
DynaGame: a rule editor for gamified education

Ana Nogueira
Instituto Superior Técnico

Lisbon, Portugal
ana.b.nogueira@tecnico.ulisboa.pt

Amir Hossein Nabizadeh
INESC-ID, University of Lisbon

Lisbon, Portugal
amir.nabizadeh@tecnico.ulisboa.pt

Daniel Gonçalves
INESC-ID, University of Lisbon

Lisbon, Portugal
daniel.goncalves@inesc-id.pt

Abstract— Gamification is the usage of game elements in
non-game contexts, such as education, where it can increase
student’s engagement and motivation. Multimedia Content
Production (MCP) is a gamified MSc course taking place at
Instituto Superior Técnico, resorting to GameCourse, a web
application that was solely built for the course. However, there
was a need for providing easier and more efficient mechanisms
for customizing the gamification elements, ultimately allowing
GameCourse to be used in other courses as well. To achieve our
goals, the GameRules rule system was integrated with our
architecture and a UI was developed to facilitate the rule
editing process. This paper presents DynaGame, a user-
friendly rule editor that can be easily used by non-
programmers to generate and manage existing rules.

Keywords—gamification, education, blended learning, rule
system, rule editor

I. INTRODUCTION
In recent years, the concept of Gamification has garnered

attention in multiple contexts due to its benefits in learning,
persistence, performance and motivation [1, 2]. One of the
contexts where Gamification can be applied and has gathered
positive results is education, where new methods have
surged in an aim to increase the engagement of students with
the class material. In these environments, gamification can
depart from the more traditional methods of education and
can be leveraged to allow students more control over their
learning paths and their learning page.

The Multimedia Content Production (MCP) course at
Instituto Superior Técnico, University of Lisbon, is a
successful example of a gamified MSc course where positive
results have been observed. The MCP course and its
gamification process rely on a platform called GameCourse
(GC), a web application used for the management of the
gamified elements of the course, that recently saw a new rule
system component added to its architecture. Previously, the
available gamification elements, such as Badges and
Experience Points (XP), were awarded by a hard-coded
script which allowed no flexibility and was difficult to
maintain. The maintenance of the previous system was time-
consuming for the teachers and required expert knowledge of
the underlying script that was responsible for the attribution
of rewards. The addition and integration of a text-based rule
system called GameRules has allowed further flexibility and
easier customization processes but the platform still lacked a
rule editor interface for managing the gamified elements of
the course.

We created DynaGame, a rule editor interface for
providing and customizing gamification elements in a
higher-education context. The rule editor interface leverages
the expressivity allowed by the underlying rule system and
supplies expert and non-expert users alike with helpful
mechanisms to create rules for their gamified courses. To

assess our work, we performed a summative evaluation
which allowed us to understand the strengths and weaknesses
of the developed system.

In the following sections we will first review the
available literature on the two areas of research that our work
is concerned with: rule systems and rule editors. Next, we
provide background on the context in which DynaGame is
inserted, followed by an extensive description of the
developed rule editor interface. Lastly, we provide an
analysis of the work based on the evaluation that was
conducted and set forth some conclusions.

II. RELATED WORK

A. Rules and Rule Systems
Rule systems consist software systems that operate over a

knowledge base using rules to interpret, process or infer new
information. At the center of these systems are rules, usually
defined through if and then clauses, where the if clause is
designated as the antecedent and the then clause is the
consequent. The if clause of a rule represents a condition that
will trigger the rule, while the then clause refers to the
actions that are direct consequences of activating it.

if conditions then actions

Rules can be described in textual representations but
there are other means to express these clauses. There are
further ways to represent and edit rules based on visual
approaches that leverage data-flow techniques, by visually
composing the preconditions and actions as flowcharts [3].
Other approaches present rule representation through graphs,
for instance, a scenario in which a trained analyst can create
rules that represent domain knowledge and use facts to
represent data [4]. There is also diversity in the areas where
rule-based systems have been successfully applied. Notable
uses of rules include areas such as military training [5], the
maintenance of medical records [6], but also in clinical
diagnosis through the usage of fuzzy sets [7].

B. Rule Editors
The rule editor can be defined as an interface where the

users can create the rules that express the logic of the system
for inferring new information. Rule editors are conditioned
by the underlying representation of the rules that is chosen
for a rule system. Programmatically, rules can be stored in
similar manners, but we can adopt textual or more graphical

978-1-6654-8343-8/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 G

ra
ph

ic
s a

nd
 In

te
ra

ct
io

n
(IC

GI
) |

 9
78

-1
-6

65
4-

83
43

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

GI
54

03
2.

20
21

.9
65

52
75

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

representations for them. Text-based and programming
oriented approaches, usually allow users to directly edit rules
through a text box. This was the first model adopted for the
structure of our rule system, in which the rules are written
programmatically in text files and parsed on execution.

Graphical approaches are an alternative to purely textual
ones and can encompass many GUI elements that together
increase the overall expressiveness of the system. Ghiani et
al. [8] presented a complex rule editor that allows users to
customize IoT environments using trigger-action rules. In
this model, the rule editing starts with selecting a Trigger or
an Action to author an expression. Both of these expressions
can be simple or complex, and can contain boolean
operations, such as AND or OR. In the editor itself, the
concepts used for composing rules are organized
hierarchically through contextual dimensions, which limits
the amount of items visible in order to reduce the cognitive
load for the user.

Another system was proposed for a similar context of a
Smart Home and Internet of Things (IoT) environment where
users are also in control of their environments through
compositions of sensors and IoT devices [9]. A rule editor,
with both textual and graphical elements was developed for
users to manage their devices. In this system, each rule is
described symbolically and textually by if, while and then
clauses, and each clause consists of three elements: a
graphical icon for describing the service type (e.g. motion
detector), a service name or location info (e.g. hall), and a
description for an event, condition or action (e.g. raise
alarm). The rule editor contains drag-and-drop features,
graphical icons and clause templates.

Zhang et al. [10] presented a rule editor for clinical
applications, where domain experts make use of a rule
system to map domain knowledge into computer processable
contents using if-then clauses. The rule editor presented has
two modes: graphical and textual. In graphical mode, the
user is presented with a table of all available rule variables,
which can be used to compose new rules using comparison
operators and user specified values, by using dropdown
menus and input fields. Each clause can be dragged up or
down to adjust the order of the rule, and after the completion
of the rule fields, the graphical editor can generate a text-
based rule expression from the specified clauses. In textual
mode, the user is allowed to write the desired rule manually
and then validate it, without recourse to the graphical editor.
Additionally, the textual mode provides auto-complete and
intelliSense functionalities to guide the user.

Regier et al. [11] present a browser-based rule editor for a
Clinical Decision System to help manage clinical reminders
for new research findings. Previously, the aforementioned
reminders were hard-coded and had less functionalities.
Their work proposed a new system that has three main
advantages: greater control when modifying the reminders;
reduced time when making or applying modifications; the
usage of rules that could be easily understood by non-
programmers. Being domain specific, the rule editor includes
a set of primitives that represent commonly used expressions
in the clinical context. For instance, a medication primitive
that can be configured according to different parameters,
such as a medication subset or a medication start date. The
method for creating rules relies on preset templates that are
adapted to the nature of the primitives.

III. GAMECOURSE
Multimedia Content Production (MCP) is a gamified

MSc course which uses a blended learning model of
education supported by an online system called

GameCourse. This platform is responsible for the attribution
of XP and other rewards to the students enrolled in the
course in return for the completion of tasks. GameCourse
previously relied on a hard-coded script for all its reward
attribution, which conditioned the system’s flexibility,
requiring the expertise of programmers and other users that
were familiar with the existing architecture. However, due to
the work of multiple professors and MSc students, it is now a
modular system in which each of the available modules
provides extra functionality and module-specific language.
Through its modules, GameCourse provides various
gamification rewards such as XP, Badges and Skills, and
other components that are central to the user experience,
such as Profile Pages or a Leaderboard, as shown on Fig. 1.

The reward attribution is now delegated to a previously
developed customizable rule system component called
GameRules (GR) that was integrated with the GameCourse
architecture. Through the usage of text-based user-created
rules, the GameRules rule system defines which types of
awards are redeemable in the course. On execution, it checks
whether target users, have triggered any of the defined
award-attributing rules previously established by the
administrators. The GameRules system accepts text-based
rules, written in Python-like syntax, with a two clause
format: the when and then clauses. The when clause is the
antecedent of the rule, which may cause the then clause, or
the consequent, to be executed. In Fig. 2 we present the
structure of a rule accepted by the rule system.

The addition of the new rule system also included the
integration of module-specific language into the syntax of

2. Structure of a plain-text version of a GameRules rule.

1. A student’s Profile Page on the GameCourse platform.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

the rules. GameCourse has a built-in Expression Language
(EL) that can be used to customize front-end templates for
the pages available in the platform. It can also be used,
however, to retrieve information from the system’s modules,
which is a useful functionality to be included in rules as well.
Another one of the features included allows the retraction of
effects of previous rules. A use case for this particular feature
is when work submitted by a student is re-evaluated by a
teacher and, as a consequence, the student no longer deserves
a previously unlocked reward.

IV. DESIGNING THE RULE EDITOR
A rule editor interface was developed, leveraging the

existing GameRules text-based rule-system and integrating
into our work into the overall design of the GameCourse
system. The rule editor consists of two main screens: a rule
listing page and a rule editing page. In the rule listing page,
the existing rules for a given course are presented to the user,
grouped in collapsible section taxonomies. As we present in
Fig. 3, each of these named sections has a set of actions
associated with it:

• Add rule: adding a new rule to a section;
• Export rules: exporting all the rules in a section into a

downloadable plain-text file;
• Move up: moving a section up, causing its precedence

within the rule system execution to increase;
• Move down: moving a section down, causing its

precedence within the rule system execution to
decrease;

• Collapse/Expand: hiding or showing the rules under
the section, respectively.

Each rule available also has its own actions, presented in
Fig. 4: each rule can be edited, duplicated, deleted and
moved up or down to increase or decrease its precedence,
respectively. Additionally, it has a set of attributes, such as a
name, status (active or inactive), description and a set of
optional tags. We delegate to our rule editing page the
mechanisms for editing some of these attributes, as well as
having the main editing of the rule clauses that allow us to
define functionality for our gamified system.

The GameRules system accepts rules with two clauses, as
already mentioned. To edit rules with this format, we provide
two text boxes in our rule editing page, one for each clause,
with autocomplete functionality and automatic suggestions.

As the user types code for each clause, function suggestions
are given in the right-side of the page and an autocomplete
tooltip is presented for easier selection, similar to that of
many of the current IDEs.

For our clause text-boxes we used the CodeMirror [12]
framework, since it provides syntax highlighting and the
autocomplete functionality we sought. Our rule system uses
Python-like syntax for its rules but it also contains tailored
expressions specific to modules of the GC environment
which are integrated into the rules through a custom
language parser. Since it was of our interest to have these
custom expressions parsed and suggested in the interface, we
tweaked the CodeMirror configuration to detect them as the
user types them, and provide suggestions on the go, as seen
on Fig. 5.

When the user finishes typing the name of valid
expression or function on the text boxes, a list of arguments
and a description of that function/expression is presented on

4. Icons representative of available rule actions.

3. Set of icons used for section specific actions.

5. Autocomplete suggestions provided by the rule editor.

6. Function suggestions mechanism before and after selecting a
function.

7. Global rule system metadata variables
suggested in the rule editing page.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

the right side of the page, as presented on Fig. 6. The
descriptions are either obtained through a Python script, for
the case of Python defined functions, or by the internal
expression dictionary of the GameCourse system.

In addition to listing functions, the rule edit page presents
metadata variables: variables that are system-wide and
whose value is global to all the rules of a course. The value
of these variables cannot be changed in the rule edit page,
but its value is visible in the suggestions box, as is shown in
Fig. 7. Clicking on one of these variables will cause it to be
added to the clause.

In the rule editing page, we have included the mechanism
for adding tags to a rule. Typing on the text box will display
a tooltip with suggestions of existing tags, as is shown on the
top of Fig. 8. To insert a new tag, the user must press Enter,
which will prompt a color-picker to appear for a color to be
selected for the new tag. The newly added tag will then be
listed next to the text-box with the selected color.

In the bottom of the page we implemented a preview
section that allows users to preview the outcome of functions
they have typed on the clause boxes or, alternatively, to test
the created rule in a contained environment. The rule preview
is implemented by running a minimal version of the rule
system which does not track a user’s progress in gamification
elements, recalculate the XP or log any activity but gathers
the obtained results in a separate test database table. In the
presence of an error in the syntax of a rule, the user will be
informed of the type of error in the preview box so that it can
be corrected. Otherwise, the preview script will return a
sample of the awards that were attributed on the test
database, which represent the results the users will obtain
when the rule is ran in the actual gamified environment.

The function preview mechanism, exemplified in Fig. 9,
allows users to test the Expression Language functions that
are available, which arguments of their choosing. In Fig. 9,
we se the getAllParticipations function of the participations
library being tested for the user with the id 2. The result is a
detailed list of participations user 2 has made.

In our rule listing page a set of icons is displayed on the
top-right of the page. In this menu, the users are able to add

new sections, edit existing tags, export and import rules and
configure various settings of the rule system. The Edit Tags
menu, accessible by clicking in the tags icon, gives users the
possibility to edit the name and color of tags already on the
system. A user must first select a tag to be edited which
causes the name of the tag to switch to an editable text box,
as we can see on Fig. 10. The color sample box shown in
each row of the menu also becomes editable and the color of
a tag can be changed by clicking on it. As a consequence, a
color picker will appear, where the user can select a new
color. The edited tag must then be saved individually. In
addition, for the changes to be saved, the user must save all
tags as a group as well, using the Save button.

The aforementioned Settings menu is accessible by
clicking the wheel icon on the top-right. In this menu we
provide rule system related functionality that does not relate
directly to rule editing. Clicking the wheel icon causes a
modal window to be opened, where various rule system

configuration mechanisms are available. Inside this modal,
different areas are organized in tabs. Within the first tab, we
provide users with a button to run the rule system on
demand. GameRules’ main use-case relies on it being
executed periodically, with that periodicity being dependent
on user defined parameters and on the amount of data the
system receives. However, during the first semester in which
the rule system was used (without the rule editor) it became
clear there was a need for it to be manually ran on demand,
or for specific users. This functionality was added in the
Settings menu — we now provide a mechanism for

8. Tag functionality during and after creation of a
new tag. 10. Edit Tags menu during a the process of editing a tag.

11. The Select Targets menu for running the rule system allows
users to choose which students to run the rules for.

12. Metadata Variable editing in the Rule Settings modal.9. The Function Preview area allows users to test rules and
Expression Language functions.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

GameRules to be run normally but on demand and a
mechanism for the professors to specify which users they
want to run the rules for.

The Select Targets functionality, as shown of Fig. 11,
retrieves all available students registered in GameCourse and
suggests them as the user types a name or a user id on the
text box. After the targets are selected, the chosen targets will
be listed on the right side of the text box. Clicking the button
below the box will cause the rule system to be executed in
the background for the specified targets only.

In another tab of the Settings menu, we implemented an
editing menu for the metadata variables that are global to the
system. Here the user can add, edit or delete variables to be
used in rule creation. The editing process is similar to the one
already described for the Edit Tags menu.

V. EVALUATION
To assess the performance of our work, we performed

summative tests with a group of 20 users, which constitutes a
varied sample. The tests were performed remotely using
video-conferencing software with recording capabilities.
Users were asked to perform 11 tasks using the system,
during which we gathered relevant metrics such as the
number of clicks, errors, the time expended in each task and
whether the task was successfully completed.

We gathered some details about our users, such as their
age, programming experience and whether they had previous
knowledge of the GameCourse system. Some context was
then provided regarding the Multimedia Content Production
course and the practical application of the rule editor,
followed by a limited time period in which the users were
allowed to explore the rule editor before performing the
tasks.

We devised a set of tasks that would allow us to test
different areas of the system.

1) Change the Initial Bonus rule so that it awards 300
XP.
2) Add the tag Books with the color Green to the rule
“Librarian”.
3) Add a new empty Rule called Library to the Section
“Badges”.
4) Open rule Empty and tell me the name of the first
argument of the function getAllParticipations of the
participations library.
5) Run the Rule System only for targets Blaise Pascal
and Camilo Castelo Branco.
6) Add a new metadata variable to the RuleSystem
called sleep_hours with the value 2.
7) Perform the following:

a) Disable Rule Amphitheater Lover.
b) Delete Rule Golden Star.
c) Duplicate Rule Artist.

8) Open rule Hall of Fame and preview the rule. If no
errors are returned, save the rule.
9) Change the color of tag great to red.
10) Create a new rule with the name Great Prize that
awards a prize of 400 XP to all students.
11) Create a new rule named Quiz that awards XP for
participations of the type quiz grade.

A time limit was set for each of these tasks — tasks 1, 4,
10 and 11 had a maximum time of 2 minutes and 30 seconds,

due to its increased difficulty and the remaining tasks had a
time limit of 1 minute and 30 seconds.

We came up with this specific set of tasks by fixating on
specific elements and functionality we intended to test. Tasks
3, 7 and 8 test the simplest interactions with the system, such
as locating rules and understanding other basic actions in
which the object of the task is a rule. Tasks 2 and 9 allowed
us to specifically test the tag functionality, more precisely,
how users are inclined to solve tag related actions such as
editing and adding new tags. With Tasks 5 and 6 we intended
to understand if users could interpret our request correctly
and locate the correct place to solve the task, since these
tasks target more global functionality of the rule system, as
opposed to targeting rules. The remaining tasks, were all
chosen for their ability to test the experience of users when
editing or interpreting rules. This type of tasks gives us a
wide scope of interaction for analysis, since we can look at
how users go about when creating new rules, which elements
they interacted with, how they interpreted existing code and
suggestions and the difficulties they may have found.

The age of our participants ranged from 21 to 63 years
old, with the median age of 24 years. 85% or our users had
programming experience, either from a professional or
academic background.

I. TABLE 1

Users were asked to rate each task in a scale of 1 (Very
Easy) to 7 (Very Difficult) after they had completed it. It is
worth looking into these tasks and analyzing which are the
most common pitfalls that users have made, since it will give
us a better idea on how to improve them.

We can first look at the tasks our set of participants
considered to be the most straight-forward. Tasks 3, 7 and 8
were considered the easiest tasks, rating in the difficulty
scale, on average, with values < 2.0. Users had no major
hardship in performing slight alterations to rules, in
understanding the Section taxonomy or in previewing a rule.
The success rate for each of these three tasks was above or
equal to 90%. Despite having no difficulty in identifying
where to preview a rule, our users were reluctant to
spontaneously use that functionality which can indicate that
it goes by unnoticed or that its function is unclear.

On a slightly higher difficulty level, we have tasks 1, 5
and 6. These were all rated in the average difficulty between
2.0 and 3.0. What all these tasks have in common is that they
require some extra knowledge on how the system works.

Task Success Rate
Avg. completion

time Avg. nr. of clicks

1 70% 1:08 4.85

2 35% 1:20 11.4

3 100% 0:25 3.75

4 60% 1:41 4.35

5 90% 0:42 7.45

6 35% 0:50 8.85

7 100% 0:29 4.75

8 90% 0:33 3.8

9 30% 0:31 8.3

10 20% 2:20 5.9

11 0% 2:29 4.4

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

Task 5 asks the users to ”run the rule system” for specific
targets. This implies that the user must have a slight
understanding that the rule system is the general object on
which the rule editor is based and that running it is a course-
wide action. Understanding this detail would eventually lead
the user to the Settings menu accessible from the rule list
page, where the task could be completed. In addition, we
also noticed that users expected some feedback from this
particular feature, which was not provided, given that the
rule system runs in the background and might take some
time to run. We could, however, improve the interface to
provide the user some feedback on whether the request for
execution was completed.

An analogous situation occurs with task 6, in which the
user must comprehend that a metadata variable is a global to
all rules in the course and that the mechanism for changing it
must also be a global one. Once again, the location for
completing the rule is within the Settings menu. The success
rate for this task was only of 35%, which is a very low
percentage. We observed that users would not correctly save
the variable after adding it to the list. The menu required the
user to save the variable individually, and later save the
whole set of variables. However, the button for saving all
variables was not visible at all times due to the list of
variables being too long, and only the users who scrolled to
the bottom of the page realized that another Save action was
required. The remaining would just close the modal window,
assuming that they had finished adding a new variable. An
alternative mechanism for saving might be worth considering
for this menu and similar ones.

Task 1 asks the users to change the Initial Bonus rule
already in the system. This task was particularly interesting,
since there were two valid methods for completing it. Some
users interpreted the available code and changed it on the
spot to award 300 XP, as requested, by typing

bonus = 300

Another fraction of the users interpreted the Initial Bonus
as being a metadata variable and that changing the bonus
should be a task performed on the Settings menu, as shown
in Fig. 12.

Next, we can look at tasks 9 and 2 together, since they
both concern adding and editing tags. Tasks 2 and 9 have an
average reported difficulty of 4.35 and 2.05, respectively.

In task 2 we were able to identify an important issue
within the UI that constituted an impediment for the
completion of the task. The creation of a new tag inside the
rule editing page, as seen on Fig. 13., was achieved by
writing the name of the new tag into a text input and then
pressing Enter to confirm. This mechanism turned out to be
completely counterintuitive to our users, with only 7 of them
effectively completing the task.

We also noticed that most users would first try to open
the Edit Tags menu to create the new tag, rather than opening
the requested rule, so it might be productive to add that

functionality in that modal. Exceptionally, some users were
more creative in completing the task, by altering the name
and color of one of the existing tags in the system. Then they
would open the rule editing page and attribute that rule the
new tag, which would now be suggested by the system.
While this counts as having completed the task, it indicates a
lot of misdirection.

In task 9 we report a similar problem to that of task 6, in
which the user is required to save twice, first individually
and then as a group. Both situations occurred, in which users
skipped one on the steps needed for saving the modifications
made on a tag. In this task we also observed that it was not
very explicit how to change the color of a tag. Users’ first
impulse would frequently be to click on the hex-code of the
current color, instead of the colored square which would
prompt the color picker to show up.

Lastly, we analyze the results of the tasks concerning rule
creation or code interaction, namely tasks 4, 10 and 11.
These tasks required extended interaction with the rule editor
and the function suggestion mechanism. Consequently, the
measurements that were made about errors and clicks are
less expressive than a detailed analysis of what the users
tried to accomplish when interacting.

One of the indications we provide, but realized is not
explicit enough, is the text suggestion to the right hand side
that prompts the user to type GC. in the When text box to
receive suggestions. Many users ignore this initial hint and
end up being confused about which course of action to take
when creating a rule. The users who overcome this first
hurdle, then might run into further obstacles. One behavior
that was very regularly observed was that users would try to
click the suggestions showing up on the functions box, a
functionality that is not provided by our UI. The correct way
to follow a suggestion is by using the autocomplete
suggestions or by typing it all.

Another obstacle the users faced when writing rules was
the uncertainty on how to write an EL expression. Users,
very often, were not aware that they must first select the
library to which a function belongs and only then choose the
function name. It was also not clear sometimes that a ”.”
should be used to separate the library and the function name
when using the Expression Language functions, as we
exemplified in Fig. 5. The experience of users without
programming knowledge was further dampened by the fact
they did not know how a function works, namely that its
invocation includes an argument list enclosed by parenthesis.

Testing allowed us to extract some data about how the
users interact with our work. We can observe in Table 1 that
the average number of clicks in task 2, a task which demands
the addition of a new tag to an existing rule, is significantly
higher when compared to other tasks. From the amount of
errors that took place, on average, we realized that the
correct path for solving this task was not clear to our users,
who repeatedly struggled with completing the task, thus
making it clear for us that there is room for improvement of
this particular feature. In addition, most users were reluctant
to use the Preview mechanisms provided, which might mean
that it goes by unnoticed or that its function is unclear. When
it comes to rule creation, users without programming
experience had more difficulty in completing the tasks which
required interaction with the rule clauses. This type of user
often times failed to understand how a function works, which
signals that further support should be provided by our
suggestion system.

VI. CONCLUSIONS
Gamification has no doubt become of interest in many

contexts, namely in the educational context, where positive

13. Tag Creation issue: the creation of a new tag was not
easily understandable by the majority of the users.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

results have been observed. Our goal was to improve an
existing gamification system currently used in blended
learning environments by making it more flexible and easily
customizable by programmers and non-programmers.

With this goal in mind, we built DynaGame, a system
which encompasses our efforts at creating and integrating a
rule editor interface into the GameCourse platform. With
DynaGame we provide an interface for users to customize
rule-based gamification elements while leveraging the
underlying Expression Language of the system. Summative
testing has allowed us to evaluate our work and draw
conclusions on how target users interact with it. The overall
balance is positive, however, the data shows there is still
room for improvement.

As future work, we aim to improve the suggestion system
in the rule editor to provide more support for users without
programming experience, considering the results our
evaluation. We suggest the addition of more features that
help novice users interact with the system, such as template
rules for specific types of rewards or a beginner’s guide for
rule creation. Another interesting addition would be to have
different themes available for the rule editor, while still
making sure that the whole system maintains its visual
consistency.

ACKNOWLEDGMENT
This work was supported in part by the National Funds through

the Fundação para a Ciência e a Tecnologia (FCT) under Project
UIDB/50021/2020, and in part by the Project GameCourse,
Portugal, under Grant PTDC/CCI-CIF/30754/2017.

REFERENCES
1. R. Garris, R. Ahlers and J. E. Driskell, “Games, motivation, and

learning: A research and practice model”, Simulation & gaming,
2002.

2. G. Barata, S. Gama, J. Jorge and D. Gonçalves, “So Fun It Hurts -
Gamifying an Engineering Course”, International Conference on
Augmented Cognition (pp. 639-648), 2013.

3. M. Mosconi and M. Porta, ”A Data-Flow Visual Approach to
Symbolic Computing: Implementing a Production-Rule-Based
Programming System through a General-Purpose Data-Flow VL”,
Proceeding 2000 IEEE International Symposium on Visual
Languages. IEEE, 2000.

4. M. Nowak, J. Bak and C. Jedrzejek, ”Graph-based rule editor”,
RuleML (2). 2012.

5. Y. Shanliang, F. Yuewen, Z. Peng and H. Kedi, “Implementation of a
Rule-based Expert System for Application of Weapon System of
Systems”, Proceedings 2013 International Conference on
Mechatronic Sciences, Electric Engineering and Computer (MEC).
IEEE, 2013.

6. R. Regier, R. Gurjar and R. A. Rocha, “A Clinical Rule Editor in an
Electronic Medical Record setting: Development, Design and
Implementation”, AMIA Annual Symposium Proceedings. Vol. 2009.
American Medical Informatics Association, 2009.

7. M. A. Ghahazi, M. H. Harirchian, M. H. F. Zarandi, S. R. Damirchi-
Darasi, “Fuzzy Rule based Expert System for Diagnosis of Multiple
Sclerosis”, 2014 IEEE Conference on Norbert Wiener in the 21st
Century (21CW) (pp. 1-5). IEEE.

8. G. Ghiani, M. Manca, F. Paterno` and C. Santoro, “Personalization of
Context-Dependent Applica- tions Through Trigger-Action Rules”,
ACM Transactions on Computer-Human Interaction (TOCHI) 24.2
(2017): 1-33.

9. T. Tuomisto, A. Haapasalo and K. Hakala, “Simple Rule Editor for
the Internet of Things”, International Conference on Intelligent
Environments, 2014.

10. Y. Zhang, H. Li, H. Duan and Q. Shang, “An Integration Profile of
Rule Engines for Clinical Decision Support Systems”, 2016
International Conference on Progress in Informatics and Computing
(PIC), IEEE, 2016.

11. R. Regier, R. Gurjar and R. A. Rocha, “A Clinical Rule Editor in an
Electronic Medical Record setting: Development, Design and

Implementation”, AMIA Annual Symposium Proceedings. Vol. 2009.
American Medical Informatics Association, 2009.

12. CodeMirror, https://codemirror.net/. Last accessed 22 July 2021.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 05,2022 at 10:54:05 UTC from IEEE Xplore. Restrictions apply.

		2021-12-23T13:20:27-0500
	Certified PDF 2 Signature

