

Deep Neural Networks for Plasma Tomography with Applications to JET and COMPASS

3rd European Conference on Plasma Diagnostics

D. D. Carvalho¹, D. R. Ferreira¹, P. J. Carvalho¹, M. Imrisek², J. Mlynar², H. Fernandes¹ and JET Contributors^{*}

- 1. Instituto de Plasmas e Fusão Nuclear, IST University of Lisbon, Portugal
- 2. Institute of Plasma Physics AS CR, Prague, Czech Republic
- * See the author list of "Overview of the JET preparation for Deuterium-Tritium Operation" by E. Joffrin et al. to be published in Nuclear Fusion Special issue: overview and summary reports from the 27th Fusion Energy Conference (Ahmedabad, India, 22-27 October 2018).

Plasma Tomography

Goal

Reconstruct plasma radiation profile based on line integrated measurements

Problem

 Current algorithms take too much time to produce a reconstruction (from a few seconds to several minutes)

Convolutional Neural Networks

Source : Shyamal Patel, Introduction to Deep Learning: What Are Convolutional Neural Networks?

Deconvolutional Neural Network (JET)

ECP2019

Deconvolutional Neural Network (COMPASS)

ECP₂₀₁₉

JET

- Gathered 28000 samples from several campaigns since installation of ITER-like wall in 2011 [1]
- Tomograms computed using TOMO5 algorithm [2]

COMPASS

- Gathered 5800 samples from an interval of > 1000 shots
- Tomograms computed using Minimum Fisher regularization algorithm [3]

Divided into training/validation/test sets according to 80%/10%/10%

[1] G. F. Matthews et al., JET ITER-like wall – overview and experimental programme, Physica Scripta 2011 (2011)
[2] L. Ingesson et al., Soft X ray tomography during ELMs and impurity injection in JET, Nuclear fusion 38 (1998)
[3] M. Imríšek et al., Optimization of soft X-ray tomography on the COMPASS tokamak, Nukleonika 61 (2016)

Neural Network Training

- Neural network implementation in Keras [1]
- Training performed on a NVIDIA Titan X GPU using batched accelerated gradient descent (Adam [2]) with a learning rate of 10^{-4}
- Minimum error validation loss : $JET = 0.0128 MWm^{-3}$, COMPASS = $0.0054 kWm^{-3}$

[1] F. Chollet et al., Keras, https://keras.io (2015)

[2] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

Neural Network Performance

Quality metrics on test set

	SSIM		PSNR (dB)	
	Mean	Std dev	Mean	Std dev
JET	0.936	0.061	35.36	7.17
COMPASS	0.998	0.004	49.96	4.63

- Computing one reconstruction takes *JET*: 2 *ms* and for *COMPASS*: 1 *ms*
- Close to real time usual acquisition frequencies ~ kHz
- Full pulse reconstructions (1000+ reconstructions) calculated in seconds

JET pulse 92213 t=47.00s

COMPASS pulse 10188 t=1.0550s

Performance with missing detectors (COMPASS)

Dropout (%)		SSIM	
0	0.998	0.987	0.983

Dropout (%)	(%) PSNR (dB)		
0	49.96	41.77	37.99

Similar behavior observed for JET neural network

Note : Quality metrics presented are calculated for the same test as before, and represent the average values over all possible combinations of missing detectors

Modify architecture – include dropout layer

- Dropout layer is only active during training
- Trained 3 different neural networks using different dropout values 1% , 5% and 10~%

ECP 2019

Performance with dropout layer (COMPASS)

Dropout (%)		SSIM	
0	0.998	0.987	0.983
1	0.999	0.996	0.998
5	0.992	0.994	0.997
10	0.992	0.988	0.992

Dropout (%)		PSNR (dB)	
0	49.96	41.77	37.99
1	50.23	48.79	48.97
5	39.23	38.76	39.19
10	33.44	33.03	33.30

Note : Quality metrics presented are calculated for the same tet as before, and represent the average values over all possible combinations of shutdown detectors

Additional Materials

Code

- JET: <u>https://github.com/diogoff/plasma-tomography</u>
- COMPASS: <u>https://github.com/diogodcarvalho/PlasmaTomoML</u>

Related work

• D. R. Ferreira et al., Full Pulse Tomographic Reconstructions with Deep Neural Networks

https://arxiv.org/abs/1802.02242

• J. Mlynar et al., Current Research into Applications of Tomography for Fusion Diagnostics

https://link.springer.com/article/10.1007/s10894-018-0178-x