
en

si
ty

Good
Stellarators

Viable
Stellarators

Figure 5. (left) Distribution of the Rc1 variable during the iterative process. (right)
Distribution of the Rc1 variable for the good stellarators and the viable stellarators.

The evolution of the distribution of the Rc1 variable during the training of the model
is shown in Fig. 5. The initial uniform distribution used to create the dataset gradually
transitions to a bimodal Gaussian-like distribution. This transformation aligns more
closely with our objective of focusing on the region where good stellarators are found.
This transition also simplified the training of the model, as Gaussian mixture models can
more effectively approximate it compared to a uniform distribution, which would require
more components with wider covariances. Here, we find that the final distribution of the
Rc1 variable has two peaks, one around -0.8 and another around 0.8, with a higher peak
at -0.8.

6. Model Performance
We now show how the model can be used to predict the input parameters needed to

obtain optimized stellarators with desired output properties. First, the user provides the
desired properties such as the volume-averaged plasma β and rotational transform, and
the model produces the design parameters that are likely to yield those properties such
as magnetic axis and η̄. Then, the user feeds the predicted design parameters to the
near-axis expansion method, to generate the corresponding properties. Finally, the user
verifies that the actual properties generated by the near-expansion method agree with the
desired properties. A randomly selected example from the dataset is presented in Table 7,
while an example using the frontier conditions from Table 3 is shown in Table 8.

However, while the model is able to yield configurations that satisfy the requirements
listed in Table 3, it is not guaranteed that all configurations have a set of nested, non-
intersecting flux surfaces up to the parameter rsingularity. This is because rsingularity is only
a proxy for the minimum aspect ratio of the device. Only by computing the surface in
Cartesian coordinates, as opposed to the near-axis Boozer coordinates used throughout
this work, can we verify the existence of such a surface. Such an evaluation is crucial to
use such configurations in practice. We then take all the good stellarators and generate
a surface at a radial distance of r = 0.1Rc0. Here, the existence of such a surface is
defined as the existence of a numerical solution of the mapping from the toroidal Boozer
coordinate φ on-axis to a cylindrical angle ϕ off-axis with tolerance at or below 10−15

after a maximum of 1000 iterations. We will refer to the good stellarators that meet this
additional criterion as viable stellarators.

Next, keeping the standard normalization on the dataset, we employed the Huber Loss
and the Mean Absolute Error (MAE) as evaluation metrics to compare the predicted
output properties from the model against the output properties from the near-axis model
on 10,000 samples. Both are metrics used in regression tasks to quantify the difference

14 P. Curvo, D. R. Ferreira, R. Jorge

Desired properties Design parameters Actual properties
(input to MDN) (output of MDN / (output of pyQSC)

input to pyQSC)

axis length 12.23 Rc1 -0.492168 12.67
ι -2.24 Rc2 0.003776 -2.07
max elongation 6.56 Rc3 -0.000132 8.20
min L∇B 0.41 Zs1 -0.652899 0.44
min R0 0.48 Zs2 0.006861 0.51
Rsingularity 0.14 Zs3 -0.005334 0.11
L∇∇B 0.25 nfp 3 0.28
B20variation 1.68 η̄ -0.844595 3.94
β 0.005 B2c 1.662730 0.003
DMerc × r2 0.09 p2 -162627 -0.15

Table 7. Sample results for given desired properties. A random stellarator configuration was
selected from the test dataset, and its properties were used as input to the model to predict
the design parameters. These predicted design parameters were then fed into the Near-Axis
Method, which returned the actual properties. The resulting actual properties closely matched
the desired ones.

Desired properties Design parameters Actual properties
(input to MDN) (output of MDN / (output of pyQSC)

input to pyQSC)

axis length 0.00 Rc1 0.614602 7.99
ι 0.20 Rc2 -0.058358 -0.79
max elongation 10.0 Rc3 0.020746 14.65
min L∇B 0.10 Zs1 0.804627 0.21
min R0 0.30 Zs2 0.013770 0.31
Rsingularity 0.05 Zs3 0.013673 0.03
L∇∇B 0.10 nfp 1 0.10
B20variation 5.00 η̄ 0.509180 5.51
β 0.001 B2c -1.257980 0.00014
DMerc × r2 0 p2 -154446 0.10

Table 8. Sample results for given desired properties that were the boundary conditions in
Table 3. The properties of the given stellarator were used as input to the model to predict the
design parameters. These predicted design parameters were then fed into the Near-Axis Method,
which returned the actual properties. The resulting actual properties closely matched the desired
ones.

between predicted values and actual observations. Huber Loss combines the advantages
of MAE for robustness to outliers and Mean Squared Error (MSE) for sensitivity to small
errors. The results for bad, good and viable stellarators are presented in Table 9.

As illustrated in Table 9 for viable stellarators, the model accuracy was found to be
satisfactory. For the variables axis length, ι, max elongation, B20variation , and DMerc × r2,
the model showed a good performance, evidenced by a low Huber and MSE losses, 0.172
and 0.486 respectively, with the MSE being higher than the Huber Loss, as expected.
Regarding the variables min L∇B , min R0, and L∇∇B , the model displayed moderate
accuracy under the Huber Loss metric. However, the MSE was higher, indicating that
the model underperforms in these variables. The variables β and rsingularity exhibited the

Using Deep Learning to Design High Aspect Ratio Fusion Devices 15

Variable
Viable Good Bad
Metric Metric Metric

Huber Loss MSE Huber Loss MSE Huber Loss MSE

axis length 0.031 0.0618 0.0342 0.083 1.33 10.2
ι 0.0267 0.0534 0.0233 0.0495 0.909 4.2

max elongation 0.000456 0.0113 0.000326 0.068 0.138 17.8
min L∇B 0.266 0.735 0.227 0.578 0.869 3.82
min R0 0.00617 0.0531 0.00665 0.274 2.72 32.6

rsingularity 0.632 1.72 0.907 3.11 0.0098 0.0292
L∇∇B 0.432 1.12 0.415 1.08 0.149 0.366

B20variation 0.000604 0.0046 8.99×10−5 0.000218 3.9 37.4
β 0.321 1.1 0.658 3.12 0.00454 0.0165

DMerc × r2 3.4 ×10−11 5.94 ×10−5 1.65×10−10 9.94×10−12 83.7 124.3

Average 0.172 0.486 0.227 0.837 9.37 23.073

Table 9. Model accuracy on bad, good and viable stellarators

poorest accuracy, with both metrics indicating suboptimal results. A possible explanation
for this outcome might be due to trade-offs in variable correlations, i.e., maximizing
performance for some variables may require sacrificing accuracy in others.

Beyond the model performance, understanding the relationships between variables is
crucial for interpreting the behavior of output properties and their interdependencies.
This knowledge significantly influences how the model should be used to predict input
parameters. When output properties are strongly correlated, the model must carefully
balance these correlations to achieve the desired outputs. Additionally, being aware of
the distribution of variables is essential to ensure the model operates within familiar data
spaces; otherwise, it may perform poorly. Therefore, analyzing the distributions of the
variables and their correlations is vital.

Henceforth, the iterative training process described in Section 5 was monitored to check
if the distributions of both input and output variables were being restricted to a narrower
space, which was to be expected since we wanted to restrict the dataset to the space of
good stellarators. We evaluated the distribution of variables for the dataset containing
all the good stellarators and all the viable stellarators. We show in Figs. 5 and 6 the ones
that provide a better understanding of the dataset and that are more relevant.

The distribution of the nfp variable for both the good stellarators and the viable
stellarators is depicted in Fig. 6. The data shows that good stellarators tend to cluster
around nfp = 4, although there is a notable variation with several other nfp values present.
An aspect of these results is that the model, despite being trained on a dataset where
the nfp ranged from 1 to 10, successfully predicted nfp values for good stellarators that
exceeded this range. As illustrated in Fig. 6, there are configurations with nfp values
extending up to 19.

For the viable stellarators, the distribution of the number of field periods, nfp, is more
narrowly centered around the value of 3, and none of the configurations exhibit nfp
values above 6. This suggests a more constrained and specific range for nfp in the viable
stellarator subset, indicating that these configurations are more consistent in this regard.
The fact that an optimized stellarator with a higher number of field periods is hard to
find, as it was also observed in Landreman (2022), may be related to the fact that such

16 P. Curvo, D. R. Ferreira, R. Jorge

1 2 3 4 5 6 7 8 9 1011121314151617181920
nfp

10−6

10−5

10−4

10−3

10−2

10−1

100
D

en
si

ty
Good
Stellarators

Viable
Stellarators

−10 −8 −6 −4 −2 0 2 4
B2c

10−4

10−3

10−2

10−1

D
en

si
ty

Good
Stellarators

Viable
Stellarators

Figure 6. Distribution of number of field periods, nfp, (left) and B2c variable (right) for good
and viable stellarators.

nfp usually require a significant excursion of the axis and an associated larger axis length.
Furthermore, the recent study by Kappel et al. (2024) has shown a correlation between
the number of field periods np and L∇B , indicating that small values of np may lead to
more optimized configurations.

We also examine the B2c parameter. The distribution of this variable for both good
stellarators and viable stellarators is illustrated in Fig. 6. The data reveals that B2c

exhibits a noticeable shift towards negative values. This indicates a distinct characteristic
in the B2c distribution for good stellarators compared to the overall dataset.

The observed shifts in the distributions of variables for the good stellarators and the
viable stellarators, whether towards negative or positive values, suggest that maximizing
or minimizing certain variables can influence others in similar or opposing ways. This
prompts us to evaluate the correlations between variables. While correlation does not
imply causation, it provides valuable insights into the relationships between variables.
We show in Fig. 7 the correlation matrix for the output properties of good stellarators,
which is similar to viable stellarators. This matrix reveals a strong positive correlation
between rsingularity and L∇∇B . This indicates that as the axis length increases, the
maximum elongation also increases. Conversely, the min L∇B and B20variation display
a strong negative correlation, meaning that an increase in the minimum min L∇B results
in a decrease in the minimum B20variation . These relationships significantly impact model
performance, as the model must balance them to achieve the desired properties. As an
example, if a user requests a stellarator with a high min L∇B and a low B20variation ,
the model must navigate the positive correlation between these properties. Since they
are not independent, the model must find a compromise to generate appropriate input
parameters that align with the desired output properties.

7. Conclusions
This work introduces an MDN designed to tackle the inverse stellarator optimization

problem using the near-axis method. The model was trained on a dataset of near-axis
configurations generated through the near-axis expansion method. However, the dataset
initially contained a very low percentage of desirable stellarators, specifically only 0.001%.
To address this limitation, an iterative data augmentation technique was employed. This
iterative approach successfully enhanced the representation of high-quality stellarators
within the dataset, thereby improving the model’s capability to predict parameters crucial
for optimal stellarator designs.

Despite achieving good performance in predicting some variables, the model faced
challenges with variables derived from the second-order near-axis expansion method,

Using Deep Learning to Design High Aspect Ratio Fusion Devices 17

ax
is

le
ng

th ι

m
ax

el
on

ga
ti

on

m
in
L
∇
B

m
in

R
0

r s
in

gu
la

ri
ty

L
∇
∇
B

B
20

va
ri

at
io

n β

D
M
er
c
×
r2

axis length

ι

max elongation

min L∇B

min R0

rsingularity

L∇∇B

B20variation

β

DMerc × r2

1.00 -0.34 -0.10 0.41 -0.09 0.02 0.11 -0.02 -0.01 0.23

-0.34 1.00 0.01 -0.02 -0.05 -0.04 0.01 0.02 -0.01 -0.09

-0.10 0.01 1.00 -0.16 0.07 0.04 -0.03 -0.12 0.11 0.08

0.41 -0.02 -0.16 1.00 -0.07 0.20 0.57 -0.50 0.07 0.03

-0.09 -0.05 0.07 -0.07 1.00 -0.11 -0.15 0.10 -0.05 0.03

0.02 -0.04 0.04 0.20 -0.11 1.00 0.59 -0.53 0.57 -0.24

0.11 0.01 -0.03 0.57 -0.15 0.59 1.00 -0.56 0.33 -0.06

-0.02 0.02 -0.12 -0.50 0.10 -0.53 -0.56 1.00 -0.30 0.08

-0.01 -0.01 0.11 0.07 -0.05 0.57 0.33 -0.30 1.00 0.40

0.23 -0.09 0.08 0.03 0.03 -0.24 -0.06 0.08 0.40 1.00

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Correlation matrix for the output properties of good stellarators using Spearman
Coefficient. The values range from -1 to 1, where negative values indicate negative correlations
and positive values indicate positive correlations. The absolute values represent the correlation
strength: values from 0 to 0.3 indicate a weak correlation, from 0.4 to 0.6 indicate a moderate
correlation, and from 0.7 to 1 indicate a strong correlation.

as assessed using Huber Loss and Mean Absolute Error (MAE) metrics. Nevertheless,
overall, the MDN proved effective as a tool for predicting desired properties of stellarators.
Our model can also return the covariance matrix to compute uncertainties associated with
each prediction and obtain statistical insight.

Moreover, the creation of a large database of high-quality stellarators facilitated
detailed analyses of variable distributions and correlations. These analyses revealed that
optimal stellarators tend to cluster within specific ranges of variable space, such as an nfp
value around 3 or 4, and a preference for negative values in B2c. The correlation matrix
further highlighted strong interdependencies among variables, crucial for accurately
predicting input parameters to achieve desired output properties.

As a future work, an ablation study would be crucial to simplify the model, as the
increasing complexity of the hidden layer geometry may not be optimal. Adding to
this, we intend to integrate the near-axis expansion method directly into the neural
network training process, potentially as a differentiable layer. This advancement could
leverage techniques like neural network approximations or automatic differentiation tools
such as JAX (Bradbury et al. 2018). Such enhancements would support the adoption of
variational autoencoders, graph neural networks, and transformers. Such models could
also be extended for future optimizations and designs, integrating them with an ideal
MHD model rather than relying solely on a near-axis method. Additionally, a model
could be developed to map between the near-axis method and an ideal MHD model.
This approach would enable leveraging machine learning models for solving the inverse

18 P. Curvo, D. R. Ferreira, R. Jorge

problem using a near-axis method and subsequently mapping the results to a full ideal
MHD optimization.

Acknowledgments
We would like to thank Raheem Hashmani and Misha Padidar for their in-

sightful discussions throughout this work. R. Jorge would like to acknowledge the
support of EUROfusion through an Enabling Research Grant, and the support
of FCT – Fundação para a Ciência e Tecnologia, I.P. through project reference
2021.02213.CEECIND/CP1651/CT0004. This material is based upon work supported
by the National Science Foundation under Grant No. 2409066. This work has been
carried out within the framework of the EUROfusion Consortium, funded by the
European Union via the Euratom Research and Training Programme (Grant Agreement
No 101052200 — EUROfusion). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the European Commission
can be held responsible for them. This work used Jetstream2 at Indiana University
through allocation PHY240054 from the Advanced Cyberinfrastructure Coordination
Ecosystem: Services & Support (ACCESS) program, which is supported by National
Science Foundation grants #213859, #2138286, #2138307, #2137603 and #2138296.
This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using
NERSC award NERSC DDR-ERCAP0030134. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. IPFN activities were supported by FCT - Fundação
para a Ciência e Tecnologia, I.P. by project reference UIDB/50010/2020 and DOI
identifier 10.54499/UIDB/50010/2020, by project reference UIDP/50010/2020 and DOI
identifier 10.54499/UIDP/50010/2020 and by project reference LA/P/0061/2020 and
DOI identifier 10.54499/LA/P/0061/2020.

Supplementary Data
Supplementary material is available at https://zenodo.org/records/13623959.

Declaration of Interest
The authors report no conflict of interest.

Data Availability Statement
The data that support the findings of this study are openly available in MLStellara-

torDesign at https://github.com/pedrocurvo/MLStellaratorDesign.

REFERENCES

Bader, A., Drevlak, M., Anderson, D. T., Faber, B. J., Hegna, C. C., Likin, K. M.,
Schmitt, J. C. & Talmadge, J. N. 2019 Stellarator equilibria with reactor relevant
energetic particle losses. Journal of Plasma Physics 85 (5), 905850508.

https://doi.org/10.54499/2021.02213.CEECIND/CP1651/CT0004
https://zenodo.org/records/13623959
https://github.com/pedrocurvo/MLStellaratorDesign

Using Deep Learning to Design High Aspect Ratio Fusion Devices 19

Bishop, C. 1994 Mixture density networks. Tech. Rep. NCRG/94/004. Aston University.
Boozer, A. 2020 Why carbon dioxide makes stellarators so important. Nuclear Fusion 60 (6),

065001.
Boozer, A. H. 1981 Plasma equilibrium with rational magnetic surfaces. Physics of Fluids

24 (11), 1999.
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,

Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S. & Zhang, Q.
2018 JAX: composable transformations of Python+NumPy programs.

Bridle, J. 1990 Probabilistic interpretation of feedforward classification network outputs, with
relationships to statistical pattern recognition. In Neurocomputing (ed. F.F. Soulié &
J. Hérault), NATO ASI Series, vol. 68.

Bueno, J. I. & Kragic, D. 2006 Integration of tracking and adaptive gaussian mixture models
for posture recognition. ROMAN 2006 - The 15th IEEE International Symposium on
Robot and Human Interactive Communication pp. 623–628.

Clevert, D., Unterthiner, T. & Hochreiter, S. 2016 Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv 1511.07289 .

Cover, T. M. & Thomas, J.A. 2012 Elements of Information Theory . Wiley.
Garren, D. A. & Boozer, A. H. 1991a Existence of quasihelically symmetric stellarators.

Physics of Fluids B 3 (10), 2822.
Garren, D. A. & Boozer, A. H. 1991b Magnetic field strength of toroidal plasma equilibria.

Physics of Fluids B 3 (10), 2805.
Glorot, X. & Bengio, Y. 2010 Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, PMLR, vol. 9, pp. 249–256.

Goodfellow, I., Bengio, Y. & Courville, A. 2016 Deep Learning . MIT Press.
Helander, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Reports

on Progress in Physics 77 (8), 087001.
Hornik, K., Stinchcombe, M. & H., White. 1989 Multilayer feedforward networks are

universal approximators. Neural Networks 2 (5), 359–366.
Jacobs, R., Jordan, M., Nowlan, S. & Hinton, G. 1991 Adaptive mixtures of local experts.

Neural Computation 3 (1), 79–87.
Jorge, R., Sengupta, W. & Landreman, M. 2020 Near-axis expansion of stellarator

equilibrium at arbitrary order in the distance to the axis. Journal of Plasma Physics
86 (1), 905860106.

Kappel, John, Landreman, Matt & Malhotra, Dhairya 2024 The magnetic gradient
scale length explains why certain plasmas require close external magnetic coils. Plasma
Physics and Controlled Fusion 66 (2), 025018.

Kingma, D. P. & Ba, J. 2017 Adam: A method for stochastic optimization. arXiv 1412.6980
.

Landreman, M. 2021 Figures of merit for stellarators near the magnetic axis. Journal of Plasma
Physics 87 (1), 905870112.

Landreman, M. 2022 Mapping the space of quasisymmetric stellarators using optimized near-
axis expansion. Journal of Plasma Physics 88 (6).

Landreman, M. & Jorge, R. 2020 Magnetic well and Mercier stability of stellarators near
the magnetic axis. Journal of Plasma Physics 86 (5), 905860510.

Landreman, M., Medasani, B. & Zhu, C. 2021 Stellarator optimization for good magnetic
surfaces at the same time as quasisymmetry. Physics of Plasmas 28 (9), 092505.

Landreman, M. & Sengupta, W. 2019 Constructing stellarators with quasisymmetry to high
order. Journal of Plasma Physics 85 (6), 815850601.

Lu, Yulong & Lu, Jianfeng 2020 A universal approximation theorem of deep neural networks
for expressing probability distributions, arXiv: 2004.08867.

McLachlan, G. J. & Basford, K. E. 1988 Mixture models: Inference and applications to
clustering . Marcel Dekker.

McLachlan, G. J. & Peel, D. 2004 Finite Mixture Models. Wiley Series in Probability and
Statistics 1. Wiley.

Mercier, C. 1964 Equilibrium and stability of a toroidal magnetohydrodynamic system in the
neighbourhood of a magnetic axis. Nuclear Fusion 4 (3), 213.

20 P. Curvo, D. R. Ferreira, R. Jorge

Murphy, K. 2023 Probabilistic Machine Learning: Advanced Topics. MIT Press.
Nuhrenberg, J. & Zille, R. 1988 Quasi-helically symmetric toroidal stellarators. Physics

Letters A 129 (2), 113.
Paul, E. J., Bhattacharjee, A., Landreman, M., Alex, D., Velasco, J. L. & Nies, R.

2022 Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry.
Nuclear Fusion 62 (12), 126054.

Solov’ev, L. S. & Shafranov, V. D. 1970 Plasma confinement in closed magnetic systems.
In Reviews of Plasma Physics (ed. M. A. Leontovich), , vol. 5, pp. 1–247. Springer.

Spitzer, L. 1958 The stellarator concept. Physics of Fluids 1 (4), 253.
Uzair, Muhammad & Jamil, Noreen 2020 Effects of hidden layers on the efficiency of neural

networks. In 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6.

	Introduction
	Physical Model
	Mixture Models and Density Networks
	Mixture Density Networks
	Data Generation and Training
	Model Performance
	Conclusions

