
Improving Business Process Models with
Agent-based Simulation and Process Mining

Fernando Szimanski1, Célia G. Ralha1, Gerd Wagner2, and Diogo R. Ferreira3

1 University of Braśılia, Brazil
fszimanski@gmail.com, ghedini@cic.unb.br

2 Brandenburg University of Technology, Cottbus, Germany
gwagner@informatik.tu-cottbus.de

3 IST – Technical University of Lisbon, Portugal
diogo.ferreira@ist.utl.pt

Abstract. Business processes are usually modeled at a high level of
abstraction, while the analysis of their run-time behavior through pro-
cess mining techniques is based on low-level events recorded in an event
log. In this scenario, it is difficult to discover the relationship between
the process model and the run-time behavior, and to check whether the
model is actually a good representation for that behavior. In this work,
we introduce an approach that is able to capture such relationship in a
hierarchical model. In addition, through a combination of process min-
ing and agent-based simulation, the approach supports the improve-
ment of the process model so that it becomes a better representation
for the behavior of agents in the process. For this purpose, the model
is evaluated based on a set of metrics. We illustrate the approach in an
application scenario involving a purchase process.

1 Introduction

Business processes are usually defined at a high level of abstraction using mod-
eling languages such as BPMN [1], EPCs [2], and Petri nets [3]. In these types
of models, the process is depicted as a sequence of activities, where each activ-
ity is to be performed by some agent. In human interaction workflows [4], the
agent is typically a user who is able to perform certain tasks over a supporting
systems infrastructure. During execution, when an agent is assigned to a certain
activity, it performs a set of operations over the systems infrastructure. Among
other things, such as data and information manipulation, these operations may
include communicating with other agents as well.

When agents perform operations over a systems infrastructure, it is possi-
ble to record these actions in the form of events. Typically, each event refers
to an operation that was performed by some agent during the execution of a
process instance. Such events are recorded in an event log and, from this event
log, it is possible to analyze the run-time behavior of agents through process
mining techniques [5]. These techniques allow studying the run-time behavior



2 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

from a number of perspectives, including the sequence of operations as well as
the interactions that take place between agents during process execution.

The ultimate purpose of such analysis is to be able to compare the prede-
fined behavior for the process with the actual behavior of agents at run-time.
However, such goal faces a major obstacle. While business processes are defined
and modeled at a high level, the analysis of run-time behavior through process
mining techniques is based on the low-level events recorded in the event log,
as each agent carries out its own operations. Clearly, there is a gap between
the high level of abstraction at which processes are defined, and the low-level
nature of events recorded in the event log.

The goal of this work is to bridge this gap and to provide a platform for the
improvement of process models based on a combination of agent-based simu-
lation [6–8] and process mining. Through agent-based simulation, it is possible
to define, implement, and simulate a business process as a sequence of activi-
ties carried out by multiple agents working together. The interactions between
these agents are recorded as low-level events. Through process mining, it is pos-
sible to extract models of behavior from this event log. However, the extraction
must be done in such a way that it is possible to map low-level events to the
high-level activities defined in the business process.

In summary, this work provides the following contributions:

– It shows that an agent-based simulation framework – specifically, the Agent-
Object Relationship (AOR) framework [9] – can be used as a platform for
implementing and simulating business processes.

– It describes a process mining technique that is able to extract a hierarchical
Markov model [10] from an event log and from a description of the high-
level process provided as input.

– It provides a set of metrics to evaluate the complexity of models obtained
with such technique, which can serve as a guide when considering different
ways to model the business process.

– It shows that the combination of both tools – i.e. the agent-based simulation
framework and the proposed process mining technique – can be used as a
testbed for trying out different models of the business process.

Section 2 provides an overview of the proposed approach. Section 3 discusses
agent-based simulation, and in particular the use of the AOR framework in this
work. Section 4 describes the hierarchical Markov model that is used to capture
the run-time behavior of agents, and the algorithm to extract such model from
an event log. Section 5 discusses metrics and the evaluation of the extracted
models. Section 6 presents an application scenario involving in a purchase pro-
cess. Finally, Section 7 concludes the paper.

2 Approach overview

One of the premises for this work is that business experts will be able to pro-
vide a high-level description of the business process. Typically, the process is



Improving Process Models with Agent Simulation and Process Mining 3

described in terms of a process model with a set of high-level activities. On the
other hand, there are process mining techniques to extract the behavior of a
business process from event logs, but the low-level events that are recorded in
the event log may not have a clear relationship to the high-level activities de-
fined in the process model. Therefore, one of the main issues to be addressed is
how to map the low-level events recorded in an event log to the high-level activ-
ities defined in a process model. In our approach, this is done with the aid of a
process mining technique which is able to extract a hierarchical Markov model
from the event log and from a Markov-model representation of the high-level
business process, as shown in Figure 1.

Business process model 
(i.e. macro-model) 

Process mining 

Event log 

Agent-based simulation 

Hierarchical Markov model 

Macro-model 

Micro-models 

Initial process definition 
provided by business experts 

Initial event log obtained 
from supporting systems 

Simulation 
through AOR 

EM algorithm 

Change/improve 
process model 

Reconfigure/redeploy 
for simulation 

Convert to 
Markov model 

Select micro-events 
(i.e. perspective) for analysis 

Analysis and evaluation 

Metrics 

Fig. 1. Business process improvement cycle

From such hierarchical model, it is possible to assess whether the high-level
process model is actually a good representation for the observed low-level be-
havior. In particular, it is possible to measure the quality of such model through
a set of metrics. The use of metrics to evaluate the quality of process models
has been thoroughly investigated in the literature [11–14], but here we focus on
a set of metrics that are more tailored to the hierarchical model that is at the
core of our approach. Specifically, such hierarchical model should be “balanced”
in the sense that all of its components – i.e. the micro-models and the macro-



4 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

model – should have a similar complexity, rather than having some components
that are extremely complex and others that are oversimplified.

Following the analysis and evaluation of the hierarchical model through a set
of metrics, the analyst can change the high-level description of the process in
order to create a better representation for the behavior that actually occurs in
practice. However, changing the high-level process may cause a different percep-
tion of how the low-level events map to the high-level activities. For example,
if an activity is split in two, or if two activities are merged together, the rela-
tionship between the low-level events and the high-level activities will change.
Contrary to what may appear at first sight, such change is not entirely pre-
dictable, since agents organize themselves in a non-deterministic way to carry
out the process. In addition, process mining techniques do not provide perfect
accuracy, so one can gain further insight into the run-time behavior of the pro-
cess by trying out different configurations for the process model.

Ideally, a new version of the process would be deployed in the organization
and one would be able to collect new event logs. Then one could run the process
mining algorithm again in order to check which changes have been introduced
in the run-time behavior, and whether the new process is a good representation
of that behavior. In practice, one may not be able to do such experiments on
the real-world environment due to the risks, costs or time involved. Therefore,
we introduce the possibility of carrying out an agent-based simulation for the
new process model. This simulation will be configured with the knowledge that
has been collected so far about the process.

In previous work [10], we have shown that it is possible to generate event
logs from agent-based simulations. In particular, we used the AOR framework [9]
for that purpose. With this platform, it is possible to configure simulation sce-
narios which comprise multiple agents interacting with each other. An event
log of these interactions can be recorded and used for process mining analysis.
Together with the high-level description of the business process, this event log
can be used to extract a new hierarchical model and again analyze and evaluate
this model in order to assess the opportunity for further changes. This improve-
ment cycle is based on simulation and mining, and it can be repeated until a
satisfactory process model is found.

3 Agent-based simulation

Agent-based simulation (ABS) [6–8] focuses on the analysis of business systems
involving interactions among agents. ABS can be used to represent organiza-
tional settings in a natural way, since they involve business actors that com-
municate and interact with each other. In particular, it is possible to use ABS
for simulating the execution of a business process, thereby generating an event
log. In our approach, we use the AOR simulation framework [9], which provides
both high-level constructs (such as activities) and low-level constructs (such as
incoming and outgoing message events) to facilitate the mapping of a business
process model into a simulation model.



Improving Process Models with Agent Simulation and Process Mining 5

In the AOR framework, agents react to events in their environment by per-
forming actions and by interacting with each other. There are basically two
different kinds of events:

– An exogenous event is an external event (such as the arrival of a new cus-
tomer) which is not caused by any previous event. Usually, the occurrence
of such an event triggers a new instance of the business process. To run
multiple instances of a business process, the AOR system schedules several
exogenous events to trigger the process at different points in time.

– The second kind of event is a caused event. For example, if agent X sends a
message M1 to agent Y, then this may result in another message M2 being
sent from agent Y to agent Z. Agents send messages to one another for dif-
ferent purposes, e.g. for reporting, for making requests and for responding.
The chaining of messages through caused events is what keeps the simula-
tion running until there are no more events.

The specification of a simulation scenario begins by defining a set of entity
types, including different types of agents, messages and events. The behavior of
agents is specified by means of reaction rules. Typically, such a rule defines that
when a certain message is received, the information state of the agent is updated
and another message is sent to some other agent. Since the rules for each agent
are defined separately, the simulation scenario is effectively implemented in a
decentralized way by the combined behavior of all agents.

A second kind of rule in an AOR simulation scenario are environment rules.
While reaction rules define the behavior of agents, environment rules define the
behavior associated with the external environment. An environment rule speci-
fies that when an exogenous event occurs, the state of certain objects is changed
and certain follow-up events result from it. For example, an environment rule
may specify that when a certain event occurs, a message is sent to an agent;
sending this message then triggers a reaction rule of the receiving agent, creat-
ing a chain of events that puts the simulation in motion.

Environment rules also have the ability to create (or destroy) agents. This
is especially useful to simulate, for example, the arrival (or departure) of cus-
tomers. A set of initial conditions for the simulation scenario specifies which
agents already exist in the scenario at the beginning of the simulation. The
initial conditions also include a schedule for the occurrence of at least one ex-
ogenous event to trigger the simulation.

All of these constructs (i.e. entity types, reaction rules, environment rules,
and initial conditions) are specified using an XML-based language called AOR
Simulation Language (AORSL) [15]. The specification of a simulation scenario
in AORSL is transformed into Java code by the AOR system. Running the
simulation amounts to running this auto-generated Java code.

4 Process mining with hierarchical Markov models

Process mining [5] includes a number of different perspectives, namely the con-
trol-flow perspective, the organizational perspective, and the performance per-



6 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

spective. In each of these perspectives there are a number of specialized tech-
niques, such as the α-algorithm [16] for the control-flow perspective, the social
network miner [17] for the organizational perspective, or the dotted chart [18]
for the performance perspective. However, these techniques have in common the
fact that they work at the same level of abstraction as the events recorded in
the event log, so they may not be very helpful in providing insight in terms of
the high-level activities that are used to describe the business processes.

More recently, there has been some effort in developing techniques that are
able to address this problem. Some of these techniques work by extracting a
low-level model from the event log and then creating a more abstract represen-
tation of that model [19, 20]. Other techniques begin by translating the event
log into a more abstract sequence of events, and then extracting models from
that translated event log [21, 22]. Here we address the problem with a special
kind of model – i.e. the hierarchical Markov model introduced in [10] – which is
able to capture both the high level of abstraction at which the process is defined
and the low-level behavior that can be observed in the event log.

Figure 2 illustrates a simple example of a hierarchical Markov model. Here,
the business process is described on a high level as comprising the sequence of
activities A, B, and C. When each of these activities is performed, this results
in some sequence of low-level events being recorded in the event log. Figure 2
represents these low-level events as X, Y and Z. In practice, these may represent
the actions that are being carried out by agents, or they may also represent the
interactions, i.e. the messages exchanged between agents. The meaning of X, Y

and Z depends on the type of events that are recorded in the event log.

A B C

X

Y

Z

Y Z

Z
Y

X

Fig. 2. A simple hierarchical Markov model

The hierarchical model in Figure 2 means that executing activity A results
in the sequence of events XYZ being recorded in the event log. In a similar way,
activity B results in a sequence of events in the form YZZ..., where there may be
multiple Z’s until a certain condition becomes true. Finally, activity C results
in a sequence of events in the form ZXY. Both the high-level process and these
sequences of low-level events are represented as Markov chains. Executing this
model corresponds to performing the sequence of activities ABC. However, in
the event log we find sequences of events such as XYZYZZZXY.



Improving Process Models with Agent Simulation and Process Mining 7

The sequence ABC is called the macro-sequence, and the high-level Markov
chain that represents the business process expressed in terms of the activities A,
B, and C is referred to as the macro-model. On the other hand, the sequence of
events XYZYZZZXY is called a micro-sequence, and the low-level Markov chains
that describe the behavior of each macro-activity in terms of the events X, Y

and Z are referred to as a the micro-models.
The hierarchical Markov model relates to the approach depicted in Fig-

ure 1 in the following way: the high-level description of the business process
corresponds to the macro-model, and the low-level event log corresponds to
the micro-sequence.4 Therefore, both the macro-model and the micro-sequence
are known. The problem is how to discover the macro-sequence and the micro-
models from the given macro-model and micro-sequence.

This problem has been addressed in detail in [10], and it can be solved with
an Expectation-Maximization (EM) procedure [23] as follows:

1. Draw one macro-sequence at random from the macro-model (in the example
of Figure 2 only one macro-sequence is possible: ABC).

2. From the macro-sequence and the micro-sequence, find an estimate for the
micro-models (Algorithm 2 in [10]).

3. From the macro-model and the micro-models from step 2, find the most
likely macro-sequence (Algorithm 3 in [10]).

4. With the macro-sequence from step 3, repeat step 2. Then with the micro-
models from step 2, repeat step 3. Do this until the micro-models converge.

In [24] the authors show that this EM procedure is able to deal with work-
flow patterns such as branching, parallelism and loops. Our goal here is just to
highlight that from a high-level model of the business process (i.e. the macro-
model) and a low-level event log recorded during execution (i.e. the micro-
sequence), it is possible to derive a set of micro-models that capture the low-
level behavior within each high-level activity, as depicted in Figure 2. The initial
macro-model, together with the recently discovered micro-models, can then be
evaluated through a set of metrics, as explained in the next section.

5 Evaluation metrics

In the literature, there are several metrics that have been proposed for the anal-
ysis of business process models [11–14]. In some cases, these metrics have their
origin in network analysis and software engineering.

Metrics for describing network structure are usually derived from graph the-
ory and network theory. For example, there are some characteristics that are
normally used to describe a network structure, e.g. centrality, degree, density,
and connectivity [25]. A business process model, expressed in BPMN for ex-
ample, can be viewed as a special kind of graph, and therefore those network
analysis techniques can be applied in this context as well.

4 More precisely, an event log usually contains multiple traces, and each trace corre-
sponds to a separate micro-sequence.



8 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

In software engineering, there are also several metrics to measure aspects
that are relevant for quality assurance. These metrics depend on the program-
ming paradigm being used. In procedural programming, the most common met-
rics are structural and they are based on the counting of functions along the
control-flow, such as the cyclomatic number [26], the information flow metric
(fan-in, fan-out) [27], and the COnstructive COst MOdel [28], among others. In
object-oriented programming, there is a different set of metrics to measure fac-
tors such as cohesion and coupling [29]. To some extent, some of these metrics
can be used to evaluate business process models too.

In this work, we are interested in metrics that can be used to evaluate pro-
cess models expressed as hierarchical Markov models. For this purpose, we stud-
ied a number of metrics focusing on factors such as size, density, modularity,
control-flow, etc. [11, 30, 31]. The literature provides a lot of metrics to measure
these factors, but here we selected a subset of metrics that are more geared
towards the structure and complexity of those models. In particular, we are in-
terested in metrics that allow us to determine if the hierarchical model is “bal-
anced” in the sense that the macro-model and the micro-models should have
similar complexity. The chosen metrics are summarized in Table 1.

Metric Abbrev. Focus Definition

No. of arcs per node [11] NAN Density Ratio of number of arcs to number of nodes.
Relational density [32] RD Density Ratio of number of arcs to the total number

of possible arcs.
No. of paths [26] NP Control-flow Number of all possible distinct paths be-

tween start node and end node.
Path length [25] PL Size Number of nodes between start node and

end node. (For a given model, this is cal-
culated as the average length of all possible
paths.)

Cyclomatic complexity [26] CC Control-flow Number of linearly-independent paths. Can
be measured as M = E − N + 2P where E
is the number of arcs, N is the number of
nodes, and P is the number of exit nodes.

Fan-in/Fan-out [14] FIO Modularity (fin · fout)
2 where fin is the number of

nodes that precede a given node, and fout

is the number of nodes that follow a given
node. (For a given model, fin and fout are
calculated separately as an average across
all nodes.)

No. of sub-processes SUB Modularity Number of nested sub-processes in a model.

Table 1. Metrics to evaluate the components of a hierarchical model

All metrics (except SUB) can be calculated separately for the macro-model
and for each micro-model. This provides an assessment of each component in
the hierarchical model. For example, in the hierarchical model of Figure 2 there
are four components, and the metrics can be calculated for each of them. To
get an assessment of the hierarchical model as a whole, in this work we take a
simple average of the results obtained across all components.



Improving Process Models with Agent Simulation and Process Mining 9

6 Application scenario

The purpose of this application scenario is to illustrate how the proposed ap-
proach can be used to facilitate the refinement of a process model, so that this
model becomes not only a more precise representation of the observed behavior,
but also a model which achieves better results in terms of the metrics described
in the previous section. The scenario involves a purchase process which is de-
scribed on a high-level both in text and by means of a BPMN diagram. Due
to space restrictions, we will show the initial version (version 1) and the final
version (version 2), but there could be other versions in between.

Initially, the process is described as follows:

In a company, an employee needs a certain commodity (e.g. a printer car-
tridge) and submits a request for that product to the warehouse. If the prod-
uct is available at the warehouse, then the warehouse dispatches the product
to the employee. Otherwise, the purchasing department buys the product,
and then the warehouse dispatches the product to the employee.

This process is represented as a BPMN diagram in Figure 3, and its control
flow can be expressed as a Markov chain with transition probabilities, as shown
in Figure 4. In this macro-model, there are just three high-level activities and
one decision. For lack of further info, we assume that the two possible outcomes
from this decision are equally likely, so the transition probabilities from the
“Requisition” activity to “Dispatch Product” and “Buy Product” are both 0.5
in Figure 4. In this Markov chain, there are also two special states (◦ and •) to
represent the beginning and end of the process, respectively.

Fig. 3. BPMN diagram for the purchase process (version 1)

In a real scenario, an initial event log can be obtained from the supporting
systems in order to capture the low-level operations performed by the partici-
pants in the process, or the interactions (i.e. message exchanges) between those



10 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

Fig. 4. Markov chain representation for the purchase process (version 1)

participants. Table 2 shows an example of the later. Here, each message has
been represented as having a certain type or meaning. For example, StockRe-

quest is a message sent from the Employee to the Warehouse. While this message
appears to be related to the “Requisition” activity, for other messages the rela-
tionship to a high-level activity may not be so clear.

case id sender message receiver timestamp
1 Employee StockRequest Warehouse 2013-02-02 11:26
1 Warehouse StockResponse Employee 2013-02-04 16:07
1 Employee FetchProduct Warehouse 2013-02-05 08:54
1 Warehouse ProductReady Employee 2013-02-06 10:23
1 Employee ProductReceived Warehouse 2013-02-07 15:47
2 Employee StockRequest Warehouse 2013-02-12 09:31
2 Warehouse StockResponse Employee 2013-02-14 14:10
2 Employee PurchaseRequest Purchasing 2013-02-15 16:35
2 Purchasing InfoRequest Employee 2013-02-18 17:21
2 Employee InfoResponse Purchasing 2013-02-19 10:52
2 Purchasing ApprovalResult Employee 2013-02-20 12:05
2 Purchasing PurchaseOrder Supplier 2013-02-21 15:19
... ... ... ... ...

Table 2. Excerpt of an event log

From the event log in Table 2 it is possible to retrieve the sequence of events
(i.e. micro-sequence) for each process instance (i.e. case id). Also it is possible
to select one of the columns sender, message and receiver for analysis. Here we
will use the message column, so the micro-sequence for case 1 is:

StockRequest→StockResponse→FetchProduct→ProductReady→ProductReceived

The micro-sequences for other cases can be extracted in a similar way. These
micro-sequences, together with the macro-model in Figure 4, are provided as
input to the algorithm described in Section 4, which produces the micro-models
shown in Figure 5. Note that in Figure 5 there is some duplicated behavior
in the “Dispatch product” and “Buy product” activities, resulting in longer
and more complex micro-models. These micro-models were evaluated using the
metrics defined in Section 5 and the results are shown in Table 3.

The results in Table 3 reflect the fact that the micro-models in Figure 5
are relatively more complex when compared to the macro-model in Figure 4. In
particular, the metrics NP (no. of paths) and PL (path length) are significantly
higher for the micro-models when compared to the same metrics for the macro-
model. This means that the hierarchical model is somewhat “unbalanced”, in



Improving Process Models with Agent Simulation and Process Mining 11

(a) Requisition (b) Dispatch product

(c) Buy product

Fig. 5. Micro-models for the purchase process (version 1)

Metrics

Model NAN RD NP PL CC FIO SUB

Macro model 1.00 0.33 2.00 2.50 2.00 3.13 –

Micro Model (Requisition) 1.00 0.33 2.00 2.50 2.00 1.77 –

Micro Model (Dispatch Product) 1.22 0.17 4.00 3.25 4.00 2.16 –

Micro Model (Buy Product) 1.18 0.13 6.00 9.33 4.00 2.63 –

Complete model (avg.) 1.10 0.24 3.25 4.40 3.00 2.42 3

Table 3. Metrics applied to the purchase process (version 1)

the sense that the macro-model is of significant less complexity than the micro-
models, and therefore it is probably an over-simplified representation of the
business process. There appears to be much more behavior in the micro-models
than what the macro-model is able to account for.

Therefore, the business experts are encouraged to describe the process in
more detail. Such description could be as follows:

In a company, an employee needs a certain commodity (e.g. a printer car-
tridge) and submits a request for that product to the warehouse. If the prod-
uct is available at the warehouse, then the warehouse dispatches the product
to the employee. Otherwise, the product must be purchased from an external
supplier. All purchases must be approved by the purchasing department. If
the purchase is not approved, the process ends at that point. On the other
hand, if the purchase is approved, the purchasing department orders and pays
for the product from the supplier. The supplier delivers the product to the
warehouse, and the warehouse dispatches the product to the employee.

This new version of the process is depicted in Figure 6 and is expressed as
a Markov chain (i.e. macro-model) in Figure 7. On the other hand, to mine the
hierarchical model, we will need an event log with the run-time behavior for
this process. Rather than deploying the model in the organization and waiting
for an event log to be recorded over a long period of time, we use the AOR
framework to build an agent-based simulation scenario based on the previous
version of the process (i.e. the hierarchical model in Figures 4 and 5).

If the behavior of the high-level process had been changed in this new ver-
sion (e.g. if two high-level activities had been switched in their execution order)



12 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

Fig. 6. High-level description of the purchase process (version 2)

Fig. 7. Markov chain representation for the purchase process (version 2)

then we would need to adapt the simulation scenario in order to reflect those
changes. However, here the new macro-model is just a refinement of the previ-
ous one, so we can use the previous hierarchical model as a basis for simulation,
without the need for further changes. Even though the hierarchical model in
Figures 4 and 5 is not a balanced model, for simulation purposes it is still a
perfectly valid model for reproducing the behavior of the process.

By running the simulation scenario in AOR, it is possible to collect a new
and possibly larger event log to mine the next version of the hierarchical model.
The event logs that are generated by the AOR framework are in XML, but
they can be easily converted to the tabular form of Table 2. In this experiment,
we ran a simulation with 10,000 steps, which produced an event log with 140
process instances and a total of 1136 events. The event log, together with the
macro-model of Figure 7, were provided as input to the algorithm of Section 4,
which produced the micro-models shown in Figure 8.

This new hierarchical model (i.e. Figures 7 and 8) was evaluated using the
same metrics as before. As can be seen in Table 4, this new model is more bal-
anced because the micro-models are, in general, of significantly lower complexity
than before, while the macro-model is only slightly more complex. Comparing
the last row of Table 4 with the last row of Table 3 shows that, overall, the new



Improving Process Models with Agent Simulation and Process Mining 13

(a) Requisition

(b) Dispatch product

(c) Approve purchase

(d) Order product

(e) Receive product

Fig. 8. Micro-models for the purchase process (version 2)

Metrics

Model NAN RD NP PL CC FIO SUB

Macro model 1.14 0.23 3.00 3.00 3.00 2.82 –

Micro Model (Requisition) 0.75 0.38 1.00 2.00 1.00 1.00 –

Micro Model (Dispatch Product) 0.80 0.27 1.00 3.00 1.00 1.00 –

Micro Model (Approve Purchase) 1.17 0.29 3.00 4.00 3.00 5.06 –

Micro Model (Order Product) 1.00 0.33 2.00 4.00 2.00 3.13 –

Micro Model (Receive Product) 0.75 0.38 1.00 2.00 1.00 1.00 –

Complete model (avg.) 0.93 0.31 1.83 3.00 1.83 2.34 5

Table 4. Metrics applied to the purchase process (version 2)

model is less complex than the previous one. In particular, NP (no. of paths),
PL (average path length), and CC (cyclomatic complexity) are significantly lower
than before. This means that the model in Figure 6 is not only a more accurate
description of the process, but also the low-level behavior associated with each
high-level activity is simpler and easier to understand.

7 Conclusion

In this work we described an iterative approach for the improvement of busi-
ness process models based on process mining and agent-based simulation. The
need for such approach is justified by the fact that there is a gap between the
high-level of abstraction at which processes are usually modeled and the low-
level nature of events that are generated during execution. The process mining
technique that we used here is able to capture this relationship in the form of a



14 F. Szimanski, C. G. Ralha, G. Wagner, D. R. Ferreira

hierarchical Markov model. On the other hand, an agent-based simulation plat-
form is used as a means to generate the low-level behavior for new versions of
the process. Provided with a set of metrics that serve as guidance, the process
analyst can insert changes to the process model, reconfigure the simulation plat-
form, generate a new event log, and mine a new hierarchical model that again
captures the relationship between the high-level activities and the low-level be-
havior. Doing this iteratively will lead to a better model, where “better” means
more accurate, more balanced, less complex, and easier to understand.

Due to space restrictions, here we focused on the analysis of the control-flow
alone, but the same approach can be applied to the analysis of the organiza-
tional perspective, which includes the handover of work between agents and the
collaboration of agents within each case. This can be done by selecting other
columns for analysis, namely the sender column or the receiver column in the
event log of Table 2. In future work, we are planning to improve several aspects
of the proposed approach, namely establishing guidelines for the conversion of
BPMN models to Markov models, supporting the automatic generation of an
AOR simulation scenario from a given hierarchical model, and expanding the
set of metrics used in the analysis and evaluation phase.

References

1. OMG: Business Process Model and Notation (BPMN), Version 2.0. (2011)

2. Scheer, A.W.: ARIS: Business Process Modeling. 3rd edn. Springer (2000)

3. van der Aalst, W.: The application of Petri nets to workflow management. The
Journal of Circuits, Systems and Computers 8(1) (1998) 21–66

4. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
2nd edn. Springer (2012)

5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

6. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating
human systems. PNAS 99(Suppl 3) (2002) 7280–7287

7. Davidsson, P., Holmgren, J., Kyhlbäck, H., Mengistu, D., Persson, M.: Applica-
tions of agent based simulation. In: Multi-Agent-Based Simulation VII. Volume
4442 of LNCS. Springer (2007) 15–27

8. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
Review and development recommendations. Simulation 82(9) (2006) 609–623

9. Wagner, G.: AOR modelling and simulation: Towards a general architecture for
agent-based discrete event simulation. In: Agent-Oriented Information Systems.
Volume 3030 of LNCS. Springer (2004) 174–188

10. Ferreira, D.R., Szimanski, F., Ralha, C.G.: A hierarchical Markov model to un-
derstand the behaviour of agents in business processes. In: Business Process
Management Workshops. Volume 132 of LNBIP., Springer (2013) 150–161

11. Mendling, J.: Metrics for Process Models. Volume 6 of LNBIP. Springer (2009)

12. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.M.P.:
Quality Metrics for Business Process Models. In: 2007 BPM & Workflow Hand-
book. Future Strategies Inc. (2007) 179–190



Improving Process Models with Agent Simulation and Process Mining 15

13. Dijkman, R., Dumas, M., van Dongen, B., Krik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Information Systems 36(2)
(2011) 498–516

14. Gruhn, V., Laue, R.: Approaches for Business Process Model Complexity Metrics.
In: Technologies for Business Information Systems. Springer (2007) 13–24

15. Nicolae, O., Wagner, G., Werner, J.: Towards an executable semantics for ac-
tivities using discrete event simulation. In: BPM 2009 International Workshops.
Volume 43 of LNBIP. Springer (2010) 369–380

16. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering 16 (2004) 1128–1142

17. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organiza-
tional mining. Decision Support Systems 46(1) (2008) 300–317

18. Song, M., van der Aalst, W.: Supporting process mining by showing events at a
glance. In: Proceedings of 17th Annual Workshop on Information Technologies
and Systems. (2007) 139–145

19. Greco, G., Guzzo, A., Pontieri, L.: Mining hierarchies of models: From abstract
views to concrete specifications. In: 3rd International Conference on Business
Process Management. Volume 3649 of LNCS. Springer (2005) 32–47

20. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simpli-
fication based on multi-perspective metrics. In: 5th International Conference on
Business Process Management. Volume 4714 of LNCS. Springer (2007) 328–343

21. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: BPM 2009 International Workshops. Volume 43 of
LNBIP. Springer (2010) 128–139

22. Bose, R.P.J.C., Verbeek, E.H.M.W., van der Aalst, W.M.P.: Discovering hierar-
chical process models using ProM. In: CAiSE Forum 2011. Volume 107 of LNBIP.
Springer (2012) 33–48

23. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series
in Probability and Statistics. Wiley-Interscience (2008)

24. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Mining the low-level behavior of
agents in high-level business processes. International Journal of Business Pro-
cess Integration and Management (2013) (to appear).

25. Newman, M.: The structure and function of complex networks. SIAM review
45(2) (2003) 167–256

26. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2(4) (1976) 308–320

27. Henry, S.M., Kafura, D.G.: Software structure metrics based on information flow.
IEEE Transactions on Software Engineering 7(5) (1981) 510–518

28. Boehm, B.W.: Software engineering economics. Prentice-Hall (1981)
29. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 20(6) (1994) 476–493
30. Nissen, M.E.: Redesigning reengineering through measurement-driven inference.

MIS Quarterly 22(4) (1998) 509–534
31. Cardoso, J.: Control-flow complexity measurement of processes and Weyuker’s

properties. In: 6th International Enformatika Conference. Volume 8 of Transac-
tions on Enformatika, Systems Sciences and Engineering. (October 2005) 213–218

32. Vanderfeesten, I., Reijers, H., Mendling, J., van der Aalst, W., Cardoso, J.: On
a quest for good process models: The cross-connectivity metric. In: Advanced
Information Systems Engineering. Volume 5074 of LNCS. (2008) 480–494


