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ABSTRACT

Gaining insight is considered one of the relevant purposes of visual
data exploration, yet studies that categorize insights are rare. This
paper reports on a study to understand if the categorization model
used to describe insights and personality factors affect insight-based
evaluations’ findings. Participants completed a set of tasks with
three hierarchical visualizations and then reported what insights they
could gather from them. Results show that the insight categorization
taxonomies produce different descriptions of insights based on the
same corpus of responses. In addition, our findings suggest that
the openness to experience trait positively influences the number
of reported insights. Both these factors may create obstacles to
the design of insight-based evaluations and, consequently, should
be controlled in the experimental design. We discuss the study
implications, lessons learned, and future work opportunities.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms; Human-centered
computing—Visualization—Empirical studies in visualization

1 INTRODUCTION

Gaining insights has been considered one of the major purposes
of information visualization (InfoVis) [10]. In particular, several
researchers advocate diversifying evaluation measures beyond tradi-
tional speed and accuracy measures (see BELIV conference). How-
ever, there is little empirical data to provide robust guidelines for
practitioners focused on the process of gaining insight into data.
Firstly, prior work has contributed with specific insight types such
as correlations [50], outliers [17], or peaks [41]. Nevertheless, few
works have converged on a taxonomy to categorize insights. To our
knowledge, only Chen et al. [12] and Moere et al. [35] focused on
creating a categorization to be broadly applied. As the research field
continues to grow and new taxonomies may arise, it is valuable to
consider if different insights models produce distinct descriptions
of insights based on the same corpus of responses. In case there
is indeed a difference, researchers should focus on validating the
existing frameworks and, at the same time, assess if this modeling
discrepancy hinders the effects caused by visualization design.

Inspired by these questions, we conducted an experiment to under-
stand whether visualizations with the same data but distinct visual
encodings affect the insight type distribution that participants gain
between and within insight categorization models. Besides the ef-
fect of the graphical disposition, we are also interested in observing
whether individual differences play a role in how people gain in-
sights. Recent research studied how individual differences affect
search performance across hierarchical [56], time series [46], and
item comparison [9] visualization designs, visualization use [56],
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and behavioural patterns [40]. As such, typical measures to under-
stand the effect of individual characteristics are speed, accuracy,
or subjective feedback [32]. Considering such a large multitude
of personality manifestations in visualization, we question whether
personality factors affect the type of insights that participants report.
Further, researchers need to understand whether personality plays a
significant role in insight-based evaluations or if the design does not
need to control it in the experiment.

Only Green and Fisher [21] studied how personality constructs
affect insight generation in a visualization setting. In particular, the
authors leveraged the neuroticism and extraversion traits from the
Five-Factor Model (FFM) [15], and the Locus of Control (LoC) [43].
Therefore, there is an untapped set of individual characteristics that
may provide further knowledge regarding the effect of personality on
insights attainment. This research gap led us to include and control
for the effect of personality in insight reporting. In particular, we
try to replicate and extend the findings of Green and Fisher [21].
Regarding insights generation, the term insight carries several def-
initions in the visualization community depending on the context
it is studied [10]. In our study, we follow the insight definition of
Green and Fisher [21] and study hierarchical visualizations. Insight
refers to “anything unexpected or novel learned by the participants
while completing the tasks”. Further, hierarchical visualizations
are one of the most common and relevant information structures in
computing [48] and, more specifically, evaluating personality effects
on visualization settings (e.g., [21, 54, 56]). Participants performed
task sets in three distinct hierarchical layouts: sunburst, treemap,
and Sankey diagram. After performing the tasks for a specific lay-
out, we asked each subject to tell us which insights they could gain
from that visualization. These insights are then analyzed using
three taxonomies: Chen et al.’s [12], Moere et al.’s [35], and Insight
Valence.

Our key contributions are as follows: First, we identify how the
categorization model affects the description of insights based on
the same corpus of responses. Second, we show that openness to
experience affects insight reporting, hindering the credibility of the
insight-based evaluation without controlling for this factor. Finally,
the dataset from our experiment is available for further insight-
and personality-related research. These findings provide practical
implications for obstacles that may arise in the design of insight-
based evaluations.

2 RELATED WORK

This section presents a literature review regarding insight generation
and the effect of personality in visualization settings.

2.1 Insight-Based Evaluation

Traditional evaluations of visualization systems often rely on task-
based metrics such as task response time or accuracy, hindering the
assessment of exploratory strategies [34, 37]. As a means to counter
the limitations of these approaches, research has leveraged insight
extraction to measure the degree to which visualizations amplify
analytical reasoning [36, 42]. Although there has been some work
ranging from classifications [10, 12, 35] to insight-acquiring pro-
cesses [53], the community has yet to converge on a formal definition
of insight. For instance, while Saraiya et al. [45] define insight as “an



individual observation about the data by the participant, a unit of dis-
covery”, North [36] characterizes it as “a non-trivial discovery about
the data or, as a complex, deep, qualitative, unexpected, and relevant
assertion”. Researchers can study insights based on quantity [21] as
well as quality [23], e.g., through understanding levels [8]. Insights
can be evaluated through viewer takeaways [8,21,35] or annotations
on the visualization [1,13,33]. Further, Yi et al. [53] focused on how
people gain insights rather than what insights are, providing four
distinctive processes of gaining insight: provide overview, adjust,
detect pattern and match mental model.

We believe that designers can develop information visualization
systems to foster insights [2]. In particular, both North [36] and Yi
et al. [53] highlight the importance of considering design aspects in
insight acquisition, as the measuring of insights may “enable the di-
rect comparison of visualization design alternatives” [36]. Moreover,
several other studies showcase the potential of using combinations
of visual tasks, visualization types, and comparison arrangement de-
signs to investigate how people arrive at their insights (e.g., [25,39]).
Alas, to our knowledge, few studies (e.g. [13, 21, 35]) benchmark
visualization alternatives against each other to study how the vi-
sual channels model insight acquisition. Our work builds on the
mentioned research by studying how the visual representation of
hierarchical data can affect insight generation. Moreover, we com-
plement our analysis by including personality constructs to improve
our understanding of the user profile.

2.2 Personality Factors

Several studies have studied how personality predicts goal-setting
behaviors, how a person rates importance and meaningfulness, and
how individuals interpret information [24]. In particular, the two
most used personality models are the locus of control (LoC) [31] and
the Five-Factor Model (FFM) [15,19,44]. Among the most common
metrics to evaluate the effect of personality in visualization, there is
a body of research showing how personality dimensions affect per-
formance across hierarchical [21, 55, 56], time series [46], and item
comparison [9] visualization designs. Another relevant approach
leverages visualization use [54, 56] and behavioral patterns [40].
Both eye-tracking [29, 30] and mouse data [7, 40] have predicted
how LoC, extraversion, and neuroticism lead users to interact differ-
ently with data representations to facilitate information processing.
Other studies evaluate user experience through subjective feedback
such as design preferences [4, 56]. Although the mentioned research
collectively shows that personality factors provide an opportunity
to expand the user profile further, we can observe that the research
field leans heavily towards studying performance metrics of search
tasks in hierarchical layouts (see Liu et al. [32]).

We believe that personality traits may hold promising results re-
garding insight generation. Green and Fisher [21] already studied the
impact of individual differences on the insights that users gain from
information visualization. In particular, Green and Fisher [21] found
that external LoC, introversion, and emotional stability lead subjects
to report more insights with their hierarchical-based interactive data
visualizations of genomic information. However, more personality
traits can offer a deeper understanding of this relationship. For in-
stance, we expect that openness to experience will directly affect
the number of generated insights since this trait influences whether
people tend to devise novel ideas [15]. Further, Ziemkiewicz et
al. [55] found that high openness to experience led individuals to be
faster while solving problems related to hierarchical visualizations
with conflicting visual and verbal metaphors. The agreeableness
trait plays a significant role in the trust process through the general
tendency to be trusting and cooperative with others [15]. If the
different graphical dispositions produce variations of visualization
trustworthiness, it may lead to individuals trusting less in a specific
visualization and reporting fewer insights, for instance. Finally,
conscientiousness predicts how one organizes and plans ahead [22].

Organizational research reports the effect of conscientiousness on
insight orientation [20]. However, researchers only evaluated the
role of neuroticism and extraversion in visualization-supported in-
sight generation. Our work tries to replicate the findings of previous
work [21] and extends them with other personality traits to enhance
insight-based evaluations.

3 METHODOLOGY

Our main goal is to understand if obstacles exist towards the practi-
cal use of insight-based methods for evaluating visualizations.

3.1 Research Questions
We address this goal by trying to answer two main research ques-
tions. First, we want to understand if and to what extent the insight
categorization model affects the descriptions of insights based on the
same corpus of responses. Previous studies have shown that insight
generation depends on the presentation and organization of visual-
izations [21, 35]. In particular, Moere et al. [35] studied how people
arrive at their insight with visualizations varying in embellishment
features. The authors started by categorizing insights based on Chen
et al.’s taxonomy [12]. However, Moere et al. suggest that Chen et
al.’s taxonomy is more appropriate to differentiate analytical insights.
Consequently, Moere et al. developed another taxonomy with fewer
but broader categories that cover non-analytical aspects of insight
generation. However, further research is necessary to understand if
the different taxonomies affect the effects fostered by visualization
design. Therefore, our first research question is:

RQ1 Do categorization models create obstacles to insight-based
evaluations?

Second, prior work by Green and Fisher [21] shows that neu-
roticism and extraversion affect insight reporting with hierarchical
visualizations. To the best of our knowledge, this is the only work
that tries to understand if personality factors affect the number of in-
sights in insight-based evaluations. Although Green and Fisher [21]
provide the initial steps to study the manifestation of personality
in this setting type, more personality traits may show measurable
results and, consequently, enhance the user profile characterization
in insight-based evaluations. We decided to try to replicate the find-
ings of Green and Fisher [21] and extend them by including the
remaining traits of the FFM: openness to experience, agreeableness,
and conscientiousness. In particular, we want to observe if gaining
insights varies between the visualization layouts while controlling
for the personality traits. Our second research question is:

RQ2 Does personality affect the insight generation process?

3.2 Visualizations
Following our prior methodology described in Alves et al. [3] and
state-of-the-art research [4, 55], we decided to use a set of three
hierarchical layouts composed of a Sankey diagram, a sunburst, and
a treemap (see Figure 1). We believe that this composition offers
enough complexity since each of the chosen graphs has a different
approach to encoding a quantitative variable: (i) a Sankey diagram
where the length of a bar encodes quantitative values and the hi-
erarchical order unfolds from left to right; (ii) a sunburst chart
that uses an angle channel to describe quantitative measures, and a
segment of the inner circle has a hierarchical relationship with those
segments of the outer circle which lie within the angular sweep of
the parent segment; and (iii) a treemap which uses nested rectan-
gles whose area is proportional to a quantitative variable to depict
a tree-structure. Additionally, visualization literature reports that
leveraging different visual encodings such as length (Sankey), angle
(sunburst), and area (treemaps) may influence how relationships are
perceived (e.g., [25, 39]).



The main application of these visual idioms is to support reason-
ing about the prevalence of specific quantities while following a
hierarchical structure [47, 49]. In contrast with the remaining charts,
designers usually use Sankey diagrams to represent the flow count
between categorical variables with similar hierarchical levels. Nev-
ertheless, we believe that Sankey charts can provide fresh insights
into our study since these graph types use a visual channel based
on the length and can also incorporate hierarchy characteristics ef-
fectively [18]. Further, we fixed the hierarchical depth at a factor
of three so that it is possible to ask the subjects to conduct complex
examinations through multiple non-sequential hierarchy levels. By
fostering more complex exploration patterns, we believe that par-
ticipants may generate insights that vary in how deep they bring
about new knowledge or create further engaging questions. Finally,
hovering an item triggers the appearance of a tooltip showing the
exact value of the item.

(a) Sankey. (b) Sunburst. (c) Treemap.

Figure 1: Three charts of the same hierarchical dataset, but with
different graphical configurations.

Regarding the databases we base the visualizations on, we de-
veloped three versions of a structurally identical dataset where the
labels differ across the datasets to diminish the knowledge and pref-
erence biases that some datasets inherently carry. Further, using
datasets with the same structure but different domains provides a
means for tasks to focus on the same target element independently of
the visualization and, consequently, diminish noise in data collection.
We chose the labels of items to avoid any learning bias or potential
perceptual and semantic confounds. Above each visualization was a
title corresponding to the context of the chart. The three domains
were: (i) Fans, which presented the number of fans per band acting
at music festivals hosted in different cities; (ii) Sand, which shows
the number of grains of sand of a particular shape present in deserts
from different cities; and (iii) Students, which includes the number
of students per faculty of a university from different cities.

3.3 Tasks

We devised a set of five types of tasks that participants performed
to interact with each visualization (from a related study [3]). Our
choices cover a wide range of task types achievable using each chart
type. In particular, these low-level goal tasks are part of the most
primitive analysis task types in visual analytics (VA) [5]. We ran a
pilot test (N=3) beforehand to ensure that the wording and difficulty
allowed participants to accomplish the tasks without misunderstand-
ing. The set is composed of tasks that focus on (i) hierarchical
fragmentation (“Which category has more subcategories?”), (ii)
between-levels analysis (“Which category in the highest hierarchic
level has the largest quantity of a specific category in the lowest
hierarchic level?”), (iii) maxima identification (“For a specific cat-
egory, which of its subcategories has the largest quantity?”), (iv)
sum estimation (“What is the quantity of a specific category in the
highest hierarchic level?”), and (v) value retrieval (“What is the
quantity of a specific category in the lowest level?”). Moreover,
participants had no time limit to complete the tasks, and we accepted
only one response to each question. For each task type, there was

only one instance for a domain. It results in a total of 15 tasks (5
types × 3 domains).

3.4 Insight Evaluation Models

Chen et al.’s [12] Model This taxonomy is based fundamentally
on categorizing analytical insights. Chen et al. use a taxonomy
consisting of twelve categories. However, in our analysis, we also
include the Meaning category, which Moere et al. [35] developed
and added to this taxonomy. We opted to use this model since it is
among the first general taxonomies that categorize insights [12].

Moere et al.’s [35] Model Another relevant model was defined by
Moere et al. [35]. We decided to include this model as it provides
more breadth to analyze insights not based on facts, which is a
limitation of the Chen et al.’s [12] taxonomy. Following an open
coding strategy, Moere et al. [35] grouped similar insights based on
their “type”. In particular, an insight can be of one of these types:
rational, technical, emotional, plain, analytical, or interface.

Insight Valence After studying previous work on insight charac-
terization [12, 35], we verified that the existent models focus mostly
on the content of the insight. Therefore, the models often neglect
how individuals to report the content of the insight. We believe this
analysis may also allow us to understand the effect of the visual
encodings of hierarchical data on insight generation. In particular,
we want to expand the study of this effect to the valence of the
insight, i.e., whether the insight includes negative, positive, or no
sentiment words. For instance, “It is easy to compare categories
with this chart” has positive sentiment, while “I dislike the squared
encoding” has a negative valence. Other insights such as “The most
frequent category is cube” are neutral since they do not contain any
words related to valence. As such, an insight can be classified as
negative, neutral, or positive.

3.5 Measures

Insights Insight recording can be applied through several methods
such as the think-aloud protocol [21, 38] or annotations [23, 35]. In
our study, we use the think-aloud method. We collected insights
after the participant performed the five tasks for visualization. We
asked each subject to report “any interesting findings or observa-
tions they could collect from the information visualization”. This
way, user insight is characterized by the following dimensions: the
visualization that the user interacted with, the domain that the user
observed, and a category for each model presented in Section 3.4.

Demographics We recorded the gender, age, self-reported vi-
sual acuity, and whether the participant was color-blind. We also
monitored familiarity factors related to the visual idioms; first, we
presented an instance of each of the charts we leverage with an
exemplary but different from the other domain (see Section 3.2).
Then, we asked participants to (i) assess their familiarity with that
visual representation in a five-point Likert scale ranging from not
familiar (1) to very familiar (5), (ii) report the name of the chart, and
(iii) perform an analysis task similar to the ones used in the study
(see Section 3.3) to assure whether participants could understand
the information the visualization conveyed independently of their
self-assessed familiarity.

Personality factors The FFM [15] has been shown to subsume
most known personality traits, and researchers claim that this model
represents the “basic structure” underlying the variation in human
behavior and preferences [26]. This model is a hierarchical organi-
zation of personality traits in five dimensions: neuroticism, extraver-
sion, openness to experience, agreeableness, and conscientiousness.
We collected personality data with the Revised NEO Personality In-
ventory (NEO PI-R) [16]. The questionnaire identifies the intensity
of each personality trait using high-score and low-score items. In
particular, both openness to experience and conscientiousness are
measured with a total of 48 items (eight items for each six facets),



where each item is based on assertions semantically connected to be-
haviors and five possible alternatives of agreement: strongly agree,
agree, undecided, disagree, and strongly disagree. As such, the
score for a trait is a continuous variable encoded by the sum of
each Likert scale value of the subset of items corresponding with a
specific personality trait.

3.6 Procedure
We recruited subjects in university settings through direct contact
and word of mouth. Subjects included any participant at least 18
years old. Our study comprises a total of 51 participants (26 females,
25 males) aged 20 – 61 (M = 28.31,SD = 11.02). We attempt to
balance the educational background by recruiting 22 (43.1%) par-
ticipants with a computer sciences background, 12 (23.5%) in other
engineering areas, and the remaining 17 (33.3%) in additional re-
search areas. Moreover, our sample is composed of undergraduates
(64.7%), masters (29.4%), and doctorates (5.9%). Firstly, partici-
pants signed a consent form. Then, they completed the NEO PI-R
and the demographic and familiarity questionnaire. We then pre-
sented each visualization layout in random order and asked the
participant to complete a set of five tasks for each chart (3×5 = 15
tasks total). We randomized the order of the tasks and datasets to
reduce any potential bias. In particular, we randomized each pair
(visualization, domain) to produce mutually exclusive instances of
visualization and dataset, e.g., one experiment consisted of the order
{(sunburst,fans), (Sankey,students), (treemap,sand)}. After perform-
ing all tasks in a layout, we asked subjects to report all insights they
gained from the visualization. The assistant asked the participant if
there were any more insights they could generate independently of
the number of insights that subjects reported per visualization. After
interacting with the three visual idioms, participants were eligible
for a raffle of three 20Cgift cards. The total time for each session
was between 18 and 39 minutes. This study obtained ethics approval
from the Ethics Committee of the university.

3.7 Study Design and Data Analysis
We conducted a mixed-measures study where each participant inter-
acts with all hierarchical layout conditions, one at a time in random
order. We first analyze the reported insights with descriptive statis-
tics to provide an overview of the collected data. Two researchers
classified each insight based on Chen et al.’s [12], Moere et al.’s [35],
and Insight Valence taxonomies. We did not include any more ex-
perts as this approach led to an inter-coder agreement of 31.55%,
40.06%, and 90.22%, respectively. We expected the low inter-coder
agreement since Moere et al. [35] also had a value of 34.4% when
applying Chen et al.’s [12] taxonomy. To counter the low inter-coder
agreement, the first author discussed with the experts to revisit all
insights and consolidate the classifications in mutual agreement.
Consequently, all researchers agree with the insight characteriza-
tions of the final dataset. In addition to the descriptive statistics, we
ran a chi-square test of independence (r×c) with hierarchical layout
(3 levels) and insight categories as factors. The number of levels in
the insight categories depends on the categorization model.

We ran an apriori power analysis using the pwr R library1 to
find the minimum sample size required. The required sample size
to achieve 80% power for detecting a medium effect (0.3) with
a significance criterion of α = .05 was N = 26 for multiple re-
gression methods. We believe the current sample size (N=51) is
adequate for our statistical analysis. We investigate insight gener-
ation based on the number of insights each user reported. We ran
a one-way repeated-measures ANCOVA with a hierarchical layout
(3 levels) as a factor. We include the FFM personality traits and
self-reported familiarity as covariates. Alves et al. [3] also used these
personality data. We tested for sphericity (Mauchly’s test) and used

1https://cran.r-project.org/web/packages/pwr/vignettes/

pwr-vignette.html (Last access: September 23, 2022).

the Greenhouse-Geisser correction when the assumption was not
met. We complement our analysis through Spearman’s rank-order
correlation tests and include LOESS (locally estimated scatterplot
smoothing) lines to help analyze the correlations.

4 RESULTS

This section covers the results of our study. We present data as mean
± standard deviation unless otherwise stated.

4.1 Insight Generation
We collected 313 valid insights with each participant reporting be-
tween 0 and 16 insights (6.14± 3.54). The Sankey diagram gen-
erated 114 insights (36.42%), followed by the sunburst with 104
(33.23%), and then the treemap with 95 (30.35%). We analyzed the
reported insights through the models presented in Section 3.4.

4.1.1 Chen et al.’s Model
Table 1 depicts the insights distribution according to Chen et
al.’s [12] taxonomy. At first glance, the large portion of Meta Facts
shows that we captured the major limitation of Chen et al.’s [12]
taxonomy. Our results are similar to Moere et al. [35] since this
taxonomy cannot categorize insights that do not have an analytical
nature. In our study, the Meta Fact type makes up 44.19% of the
insights sample. However, insights such as “It is hard to compare
categories that are far away.” or “The angle is the most impor-
tant feature in this graph.” are essential to show characteristics of
clearness, intuitiveness, and usability. The other categories with
considerable portions are Distribution (e.g. “The majority of the uni-
versities has two faculties.”), Extreme (e.g. “Coles has the highest
number of universities.”), and Trend (e.g. “Each desert has more
than one shape of sand grains.”). The remaining categories showed
small percentages. However, we were able to find some interesting
findings. The Distribution and Extreme insights percentages in the
Sankey are more than double compared to the treemap. In contrast,
the treemap made users report four times more Difference and two
times more Outliers insights than the other two charts. Finally, only
the sunburst led users to report Categories insights.

Although Chen et al.’s [12] taxonomy suffer from a robust lim-
itation in insight analysis, we can understand that the encoding
of hierarchical data fosters insights from different categories. No-
tably, the data structure is the same independently of the hierarchical
idiom, reinforcing the significance of the effect. Afterward, we
ran a chi-square test of independence between hierarchical layout
and insight category according to Chen et al.’s [35] taxonomy. 15
cells (50.0%) have an expected count of less than five. There was
not a statistically significant association between layout and cate-
gory, χ2(18) = 28.688, p = .052. In particular, the association was
moderate [14], Cramer’s V = 0.214. This result suggests that the
graphical disposition of the hierarchical data may be relevant
but the large percentage of cells with a count of less than five hinders
the statistical analysis.

4.1.2 Moere et al.’s Model
Table 1 reports on the insight generation according to the Moere et
al.’s [35] taxonomy. Many insights fell under the Analytical (e.g.,

“The majority of the universities has two faculties.”) or Emotional
(e.g., “It is quite easy to see the distribution in subcategories.”)
categories. All layouts showed similar percentages suggesting that
the graphical disposition of the information does not interfere with
the analytic reasoning of the participants. Both Plain (e.g., “The
donut shape is not present in Lanhelas.”) and Interface (e.g., “The
letters are hard to read.”) held around 10% of the insights each.
However, it is noteworthy that the Sankey diagram received almost
50% of the Interface insights. The scarcer categories were Technical
(e.g., “Corvos and Arada have half the fans of all concerts.”) and
Rational (e.g., “Corvos appeals to more people because it has all

https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html
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Table 1: Insights by each taxonomy, in absolute and relative numbers.
Lightness encodes frequency per column.

Sankey Sunburst Treemap Total

C
he

n
et

al
.’s

Association 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Categories 0 (0.0%) 2 (1.92%) 0 (0.0%) 2 (0.64%)

Cluster 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Compound 6 (5.26%) 9 (8.65%) 6 (6.32%) 21 (6.74%)
Difference 2 (1.75%) 2 (1.92%) 8 (8.42%) 12 (4.03%)

Distribution 17 (14.91%) 13 (12.50%) 6 (6.32%) 36 (11.24%)
Extreme 25 (21.9%) 14 (13.46%) 10 (10.53%) 49 (15.31%)
Meaning 1 (0.88%) 1 (0.96%) 1 (1.05%) 3 (0.96%)

Meta Fact 48 (42.11%) 47 (45.19%) 43 (45.26%) 138 (44.19%)
Outliers 3 (2.63%) 2 (1.92%) 7 (7.37%) 12 (3.97%)

Rank 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Trend 9 (7.89%) 10 (9.62%) 13 (13.68%) 32 (10.40%)
Value 3 (2.63%) 4 (3.85%) 1 (1.05%) 8 (2.51%)
Total 114 (36.42%) 104 (33.23%) 95 (30.35%) 313

M
oe

re
et

al
.’s

Analytical 55 (48.25%) 41 (39.42%) 46 (48.42%) 142 (45.36%)
Emotional 35 (30.70%) 38 (36.54%) 30 (31.58%) 103 (32.94%)
Interface 13 (11.40%) 9 (8.65%) 5 (5.26%) 27 (8.44%)

Plain 7 (6.14%) 13 (12.50%) 12 (12.63%) 32 (10.42%)
Rational 1 (0.88%) 1 (0.96%) 1 (1.05%) 3 (0.96%)
Technical 3 (2.63%) 2 (1.92%) 1 (1.05%) 6 (1.87%)

Total 114 (36.42%) 104 (33.23%) 95 (30.35%) 313

In
si

gh
t

Va
le

nc
e Negative 19 (16.67%) 20 (19.23%) 22 (23.16%) 61 (19.69%)

Neutral 78 (68.42%) 63 (60.58%) 66 (69.47%) 207 (66.16%)
Positive 17 (14.91%) 21 (20.19%) 7 (7.37%) 45 (14.16%)
Total 114 (36.42%) 104 (33.23%) 95 (30.35%) 313

bands from the other cities.”). These distributions suggest that the
hierarchical layouts pushed the insight generation to visual patterns
rather than filters or reasoning.

We conducted a chi-square test of independence between hierar-
chical layout and insight category according to Moere et al.’s [35]
taxonomy. Six cells (33.3%) have an expected count of less than five.
Similar to the previous test, there was a statistically nonsignificant
association between layout and category, χ2(10) = 7.730, p = .655.
The association was small [14], Cramer’s V = 0.111. Overall, it
appears that the graphical disposition does not affect how users
generate insights according to Moere et al.’s [35] taxonomy.

4.1.3 Insight Valence

Table 1 presents the insight distribution in terms of valence. Nearly
two-thirds of the insights have a neutral valence (e.g., “The donut
shape is not present in Lanhelas.”). Negative valence insights (e.g.,

“It is hard to compare categories so far away.”) were slightly more
frequent than positive ones (e.g., “It is easy to see the hierarchy
structure.”). However, the most appealing aspect is how the chart
type affected the report of positive valence insights. This type
of insight was much more frequent in the Sankey and sunburst
compared to the treemap. Finally, we conducted a chi-square test of
independence between reported a nonsignificant association between
layout and insight valence, χ2(4)= 7.576, p= .108. The association
was small [14], Cramer’s V = 0.110. These findings suggest that
the graphical disposition usually does not affect the valence of
insights. However, positive insights are less frequent in the treemap.

4.2 Personality Factors

An ANCOVA showed no statistically significant differences across
the different layouts on the reported number of insights while con-
trolling for personality, F(1.658,74.598) = 3.117, p = .059, partial
η2 = .065. The small p-value and a medium effect size led us to
explore in-depth the role of personality (Figure 2). We found a
statistically significant main effect of openness to experience on
the number of reported insights between visualizations, F(1,45) =
5.261, p = .027, partial η2 = .105. In particular, it appears that
the effect is more evident in the Sankey, rs(51) = .426, p = .002.
The nonsignificant effects were weak to moderate in the sunburst,
rs(51) = .163, p= .254, and in the treemap, rs(51) = .206, p= .148.
Findings suggest that the openness to experience scores positively
influences the number of reported insights.

The remaining traits did not show measurable main effects.
Contrary to Green and Fisher [21], we did not find evidence for
the manifestation of neuroticism, F(1,45) = 0.059, p = .809, par-
tial η2 = .001, or extraversion, F(1,45) = 0.470, p = .496, par-
tial η2 = .010. Neuroticism consistently showed nonsignificant
weak correlations in the Sankey, rs(51) = .126, p = .377, sunburst,
rs(51) = .096, p = .505, and treemap, rs(51) = .174, p = .222. Fur-
ther, extraversion showed a nonsignificant moderate correlation in
the Sankey, rs(51)= .231, p= .102 and weak effects on the sunburst,
rs(51) =−.160, p = .261, and the treemap, rs(51) = .114, p = .425.
Regarding the remaining traits, agreeableness did not significantly af-
fected the number of reported insights, F(1,45) = 1.867, p = .179,
partial η2 = .040, although we observe a small to medium ef-
fect. Results show nonsignificant weak correlations in the Sankey,
rs(51) = .009, p = .950, sunburst, rs(51) = −.072, p = .616, and
treemap, rs(51) =−.069, p = .631. Finally, it appears that conscien-
tiousness does not play a role in gaining insights as well, F(1,45) =
0.233, p = .632, partial η2 = .005. We found nonsignificant weak
correlations in the Sankey, rs(51) =−.025, p = .862, and treemap,
rs(51) = −.012, p = .935. However, there were a nonsignificant
moderate correlation with in the sunburst, rs(51) =−.255, p = .070.

4.3 Additional Findings
We complement our analysis by understanding the effect of the
visualization domain and self-reported familiarity in the measure-
ments. Regarding the domain of the visualizations, we found a
balanced distribution between the Fans (32.59%), Sand (34.82%),
and Students (32.59%) domains. An ANCOVA showed no sta-
tistically significant differences across the different domains on
the reported number of insights while controlling for personality,
F(1.507,67.814) = 0.297, p = .681, partial η2 = .007. Next, we
ran Spearman correlations for each chart type to find if the self-
reported literacy with said chart affected how many insights the
participant reported. It appears that there is no significant correlation
between the reported insights and the familiarity with the Sankey,
rs(51) = −.135, p = .344, sunburst, rs(51) = .050, p = .726, and
treemap, rs(51) = .054, p = .709, charts.

4.4 Discussion
Findings show that the visual encoding of hierarchical data does
not have a measurable effect on the type of insights users report
according to the taxonomies. In addition, results predict that the
openness to experience trait predicts insight reporting.

4.4.1 Insight Categorization
We used three taxonomies to analyze the insights. First, Chen et
al.’s [12] taxonomy is one of the first categorization models dedicated
to insights. On the one hand, this categorization clearly supports
the visualization system evaluation through analytical insights. An-
alytical tasks and the insights they derive are part of the hallmarks
of visualization [51]. In particular, these lower-level insights may
play a significant role in higher-level insights generation and, con-
sequently, knowledge [6]. For instance, researchers first have to
understand what some clusters or trends (lower-level insights) are
before being able to predict future states or discover causality effects
(higher-level insights). On the other hand, the focus on analytical
tasks may also prove to be an obstacle in insight-based evaluations.
This task type is usually used as benchmark tasks to foster user inter-
action [11]. However, they suffer from being often too narrow and
having simple answers to allow for unexpected insights. Moreover,
they require a short completion time with a definitive answer. All
these factors usually constrain the thought process when moving on
to the open-ended portion [36]. Consequently, the research agenda
pushes for qualitative analysis based on user exploration. Chen et al.
created the Meta Fact category to account for other aspects of insight
generation besides analytical tasks. Additionally, we expanded Chen



Figure 2: Correlation of the reported insights per visualization and personality trait.

et al.’s taxonomy to contain Meaning facts based on Moere et al. [35].
However, we also found that combining both categories could not
account for Chen et al.’s taxonomy unless they asked participants to
report only on analytical facts they gained from the data.

Moere et al. created a single category to account for analytical
insights and subdivided the remaining insights into five other types.
If we compare the taxonomies, Chen et al.’s showed 45.15% non-
analytical and 54.85% analytical insights, while Moere et al.’s led to
54.64% non-analytical and 45.36% analytical insights, respectively.
This discrepancy between the models appears to derive from the
remaining categories from Moere et al.’s taxonomy such as Plain
and Rationale. For instance, insights such as “Each city can have
more than one desert.” or “There are many shapes of grain sands.”
can be classified as Plain insights according to Moere et al. since
they report “broad, general observation(s) with no reasoning and
few filters” [35]. However, Chen et al. could categorize them as Dis-
tribution insights since they characterize distributions [12]. Another
clear example is “It seems that the Ulono concert was the biggest
of them all.” Moere et al. would classify it as an Emotional insight
since it is an observation that contains some subjective interpretation
or judgment from the participant. In contrast, Chen et al. would see
it as an Extreme insight. Results also allow us to observe that Moere
et al.’s and the Insight Valence models may provide a similar descrip-
tion of the insights. We found that Emotional insights accounted
for 32.94% of the total number of reported insights according to
Moere et al., which is similar to the sum of the number of insights
with a negative or positive valence from the Insight Valence model
(33.84%). However, if we assume that analytical insights are of a
neutral insight valence since they are only factual observations, we
can verify another discrepancy. In particular, the Insight Valence
model reported that 66.16% of the insights fulfill this requirement,
while Chen et al.’s taxonomy shows that 54.85% of the reported
insights are analytical. Consequently, our findings lead us to believe
that the categorization model may produce different descriptions of
insights based on the same corpus of responses.

4.4.2 Personality Factors

A vast body of knowledge leverages personality factors to enhance
the user profile in information visualization. Concerning insight
generation, Green and Fisher [21] showed that LoC, extraversion,
and neuroticism affect the number of insights generated by users.
Our work tries to replicate the findings of Green and Fisher [21]
related to neuroticism and extraversion. However, we did not find
measurable effects of both traits in the number of reported insights.
These traits showed only nonsignificant weak to moderate effects
across visualization layouts. Several possible explanations exist for
our failure to validate the work of Green and Fisher [21]. First, social
and demographic contexts strongly influence personality by defining
one’s decision-making process [27]. Since the study samples were
from different continents, some differences may have introduced
some noise in the results. Second, both studies leverage hierarchical
visualizations. However, Green and Fisher use high-fidelity visu-

alizations built to display genomic information. In our case, the
visualizations have a plain look and complexity. Moreover, the vi-
sualization layouts are different. Although both studies focus on
a hierarchical context, these differences may have contributed to
the insight generation process. Third, Green and Fisher used open
tasks and let participants answer until they were correct. In contrast,
we ask straightforward questions and only accept the first answer.
These different approaches may affect how much time users take
interpreting the visualization and, consequently, how many insights
they could generate from it.

However, other personality factors from well-established Person-
ality Psychology research, more specifically the FFM, may hold
valuable insights. We extend the current state-of-the-art by studying
how the remaining personality traits from the FFM affect insight
reporting. We found a positive influence of openness to experience
on the number of reported insights. This dissimilarity was more
noticeable in the Sankey diagram. We believe that it bases on how
comfortable individuals with high openness to experience scores
are with abstract and imaginative thinking [55]. Ziemkiewicz and
Kosara [55] found that high openness to experience led individuals
to be faster while solving problems related to hierarchical visualiza-
tions that include conflicting visual and verbal metaphors. Paired
with our findings, high openness to experience may lead individuals
to learn a novel interface faster and report more pertinent information
than their counterparts. Finally, the agreeableness and conscientious-
ness traits did not significantly affect insight generation. To the best
of our knowledge, our results are similar to past research since these
traits did not manifest measurable effects in user interaction with vi-
sualization [7,55]. However, we believe that the nonsignificant small
to medium size effects that both traits show a need for more work to
explore this relationship more in-depth in visualization contexts.

4.4.3 Lessons Learned

Inspired by our findings, we formulated the following lessons learned
focused on the design of insight-based evaluations:

Insight categorization models introduce noise: We used two
models from state-of-the-art research and complemented our analy-
sis with a self-developed model. As we have shown, the categories
from Chen et al.’s [12] taxonomy are more appropriate for factual
insights. Our study demonstrates that taxonomies that leverage the
analytical features of insights and their meaning [35] coupled with
how users frame their insights (Insight Valence model) provide an
expanded understanding of this process. However, we found discrep-
ancies between models when investigating the insight descriptions
based on the same corpus of responses. It suggests a challenge
for insight-based evaluations. In particular, researchers should con-
sider that their findings may derive from the used insight taxonomy
rather than the design conditions, e.g., differences between visual-
izations. The visualization community should also pay attention to
the low inter-code agreement that both Chen et al.’s [12] and Moere
et al.’s [12] taxonomies revealed. Further, researchers may focus on
assessing insight quality (e.g., through interaction logs [23]) rather



than quantity or use dimension reduction techniques to find key
insight categories. We advise future studies to consider creating and
validating a model that converges on a more resilient taxonomy for
insights-based evaluations.

Personality synergies affect insight reporting: Prior research
has already created a substantial body of knowledge focused on the
effect of personality factors on user interaction with information
visualization systems (e.g., [21, 54, 55]). In particular, neuroticism,
extraversion, and LoC are the only personality traits considered in
insight-based evaluations [21]. We were not able to validate the
findings of Green and Fisher [21] regarding the neuroticism and
extraversion traits. However, our findings show that high scores
in the openness to experience trait lead individuals to report more
insights and vice-versa. In particular, this effect has a medium to
large size. We believe that researchers should consider these effects
in the experimental design. In particular, these findings suggest that
the credibility of insight-based evaluations may be suspect without
controlling for personality effects. We believe enhancing the user
profile with individual characteristics and breaking the cycle of
one-size-fits-all design is a significant step for future research.

4.4.4 Limitations and Future Work

Although the above recommendations provide preliminary steps into
insight generation and its susceptibility to personality factors, there
are some limitations to the results of this study. First, the sample
size was adequate to study the insight reporting across the different
visualization layouts. However, including latent variables such as
personality traits often requires hundreds of participants to achieve
stable estimations [28]. Future studies should increase the sample
size to verify whether our results hold for larger samples. Second,
our study and Green and Fisher’s [21] show that personality plays
a significant role in the insight generation process. Future studies
should replicate the experiments and validate the findings to provide
a more robust body of knowledge. For instance, researchers can
leverage a guidance system to support individuals with average or
low scores in openness to experience. In particular, visualizations
can integrate notes and help features to foster user exploration. This
approach type makes visualizations more cognitively in line with
the personality characteristics of users and, consequently, may allow
them to find a higher number of insights.

Third, we designed a set of tasks to foster within and between
hierarchical levels comparisons. Contrary to past work [55], the
tasks were not yes/no questions but required the participant to report
an exact number or label. Furthermore, the study involved a set of
fixed tasks before probing for insights. This study design decision
comes from our attempt to diminish bias. We chose the datasets to
de-emphasize the role of domain knowledge and to try to isolate the
effect of the different graphical dispositions in insight generation.
Consequently, we believe it was necessary to prompt the users to
interact with the visualizations before asking them to report any
insights. Both these factors may have introduced some noise and
primed the participants to report insights from a specific type more
frequently [36]. Future work may also consider how our results
might differ from a more open-ended data exploration (e.g., [35]).
Finally, our results apply only to Sankey, sunburst, and treemap
charts with three hierarchical levels. Future research can vary the
visual idiom to present hierarchical data and non-hierarchical data,
its features (chart size, scale, or color palette), and the number of hi-
erarchy levels to further explore how the graphical disposition of the
data affects how people gain insights. This would help to tease apart
what exactly visualizations produce differences in insight reporting,
e.g., the actual data aggregation or the visual encodings [52].

5 CONCLUSIONS

This study reports on findings regarding obstacles in the design of
insight-based evaluations. We conducted a user study where partici-

pants interacted with a Sankey, a sunburst, and treemap charts and
then reported insights about these visualizations. We continue prior
work on insight categorization by applying Chen et al.’s [12] and
Moere et al.’s [35] taxonomies. We also propose a new Insight Va-
lence model to study the insight reporting delivery. Results suggest
that the insight taxonomy used to analyze the data may introduce
noise in the insights description. Further, we show that openness
to experience affects the insight generation process. These findings
suggest that personality traits may create crucial tensions in the
process of gaining insights and, consequently, researchers should
control or account for it in this type of experiment. We advise future
studies to use insight-based evaluations to control for the obstacles
that may undermine their results.
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