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Abstract.

We explore the possibility of fully replacing a plasma physics kinetic simulator

with a graph neural network-based simulator. We focus on this class of surrogate

models given the similarity between their message-passing update mechanism and

the traditional physics solver update, and the possibility of enforcing known physical

priors into the graph construction and update. We show that our model learns

the kinetic plasma dynamics of the one-dimensional plasma model, a predecessor of

contemporary kinetic plasma simulation codes, and recovers a wide range of well-known

kinetic plasma processes, including plasma thermalization, electrostatic fluctuations

about thermal equilibrium, and the drag on a fast sheet and Landau damping. We

compare the performance against the original plasma model in terms of run-time,

conservation laws, and temporal evolution of key physical quantities. The limitations

of the model are presented and possible directions for higher-dimensional surrogate

models for kinetic plasmas are discussed.

Keywords: Plasma Physics, Kinetic Simulations, Machine Learning, Graph Neural Networks

1. Introduction

Simulating the kinetic behavior of a plasma [1] is a complex and computationally

demanding task. Fully relativistic massively-parallelized Particle-in-Cell (PIC) codes

are commonly used to model these phenomena and have been shown to correctly recover

and predict plasma collective behavior [2–4].

To obtain computational speed-ups, there have been recent attempts to combine

existing PIC codes with machine learning surrogate models. These efforts include

approaches to accelerate [5] or fully replace [6, 7] the field solver block, reduce the

computational burden associated with the particle push and grid-particle/particle-grid

interpolation [8, 9], and the integration of surrogate models into advanced physics

extensions [10]. In parallel, PIC simulations and machine learning algorithms have

also been used to train fast surrogate models for plasma accelerator setups [11–14], to

learn closures for fluid simulations [15], to model hybrid plasma representations [16], and
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to recover reduced plasma models [17]. However, obtaining a significant computational

gain, while enforcing known physics constraints and reproducing the kinetic effects for

a broad range of scenarios, is still an open research question.

Developments in machine learning introduced several physics-inspired surrogate

models as an alternative to standard differential equation solvers [18–21] and n-body or

mesh-based simulators [22–28].

From the broad set of available surrogate models, one class of algorithms that can

be of particular interest for kinetic plasma simulations are graph neural network-based

approaches [29–31], because of their capability to model both particle-particle [22] and

particle-mesh interactions [23], as well as the possibility of enforcing known invariances

or symmetries into the network architecture [25, 26, 31]. These approaches have been

successfully applied to fluid [22, 23, 28], rigid body [23, 32], and charged particle

dynamics [25,26,33]. However, to the best of our knowledge, their applicability to model

kinetic plasma simulations is still to be demonstrated. Graph-based representations

and graph theory techniques have been explored in other branches of plasma physics,

including low-temperature plasmas and plasma chemistry, but mostly for visualizing

and reducing chemical reaction mechanisms [34–36].

In this work we aim to model the predecessor of the PIC loop, the one-dimensional

electrostatic sheet plasma model introduced by Dawson [37, 38]. This is an ideal

initial testbench since it provides a simpler scenario, in terms of the problem structure

and possible computational gains, while capturing a wide range of kinetic plasma

physics phenomena that go beyond “collisionless” physics, including Coulomb collisions,

and collisional thermalization [37–41]. Moreover, recent studies in the fundamental

statistical physics processes in plasmas have been using the sheet model and/or direct

extensions [42]. We show how to leverage previous work on graph neural network-

based simulators by Sanchez-Gonzalez et al. [22] for kinetic plasma simulations and

for the one-dimensional sheet model by introducing domain knowledge into the graph

construction and simulator update mechanisms which enforce the desired symmetries

and invariances. We discuss the advantages and disadvantages of using our surrogate

model when compared to the standard physics simulator in terms of accuracy, run-

time, energy conservation, and generalization capabilities. In particular, we will show

that when trained on data generated at high temporal resolution data (high-fidelity),

the model is able to learn an improved algorithm to resolve sheet crossings (equivalent

to resolving Coulomb collisions) for lower temporal resolutions when compared with

the traditional physics solver. Futhermore, while the crossing correction algorithm

implemented by the traditional solver is a serial routine, the model is also capable

of reducing the overall run-time, since its operations are mostly parallelized. Finally,

based on our findings, we comment on the expected impact of graph neural network-

based simulators for the multi-dimensional PIC scenario.
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2. Electrostatic sheet model

The single-species one-dimensional electrostatic sheet model introduced by Dawson [37,

38] represents a plasma as a group of identical negatively charged sheets, moving freely

over a uniformly neutralizing positive background (see figure 1). In a one-dimensional

system, this model is exact and describes, within classical physics, the dynamics of a

non-relativistic electron plasma. The sheets can be regarded as being composed by

electrons, while the background is composed by heavier, immovable ions.

𝛿	𝑥

(a) (b)

Figure 1. Schematic of the 1D single species electrostatic sheet model. (a) In

equilibrium, the negatively charged sheets (red) are equally spaced inside the box; (b) If

one sheet is displaced from its equilibrium position, the average electric field on the

sheet is not zero, due to the charge imbalance. Adapted from Dawson [37].

For a system of N sheets inside a simulation box of length L with a background

ion number density n0, if the elementary charge is −e for electrons and +e for ions,

then the total background charge Q=en0L must be balanced by N sheets with a total

charge of −Q. Therefore, each sheet has a charge of −en0δ, with δ=L/N , and a mass

of men0δ, where me is the mass of the electron.

When the system is in equilibrium (figure 1(a)) the sheets are at rest and equally

spaced by δ. In this scenario, the electric field can be represented by a sawtooth function.

To understand why, one can apply Gauss’s law on a closed surface around a sheet. If

the surface enlarges, more background charge is enclosed, which means that the electric

field grows linearly along the x-axis by a factor of 4πen0 (in c.g.s. units). On the other

hand, when the Gaussian surface is large enough to include the next sheet, the enclosed

charge drops by −en0δ, and the electric field jumps by −4πen0δ.

At their equilibrium positions, the net electric force on each sheet is zero. However,

if a sheet moves a certain distance ξ from its equilibrium position (figure 1(b)), it

experiences an electric field E = 4πen0ξ and a corresponding electric force F = −en0δE.

Since the sheet mass is men0δ, the Newtonian equation of motion can be written as:

ξ̈ = −ω2
pξ (1)

where ωp =
√

4πn0e2/me is the plasma frequency. This result implies that, for small

displacements, each sheet behaves as an independent harmonic oscillator.
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Figure 2. Comparison of charged sheet trajectories when considering sheet interactions

as crossings (top) versus binary collisions (bottom). The system consists of 10 sheets

(represented by different colors) moving on a periodic box of length L. Initial velocities

were randomly chosen. We will learn to model the dynamics of the first case (crossings)

as this is considerably easier, mainly due to the smoothness of the sheet trajectories.

More details on the difficulties that arise when attempting to learn collisional dynamics

are provided in Appendix B.

For larger displacements, it is possible that consecutive sheets cross each other,

corresponding to a one-dimensional Coulomb collision, meaning their equilibrium

positions switch. This interaction can also be modeled as an elastic collision, i.e. one

can simply switch the velocities of the sheets at the instant of crossing (instead of their

equilibrium positions) as it results from the conservation of energy and momentum.

An illustration of the difference in the resulting individual trajectories is provided in

figure 2.

To simulate this system, two computational directions can be used [38]: a

synchronous method, and an asynchronous method. The synchronous method first

updates the sheet dynamics according to (1) considering a fixed ∆t. It then detects

crossings by testing the condition xt+1
i > xt+1

j for j > i, and proceeds to use an iterative

method to estimate the crossing times and correct the motion of the corresponding

sheets (more details are provided in Appendix A). This method does not correctly

resolve crossings involving more than two sheets in a single time step, which leads to
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an overall energy loss in the system if the time step is too large compared with the

inverse of the typical collision frequency. For this reason, for higher sheet velocities it

is necessary to use smaller simulation time steps (the collision frequency increases with

increasing thermal velocity).

The asynchronous method advances the simulation until the next crossing. The

next crossing time can be predicted analytically from (1) by solving for xi(t) = xj(t)

with respect to t for all pairs of adjacent sheets. This algorithm guarantees energy

conservation but implies additional computational effort since a sorted table containing

all expected crossing times between neighboring sheets must be pre-computed and

updated after each crossing is resolved.

Since the Graph Network Simulator (GNS) is a synchronous model, we use the

synchronous sheet model algorithm (SM, illustrated in figure 3) for both data generation

and testing purposes to allow for accuracy comparisons at equivalent simulation time

steps. Additionally, we introduce a synchronous Modified Sheet Model algorithm (MSM)

which only checks for crossings with at most the n-th neighboring sheets. This allows us

to compare the GNS with an algorithm that only has access to the equivalent amount

of neighboring sheets when correcting for crossings. For completion, we also implement

the asynchronous version of the sheet model algorithm (ASM) for run-time comparisons.

More details regarding the different implementations are provided in Appendix A.

3. Graph Network Simulator

The GNS architecture used here is inspired by the work of Sanchez-Gonzalez et al. [22],

while taking into consideration the specifics of the electrostatic sheet model. The main

building blocks are presented in figure 3.

Based on the sheet positions xt, velocities vt, equilibrium positions xt
eq, and

boundary conditions, we generate a graph representation G of the plasma. A Graph

Neural Network (GNN) predicts each individual sheet acceleration at which will be

used to update the positions xt and velocities vt. We enforce the boundary conditions

by re-injecting sheets that crossed the boundary, sorting the sheets by their position,

and updating their equilibrium positions. This process can be repeated to generate

longer simulation rollouts.

Our GNS does not treat sheet interaction as binary collisions. Instead, we learn to

predict the changes in velocity as sheets move through one another. This choice makes it

significantly easier for the network to learn the dynamics of the system and also reduces

the graph and model complexity. We provide this comparison, as well as the structural

changes required to the simulator when considering crossings as collisions, in Appendix

B.
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Figure 3. Schematic representations of the synchronous electrostatic sheet model

algorithm [38] and the proposed Graph Network Simulator.

3.1. Graph representation

The plasma is represented as a graph G with a set of nodes {ni} representing the

negatively charged sheets, and a set of directed edges {rij} which connect neighboring

sheets (figure 4). In our case, we opted to connect only the first neighbors (additional

comments on the trade-off between higher connectivity and a deeper GNN are provided

throughout the text). Each node ni is represented by a vector containing the information

relative to the corresponding negatively charged sheet, while each edge rij contains the

relative displacement of sheet i in relation to sheet j. They are defined as:

nt
i =

[
ξti , v

t
i

]
rtij = xt

j − xt
i

(2)

where ξti corresponds to the displacement of the i-th sheet from its equilibrium position(
xt
i − xt

eqi

)
, and vti the finite difference velocity

(
xt
i − xt−1

i

)
/∆t. To allow the model

to generalize to different box sizes and number of sheets, we normalize all distances

and velocities by the intersheet distance at equilibrium δ. This transformation makes

the inputs of the network invariant to the system size (box length and number of

sheets). This is also the reason why we include in the node vector the displacement from

equilibrium instead of the sheet position inside the box, which additionally enforces an

invariance to the sheet rank.

When considering reflecting boundary conditions, extra “guard” nodes representing

mirrored versions of the sheets closer to the respective boundary are added to the

graph (figure 4, mirrored versions follow ξmi = −ξi, v
m
i = −vi, for the left boundary

xm
eqi

= xeqi− i ·δ, for the right boundary xm
eqi

= xeqi+(N+1− i) ·δ)). Ideally, the number

of mirror sheets should be large enough so that no boundary sheet crosses all mirror
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Figure 4. Graph representation of a four-sheet system for different boundary

conditions. Each graph node corresponds to a physical sheet. Directed edges

connect neighboring nodes and represent the possible interaction between sheets.

Computationally, nodes are represented by a vector and edges by a scalar according

to equation (2). For the sheet model, boundaries are modeled using guard sheets [38].

For reflecting boundaries they represent mirrored versions of the sheet(s) closer to the

boundary, for periodic boundaries they represent equal versions of the sheet(s) closer

to the opposite wall. For the GNS, we adopt a similar representation for reflecting

boundaries by adding guard nodes representing mirrored versions of the sheets closer

to the boundary. The number of guard nodes is set to the number of message-passing

steps of the GNN. For periodic boundaries, we instead add directed edges between the

first and last node.

sheets in a single time step (in our case we set it to the number of message-passing steps,

which we cover in Section 3.2). On the other hand, for periodic boundaries, the graph

becomes cyclic by introducing edges between the first and last nodes and considering

the distance between the corresponding sheets to be equal to the distance through the

walls of the simulation box (r1N = −rN1 = xN − x1 − L). In subsequent sections, we

show that representing boundaries in this way allows the GNN model to be applied

to different boundary conditions than the ones it was trained on, since it learns solely

interactions between sheets (not interactions with the wall). However, this comes at

the cost of an extra hard-coded step, which re-injects sheets that crossed the boundary

(procedure to be explained in more detail in later sections).

We experimented with several other possible representations of the system, (e.g.

different boundary representations, node and edge parameters) but these variants

either produced worse results (in terms of accuracy or generalization capabilities) or

introduced extra complexity and memory requirements that did not result in meaningful

accuracy and/or speed-up improvements for the tested scenarios. Connecting n-

nearest neighbors allowed us to achieve similar accuracies for shallower GNNs (since
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information propagates faster through the graph). However, it introduced extra memory

requirements. It is therefore a trade-off that should be taken into account for future

test scenarios.

3.2. Graph Neural Network architecture

The GNN module used (figure 5) follows an encoder-processor-decoder architecture as

introduced by Battaglia et al. [30]. This architecture allows us to model the interactions

between sheets by performing a series of message-passing steps between the connected

nodes in the graph (representing the sheets) and therefore predict each individual sheet

acceleration for the corresponding time step (which includes the contribution from the

crossings and its oscillatory motion). The main building blocks are formalized as follows.

Encoder: The encoder (figure 5a) transforms the graph Gt nodes ni ∈ R2 and edge

rij ∈ R vectors into a (higher-dimensional) latent space graph representation G0, whose

latent nodes vi ∈ RL and latent edges eij ∈ RL, are given by:

vi = εv (ni)

eij = εe (rij)
(3)

where εv and εe are learnable functions and L is the latent space size.

Processor: The processor consists of a series of M Graph Network (GN) blocks

(figure 5b) adapted from [30]. (These blocks were modified to include the sent edge

information in the node update function, which is equivalent to the GN implementation

available in Jraph [43].) Each m-th GN block updates the latent graph outputted by

the previous layer GNm(Gm−1) → Gm according to:

emij = ϕm
e

(
em−1
ij ,vm−1

i ,vm−1
j

)
emri =

∑
j∈N (i)

emij

emsi =
∑

j∈N (i)

emji

vm
i = ϕm

v

(
emri , e

m
si
,vm−1

i

)
(4)

where the superscript denotes the block number, N (i) the set of nodes connected to i,

and ϕm
v , ϕ

m
e are learnable functions. The value of M is set depending on the training

time step and the maximum velocity of the sheets present in the training simulations.

Ideally, M should be larger than the maximum number of neighboring sheets that a

given sheet crosses in any particular time step, since a graph node will at most re-

ceive/send information from/to the M th neighbor. This condition can be relaxed if the

N -nearest neighboring nodes are directly connected (with the cost of additional mem-

ory requirements), and we have observed similar performance in our tested scenarios for

models with an equivalent M×N factor. However, for higher crossing frequencies than
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Figure 5. Schematic of the GNN encoder-processor-decoder architecture. The

processor block is composed of M independent Graph Network (GN) blocks similar

to [30]. (a) The encoder block converts the input graph Gt node/edges (nt
i, r

t
ij) into a

higher-dimension latent space graph representation G0 with node/edge vectors (v0
i , e

0
ij).

(b) Each m-th GN block updates the latent edge and node vectors of Gm−1 → Gm. The

update functions ϕm
e,v are parameterized by a Multi-Layer Perceptron (MLP, in our case

a 2-layer dense neural network). MLP weights are different for each GN block. (c) The

decoder block computes the sheet acceleration ati from the corresponding final latent

node representation vM
i . The linear transformations in the encoder/decoder block and

the MLP weights from the GN blocks are learned during training.

the ones presented in this work, it might be preferable to increase N to avoid possible

information bottlenecks [44].

Decoder: The decoder block (figure 5c) transforms the node vectors of the last latent

graph GM into a scalar:

yi = δv
(
vM
i

)
≡ ati (5)

where δv is a learnable function. In our case, the output yi is a single real value
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that corresponds to an estimate of the individual finite difference sheet acceleration

ati = (vt+1 − vt)/∆t = (xt+1 − 2xt − xt−1)/∆t normalized to the intersheet spacing δ.

We parameterize the encoder and decoder functions (εe, εv, δv) as (learnable) linear

transformations. As for the processor functions (ϕm
e , ϕ

m
v ), they are given by two-layer

dense neural networks (one for each GN block) following: Input → {LinearLayer →
ReLU → LinearLayer} → Output. In every block (encoder, processor, and decoder),

we use a latent space of size 128 (all hidden and output layers have this dimension).

A summary of the hyper-parameter tuning experiments that led to these final values is

provided in Appendix C.

Although this GNN architecture, by design, does not enforce equivariance with

respect to reflections over an equilibrium position (a symmetry present in the sheet

model, i.e. if the simulation box is flipped the absolute value of the predicted

accelerations should simply switch signs), we observed that the network was nonetheless

capable of correctly approximating this symmetry within the training data range. In

fact, we developed an alternative architecture that enforced this equivariance but did

not observe relevant gains concerning the required number of training simulations nor

improved rollout accuracy or energy conservation capabilities (in fact we observed

a deterioration for considerable out-of-training data distribution values). Similarly,

not using the sent messages for the node update mechanism led to poorer energy

conservation for (considerably) out-of-training data distribution values. More details

about these comparisons and the equivariant architecture are provided in Appendix D.

3.3. Position and velocity update

The predicted accelerations at provided by the GNN decoder are used to update the

sheets dynamics. For this purpose, we use a semi-implicit first-order Euler integration

scheme as follows:
ṽt+1
i = vti + ati∆t

x̃t+1
i = xt

i + ṽt+1
i ∆t

(6)

which corresponds to the “ODE Integrator” block in figure 3.

After this update, we resolve the boundary crossings. When considering reflecting

boundary conditions, we flip the position and velocity of the sheets that went beyond the

simulation box. No change is applied to their equilibrium positions. When considering

periodic boundaries, we instead re-insert the sheets through the opposite boundary

without changing their velocities. Additionally, the equilibrium positions are updated

to take into consideration sheets that crossed the boundaries (additional information is

provided in Appendix E).

Finally, we sort the sheets by their position inside the box. This step is required to

correctly attribute equilibrium positions and ensure the necessary relative ordering for

graph construction.
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4. Implementation

For reference, we implemented the synchronous version of the original electrostatic sheet

model [37, 38] in Python, using NumPy [45]. This code is used to generate all ground

truth training and test data at a high temporal resolution. The modified synchronous

algorithm and the asynchronous algorithm were implemented in a similar fashion and

are only used for testing purposes. The GNS was also implemented in Python using

JAX [46], Jraph [43], Haiku [47], and Optax [48].

Additionally, from here onwards we will adopt a system of units similar to

Dawson [37]. Time will be shown in units of the plasma period ω−1
p (with ωp as

defined right after (1)), distances will be presented in units of the intersheet spacing

in equilibrium δ, resulting in velocities in units of δ ·ωp and accelerations in units of

δ ·ω2
p. Note that in the adopted units the Debye length λD is equivalent to the thermal

velocity since, by definition, vth = λDωp [1], and the length of the simulation box L is

equivalent to the number of sheets since L = Nsheetsδ.

4.1. Generating the ground truth data

Using the electrostatic sheet model, we generate 10,000 simulations of systems consisting

of 10 sheets moving inside a periodic box. We use only 10 sheets for training to emphasize

the capabilities of the simulator to generalize to significantly larger system sizes (over

several orders of magnitude) at test time. It would be possible to train with a larger

system size, and this would allow using a smaller training set. On the other hand,

the opposite idea of reducing the system size even further is not advisable, since this

could limit the capability of the GNS to learn crossings involving multiple sheets (to be

explained in more detail in later sections).

All training simulations are run for a duration of tmax = 10 ω−1
p using a time

step of ∆tsim = 10−4 ω−1
p . The initial displacements from the equilibrium positions

and velocities of the sheets are randomly sampled from uniform distributions. The

maximum initial displacement equals ξ0max = 0.2 δ and the maximum initial velocity

is v0max = 10 δ ·ωp. In addition, we ensured that the total energy of the system did

not vary more than a predefined threshold (∆ε/ε0 = 10−6) during the full simulation

by discarding simulations that did not fulfill this criterion. This guarantees that all

crossings are well resolved by the sheet model. We have also tested training models using

synchronous data generated from asynchronous simulations (with energy variations of

∆ϵ/ϵ0 < 10−10) but did not observe performance differences.

4.2. Data preprocessing and augmentation

Before training the GNN models, we apply the following preprocessing steps. First, we

downsample the data to the desired training time step (e.g. ∆ttrain = 10−2 ω−1
p ). To

take advantage of the system symmetries, we proceed to augment the training dataset

by mirroring the simulations along the x- and time-axis (the latter is not equivalent to
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simply changing the sign of the velocities since we are using the finite difference velocity).

We proceed to generate pairs of input graphs and output target accelerations, where

each input graph corresponds to a full simulation rollout (and corresponding augmented

versions). More details on the impact of the training dataset size and data augmentation

are provided in Appendix F.

4.3. Training

To train the models, we hold out 100 simulations for validation purposes. We proceed

to minimize the mean squared error between the predicted and target accelerations

using the Adam optimizer. We use an exponential learning rate scheduler, similarly to

Sanchez-Gonzalez et al. [22], for which α(j) = αfinal + (αstart − αfinal) · 0.1j·106 , where
j represents the gradient update step, and the initial and final learning rates are given

by αstart = 10−4 and αfinal = 10−6. We set the batch size to 1 (one graph corresponds

to a full simulation) and compute the validation loss on the full validation set once a

full cycle over the training dataset is completed. The training procedure is then run to

a maximum of 1× 106 gradient updates for ∆ttrain = 10−1 ω−1
p , and 1.5× 106 gradient

updates for ∆ttrain = 10−2 ω−1
p . The final weights of the model are those obtained for

the smallest recorded validation loss. The full training procedure lasts approximately

4 hours for ∆ttrain = 10−1 ω−1
p and M = 5, and 1 day for ∆ttrain = 10−2 ω−1

p and

M = 3, on a single Nvidia Titan X GPU. For each value of ∆ttrain we train 5 equivalent

models using different random seeds in order to assess the dependence of performance

on weight initialization.

Examples of the obtained training loss curves are depicted in figure 6. We observe a

similar behavior across other models, with the validation loss stabilizing close to the last

epoch. The learning rate scheduler is particularly helpful in the later stage of training

to reduce the training loss oscillations across batches.

5. Model benchmark

In this section, we assess the capability of the GNS to predict individual sheet

trajectories. We showcase the generalization capabilities already hinted at in Section 3.1

by evaluating the model accuracy for systems of different sizes and boundary conditions.

Additionally, we compare its energy conservation capabilities and run-time against the

different sheet model algorithms and discuss the identified GNS limitations.

5.1. Trajectory prediction error

In order to benchmark the rollout accuracy and generalization capabilities of the GNS,

we evaluate its accuracy on multiple test sets consisting of systems with different

numbers of sheets and boundary conditions. Each test set contains 100 simulations with

a similar duration, temporal resolution, maximum initial displacement and velocity as

the ones present in the training set. Our evaluation metrics are the rollout mean absolute
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Figure 6. Examples of the training and validation loss evolution during training. For

each epoch, 9900 gradient updates are performed (1 per training simulation). The

shaded area represents the minimum and maximum train loss across the batches for the

corresponding epoch, mean value is presented in full line. Validation loss is computed at

the end of the epoch over 100 held-out simulations. The results show that the training

loss, on average, decreases monotonically and that the validation loss plateaus close to

the defined epoch limit. No relevant gains were observed for longer training runs.

error (MAE) and the earth mover’s distance (EMD) [49] between the predicted and the

ground truth sheet trajectories, calculated, for each time step, as

MAE =
1

N

N∑
i

∣∣xGNS
i − xTrue

i

∣∣
EMD = min

1

N

N∑
i

N∑
j

∣∣xGNS
i − xTrue

j

∣∣ · cij,
subject to

∑
i

cij = 1 ,
∑
j

cij = 1 , and cij ∈ {0, 1}

(7)

and then averaged over the full simulation rollout. In the case of periodic boundaries,

we modify both metrics to consider the absolute distance to be the minimum of the

distances through the box or through the walls.

The results presented in figure 7 allow us to draw some conclusions. We observe

the rollout errors obtained are considerably small (note that they are presented in units

of the intersheet spacing δ) demonstrating that, despite training solely on single-step

acceleration prediction, we achieve a stable rollout accuracy. To provide additional

insight into the small scale of the errors, we showcase in figure 8 the worst test simulation

rollouts (highest rollout EMD across all models) for different time steps and boundary

conditions.

We also observe the simulator accuracy is independent of the number of sheets

and boundary conditions, without additional re-training/fine-tuning. These invariances,



Learning the dynamics of a one-dimensional plasma model with GNNs 14

100 101 102 103

Nsheets

10−6

10−4

10−2

100

R
ol

lo
u

t
M

A
E

[δ
]

train

100 101 102 103

Nsheets

10−6

10−4

10−2

100

R
ol

lo
u

t
E

M
D

[δ
]

train

∆t = 10−1 ω−1
p

∆t = 10−2 ω−1
p

Reflecting

Periodic

Figure 7. Rollout error metrics for the GNS in the test set simulations. For each

value of ∆t we compute the metrics for 5 equivalent GNNs trained using different

random seeds. The presented mean values are computed by averaging over sheets,

time steps, simulations, and GNN models (for a detailed comparison between different

models see Appendix G). The error bars represent the minimum and maximum rollout

error achieved for the corresponding set of test simulations across all models. The results

demonstrate that even though the training data contains solely systems consisting of 10

sheets moving over a periodic box, the GNS is capable of generalizing to smaller/larger

system sizes and different boundary conditions. Furthermore, the reported errors are

considerably small.

already hinted at in Section 3.1, are a direct consequence of the chosen graph

representation of the system.

Finally, figure 7 illustrates the importance of using both the MAE and the EMD as

complementary evaluation metrics. The larger intervals associated with the MAE are

produced by a small set of simulations where, due to the accumulation of small prediction

errors, two sheets switch their expected relative order during a tangential crossing (i.e.

when they are moving in the same direction with very similar velocities). This results in

a permutation of their predicted trajectories with respect to their ground truth, leading

to larger MAE values (see for example figure 8 for reflecting boundary, at t = 2 ω−1
p the

orange and dark blue trajectories permute after reflection). The reason why the error

intervals decrease significantly for the EMD case is because this metric is invariant to

permutations of sheet trajectories. This invariance (which the MAE does not provide) is

an important property for our case study since a simple permutation of sheet trajectories

does not change the distribution function of the system (i.e. the systems are equivalent).

Therefore, the EMD provides a better assessment of the accuracy of the simulator to

model the collective plasma dynamics.

We observed that, overall, equivalent models trained with different random seeds

converge to very similar rollout errors (detailed comparisons provided in Appendix G).

The only exception was one of the models trained for ∆t = 10−2 ω−1
p which revealed a

slightly worse rollout performance. We attribute this larger error to its worse single-step
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Figure 8. Example of simulation rollouts observed for test simulations of 10-sheet

systems. These examples correspond to the worst-performing rollouts (largest EMD

across all models) for the indicated simulator time step and boundary conditions. The

predicted and ground truth trajectories and the MAE/EMD evolution are shown (per

time step average over sheets). In both cases, the ground truth trajectories (obtained

with the Sheet Model using ∆t = 10−4 ω−1
p ) are downsampled to the same simulation

time step as the GNS. We plot the ground truth trajectories with a larger marker size

in order to be possible to distinguish them with respect to the prediction. It is clear

that the GNS is capable of correctly modeling the sheet trajectories for longer rollouts,

even though it was solely trained on single-step prediction.
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prediction capabilities given the validation loss at train time was approximately double

that of equivalent models.

5.2. Energy conservation

In order to check for energy conservation, we run simulations using two types of initial

velocity distributions: thermal – velocities sampled from a normal distribution with

standard deviation equal to vth; and oscillation – sheets share the same initial velocity

v0 (no crossings should occur). For both initial conditions, we perform a scan over

the initial thermal/oscillating velocity (one simulation per value) and sheets are always

initialized at their equilibrium positions. All simulations consider a system of 103 sheets

moving over a periodic box for a total of tmax = 5× 2π ω−1
p .

While for the sheet model the energy decreases monotonically, we observed this

was not the case for the GNS (energy might increase, decrease, or oscillate, examples

are provided in Appendix G). Furthermore, since the GNS uses the finite difference

velocities instead of the instantaneous velocities, there is an oscillation in the energy

associated with the plasma period (the period of the energy oscillation is equal to half a

plasma period) which is clearly dominant for lower thermal velocities. This oscillation

is merely an artifact of the finite different velocities used to compute the energy of the

system.

To allow for a fair comparison between the sheet model and GNS we then compute

the total energy variation as follows: we skip the first plasma oscillation, apply a moving

average with a window size of ∆t = 2π ω−1
p to the remaining datapoints and retrieve

the maximum deviation from the initial energy of the system (these steps are further

justified in Appendix G). For each time step, the energy of the system ϵ is computed

according to:

ϵ =
1

2
me

N∑
i

(
v2i + ω2

pξ
2
i

)
. (8)

The final results for the GNS, containing scans performed for different initial

velocity distributions, are presented in figure 9. Comparisons between the GNS and the

synchronous sheet model (original and modified version) are presented in figure 10 for

initial thermal conditions. No comparisons are provided for initial oscillatory conditions

since the sheet model conserves perfectly the energy in this scenario. Similarly, no

comparisons are provided with the asynchronous model since by definition it conserves

perfectly the energy of the system.

It is observed that the accuracy of the GNS models remains approximately constant

for the thermal velocities for which it was trained (vth ≤ vtrainth in figure 9). However, for

out-of-distribution scenarios the energy variation starts increasing, more noticeably for

∆t = 10−2 ω−1
p . This behavior is not visible for the oscillatory initial conditions, where

we observe a very stable energy loss rate across all models for v0 ≤ vtrainmax . Therefore, the

lower performance for higher vth should be attributed to a failure in correctly modeling

all crossing events in such conditions.
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Figure 9. Energy variation rate of the GNS for simulations of 103 sheets moving over

a periodic box for tmax = 5 × 2π ω−1
p . Initial sheet velocities are either sampled from

a normal distribution (thermal) or all equal to v0 (oscillation). We run, per trained

∆t, the exact same simulations using 5 equivalent GNN models (trained with different

random seeds). The mean values across GNN models are presented in full line, and the

min/max values are represented by the shaded region (for a detailed comparison between

different seeds, see Appendix G). The GNS performance is stable within the training

region (vth ≤ vtrainth ) but starts to significantly degrade for larger thermal velocities.

When comparing the GNS to the sheet model within the training data distribution,

we observe once again two distinct behaviors for the different temporal resolutions

(figure 10). For ∆t = 10−1 ω−1
p the GNS is on par with the sheet model, and actually

improves (on average) upon the sheet model energy conservation for vth ≃ vtrainth . This

happens since the GNS learns a better correction algorithm for crossings involving n > 2

sheets (refer to Appendix A on why the synchronous sheet model does not correctly

model higher order crossings). On the other hand, for ∆t = 10−2 ω−1
p , the GNS energy

variation is worse than the SM using solely the first order correction (although the value

is still considerably small). We believe the limiting factor here is simply the training

error, which we could not further reduce (validation loss values are already ≈ 10−8).

A performance degradation is expected for the GNS outside its training data region

since: (a) the number of message-passing steps associated with each model (M = 3 for

∆t = 10−2 ω−1
p , M = 5 for ∆t = 10−1 ω−1

p ) limits the GNS capability to correctly resolve

crossings involving a larger number of sheets (which are more likely to occur at larger

values of vth; the same behavior is observed for the modified sheet model in figure 10);

and (b) the GNN is only trained on crossings involving n ≤ nmax, where nmax is the

maximum number of sheets involved in any crossing within the training data. However,

this does not explain why outside the training data the performance of the GNS at

different time resolutions is equivalent. We attribute this behavior to two main effects.

Firstly, there is one particular GNN model (for ∆t = 10−2ω−1
p ) that consistently
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Figure 10. Comparison of the energy variation rate for the GNS, the synchronous Sheet

Model (SM), and the Modified Sheet Model (MSM). We use the same setup as in figure 9

(thermal initialization, 103 sheets, periodic box, tmax = 5 × 2π ω−1
p ). For the SM and

MSM, we run a single simulation per set of initial conditions and simulation time step

∆t. For the SM, tck indicates the order of the correction for the crossing time (k = 0

is no correction). For the MSM, we use k = 2, and the numbers indicate the maximum

neighbor checked for crossings. No significant gains in energy conservation are observed

when comparing the GNS against the SM which uses higher order corrections (tc2/3).

The MSM exhibits a behavior similar to the GNS (steep increase in error at certain vth),

reinforcing the conclusion that the performance degradation of the GNS for vt > vtrainth

is mainly due to the chosen graph connectivity and number of message-passing steps

(M = 5 for ∆t = 10−1 ω−1
p and M = 3 for ∆t = 10−2ω−1

p ).

performed worse across all metrics (validation loss, rollout accuracy, and energy

conservation) which biased significantly the average value of the energy variation rate.

Removing this model from the average calculation changes considerably the behavior

for vtrainth < vth < vmax
train (more details in Appendix G).

Secondly, for the higher temporal resolution scenario, the majority of the training

samples do not include any crossings (> 90%, more details in Appendix G) or crossings
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involving more than 2 sheets (≃ 99.9%). This can bias the training procedure to

significantly reduce the prediction error for events that do not involve crossings to the

detriment of the (smaller) subset that contains crossings (which becomes problematic

at test time for scenarios where crossings dominate the overall dynamics). Additional

support for this claim is the fact that the higher temporal resolution models seem to be

“overfitting” the purely oscillatory dynamics within the training data range since they

fail to generalize to larger oscillation amplitudes (steep increase in energy variation for

the oscillating initial conditions for v0 > vtrainmax ). Furthermore, while for ∆t = 10−1 ω−1
p

the GNS performs significantly better than the “equivalent” MSM (GNS uses M = 5),

for ∆t = 10−2 ω−1
p the GNS can not obtain similar results (GNS uses M = 3).

The impact of the aforementioned effects could be investigated in future work (and

mitigated if necessary) by using alternative data sampling strategies. However, the main

focus should be the improvement of the performance for lower temporal resolutions

and higher crossing rates since this is where larger computational gains are expected

(accompanied by improved energy conservation).

It would also be important to study why some models are capable of achieving

better energy conservation capabilities at larger vth (which might indicate that they

learn a more robust crossing resolution algorithm), how to consistently achieve this

level of performance (e.g. by using a regularizing penalty [33]), and if penalizing for

rollout accuracy at train time could improve stability [27, 28]. Additional evaluation

metrics/tests should also be devised since neither the validation loss nor the current

rollout accuracy tests seem to be good predictors for improved energy conservation

capabilities. These new tests could include, for instance, measurements of rollout

accuracy for significantly longer simulations and higher thermal velocities.

5.3. Run-time

Using the same setup for thermal initial conditions, we analyzed the run-time of the

different sheet model algorithms versus the GNS. The results obtained are presented

in figure 11. The sheet model run-time increases with the crossing frequency (for

all versions), while the GNS does not. This happens because, with higher crossing

frequencies, the sheet model verifies a higher number of neighbors for each sheet, while

the GNS maintains the same amount of message-passing steps and graph structure.

Furthermore, most of the operations of the sheet model algorithm are sequential, while

for the GNS, most operations occur in parallel.

We observe that the GNS is one order of magnitude faster than the synchronous

sheet model algorithm for ∆t = 10−1 ω−1
p at similar energy conservation rates (i.e. within

the training regime). However, it is important to highlight that the different models

are implemented with different packages (NumPy vs JAX) and running on different

hardware (CPU vs GPU) which influences their respective run-time. Furthermore, we

make no claims that our implementations are optimal, meaning they could both benefit

from further speed-ups.
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Figure 11. Run-time of the synchronous (SM) and asynchronous (ASM) sheet model

vs. the GNS for systems of 103 sheets moving on a periodic box over the period of a

single plasma oscillation (tmax = 2π ω−1
p ). Values shown are averages over 5 simulations.

For a fairer comparison among different time resolutions, the rollout data is only saved to

a buffer every ∆t = 10−1 ω−1
p . The run-time of the modified sheet model (MSM), which

is not shown, is equivalent to that of the SM. The just-in-time compilation time for the

GNS is not included since it is a fixed cost that does not change for longer simulations

(where it is considerably diluted). It amounts to tJIT = 1.2 s for ∆tGNS = 10−2 ω−1
p and

tJIT = 2.3 s for ∆tGNS = 10−1 ω−1
p . The results demonstrate that the (A)SM run-time

increases with vth (higher number of crossings) while the GNS run-time is constant.

By comparing these results with those of figure 10 it is observed that the GNS, at the

lower temporal resolution, is faster than the SM at equivalent energy variation rates

(vth ≤ vtrainth ).

Additionally, if one is capable of training similarly accurate GNS models for larger

simulation steps and crossing rates, without significantly increasing the number of

message-passing steps (by instead increasing the graph connectivity statically and/or

dynamically without triggering recompilation), relevant computational gains could be

obtained. On the other hand, if one is capable of modifying the synchronous sheet model

crossing correction routines in a way that they become parallelizable, the observed gap

could be significantly mitigated. Furthermore, while the asynchronous model can not

be parallelized and presents a higher run-time than both the synchronous algorithm (for

large ∆t) and the GNS, it provides significantly better energy conservation capabilities

(limited by rounding errors) which might be preferable depending on the application.

5.4. Limitations

The main limitations that we identified for the GNS are the requirement to use a fixed

simulation step (equal to the training simulation step) and the performance degradation
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on out-of-training data distribution scenarios (as demonstrated in figure 9).

The first constraint arises because the network has to learn to predict sheet

crossings, which implicitly forces it to know what is the simulation step. To train a

single model for different simulation steps, it would be necessary to provide ∆t as an

input to the network (in the GNS the time step only appears explicitly in the ODE

integrator). Alternatively, as we have shown, different models can be trained, one per

∆t. As long as enough training data is provided and the model architecture is scaled

accordingly (e.g. by increasing the number of message passing steps for larger ∆t or

connecting the nth-closest neighbors) there is no limitation on the time step which can

be used to train the model. In contrast, the crossing correction algorithm in the SM

requires that ∆t ≤ π/2 ω−1
p (more details in Appendix A).

Regarding the second constraint, high-fidelity simulations for larger values of vth
can be generated in order to fine-tune or retrain models for a broader dynamic range

(while scaling the graph connectivity accordingly). These training simulations should be

produced for larger system sizes, to ensure that sheets cross multiple neighboring sheets

(and not their periodic versions) during the time step to be used for the GNS. Only

by doing this can the GNS learn to correctly model the dynamics of sheets that cross

a large number of neighbors. It is also important to highlight that, if provided with a

representative set of crossings, the GNS learns a better crossing correction routine than

the synchronous sheet model which is limited to the equivalent number of neighbors

(GNS vs. MSM in figure 10).

6. Recovering known kinetic plasma processes

In order to provide stronger evidence of the GNS generalization capabilities, we showcase

a broad range of known kinetic plasma processes that the simulator is able to recover.

These examples, present in both the original sheet model benchmarks [37–41] and other

kinetic codes benchmarks [2, 3, 9, 42, 50], aim to demonstrate the capability of the GNS

to simulate collective behavior in accordance with known kinetic theory. An important

point to stress is that the surrogate simulator was not explicitly trained to reproduce

these effects. The GNN only learned to (correctly) model single-step updates over a

reduced system size (10 sheets). However, when we apply it to larger system sizes

and longer time durations, we observe the emergence of the expected kinetic collective

plasma dynamics.

The results presented hereafter are produced using the GNN trained for ∆t =

10−1 ω−1
p which showcased the best energy conservation capabilities (Model #4 in

Appendix G). The same collective plasma dynamics are recovered for the equivalent

GNN models trained using different random seeds, and those trained using the larger

time step ∆t = 10−2 ω−1
p .
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6.1. Plasma thermalization

In [37,40], Dawson demonstrated that, independently of the initial velocity distribution

of the sheets, it is expected that over time the system will move towards thermal

equilibrium, and that this happens due to crossings/collisions involving more than 2

sheets [40] (cf. Section 2 for a discussion on the physics of n = 2 crossing/elastic collisions

and why they do not modify the distribution function). The distribution function of

the sheet velocities is expected to converge to a normal distribution whose standard

deviation corresponds to the thermal velocity of the plasma.

We demonstrate this behavior by performing 50 simulations of systems consisting

of 103 sheets with initial velocities randomly sampled from a uniform distribution

(v ∈ [−5, 5] δ ·ωp). We provide snapshots of the evolution of the distribution function

(averaged over simulations) in figure 12.

It is clear that the system does indeed thermalize, and that the measured thermal

velocity vth = 2.671 δ ·ωp is in accordance with the expected value vth = 2.679 δ ·ωp.

The latter is computed according to v2th = 1/3 v2maxrkin [38], where vmax corresponds

to the initial uniform distribution maximum value, and rkin represents the ratio of the

available kinetic energy with respect to the total energy of the system (estimated by

averaging over time steps and simulations), since a percentage of the initial kinetic

energy is deposited in the fields.

Additionally, using a diagnostic similar to the one introduced by Liang et al. [51],

figure 12 demonstrates that there is a steep increase in the entropy (S) of the system

until t ≈ 1.25 ω−1
p . This increase is associated with the establishment of correlations

between sheets as crossings start to occur, and the length of this time interval is actually

independent of the initial velocity range [40].

6.2. Debye shielding

Another fundamental property of plasmas is their quasi-neutrality [1], i.e. on a

macroscopic scale the overall charge density of positive and negative particles will cancel

out. However, within local regions of characteristic length λD = vth/ωp (referred to as

the Debye length) the local electric fields generated by a charged particle will not be fully

screened by the oppositely charged particles. We expect to observe the same behavior

for the sheet model. More precisely, the density of sheets at a certain distance from a

test position is expected to follow [37]:

n(x) = n0

(
1− δ

2λD

e−|x|/λD

)
. (9)

To test the GNS, we initialize systems of 104 sheets following different initial thermal

distributions (vth = [1.5, 2.5, 5.0] δ ·ωp). The simulations are run for tmax = 80 τrelax,

where τrelax =
√
2πλD/δ ω−1

P is an estimate of the relaxation time of the system [37],

i.e. the time it takes for the system to forget its current state.
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Figure 12. Evolution of the density functions for the velocity and displacement from

the equilibrium position, and the entropy (S) of the system. Histograms represent the

density function ensemble averaged over 50 simulations at the corresponding time. The

entropy variation of the different phase-space components (ξ, v) is obtained using a

diagnostic similar to the one implemented by Liang et al. [51]. For the calculation

of the distribution functions, we discretized the (ξ, v) phase-space for the range

ξ ∈ [−6.5, 6.5] δ and v ∈ [−12.6, 12.6] δ ·ωp using 51 bins along each axis. These

results demonstrate that the GNS is capable of correctly modeling the process of plasma

thermalization from a non-equilibrium state, with the thermal velocity of the system in

equilibrium vth = 2.671 δ · ωp (measured by fitting a Gaussian to the final distribution)

in excellent agreement with the theoretical prediction vth = 2.679 δ ·ωp.
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Figure 13. Example of Debye shielding for systems with different Debye lengths. The

GNS can correctly recover the expected density profiles for all the tested scenarios.

To compute the sheet density profiles shown in figure 13, we follow a similar

procedure as Dawson [37]. We choose a set of equally spaced test sheets and, for

each of them, measure the number of neighboring sheets within a pre-defined range of

increasing distances. In our case, we compute the number of sheets within a distance

d ∈ ]0.2i, 0.2(i + 1)]λD up to 3λD (i = 15). We repeat this procedure for every

(3λD/δ)-th sheet, over multiple independent time steps (tj = j · τrelax for j > 0). The

counts are then averaged over the number of test sheets, and time steps. It is clear from

the results presented in figure 13 that the expected behavior is recovered.

6.3. Electrostatic fluctuations

Although the plasma is in thermal equilibrium, there are constant exchanges of energy

between the sheets and the (electrostatic) waves propagating inside the plasma. This

leads to the appearance of electrostatic fluctuations, with an average power spectrum

that follows [2]:
⟨E2(k)⟩

8π
=

kBT

2L (1 + k2λ2
D)

(10)

where k represents the wave vector, kB the Boltzmann constant, T the plasma

temperature (kBT = mv2th), and ⟨·⟩ the time average.

In figure 14 we recover this spectrum for a system of 103 sheets with λD = 5 δ. We

make use of the ergodic theorem [52] to compute the statistical average of the power

spectrum by averaging over independent time steps (separated by ∆t = τrelax).

6.4. Dispersion relation

The electrostatic waves propagating inside the plasma are expected to obey a particular

dispersion relation, i.e. for a given angular wavenumber k only a certain wave angular
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Figure 14. Electric field power spectrum for a system in thermal equilibrium. The

power spectrum for the last time step and the temporal average (computed over

relaxation periods ∆t = τrelax ≈ 13 ω−1
p ) are shown. The time-averaged power spectrum

retrieved from the GNS simulation matches the theoretical curve, thus demonstrating

that it correctly models the electrostatic fluctuations around thermal equilibrium.

frequency ω is allowed. The ratio between the two quantities defines the wave phase

velocity vph = ω/k. For electrostatic waves, also known as Langmuir waves, the

dispersion relation is given by [1]:

1 =
ω2
p

k2

∫ ∞

−∞

∂f̂0/∂v

v − (ω/k)
dv (11)

where f̂0 corresponds to the distribution function in velocity space. The solution will

have both a real and imaginary part. The real part corresponds to the wave angular

frequency, while the imaginary part corresponds to the inverse of the wave damping

time (a phenomenon known as Landau damping which will be explored in Section 6.6).

To demonstrate that the GNS recovers the expected dispersion relation we perform

a simulation of a thermal plasma with λD = 5 δ and Nsheets = 105 until tmax =

2 × 103 ω−1
p . For each time step, we compute the electric field inside the box using

a resolution of ∆x = 1 δ and then perform a 2D-FFT along the time and x-axis. The

obtained power spectrum is presented in figure 15. The signal corresponding to the

Langmuir waves is clearly visible and in agreement with the numerical solution of the

dispersion relation [53]. Additionally, it is also visible the presence of non-collective

ballistic (free-streaming) modes [54, 55] associated with the individual particle motion

(ω = kvsheet where vsheet is the velocity of the sheet).
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Figure 15. Dispersion relation obtained for the electrostatic waves propagating inside a

thermal plasma. The GNS recovers the expected Langmuir waves dispersion relation and

also reveals the presence of the non-collective ballistic (free-streaming) highly damped

modes associated with single particle effects (phase velocity vph corresponds to the sheet

velocity). The ballistic modes can only exist for vph ≤ vmax (maximum sheet velocity).

In this figure, they are mostly visible until vph ≈ 3.5vth which encompasses 99.95% of

the sheet velocities across all time steps.

6.5. Drag on a fast sheet

A fast sheet (vsheet ≫ vth) moving through the plasma is expected to feel a constant

drag given by [37]:
dv

dt
= −ω2

pδ

2
. (12)

This drag is independent of the velocity of the sheet and is caused by the excitation

of a electrostatic wake on the rear of the fast sheet, i.e. the sheet transfers energy to

the electrostatic wake.

In figure 16 we demonstrate this behavior. The results were obtained by performing

simulations of periodic systems of 100 sheets with λD = 5 δ (vth = 5 δ·ωp) over a period

of tmax = 5 ω−1
p . For each simulation, we set the initial velocity of the first sheet to

v0 = ±α vth and track its evolution over time. We then average over simulations, 1000

for each initial sheet velocity (accounting for the sign change).

6.6. Landau damping

While fast sheets are able to excite an electrostatic wake in their rear, the resulting

electrostatic wake can also accelerate sheets moving slightly slower than its phase
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Figure 16. Average drag on fast sheets of different initial velocities (v0 ≫ vth = 5 δ ·ωp).

The GNS recovers the expected drag felt by the fast sheets independently of their initial

velocity and propagation direction.

velocity [1,37]. Electrostatic modes are therefore self-consistently generated by particles

moving close to its phase velocity, while being damped by particles moving slightly

slower. However, since a plasma in thermal equilibrium follows a Maxwellian distribution

in velocity space, there exist on average more particles moving faster than the wave,

than those moving slower. Therefore, on average, the modes will be damped. More

specifically, for a given mode m, with a wavelength λm = 2L/m and wave vector

km = 2π/λm we can compute its wave frequency and damping time by finding

numerically the roots of the dispersion relation (11). This damping mechanism is known

as Landau damping [1,55] and is an inherently collisionless kinetic process that the sheet

model has been shown to recover [37,41].

To reproduce the expected damping behavior we follow initially a similar procedure

to that of Dawson [37]. We produce 100 simulations, each with a duration of

tmax = 500 ω−1
p , of thermal plasmas consisting of 104 sheets for λD = 5 δ and reflecting

boundaries. For each simulation time step we compute the mode “amplitude” Am and

its rate of change Ȧm using the cross-correlation:

At
m =

2

N

N−1∑
i=0

(
xt
i − xt

eqi

)
sin

(
mπ

N

(
i+

1

2

))
Ȧt

m =
At

m − At−1
m

∆t

(13)

where the index i indicates the relative ordering of the sheets in the box.

We then collect trajectories of equal time length every time the mode crosses the

region of phase-space (Am, Ȧm) defined by a ring of radiusR and thickness dR (dR ≪ R).

Finally, we rotate the trajectories so that they all start on the same position in phase-

space, and compute their average.
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Figure 17. Damping of different modes. The initial mode amplitudes are normalized

to R = 0.15 δ. Individual trajectories length is ∆ttraj = 50 ω−1
p . The agreement between

the theoretical curves and the average mode trajectories demonstrates that the GNS is

capable of correctly modeling Landau damping, an inherently kinetic mechanism.

In figure 17 we showcase examples of the results obtained for several modes. It is

possible to see that, although for some trajectories the mode is still growing, on average

it decreases according to the expected damping time. This demonstrates that the GNS

is capable of correctly modeling Landau damping, an inherently kinetic mechanism

associated with the collective collisionless dynamics of a plasma.

To further support this claim, we perform a scan over different modesm ∈ [180, 448]

(kλD ∈ [0.28, 0.70]) and initial mode amplitudes A0
m ∈ [0.08, 0.20] δ using a resolution

of ∆m = 2 and ∆A0
m = 0.005 δ (135× 25 = 3375 data points). For each (m, A0

m) pair,

we compute the average of the trajectories in phase-space (figure 17). We then proceed

to estimate the damping rate, −Im(ω), by obtaining the slope of the line that best fits

the peaks of log |At
m|. The mode angular frequency, Re(ω), is estimated as π/∆tavgpeaks,

where ∆tavgpeaks is the average interval between consecutive peaks of log |At
m| (more details

in Appendix H).

The Landau damping rates are shown in figure 18, and the corresponding angular

frequency (the real part of ω) in figure 19. The average values obtained by the GNS are

in good agreement with the theory, and both the damping rate and angular frequency

are (as expected) independent of the initial mode amplitude. The higher variations

observed for larger values of kλD are due to having less periods for the estimation of

ω since these correspond to strongly damped modes (for kλD > 0.6 the phase velocity

vph ≤ 2.6 vth, already in the plasma bulk).

6.7. Two-stream instability

As a final example, we show the two-stream instability in the cold beam regime [1, 39].

For this scenario, two counter-propagating beams with velocities ±v0 and no energy
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Figure 18. Comparison between the theoretical mode damping rate, −Im(ω), and the

one measured using the GNS. Results are shown for different mode angular wavenumbers

and initial mode amplitudes (no interpolation is performed), as well as the average

damping rate across initial mode amplitudes (standard deviation in lighter color). It is

observed that the GNS correctly approximates the theoretical damping rate for a broad

range of modes.

spread excite an electrostatic plasma wave that grows exponentially until a significant

fraction of particles are trapped inside the electric field, at which point the instability

saturates.

From linear theory [1, 39], we expect that for two cold beams with density

nbeams = n0/2, the fastest growing mode will correspond to k =
√
3/8 · ωp/v0 with

a corresponding growth rate of γ = ωp/
√
8. Therefore, to excite mode m, with

km = mπ/L = mπ/Nsheetsδ, we need to set v0m =
√

3/8 · ωpNsheetsδ/mπ. Furthermore,

the number of sheets per wavelength of this mode is given byNλm = λm/δ = 2Nsheets/m·.
Note that both v0m and Nλm are proportional to the number of sheets used. Therefore,

to excite a mode whose wavelength must be resolved by a significant amount of sheets,

we need to increase v0 proportionally.

For a system of 104 sheets and m = 4, we obtain v0m = 486 δ ·ωp and Nλm = 5×103.

The chosen velocity is considerably out of the training data range, therefore we expect

the energy loss of the GNS to be slightly higher than the one observed for the training

scenarios (as shown in figure 9). Nonetheless, we observe that the GNS is still able to
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Figure 19. Comparison between the theoretical mode angular frequency, Re(ω), and

the one measured using the GNS. Similarly to figure 18, we present results for different

mode angular wavenumbers and initial mode amplitudes, as well as the average angular

frequency across initial mode amplitudes. Although there is a slight underestimation of

the angular frequency, the GNS is capable of approximating the theoretical prediction

across a broad range of modes.

capture the relevant physics.

In figure 20 we provide a comparison between the evolution of the phase-space

and the potential energy for the sheet model at ∆t = 10−2 ω−1
p and the GNS at lower

time resolution ∆t = 10−1 ω−1
p . The energy variation during the full simulation was

∆ϵ/ϵ0 ≈ 10−6 for the sheet model while for the GNS it was ∆ϵ/ϵ0 ≈ 2 × 10−2. These

values are in accordance with what was measured in figure 9.

It is observed that the GNS recovers similar macrophysics when compared to the

higher temporal resolution sheet model (which we consider as a good approximation

to the ground truth) during the linear phase and up to the saturation time. An

extra diffusion in phase-space is observed for the GNS, which is associated with the

aforementioned higher energy variation. This is expected since the GNN is not capable

of correctly resolving crossings involving more than 2M + 1 = 11 sheets, and, on

average, a sheet moving with v0m = 486 δ ·ωp should cross ∼49 neighbors in the first

timestep (since when the simulation starts all sheets are equally spaced by δ and, on

average, half of the nearest neighbors are counter-propagating with the same absolute
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Figure 20. Comparison of the phase-space and potential energy evolution for the sheet

model (SM) and the GNS in the two counter-propagating cold beams scenario. The GNS

is able to recover the same macrophysics as the high-resolution sheet model, further

demonstrating its capabilities to model scenarios significantly outside of its training

regime.

velocity). Nonetheless, the overall phase-space structure and growth rates are similar,

which provides further support for the generalization capabilities of the model.

Finally, we provide in Appendix I further comparisons for higher order modes (lower

v0m) and smaller simulation steps (∆t = 10−2 ω−1
p ), as well as results for the remaining

GNNs trained with different seeds (with worse energy conservation capabilities at high

vth). These results further support the claim that the GNS is consistently able to

correctly model the overall dynamics of the instability.
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7. Conclusions

In this work, we demonstrated that graph neural network-based simulators are capable

of fully replacing a one dimensional kinetic plasma physics simulator. By introducing

domain knowledge into the graph representation and the overall structure of the

simulator, we showed that the GNS is capable of generalizing to a broad range of

scenarios and is limited only by its fixed simulation step, training data distribution,

graph connectivity, and message passing steps. Furthermore, for larger simulation time

steps and crossing frequencies within the training data distribution, we observe that the

GNS conserves better the system energy than the synchronous sheet model, while being

significantly faster. This happens because the GNS learns an improved (synchronous and

parallelized) crossing correction algorithm from higher-temporal resolution simulations

(which correctly resolve crossings involving N > 2 sheets).

In future work, the accuracy of the GNS for higher thermal velocity values

can be improved by generating additional ground truth data, ideally using the

asynchronous version of the sheet model, which is guaranteed to perfectly resolve

crossings. Additionally, although not explored, the developed simulator is fully

differentiable, which opens the way to explore gradient-based optimization strategies

for the discovery of new physics of interest [56].

It is also important to note that, despite being very simple, the sheet model provides

a powerful framework to explore fundamental plasma processes, as demonstrated in

this paper, including the relevance of collisional processes. Not only is it a gridless

code (thus making fewer approximations than PIC codes) but also provides an exact

description of one-dimensional non-relativistic electrostatic plasmas with arbitrary

degrees of collisionality. Furthermore, direct extensions and/or similar models exist,

which allow one to study multi-species scenarios [38,42], electron-neutral collisions [57],

and electron-ion 3D scattering events [58]. Therefore, the demonstration that the GNS

can accurately provide a fast surrogate for the sheet model can open new directions

for the exploration of the fundamentals of statistical mechanics of plasmas, and further

extensions of the framework can be developed to integrate multi-species and stochastic

processes.

Additionally, this work suggests that it would be possible to design and train a

GNS that accurately models the standard PIC loop. This could be done by extending

the developed framework to include grid information in both the graph representation

and GNN architecture [23]. However, the standard PIC loop implemented in modern

architectures is extremely optimized and does not suffer from the issues that are present

in the sheet model scenario (e.g. time-consuming serial routines). In fact, the PIC loop

itself can already be seen from a graph computation perspective: field interpolation

and particle push can be seen as message-passing steps from the grid to the particles;

current/charge deposition as a message-passing step from the particles to the grid;

and the field solver as a message-passing step between neighboring cells. Note that,

frequently, most of these operations are linear. Therefore, simply replacing them by
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a learnable function is counter-productive and should lead to an expected increase in

run-time.

The question is then, where might a GNN-based approach introduce some gain

compared with traditional PIC? In our view, two main possibilities arise: a) GNNs

could be used to relax the time constraints imposed by the CFL condition [3]; b)

GNNs could introduce extra physics that the standard PIC loop fails to model,

which usually require additional modules (e.g. collisions – thus having a model that

intrinsically addresses collisions is important on this roadmap). Approaches following

the first route should ensure that causality is still verified (similarly to what we have

shown for the sheet model), this will result necessarily in increased graph connectivity

(e.g. particles would require information from neighboring grid cells) and will probably

require the exploration of multi-scale approaches [27, 28] or hybrid representations [16]

to be competitive. The second route will result in an increased run-time compared

to the standard PIC loop but might be competitive against alternative approaches.

For example, a standard 1D1V PIC simulation does not correctly capture collisional

dynamics. Again, the sheet model, and consequently the GNS framework presented in

this work, can do so for arbitrary levels of collisionality, thus providing a valuable source

of comparison.

Similarly to what we have done for the sheet model, it would also be important to

explore the trade-off between how much is learned by the GNN, and how much prior

knowledge about kinetic simulations is embedded into the GNS. As one moves to higher-

dimensional and more complex scenarios, this will become even so more important to

maximize generability and possibly reduce the run-time. We will further explore these

topics in future publications.
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Appendix A. Sheet model implementation

The original publication by Dawson [38], detailing the single and multi-species one-

dimensional sheet model, is not widely available. Therefore, and for the sake of

completion, we provide here a description of our implementation for both the single-

species synchronous and asynchronous algorithms. We highlight the differences between

our implementation and the original algorithms [38], whenever they occur.

We also provide details regarding the modified version of the synchronous algorithm

which restricts the number of neighbors checked for crossings. Information regarding

the multi-species model, its description and a possible implementation can be found in

recent work by Gravier et. al. [42].

Appendix A.1. Synchronous Algorithm (SM)

The main building blocks of the synchronous algorithm, previously shown in figure 3,

are implemented as follows.

We store 2 sets of 4 arrays, corresponding to the sheet positions x, equilibrium

positions xeq, velocities v and labels l at t and t + ∆t. The labels array allows us to

track individual sheets, which is necessary to generate training data for the GNS and

run additional diagnostics (e.g. drag on a fast sheet). At initialization, all arrays should

be sorted with respect to the initial position of the sheets (which should also result in

an array of sorted equilibrium positions).

SM – Add guards (t = 0)

Before starting the simulation, guard sheets are added to the beginning/end of the arrays

to model the boundary conditions. For periodic boundaries, these guards represent

copies of the sheets closer to the opposite side of the simulation box. For reflecting

boundaries, they represent mirrored versions of the sheets closer to the boundary. This

is exactly the same approach that is adopted for the GNS.

The number of guard sheets should be large enough that no individual “real” sheet

crosses all guard sheets in a single time step. For periodic boundaries, it should also be

ensured that, in a single time step, not all guard sheets from the left or right wall enter

the simulation box. At each iteration of the algorithm we check if these conditions are

satisfied. If they are not, the simulation is halted.

SM – Equation of motion

When disregarding crossings, each sheet behaves as an independent harmonic oscillator.

The update of each sheet position and velocities are then given by the analytical solution

of the equation of motion:

x̃t+∆t = xt + ω−1
p vt sin (ωp∆t)− ξt (1− cos (ωp∆t))

ṽt+∆t = vt cos (ωp∆t)− ωpξ
t sin (ωp∆t)

(A.1)
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Figure A1. Schematic representation of the crossing correction algorithm (“Handle

Crossings” block in figure 3). The dotted lines on the left plot represent the independent

oscillatory trajectories at higher temporal resolution (not actually computed during an

update of the algorithm). On the right plot, they correspond the the high-resolution

trajectories when accounting for the set of crossings detected in this iteration (not all

crossings that occurred between t → t + ∆t are necessarily detected in this iteration).

Each of the three building blocks is illustrated in detail in figure A2.

where ξt = xt − xt
eq. If no crossings occur, this is the exact solution for the sheet

dynamics, and the energy of the system is perfectly conserved.

SM – Resolve crossings

The algorithm proceeds to correct for crossings which might have happened between

t → t +∆t (or even previous time intervals as it will be later shown). The main steps

are illustrated in figure A1 and figure A2.

To detect crossings, the algorithm checks, from left to right over the position array,

for the condition:

x̃t+∆t
j > x̃t+∆t

i , for j > i (A.2)

for each i-th sheet (note that this sets a constraint on the maximum allowed time-

step,i.e. ∆t ≤ π/2 ω−1
p ). Since checking all j > i sheets is problematic for larger system

sizes, a stopping condition is introduced. More precisely, we stop once:

x̃t
j − x̃t

i > ∆xt
maxi

(A.3)

where ∆xt
maxi

represents the maximum initial distance that can result in a crossing with

the i-th sheet. In [38], Dawson uses the approximation:

∆xt
maxi

≃
(
vmax
− + vti

)
ωp∆t (A.4)

where −vmax
− ≤ 0 is the maximum negative velocity across all sheets, whose value

is updated every ω−1
p . However, we found that this approximation is not sufficient

for non-thermal initial conditions with very large sheet velocities and displacements

from equilibrium (e.g. the two-stream instability simulations shown in Section 6.7 and

Appendix I) since it underestimates the real ∆xt
maxi

value. As a consequence, some

crossings are not detected, which causes problems when trying to sort sheets after the
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Figure A2. Illustration of the three main building blocks of the crossing correction

algorithm shown in figure A1. For simplicity, we assume xt was initially sorted. (a) First

the algorithm detects, from left to right over x̃t+∆t, if sheets have crossed,i.e. if (A.2) is

fulfilled; (b) For each detected crossing, the crossing time is estimated using an iterative

method (A.7); (c) Finally, each sheet trajectory is independently corrected by iteratively

advancing until its next estimated crossing time, at which point the equilibrium position

is updated by ±δ (sign related to the direction of the crossing). Note that after these

corrections, new crossings might occur. These new crossings will only be resolved in the

next iteration of the algorithm (t+∆t → t+ 2∆t, the estimated ∆tc will be negative)

due to the particularities of the sorting routine (more details in figure A3).
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crossing corrections (i.e. multiple sheets would occupy the same array index). For this

reason, we instead derive a more accurate upper limit from (A.1) that is:

∆xt
maxi

=
(
vmax
− + vti

)
sin (ωp∆t) +

(
ξmax
+ − ξti

)
(1− cos(ωp∆t)) (A.5)

which simplifies for the case where ωp∆t ≪ 1 to:

∆xt
maxi

≃
(
vmax
− + vti

)
ωp∆t+

(
ξmax
+ − ξti

) (ωp∆t)2

2
(A.6)

where ξmax
+ ≥ 0 is the maximum displacement from the equilibrium position across all

sheets. Additionally, we update the values of vmax
− and ξmax

+ at every time step (instead

of every ω−1
p ) since these values can change significantly for the non-thermal scenario.

These changes resolved the aforementioned problems in non-thermal scenarios with fast

sheet acceleration and did not impact significantly the run-time.

For each detected crossing, the crossing time tc = t + ∆tc is estimated using an

iterative (recursive) method:

∆tck = ∆tck−1

xt
j − xt

i

xt
j − xt

i + x̃
t+∆tck−1

i − x̃
t+∆tck−1

j

(A.7)

where k is the number of iterations performed (∆tc0 = ∆t) and x̃t+∆tck−1 is computed

using (A.1).

Once the full list of crossing times for the i-th sheet is compiled, the sheet dynamics

in the interval t → t+∆t are recomputed. This is done by first sorting the list of crossing

times. Then, one advances the sheet position and velocity until the first predicted

crossing (t → tc(1)) according to (A.1). At this point, one updates its equilibrium

position by −δ if it was crossed by a sheet from its left, or by +δ if it was crossed by

a sheet from its right. This process is then repeated to model the dynamics between

the subsequent crossings (tc(i) → tc(i+1)) and the end of the current simulation step

(tc(n) → t+∆t).

Although one corrects for multiple crossings in a single simulation step, the crossing

time estimation ignores the fact that the i-th sheet might have crossed other sheets

between t → tc(i). This means that, if a sheet crosses n > 1 other sheets in a single

time step, its dynamics, and those of the sheets it crosses, are not correctly modeled

(although a good approximation might be obtained). More precisely, the crossing times

are overestimated, which results in an extra “drag” felt by the sheets (since their

equilibrium positions are updated later than they should), leading to an overall energy

loss in the system.

Additionally, the introduced corrections might lead to the appearance of new

crossings between t → t + ∆t, which were not accounted for (e.g. crossing of blue

and red sheet in figure A2). In this case, the final equilibrium positions of the sheets

are incorrect,i.e. we would observe that x̃t+∆t
j < x̃t+∆t

i while x̃t+∆t
eqj

> x̃t+∆t
eqi

. This is not

problematic as the algorithm is capable of correcting for these crossings in the next time

step due to the particularities of the sorting procedure.
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Figure A3. Illustration of changes in the array order after correcting for crossings.

Colors represent the labels (array is omitted) and correspond to the sheets in figure A1

and figure A2. For simplicity, the values indicated in the xt+∆t
eq array represent the

equilibrium position +δ/2. Once the corrections for crossings shown in figure A2 are

applied, the final sheet positions, velocities, and equilibrium positions have changed.

These arrays are then sorted with respect to the equilibrium positions, and not with

respect to the sheet positions. This ensures that in the next time step, the crossing

correction algorithm will be able to correct the crossings that were previously overlooked.

SM – Sort sheets

After correcting for crossings, a sorting step is applied (see figure A3). Each sheet

moves ±1 position along the arrays for each detected crossing with a neighbor from its

right/left. This is equivalent to sorting all t+∆t arrays with respect to x̃t+∆t
eq (which as

explained is not always equivalent to sorting with respect to x̃t+∆t). The sorting is done

in this fashion since the crossing corrections performed during t → t + ∆t might have

led to the appearance of new crossings that were not initially accounted for (e.g. the

crossing between blue and red sheets in figure A2). In the next iteration of the algorithm

(t + ∆t → t + 2∆t) these crossings will be detected by (A.2) (which might not have

happened if the arrays had been sorted with respect to x̃t+∆t) and the associated ∆tc

will be negative.

For the case where no correction for crossings between t → t + ∆t is

introduced,i.e. when we bypass the crossing routine, we slightly modify the sorting

routine. The position and velocity arrays are sorted with respect to x̃t+∆t after the

equation of motion update, while no change is applied to the equilibrium position array

(i.e. equilibrium positions are re-assigned).

SM – Resolve boundary

Before the next iteration of the algorithm, it is necessary to update the guard sheets to

account for crossings (in both boundary conditions) or sheets that might have left the

simulation box (when using a periodic boundary).

In the case of reflecting boundaries, we perform two steps: (a) we overwrite the first

and last Ng entries of x̃t+∆t and ṽt+∆t (Ng equals the number of guards) to represent

mirrored versions of the current first and last “real” sheets (as per the current ordering

of the arrays); and (b) we swap the labels of the guard sheets that entered the simulation

box with the corresponding “real” sheet that left the box.

In the case of periodic boundaries, we perform three steps: (a) we rotate the x̃t+∆t,
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ṽt+∆t, and x̃t+∆t
eq arrays so that the sheets inside the simulation box at t+∆t are centered;

(b) we overwrite the first and last Ng entries to represent the equivalent versions of the

opposing boundary sheets; and (c) we swap the labels of the guard sheets that entered

the simulation box with the corresponding “real” sheet that left the box.

This finalizes an iteration of the sheet model algorithm, producing the arrays xt+1,

vt+1, xt+1
eq to be used as input for the next iteration.

SM – Possible parallellization

No parallelization of the algorithm is mentioned in the original work [38]. However, it is

clear to us that the synchronous sheet model could benefit from a parallelized approach

to minimize run-time. This should be straightforward for the equation of motion update,

but slight changes might be required to the crossing correction routine to make it thread-

safe (in particular the crossing detection routine). Designing and implementing these

new parallelized versions is outside the scope of this work.

Appendix A.2. Modified Synchronous Algorithm (MSM)

To allow for additional comparisons between the sheet model and better understand

the limitations of the GNS we implemented a slightly modified version of the algorithm

which limits the number of neighbors checked for crossing corrections.

This is achieved by adding an additional stopping criterion for the crossing

check (A.2),i.e. we stop if j > i+n, where n is the maximum number of neighbors

checked (to the right). However, this change might lead to different sheets having

the same equilibrium position after the crossing corrections, i.e. we can not apply the

sorting mechanism described previously. Therefore we modify the sorting routine to

sort the corrected x̃t+∆t and ṽt+∆t arrays with respect to x̃t+∆t (instead of x̃t+∆t
eq ) and

set x̃t+∆t
eq = xt

eq (equivalent to what is done for the GNS). This removes the capability

of the algorithm to correct for crossings with neighbors above the established limit in

subsequent iterations (leading to poorer energy conservation) and allows for a unique

ordering.

This modified version should not be used as an alternative to the original sheet

model as it was merely introduced for improved interpretability of the GNS results.

Appendix A.3. Asynchronous Algorithm (ASM)

Unlike the synchronous sheet model, which uses a fixed time step, the asynchronous

version of the sheet model algorithm always advances the full system until the next

predicted crossing (example in figure A4). For this reason, we need only to store one

set of arrays x, v, xeq and l which are updated at every crossing.

For this method to work a sorted table containing the crossing times for adjacent

sheets needs to be maintained and updated after each crossing. We represent this table

as a standard priority queue implemented using a heap (Dawson uses a slightly different
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Figure A4. Comparison of asynchronous vs. synchronous sheet model simulation. The

synchronous simulation is run with ∆t = 10−2 ω−1
p . Each data point of the asynchronous

algorithm corresponds to a timestamp where a sheet crossing occurred.

mechanism [38] but with similar end results). This is also the approach followed by

Gravier et al. [42] for the multi-species scenario (refer to this work for illustrations on

the heap structure). In our case, each entry of the priority queue corresponds to a list

with [tcij, c, tagij] where tcij is the estimated crossing time between sheets i and j

(by definition j = i + 1), c a unique sequence count (used to break ties for crossings

occurring at the exact same time), and tagij a tag containing the array indices of the

sheets that crossed (not their labels). To find and edit entries in the heap, we initialize

an auxiliary dictionary that maps tags to entries.

ASM – Algorithm iteration

At initialization, all crossing times between adjacent sheets are computed and the

corresponding entries are added to the priority queue. For pairs of sheets that do

not cross, no entry is added.

An iteration of the algorithm then proceeds as follows: (a) we remove from the heap

the next crossing,i.e. the one with the smallest tcij value; (b) we advance the dynamics

until tcij using (1); (c) we swap the order of the entries of the sheets that crossed in

the x, v, and l arrays (no change to xeq); (d) if needed we update the guards; (e) we
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compute the new crossing time for any pair that involved one of the sheets that crossed,

i.e. (i − 1, i), (i, j), and (j, j + 1); (f) we flag existing entries in the heap involving

these pairs so that they are ignored in later iterations (more specifically, the tags are

replaced by a “removed” flag); and (g) we add the new crossing entries to the heap and

dictionary.

ASM – Guard sheets

For the asynchronous model, one needs only to introduce one guard for periodic

boundaries (we place it on the left side,i.e. i = 0) and two for reflecting boundaries

(one on each side,i.e. i = 0 and i = N + 1). The positions, velocities, and equilibrium

positions are computed in the same fashion as for the synchronous algorithm.

These guards will be updated whenever: (a) a crossing between the guard sheet and

its neighbor,i.e. the sheet closer to the respective boundary, occurs; and (b) a crossing

involving the “real” sheet that the guard sheet represents and any of its neighbors occurs.

In the case of periodic boundaries, one must also update the “real” sheet

corresponding to the guard sheet if the latter performs a crossing. Alternatively one

can use two guards (as for reflecting boundaries, this is what is present in [38]) but we

found that the chosen approach makes it easier to post-process the sheet trajectories.

ASM – Analytical solution for the crossing times

Another difference regarding the synchronous algorithm is that we now use the analytical

solution for the crossing times instead of the estimation using the iterative method

(A.7). This was the approach followed by Dawson when implementing the multi-species

asynchronous algorithm [38] and can be similarly applied for the single-species scenario

(although the equation to be solved is different). When adopting this strategy, and

using a double-precision floating point format, we observe relative energy fluctuations

within the range ∆ϵ/ϵ0 ∈ [10−15, 10−10] for simulations equivalent to the ones present in

the training dataset generated with the synchronous algorithm.

Crossing times between neighboring sheets are computed using the analytical

solution to the transcendental equation xi(t + ∆tc) = xi+1(t + ∆tc) with respect to

∆tc. For a solution to exist,i.e. for neighboring sheets to be able to cross, the following

condition has to be satisfied:

∆v2i + (∆xi − δ)2 ≥ δ2 (A.8)

where ∆vi = ω−1
p (vti+1 − vti), and ∆xi = xt

i+1 − xt
i. If this condition is fulfilled, there

exist infinite (real) solutions to the crossing time.

In the case where ∆vi = 0 and ∆xi = 2δ, the solutions are:

ωp∆tc = π + 2nπ (A.9)
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where the 2nπ (n ∈ Z) factor represents solutions equally spaced by a plasma period.

For ∆vi ̸= 0 and ∆xi = 2δ:

ωp∆tc = 2arctan

(
−∆xi − δ

∆vi

)
+ 2nπ, (A.10)

and for all other cases:

ωp∆tc = 2arctan

∆v2i ±
√
∆v2i + (∆xi − δ)2 − δ2

(∆xi − δ)2 − δ2

+ 2nπ. (A.11)

In our implementation, we set n = 0 obtaining, at most, two estimates for ∆tc (one if

∆xi = 2δ, or two otherwise). Furthermore, we enforce these solutions to be within the

interval ]0, 2π] by computing the modulo of ωp∆tc with respect to 2π. In the case where

there exist two possible solutions within this interval,i.e. (A.11), we pick the minimum

of the two except for the case where the corresponding sheets have just crossed. In this

case, we set:

ωp∆tc = 2arctan

sgn(∆vi)
|∆vi|+

√
∆v2i + (∆xi − δ)2 − δ2

(∆xi − δ)2 − δ2

 (A.12)

to avoid the trivial solution ∆tc = 0. Additionally, to avoid numerical issues for the cases

where ∆xi ≃ 2δ, we relax the equality conditions of (A.9) and (A.10) to |∆vi| < 10−5 δ

and |∆xi − 2δ| < 10−5 δ.

Appendix B. Collisions vs. crossings

It is possible to model the sheet crossings as binary collisions (as previously illustrated

in figure 2). This was the strategy initially explored in this work, since the Graph

Network simulator proposed by Sanchez-Gonzalez et al. [22] was introduced for 2D/3D

simulations where particle collisions occur. However, the accuracy of the models trained

in this fashion was significantly worse. In this subsection, we explain why this happens.

When trying to predict dynamics considering binary collisions, the range of target

accelerations changes significantly (see figure B1) since at the moment of collision, sheets

feel a force that is orders of magnitude larger than the one felt during their oscillatory

motion. This broadening makes it harder for the network to accurately model the full

dynamic range of accelerations (even if we normalize the targets to unit variance).

Additionally, in the time step where sheets collide, their respective finite difference

velocities significantly decrease, and information is lost about the initial momentum

of the sheets (especially for larger v and small ∆t). Therefore, to allow for correct

momentum transfer, it is necessary to include the previous C step velocities in the node

representation nt
i =

[
ξti , v

t
i , ..., v

t−C+1
]
as in Sanchez-Gonzalez et al. [22]. This introduces

a new hyperparameter that requires tuning and whose value depends on the frequency

of collisions.
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Figure B1. Target acceleration distributions in the training set data when considering

collisions or crossings. The range of target accelerations is considerably smaller for the

crossing scenario. This makes the training procedure significantly easier.

For larger collision frequencies, it then becomes hard to correctly model momentum

transfer since the model needs to predict a larger dynamics range of accelerations, and to

take into account dynamics across multiple time steps and larger neighboring regions.

In our case, this resulted in considerably larger neural network architectures, whose

accuracy was still significantly worse than models trained to predict crossing dynamics.

To illustrate this, we showcase in figure B2 a comparison between the rollout

accuracy difference presented in the main body of the paper for ∆t = 10−1 ω−1
p , and

an equivalent one trained for collisional dynamics using C = 5 (same neural network

architecture and number of message passing steps). It is clear that the accuracy of the

simulator degrades significantly when attempting to predict collisions. The significant

difference in performance does not disappear when introducing noise during training,

a strategy proposed in Sanchez-Gonzalez et al. [22] to improve rollout accuracy, or by

normalizing the targets to unit variance (latter already included in the model shown

in figure 2).

It is possible that for larger simulation steps, the problems stated above become

less pronounced since the effect of collisions is smoothed out over larger time steps

(leading to a smaller dynamic range of target accelerations as observed in figure B1,

when moving from ∆t = 10−2 ω−1
p to ∆t = 10−1 ω−1

p ). However, in the 1D sheet model

scenario, our results indicate that modeling sheet interactions as crossings is the best

and most natural option in terms of model/graph size and accuracy, while also allowing

the tracking of particular sheets (useful, for example, for the fast sheet diagnostic).

Finally, it is important to highlight that when using reflecting boundaries the sheet

trajectories contain “collisions” with the wall even when considering crossing dynamics.

This is the reason why we first train our models on periodic boundaries and only at

test time demonstrate that it is possible to simulate reflecting boundaries (and not the
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Figure B2. Accuracy of equivalent models trained to predict crossing or collisional

dynamics. Both models use ∆t = 10−1 ω−1
p . The rollout error of the GNS model

trained for crossing dynamics is significantly lower. This is the main reason why we

opted to model sheet dynamics considering crossings in the main body of the paper.

opposite). It would be possible to bypass this issue, while maintaining the same graph

structure if, for example, we introduced an extra preprocessing step during training that

masks out time steps for which collisions with the wall happen (or correct the target

accelerations). However, this removes any interaction with the wall from the training

data (defeating the purpose of having reflecting boundaries in the first place) and would

require us to store extra information during the generation of the training simulations.

Appendix C. Parameter scans

The main goal of this work was to understand if we can build a surrogate simulator

capable of recovering kinetic plasma processes with acceptable run-time. We did not

perform extensive hyperparameter tuning and instead opted for a coarse scan. For the

models showcased in the main body of the text, we prioritized simplicity in favor of

smaller gains in performance. Additionally, we decided to use the same architecture for

both training simulation steps, except for the number of message-passing steps, as this

parameter is related to the crossing frequency.

The rollout accuracy on the validation set for models trained with different hyper-

parameters for ∆t = 10−1 ω−1
p is shown in figure C1. The most impactful parameter

is the number of message-passing steps. Increasing the number of layers and hidden

dimensions size of the MLP networks does not affect performance significantly and might

lead the model to overfit the training data earlier in the training process. Similarly,

introducing extra complexity by using MLPs for the encoder/decoder instead of linear

transformation does not result in significant performance changes.

We also checked if the introduction of residual connections between message-passing

blocks would improve performance for larger numbers of message-passing steps, but it

did not provide significant improvements.



Learning the dynamics of a one-dimensional plasma model with GNNs 48

1 2 3 4 5 6 7
10−3

10−2

10−1

R
ol

lo
u

t
E

M
D

[δ
]

Message Passing Steps

32 64 128 256

Latent Space and
Hidden Dimension Size

1 2 3 4

MLP Layers

MLP Linear

Encoder/Decoder

Figure C1. Parameter scan results for GNS trained with ∆t = 10−1 ω−1
p . The rollout

EMD values were computed on the validation set. The final chosen hyperparameter

values are highlighted in red. The most important parameter to tune is the number

of message-passing steps, whose optimal value depends on the expected sheet crossing

frequency.

Appendix D. Equivariant vs non-equivariant architectures

The Graph Network block presented in Section 3.2 can be altered to use solely the sent

edges in the node update mechanism, i.e.:

vm+1
i = ϕv

(
em+1
ri

,vm
i

)
(D.1)

which corresponds to the update mechanism presented in the original work by

Battaglia et al. [30].

Additionally, one can make the full architecture (1D) rotationally equivariant by

modifying the architecture as follows. The encoder should now be given by:

vi = εv (ni · sgn (ξi))
eij = εe (rij · sgn (ξi))

(D.2)

where sgn(·) represents the sign function. In this case the inputs become rotationally

invariant, and, therefore, the latent representations vi and eij are also guaranteed to be

invariant. The multiplication by sgn (ξi) can be interpreted as a change of coordinate

system (or a projection since in 1D the sgn(x) ≡ x/||x||) to a frame where the ith sheet

is on the right-hand side of its equilibrium position (i.e. ξ > 0). For the case where

ξi = 0 (which would result in sgn(0) = 0), we use instead the velocity (i.e. sgn(vi)). If

the latter is also zero, we set the value to 1. These extra steps are required to ensure

that the architecture maintains its equivariance properties.

Similarly, the processor is also made rotationally invariant with a slight

modification:
em+1
ij = ϕe

(
emij ,v

m
i , sgn (ξiξj) · vm

j

)
em+1
ri

=
∑

j∈N (i)

em+1
ij

vm+1
i = ϕv

(
em+1
ri

,vm
i

) (D.3)



Learning the dynamics of a one-dimensional plasma model with GNNs 49

101 102 103

Nsheets

10−4

10−3

10−2

R
ol

lo
u

t
E

M
D

[δ
]

Equivariant (Only Sent)

Non-Equivariant (Only Sent)

Non-Equivariant (Default)

Figure D1. Comparison of rollout accuracy of different architectures. We use the test

sets described in Section 5.1 that consider periodic boundary conditions. Mean values for

each architecture are computed over 5 equivalent models (different random seeds), and

error bars represent minimum/maximum values observed over all models. All models

are trained considering a time step ∆t = 10−1 ω−1
p using the same hyperparameters

described in Section 3.2 and the training procedure described in Section 4.1. Non-

Equivarient models are trained with data augmentation along both axes (x and t)

while equivariant models are only provided with data augmented along the t-axis. No

significant differences in rollout accuracy are observed across the different architectures.

since e0ij, v
0
i,j, and sgn (ξiξj) are invariant to this transformation, making all subsequent

updates invariant as well. In this case, the multiplication of the sender node latent

vector vm
j by sgn (ξiξj) is required to break the symmetry introduced by the encoder

(mirrored sheets around the equilibrium position have the same latent representation)

and can be interpreted as a transformation to the frame of the receiver latent node vm
i

(i.e. where ξi > 0).

Finally, the modified decoder enforces equivariance as:

yi = δv
(
vM
i

)
· sgn (ξi) (D.4)

since vM
i is guaranteed to be invariant under reflections.

Comparisons between the rollout accuracy and energy conservation capabilities of

the architecture used in the main body of the paper (“Non-Equivariant Default”), and

the variants that only use the sent edge information (“Non-Equivariant Only Sent” and

“Equivariant Only Sent”) are presented in figure D1, figure D2, and figure D3.

It is observed that the rollout accuracy is similar across all architectures (figure D1).

Similarly, the models demonstrate equivalent energy conservation within the training

data thermal velocity range (figure D2). However, as one further increases the thermal

velocity of the plasma, the non-equivariant architectures demonstrate better energy

conservation capabilities, in particular the one used in the main body of the paper. In

terms of data requirements, we do not observe relevant performance gains for a varying

number of training simulations (figure D3). There is a slight improvement by using the
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Figure D2. Comparison of energy conservation capabilities of different architectures

for different initial conditions. We use the same energy conservation diagnostic described

in Section 5.2. All sheets are initialized at their equilibrium position and their initial

velocities are sampled from a normal distribution (thermal), chosen randomly from

±vbeam (cold beams), or all equal to v0 (oscillation). Mean values are computed over 5

equivalent models (different random seeds). All models are trained considering a time

step ∆t = 10−1 ω−1
p using the same hyperparameters described in Section 3.2 and the

training procedure described in Section 4.1. Non-Equivariant models are trained with

data augmentation along both axes (x and t) while equivariant models are only provided

with data augmented along the t-axis.
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Figure D3. Rollout accuracy as a function of the number of training simulations.

We consider architectures that only use the sent edges for the latent node update. A

single model is trained for each dataset size. Training is slightly modified compared to

previous results. We use a larger number of maximum gradient updates (2 × 106) and

early stopping with a patience of 100 epochs. Augmented datasets include reflections

along both axes (x and t). Overall, it is observed that there are no significant differences

in performance between the architectures.

equivariant architecture in the case where no data augmentation is used. This effect

disappears once data augmentation is used at train time.
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There can be several reasons for the lack of performance improvement when

considering the equivariant architecture. Firstly, we are dealing with a relatively simple

one-dimensional system, and the symmetry that we are trying to enforce might be easily

learned by the network. This can explain why we do not observe significant performance

improvements in the low data regime when compared to other works which learn to

model charged-particle dynamics in 3D using equivariant architectures [25,26]. Further

support for this thesis is the fact that other experiments that included augmented

data solely along the x-axis did not cause significant changes in the performance of

the non-equivariant architecture (only using both x and t augmentation produced

improvements).

Secondly, it can be argued that the way we enforce the equivariance is not

ideal, since we are constraining significantly the latent node representations with the

introduction of the multiplication term sgn(ξiξj) in the edge update. This was the

option we found to work better. Furthermore, the performance of the equivariant and

the equivalent non-equivariant architecture (the one which uses solely the sent edges

for the node update) is basically the same across all metrics (rollout accuracy, energy

conservation, etc.) except for considerably large thermal velocities (vth ≫ vtrainth ).

Therefore, we conclude that the imposed constraints are not affecting significantly

the network learning capabilities, and the lack of improvements is mostly due to the

simplicity of the setup and symmetry.

Finally, note that we do not propose an equivariant architecture that uses the sent

edges for the node update mechanism. This is due to the fact that, in the proposed

equivariant scheme, the sent edges are computed in the frame of the receiving node.

Therefore, one would have to add an operation that transforms them back to the sender

node frame, or duplicate the amount of operations in the network in order to store and

update the (latent) edges in both frames.

At this point, it is not clear why using the sent edges in the node update of the non-

equivariant architecture improves the energy conservation capabilities at larger thermal

velocities. We do not observe any relevant difference in the validation loss between

the different non-equivariant architectures, which leads us to believe that this effect is

not due simply to a larger number of degrees of freedom of the network which allows

for a better fit. Instead, the network seems to learn a structurally different update

mechanism, which is more resilient to higher crossing rates.

Lastly, it is important to mention that all architectures are capable of reproducing

the kinetic plasma process presented in Section 6 with the exception of the Two-Stream

Instability. The latter is only recovered using the non-equivariant architecture presented

in the main body of the paper, due to the aforementioned improved energy conservation

capabilities for larger sheet velocities.
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Appendix E. Boundary crossings re-injection

For reflecting boundary conditions, the new positions, velocities, and equilibrium

positions of the sheets are updated according to:

xt+1
i =


−x̃t+1

i , if x̃t+1
i < 0

x̃t+1
i − L , if x̃t+1

i ≥ L

x̃t+1
i , elsewhere

vt+1
i =

{
−ṽt+1

i , if x̃t+1
i < 0 ∨ x̃t+1

i ≥ L

ṽt+1
i , elsewhere

xt+1
eq = xt

eq

(E.1)

where x̃, ṽ represent the positions and velocities after the ODE integration step.

For periodic boundary conditions, the update rule is:

xt+1
i =


L+ x̃t+1

i , if x̃t+1
i < 0

x̃t+1
i − L , if x̃t+1

i ≥ L

x̃t+1
i , elsewhere

vt+1
i = ṽt+1

i

xt+1
eq = xt

eq + (nleft − nright)δ

(E.2)

where nleft, nright represent the number of particle that crossed the left and right

boundary. For both boundary conditions, xt+1 is sorted after the update (and vt+1

accordingly) so that its indices match the equilibrium positions array xt+1
eq (i.e. the

correct equilibrium position is attributed).

Appendix F. Impact of training dataset size and data augmentation

In figure F1, we show the accuracy of equivalent models to those presented in the main

body of the paper, when trained on datasets of different sizes. For ∆t = 10−2 ω−1
p

the accuracy plateaus before the maximum amount of training simulations used. The

same does not happen for a ∆t = 10−1 ω−1
p , which exhibits a consistent power law

scaling, meaning that increasing the dataset size could still lead to performance gains.

We believe the difference in behavior occurs not only because more training time steps

are available per simulation for smaller ∆t, but also because it is easier to model the

dynamics in smaller time steps since fewer crossings per simulation step occur.

Additionally, the results demonstrate the impact of using data augmentation,

especially at smaller training dataset sizes. Further investigation revealed that this

improvement in performance is mainly due to the time reversal augmentation since

introducing the data reflected along the x-axis did not produce significant differences.

We investigated if the data requirements could be further lowered by enforcing the

symmetries expressed by the data augmentation procedure in the network architecture.
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Figure F1. Model accuracy as a function of the number of training simulations. The

test set contained 100 simulations of 10 sheets moving on a periodic box (same as

in figure 7). It is observed that rollout EMD follows approximately a power law for

∆t = 10−1 ω−1
p meaning that further improvements can be achieved by increasing the

dataset size. For ∆t = 10−2 ω−1
p the performance has already plateaued. Overall, the

proposed data augmentation strategy is proven to be beneficial.

However, due to the finite difference nature of the velocities, solely the spatial rotational

symmetry could be enforced. No significant improvements were observed for a GNN

architecture that enforced the latter, reinforcing the notion that this symmetry is easily

learned/approximated by the network. More details are provided in Appendix D.

Appendix G. Model benchmark – Extra

Performance across different seeds

In figure G1 and figure G2 we show the same metrics presented in Section 5 but now

presented for all the individual GNN models trained (instead of the average value and

min/max range over equivalent models). The results clearly identify the existence of

a consistently worse performing model for ∆t = 10−2 ω−1
p , both in terms of rollout

accuracy and energy conservation. We attribute this difference in performance to a worse

single-step prediction capability, which was already clear in its training performance (2×
larger validation loss than equivalent models).

When removing this model from the set considered for the energy conservation

diagnostic (figure G3), the behavior for different time resolutions (∆t = 10−1 ω−1
p and

∆t = 10−1 ω−2
p ) is significantly more consistent than what was observed in figure 9.

Furthermore, the average GNS at ∆t = 10−2 ω−1
p becomes comparable to the MSM

which resolves crossings up the 2nd closest neighbor (figure G4) instead of the solely

the closest neighbor (figure 10).
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Figure G1. Rollout error metrics for all models used in the benchmark tests presented

in Section 5 (5 models for each ∆t, trained in a similar fashion using different random

seeds). Mean values for each model are computed by averaging over sheets, time steps,

and simulations. The error bars represent the minimum and maximum rollout error

achieved for the corresponding set of test simulations. We observe that equivalent models

perform similarly, with the exception of model #4 for ∆t = 10−2 ω−1
p . This difference

in performance was already expected after completing the training procedure since the

validation loss was approximately two times that of equivalent models (i.e. achieved

worse single-step acceleration prediction).
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Figure G2. Energy conservation metrics for all models used in the benchmark tests

presented in Section 5 (5 models for each ∆t, trained in a similar fashion using different

random seeds). Similarly to the rollout error results presented in figure G1, the energy

conservation does not vary significantly with the random seed. The exception is once

again model #4 for ∆t = 10−2 ω−1
p , which causes a significant increase in the average

energy variation in figure 9 (see “Thermal”).
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Figure G3. Same diagnostic presented in figure 9 without considering the contribution

of model #4 for ∆t = 10−2 ω−1
p , which was shown to converge to a significantly worse

validation loss, rollout accuracy, and energy conservation capabilities. The behavior of

the GNS curves becomes more consistent across the different time resolutions.
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Figure G4. Same diagnostic presented in figure 10 without considering the contribution

of model #4 for ∆t = 10−2 ω−1
p . The behavior of the GNS at ∆t = 10−2 ω−1

p becomes

overall comparable to the MSM which resolves crossings up to the 2nd neighbor.
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Energy conservation diagnostic

In figure G5 we provide examples of the observed energy variation during a simulation

rollout for the sheet model and the GNS. The moving average (∆t = 2π ω−1
p ) as well

as its maximum value (what we consider for the results in figure 9) are highlighted.

The results illustrate the importance of using the moving average for a fair comparison

between algorithms since the usage of finite difference velocities for the GNS introduces

an oscillation in the energy calculation (period equal to half a plasma oscillation). It

also showcases why we do not use the first plasma period, since before crossings occur

(i.e. first time-steps) the initial “energy increase” introduced by the finite difference

velocities is not compensated in the remaining of the plasma period (which would lead

to an incorrect estimation of the energy using the moving average strategy).
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Figure G5. Illustration of the energy conservation diagnostic calculation. All systems

consist of 103 sheets inside a periodic box. Both the sheet model and the GNS use a time

step of ∆t = 10−1 ω−1
p . The results illustrate why it is important to use the moving

average of the energy over a plasma oscillation (∆t = 2π ω−1
p ) for a fair comparison

between algorithms (since the GNS uses finite difference velocities). Additionally, it

shows the reason for not considering the first plasma oscillation, since the finite difference

velocities introduce a large oscillation in the estimation of the energy before crossings

occur (i.e. initial time-steps).

It is important to highlight that the initial energy of the system, which is

considered for both the sheet model algorithm and the GNS, is computed using the

initial instantaneous velocities (i.e. the input used for the sheet model simulation)

which are different from the initial finite difference velocities used for the GNS. We

compute the initial finite difference velocities by performing a simulation backward
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in time until t = −∆tGNS using the sheet model at a very high temporal resolution

(∆tSM = 10−4 ω−1
p ). This ensures that the initial conditions of the different simulators

are equivalent.

Impact of crossings present in the training datasets

In figure G6 we show the distribution of relative sheet rank change (xt+1
eq −xt

eq) across all

time steps of the test set of 100 simulations containing 103 sheets on reflecting boundary

conditions (previously used for the rollout accuracy measurement in figure 7). The rank

change is a proxy (lower limit) on the number of sheets involved in a crossing, thus

allowing us to understand what is the percentage of data points that include crossings

with the nth neighbor. The distribution in the test data shown should be equivalent to

the one present in the training data, which we do not show since for periodic boundary

sheets can cross through the boundary, leading to higher values of xt+1
eq − xt

eq which are

not meaningful for understanding the number of sheets involved in the crossings.

What we observe is that there is a cut-off in the rank changes present for different

time resolutions, which decreases for higher temporal resolutions. For ∆t = 10−2 ω−1
p

the majority of time-steps either no crossing occurs (> 90%) or no sheet moves ±2

positions to the left/right (> 99.999%). We believe this is the main reason why the

GNS fails to outperform the MSM which checks for crossings up to the third neighbor

at this time resolution,i.e. it overfits the oscillatory motions and it is not provided with

enough training samples for higher-order crossings.
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Figure G6. Distribution of sheet rank changes at different temporal resolutions for the

test set consisting of 100 simulations of 103 sheets moving over a reflecting box (used

for rollout accuracy diagnostic in figure 7). The training distribution is expected to

follow a similar behavior. There is a clear cut-off in the maximum rank change, which

decreases with an increased temporal resolution, and a clear imbalance in the percentage

of higher-order crossings. This will limit the capability of the GNS to model crossings

involving a larger number of sheets.
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Appendix H. Landau damping – Extra

The range used for the initial mode amplitudes A0
m ∈ [0.08, 0.2] δ in Section 6.6 was

chosen so that: a) the minimum initial amplitude was above the usual “noise” level,

i.e. the values at which on average most nodes stop decaying; b) the maximum value was

not too high to guarantee we had enough statistics (number of trajectories) to obtain

a good estimate of the average trajectory across all modes. To further illustrate the

reasoning behind the chosen range we provide in figure H1 the amplitude of several

modes over time for one of the simulations produced in Section 6.6.
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Figure H1. Examples of mode amplitude evolution for one of the simulations used in

Section 6.6. The black dashed lines delimit the region used in the Landau Damping

diagnostic results presented in figure 18 and figure 19. This region is chosen such that

we start tracking the mode evolution above the typical “noise” level while guaranteeing

that enough statistics exist to compute a meaningful average trajectory.

The range of the modes used, kλD ∈ [0.28, 0.7], was selected such that enough

particles exist to resolve the distribution function near the mode phase velocity (for

kλD = 0.28, vph ≃ 4vth meaning only ≃ 100 particles have v > vph) and that the mode

does not decay too fast (for kλD = 0.7, −Im(ω)−1 ≃ 2.5 ω−1
p ). It is therefore expected

that, closer to these limits, the dynamics are not as well approximated.
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To automatically compute the decay rate and the angular frequency we proceed

as follows. We first obtain the average trajectory of the mode in the (Am, Ȧm) phase-

space as explained in Section 6.6. The length of this trajectory is chosen so that it

corresponds to the maximum of: a) the time it takes for the mode to decay to 1/5-th

of its initial amplitude (using the theoretical estimate of the damping rate); b) 3 mode

periods (using the theoretical estimate of the angular frequency). The first condition is

the preferred one for slowly damped modes, and the second for fastly damped modes.

After obtaining the average trajectory, we split it into equal regions of size

∆t = π/ωt where ωt is the theoretical angular frequency of the mode. For each time

interval, we retrieve the maximum value of |At
m| and the corresponding time. This

process is illustrated in figure H2. The decay rate is then obtained from the slope of the

log |At
m| maxima curve, and the angular frequency from the average distance between

consecutive maxima. For highly damped modes (larger m, or equivalently larger kλD)

this estimate is noisier (e.g. m = 400 in figure H2), resulting in the larger variations

presented in figure 18 and figure 19.
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Figure H2. Illustration of the Landau Damping diagnostic used to retrieve the damping

rate and angular frequency for figure 18 and figure 19. For each mode m and initial

mode amplitude A0
m we compute the average mode amplitude over time. The maximum

for each half period (shown by a black line) is then automatically calculated. The mode

damping rate and the angular frequency are extracted based on these maxima.
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Appendix I. Two-stream instability – Extra

Different modes

In figure I1 and figure I2 we showcase a similar setup as the one shown in Section 6.7

with the difference that the main modes excited are now m = 8 (v0 = 244 δ ·ω−1
p ) and

m = 12 (v0 = 162 δ ·ω−1
p ). We observe once again that the GNS is capable of modeling

the same macrophysics as the sheet model at a considerably higher time resolution. The

relative energy variation of the system (for m = 8 and m = 12) is similar to the one

presented for m = 4 in Section 6.7 (∆ϵSM/ϵ0 ≈ 10−6, and ∆ϵGNS/ϵ0 ≈ 2× 10−2).
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Figure I1. Two stream instability simulation which excites the m = 8 mode

(v0 = 244 δ·ωp). We use the same model and setup as described in Section 6.7. The GNS

is once again capable of recovering the same dynamics as the higher temporal resolution

sheet model.
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Figure I2. Two stream instability simulation which excites the m = 12 mode

(v0 = 162 δ ·ωp). We use the same model and setup as described in Section 6.7 and

figure I1. Results provide further demonstration of the GNS capability to recover the

instability dynamics.



Learning the dynamics of a one-dimensional plasma model with GNNs 63

Different model seeds

In figure I3 we reproduce the two-stream simulation from Section 6.7 now using

equivalent GNNs trained with different random seeds. As previously mentioned,

these models showcase (overall) worse energy conservation capabilities for out-of-

training distribution velocities (figure G2). In particular, for the two-stream instability

simulation presented in figure I3, we observe relative energy variations between 10−16%

in comparison with the 2% reported in Section 6.7. Nonetheless, the macrophysics

obtained for these models is consistent with the results shown in the main body of the

paper (figure 20). The only exception is Model #1, whose phase space looks considerably

different (the potential energy growth rate still matches that of other models).
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Figure I3. Two-stream instability results (m = 4) for GNNs initialized with different

random seeds. We recover similar dynamics to those presented in the main body of the

paper (figure 20) while using models with worse energy conservation capabilities.
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Different time step

In figure I4, we provide an additional example of the two-stream instability test

performed in Section 6.7, now performed for the GNS at ∆t = 10−2 ω−1
p . The relative

energy variation is approximately ∆ϵ/ϵ0 ≈ 2× 10−2 (Model #0). Once again, the GNS

is able to correctly recover the dynamics. The reasons why we do not observe improved

energy conservation capabilities for the GNS at ∆t = 10−2 ω−1
p when compared to

models trained at ∆t = 10−1 ω−1
p have already been discussed in Section 5.2.

The results obtained across GNN models trained with different seeds for this higher

temporal resolution are also consistent (figure I5), with the exception of model #4 (51%

energy loss compared to 2− 7% for the remaining seeds) whose problems have already

been identified and discussed in Appendix G.
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Figure I4. Comparison of the phase space and potential energy evolution of the two-

stream scenario (with m = 4) using a smaller time step (∆t = 10−2 ω−1
p ). We observe

similar results to those obtained for the GNS at lower time resolutions (figure 20).
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Figure I5. Two-stream instability (m = 4) results obtained for the remaining GNN

models trained with a time step ∆t = 10−2 ω−1
p . Apart from model #4 (whose problems

were already identified in Appendix G), all others retrieve similar dynamics than those

observed in figure I4.
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