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A B S T R A C T

In e-learning, one of the main difficulties is recommending learning materials that users can
complete on time. It becomes more challenging when users cannot devote enough time to learn
the entire course. In this paper, we describe two approaches to maximize users’ scores for a
course while satisfying their time constraints. These approaches recommend successful paths
based on the available time and knowledge background of users. We first briefly explain a
method that has a similar goal to our method, and highlight its drawbacks. We then describe
our proposal, which works based on a two-layered course graph (lesson and Learning Object
(LO) layers; a lesson includes a few LO). Initially, our method uses the Depth First Search
algorithm (DFS) to find all lesson sequences in the graph that start by a lesson (opted by a
user). It then assigns LO for lessons of paths and estimates their score and time. Finally, a path
that satisfies the user’s limited time while maximizing his/her score is recommended lesson by
lesson. During a path recommendation, if the user could not get the estimated score from a
lesson, our method recommends auxiliary LO for that lesson. To evaluate our method, we first
assessed the quality of our estimation methods and then evaluate our recommender in a live
environment. Results show that our estimation methods outperformed the ones in the literature.
Results also present within the same amount of time, the users of our recommender proceeded
more on the course than the users of another e-learning system.

1. Introduction

E-learning systems ease learning tasks and enable users to learn at their own pace and comfort, but they face a few challenges,
such as providing learning materials that fit the users’ requests and limitations. One of the challenges is to present those learning
materials that users can complete (read and learn) on time. Tackling this challenge becomes harder when the users’ available time
is limited and they cannot dedicate the required time to learn the materials.

Users might not have enough time due to different reasons, like multi-tasking and mismanaging time while they attend a course
having different professions, ages, backgrounds, etc. So, it is expected that they cannot devote equal time for a course. Despite having
the time restriction, they all aim to enhance their knowledge in their available time. Knowledge enhancement can be measured by
a proper metric, such as the obtained score from a course (Gawthrop, 2014).
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To this end, in this paper, we explain two approaches, that are examples of Long Term Goal Recommender Systems —
LTRS (Nabizadeh, Jorge, & Leal, 2015; Nabizadeh, Mário Jorge, & Paulo Leal, 2017), to recommend paths (sequences) through
the learning materials under the users’ available time while maximizing their score. These approaches recommend paths regarding
the knowledge background and available time of the users. The first approach uses a one-layer course graph while the second one
(our proposal) works based on a two-layered course graph. Since the first method is detailed in Nabizadeh, Jorge, and Leal (2018),
we explain it briefly for having a better comparison between (Nabizadeh et al., 2018) and our method.

In the first approach (Nabizadeh et al., 2018), a user initially specifies his/her knowledge background by opting a Learning
Object (LO) in the course graph. This method then finds all paths (LO sequences) using a Depth-First Search (DFS) while estimating
their time and score. Finally, it recommends a sequence of LO that satisfies the user’s limited time while maximizing his/her score.

In our approach (second approach), after specifying a user’s knowledge background (opting a lesson), a DFS is used to find all
lesson sequences that start by that lesson. It then assigns LO to lessons of the sequences and estimates score and time for them.
Finally, a path that satisfies the user’s time constraint while maximizing the expected score is recommended lesson by lesson. It
enables the recommender to collect the user’s transactions data for adapting the path for him/her. In the case that the user could
not complete a lesson with the estimated score, this approach recommends auxiliary LO for that lesson. These LO are not in the
initial path, and they will be recommended when the user could not complete a lesson with the estimated (expected) score.

For evaluation, we first evaluated the quality of our estimation methods, and then assessed the quality of our recommender in
a live environment. For that, we conducted an A/B test. The experimental group used our recommender while the control group
used an e-learning system that delivered LO with a predefined order (defined by an expert). Finally, we compared the groups
performances.

The main highlights of this study are:

1. Presenting 3 time/score estimation methods and assessing their performances.
2. Describing the drawbacks of Nabizadeh et al. (2018) that has similar goal to our method.
3. Presenting an adaptive method that generates paths using a two-layered course graph.
4. Recommending auxiliary LO when a user couldn’t complete a lesson with expected score.
5. Performing various online and offline tests to assess the quality of the recommender.

In this paper, Section 2 illustrates related work while our problem is detailed in Section 3. Section 4 describes a method presented
in Nabizadeh et al. (2018) and highlights its drawbacks. It then describes our method and explain how it estimates score and time
for paths. In Section 5, the data description as well as the evaluation methodology and results are discussed. Section 6 presents
a discussion about our methods and results while Section 7 suggests several research directions for the researchers in the path
recommendations area. Finally, Section 8 presents our conclusion.

2. Related work

Personalizing paths regarding the users’ preferences and objectives is the main goal of e-learning recommenders. These
recommenders automatically retrieve the learning materials from a repository and assemble them to generate paths. Since the early
70 s, different e-learning recommender approaches have been introduced using various sets of goals, algorithms, and techniques.
According to our survey, these approaches can be classified into:

• Course Generation (CG).

– Sequential Pattern Recognition (SPR).

• Course Sequence (CS).

2.1. Course Generation (CG)

In the CG approaches, by identifying users’ needs and preferences, a path will be generated in a single recommendation (Belacel,
Durand, & Laplante, 2014; Bhaskar, Das, Chithralekha, & Sivasatya, 2010; Carchiolo, Longheu, & Malgeri, 2010), and users’
knowledge will be assessed after completing a path. So far, CG methods are introduced using different algorithms and techniques,
like using a Hierarchical Task Network (HTN) (Garrido et al., 2013), a decision tree classifier (Lin, Yeh, Hung, & Chang, 2013),
a Markov decision process (Durand, Laplante, & Kop, 2011), a Case-Based Reasoning/Planning (Dharani & Geetha, 2013; Garrido,
Morales, & Serina, 2012), a Bayesian network (Suazo, Rodríguez, & Rivas, 2012), greedy algorithms (Durand, Belacel, & LaPlante,
2013), genetic algorithms (Tam, Lam, & Fung, 2012), etc.

Among the CG methods, there are ones to help a group of users rather than a user, like (Kardan, Ebrahim, & Imani, 2014;
Xie et al., 2017). As an example, the ACO-Map method, which was presented in Kardan et al. (2014). First, it used a K-means
algorithm (Jain, 2010) to classified users based on a pre-test’s results. Second, the ant colony optimization algorithm (Dorigo &
Stützle, 2010) was utilized to recommend a path to each group. As another example, we mention the groupized learning path
discovering (GLPD) (Feng, Xie, Peng, Chen, & Sun, 2010). In GLPD, initially a topic graph was built and the users’ pre-knowledge



Computers & Education 147 (2020) 103777

3

A.H. Nabizadeh et al.

and preferences were obtained. Then, the method estimated the time boundaries (min & max) that a group needed to learn a path.
Finally, a strategy was opted to discover a path based on the estimated boundaries and the required time to learn a path.

There are other CG methods that consider a user instead of a group, like (Dwivedi, Kant, & Bharadwaj, 2018; Krauss, 2018;
Krauss, Salzmann, & Agathe, 2018; Ye et al., 2018; Zhou, Huang, Hu, Zhu, & Tang, 2018; Zhu et al., 2018). For example, in Belacel
et al. (2014) a graph based method is presented that initially dropped the irrelevant LO to obtain the goal from the graph. It then
found the shortest path in the graph by decreasing the number of needed competencies using a branch-and-bound algorithm.

So far, the mentioned methods mainly generated paths and ignored the users’ time restriction. This restriction was considered
by a few studies, like Basu, Bhattacharya, and Roy (2013) and Garrido et al. (2013). In Basu et al. (2013), a system was introduced
to recommend paths to the users regarding their available time (Basu et al., 2013). It worked based on Learning Path Generating
(LPG), and Learning Path Indicator (LPI). Initially, a function was defined regarding the required time to learn a subject, the number
of post-requisite and credits for that subject. Then, a fitness function was defined using a user’s preferences and limitations. Finally,
an LPI was made using the results from the mentioned functions. The LPI was used in the LPG to formulate a path. Similarly, in
RUTICO (Nabizadeh et al., 2017), right after selecting a LO by a user as a starting point for the paths, a DFS was executed to
generate all paths for the user considering his/her time constraint. In addition, RUTICO computed score and time for the paths, and
recommended one of them that maximizes the user’s score while fulfilling his/her limited time.

2.1.1. Sequential Pattern Recognition (SPR)
SPR methods mainly use the sequential pattern mining algorithms (Agrawal & Srikant, 1995) to discover paths for users. In

comparison with the CG methods, which generate paths even without transactions data, SPR methods need the transactions data to
generate paths. In SPR, paths are found for users using transactions of similar users (having similar preferences, objectives, etc.).

A few studies used the SPR approaches, like (Fournier-Viger, Faghihi, Nkambou, & Nguifo, 2010; Klašnja-Milićević, Vesin,
Ivanović, & Budimac, 2011). For instance, Protus (Vesin, Milicevic, Ivanovic, & Budimac, 2013) clustered users based on their
preferences and features (age, class, etc.). Next, it identified the target user’s cluster and considered the paths that were opted by
its members (members rated the paths regarding their success in guiding them). Ultimately, this method retrieved the paths (using
association rule mining approach) from the target cluster and recommended them regarding their rates.

2.2. Course Sequence (CS)

Contrary to the CG approaches, in CS approaches a path will be recommended LO by LO regarding the progress of a
user (Karampiperis & Sampson, 2005; Nabizadeh et al., 2015, 2017). Different techniques and algorithms were used in CS
approaches, like Item Response Theory (IRT) (Salahli, Özdemir, & Yasar, 2013; Yarandi, Jahankhani, & Tawil, 2013), a Association
Link Network (ALN) (Yang, Li, & Lau, 2012), Bayes theorem (Xu, Wang, Chen, & Huang, 2012), Evolutionary Algorithms (EAs) (Li,
Chang, Chu, & Tsai, 2012), etc. For instance, a Parallel Particle Swarm Optimization (an EA) was applied in Govindarajan, Kumar,
et al. (2016) to generate a dynamic path for a user. In this method, the users were categorized into four clusters regarding their
proficiency level. Then, the clustered information was used to generate a dynamic path for a user. EAs were also used in Li et al.
(2012). In this paper, learning concepts were initially assembled for forming a LO sequence. Next, the difficulty level of LO were
updated using the user’s feedback, and the Maximum Likelihood Estimation (MLE) was applied for analyzing the user’s objectives
and abilities. Finally, a path was made having the MLE results and using two EAs. After completing a LO, the feedback data was
utilized to update the user’s objectives, abilities, and the difficulty levels of LO.

The users’ abilities was also considered in Salahli et al. (2013). In this system, initially the topics, their difficulties and relations
were determined, and the users’ profiles were built. Whenever a user used the system, his/her knowledge level and the topic difficulty
were retrieved for estimating his/her understanding level using the Item Response Theory (IRT) (An & Yung, 2014). Then, the LO
were recommended using the understanding level. By completing a LO, the system analyzed if the user was able to understand the
LO. If the user could learn the LO, his/her knowledge level was re-evaluated. If the computed understanding degree was not high,
the system recommended those LO that assisted to enhance the user’s knowledge on the prior topics.

Another study that used the IRT and considered the users’ abilities was Yarandi et al. (2013). In this study, a path was generated
given a set of inputs (e.g. a user’s preferences, knowledge background, etc.). In this system, the IRT (An & Yung, 2014) was applied
for assessing a user’s feedback, and later on it updated the user’s ability. The modified user’s ability was employed to adapt the
learning path by recommending those LO that fitted the ability of the user.

In Table 1, we presented the proportion of personalization methods proposed by researchers per year. As shown, most of the
methods were the CG ones.

3. Problem statement

Recommending a path that users can complete in their available time while maximizing their score is the main objective of our
method. In our CS method, paths are extracted from a two-layered course graph (Fig. 1), and their score and time are computed
by means of our estimation approaches. Then, our method recommends a path (a sequence of lessons) that satisfies our objective
lesson by lesson. It allows the recommender to collect the users’ interactions data and update a path for them. In the case of not
completing a lesson having the estimated score by a user, our approach recommends auxiliary LO.

In order to attain our main objective, we break the main problem into sub-problems and tackle them one by one. These
sub-problems are:
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Table 1
Proportion of personalization methods per year. 56 were reviewed.
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

CG 1 10 1 2 6 5 2 3 2 9
SPR 0 1 1 0 1 0 0 0 0 1
CS 0 1 0 3 3 1 0 1 0 2

Fig. 1. A two-layered course graph.

1. Constructing course graph : Building a course graph (𝐺) in two layers and determining all relations among the LO and
lessons (Fig. 1).

2. Generating path: Generating lesson sequences (𝑃 ) from 𝐺 for a user (𝑢). Paths need to be generated considering the user’s
available time (𝑇𝑢) and knowledge background (𝑠𝑝).

3. Estimating score: Score estimation (𝑆𝑝) for 𝑃 .
4. Estimating time: Time estimation (𝑇𝑝) for 𝑃 .
5. Recommending path : Designing a mechanism to recommend a path, which takes into account a user’s learning score and

his/her available time.
6. Recommending auxiliary LO: These LO (𝐿𝑎𝑢𝑥) are recommended whenever 𝑢 is not able to obtain the estimated score from

a lesson.
7. Evaluation: We first compare the performance of our time and score estimation methods with the ones in the literature.

Next, we assess the quality of our recommender approach in a live environment using an A/B test.

4. Recommender approaches

As we explained previously, we describe two approaches, which their goals are recommending paths that satisfies the users’
restricted learning time while maximizing their scores. First, we briefly explain an approach introduced in Nabizadeh et al. (2018)
and highlight its main drawbacks. We then describe our approach.

4.1. First approach

In this CG method, initially a DFS (Tarjan, 1972) is used to find all LO sequences (paths) from a directed course graph (it includes
LO and their relations) that begin by a LO (opted by a user). Meanwhile, this approach computes the score and time for the paths
by various approaches. In the end, it recommends a path, which is under the user’s restricted time while maximizing his/her score.

In this paper, two methods are also proposed, one for estimating the possibility of not finishing a path in the restricted time, and
another one to compute the possibility of finishing a path having a score lower than the computed one. Although, these methods
are well explained but they are not evaluated.

4.1.1. Drawbacks of the first approach
In spite of having some advantages, like computing score, time, and risk of not finishing a path within the restricted time or

with the expected score, this method has a few drawbacks which are:

• Proceeding on a concept (lesson) rather than the whole course. In this method, all the LO in a path could cover the
same concept (lesson). Thus, the recommended path results in maximizing scores on a single lesson rather than a course. For
example, in a programming course, all the recommended LO could cover the ‘‘loop’’ concept (e.g. For, Do-While loops) while
other lessons might be ignored, like ‘‘conditions’’ and ‘‘arrays’’.



Computers & Education 147 (2020) 103777

5

A.H. Nabizadeh et al.

• Time consuming and computationally expensive. In this method, adding LO to the course graph can increase the number
of paths exponentially, which makes the path generation time consuming and computationally expensive. For instance, the
time complexity of DFS to search a graph is 𝑏𝑑 (𝑏 : out-going degree, 𝑑 : max depth), and growing the 𝑑 exponentially raise
the time complexity. This problem can become bigger when we deal with large graphs. In addition, since the time and score
for all paths need to be estimated, it makes the problem even harder.

4.2. Our approach

As mentioned above, the first method has a few deficiencies. To this end, we propose a lesson-based method that works based
on a two-layered course graph (Fig. 1). In our method, since paths are made of lessons, thus, learning paths ensure that users are
learning different concepts (not sticking to a single lesson). Furthermore, in our proposal the lesson layer is searched to find paths,
which has a more restricted space than the LO graph. Therefore, it results in reducing the cost of path generation both in terms
of time and computation. As a real example, for this paper we built a two-layered course graph using 5 vertices (lessons) and 8
precedence relations, while the same course had 83 links and 59 nodes (LO) using the setup of the first method. It shows how the
number of paths and subsequently time and computation costs are reduced in our method.

Like the first method, we use the DFS to find the paths, while we introduce our methods to compute score and time for them.
In the following sections, we explain how we generate lesson sequences (paths), select LO for them, compute their score and time,
and update them whenever users cannot follow them.

4.2.1. Path generation
To generate paths, first, a user opts a lesson as a starting point (𝑠𝑝) for the paths (line 2 in algorithm 1). Selecting the 𝑠𝑝 implicitly

defines the user’s knowledge background since there are prerequisite relations among the lessons, and when a user specifies a lesson
as the 𝑠𝑝, we can conclude that he/she already knew the prior lessons. Then, to find paths, we did the same to compound on the
first method (i.e. using DFS). It is detailed in algorithm 2. These paths need to fulfill the user’s limited time (time estimation is
detailed in Section 4.2.3).

Algorithm 1: Algorithm for path generation.
Input: 𝑢, 𝑇𝑢, 𝑠𝑝, 𝐷, 𝐺.
Output: A path having the maximum score.

1 node ← sp; ⊳ 𝑠𝑝:starting point.
2 P ← [sp]; ⊳ P is a list.
3 Select initial LO for P; ⊳ LO selection : Section 4.2.2.
4 i ← 1;
5 𝑇𝑃 ← Estimating 𝑇 for 𝑠𝑝; ⊳ 𝑇:time.
6 𝑆𝑃 ← Estimating 𝑆 for 𝑠𝑝; ⊳ 𝑆:score.
7 AllPaths ← 𝐷𝐹𝑆𝑡𝑤𝑜(𝑛𝑜𝑑𝑒, 𝑇𝑢, 𝐺, 𝐷, 𝑆𝑃 , 𝑇𝑃 , 𝑃 , 𝑖); ⊳ Algorithm 2.
8 𝑃𝑚𝑎𝑥 ← Select the path with the max score from the AllPaths;
9 Return 𝑷𝒎𝒂𝒙;

Algorithm 2: DFS algorithm for two-layered course graph (𝐷𝐹𝑆𝑡𝑤𝑜).
Input: 𝑛𝑜𝑑𝑒, 𝑇𝑢, 𝐺, 𝐷, 𝑆𝑃 , 𝑇𝑃 , 𝑃 , 𝑖.
Output: Generate all paths under 𝑇𝑢.

1 if (edgelist of node = empty) then
2 Recom[i] ← (𝑃 , 𝑇𝑃 , 𝑆𝑃 ); ⊳ Recom is a list to contain the paths.
3 i++ ;
4 else
5 foreach (Newnode in edgelist of node) do
6 𝐿𝑂𝑎𝑙𝑙 ← Estimate time and score for 𝐿𝑂 of 𝑁𝑒𝑤𝑛𝑜𝑑𝑒; ⊳ 𝑁𝑒𝑤𝑛𝑜𝑑𝑒 is a lesson.
7 𝐿𝑂𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← Select 𝐿𝑂𝑒𝑥 and 𝐿𝑂𝑒𝑣 from 𝐿𝑂𝑎𝑙𝑙 ; ⊳ Detailed in Section 4.2.2.
8 𝑆𝑛𝑒𝑤𝑛𝑜𝑑𝑒 ← Accumulating the score of 𝐿𝑂𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ;
9 𝑇𝑛𝑒𝑤𝑛𝑜𝑑𝑒 ← Accumulating the time of 𝐿𝑂𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ;

10 if (𝑇𝑃 + 𝑇𝑛𝑒𝑤𝑛𝑜𝑑𝑒 <= 𝑇𝑢) then
11 Assign 𝐿𝑂𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 to 𝑁𝑒𝑤𝑛𝑜𝑑𝑒;
12 𝑇𝑃 + = 𝑇𝑛𝑒𝑤𝑛𝑜𝑑𝑒;
13 𝑆𝑃 + = 𝑆𝑛𝑒𝑤𝑛𝑜𝑑𝑒;
14 𝑃 ← 𝑃 +𝑁𝑒𝑤𝑛𝑜𝑑𝑒;
15 𝐷𝐹𝑆𝑡𝑤𝑜 (𝑁𝑒𝑤𝑛𝑜𝑑𝑒, 𝑇𝑢 , 𝐺,𝐷, 𝑃 , 𝑇𝑃 , 𝑆𝑃 , 𝑖);
16 else
17 Recom[i] ← (𝑃 , 𝑇𝑃 , 𝑆𝑃 );
18 i++ ;

19 Return Recom;

4.2.2. LO selection for each lesson
By generating lesson sequences, there is a set of LO that can be opted for each lesson. Considering our goal, the opted LO should

maximize the score while their accumulated time needs to be under a user’s limited time. So, those LO will be opted that a user
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most likely can complete successfully in his/her available time (𝑇𝑢). In this paper, we initially start by assigning two LO (which are
related) for each lesson, one expository (e.g. PDF, video) and one evaluative (e.g. question). Two LO are opted since the concepts
that various LO of a lesson are delivering are related, like explaining different types of ‘‘Loop’’, while knowing one type is sufficient
to answer all practical questions about the loop (also we need to consider that the user’s time is limited). In the case of not obtaining
the expected score from a lesson, more LO (auxiliary LO in Section 4.2.6.1) are recommended. To this end, we formalize our LO
selection for a lesson as follows:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
(

𝑆(𝐿𝑂𝑒𝑥∈L) ∗ 𝑊 (𝐿𝑂𝑒𝑥∈L) + 𝑆(𝐿𝑂𝑒𝑣∈L) ∗ 𝑊 (𝐿𝑂𝑒𝑣∈L)
)

𝑤ℎ𝑒𝑟𝑒 𝑇𝑃
⏟⏟⏟

Path

+ (𝑇𝐿𝑂𝑒𝑥
+ 𝑇𝐿𝑂𝑒𝑣

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇𝑛𝑒𝑤𝑛𝑜𝑑𝑒 in alg 2

⩽ 𝑇𝑢 (1)

In Eq. (1), L is a lesson and 𝑆 is the estimated score for a LO. 𝐿𝑂𝑒𝑥 and 𝐿𝑂𝑒𝑣 are the expository and evaluative LO, and 𝑊 is
their weights. Here, the weights of all 𝐿𝑂𝑒𝑥 and 𝐿𝑂𝑒𝑣 are equal, and also 𝐿𝑂𝑒𝑥 have no score (zero score). Since in our method
lessons are added to a path 𝑃 one by one, hence 𝑇𝑃 is the accumulated time of the lessons that are already added to 𝑃 , and L is a
lesson that might be added to 𝑃 if it satisfies the user’s limited time.

To select LO, since their scores might tie (equal), their time is used to break the ties (minimizing time). If their time also tied, their
completion rate and later on (if needed) their visited rate are used to break the tie (maximizing these two rates). The completion
rate shows how many times other users could complete a LO while visited rate indicates how many times a LO is visited.

4.2.3. Time estimation approaches
In this paper, the time for paths is estimated using three methods. It is computed by estimating and summing the learning time

of its LO, taking into account the collection of previous users–LO interactions.

4.2.3.1. Clust.Mean and Clust.Median approaches. Our first method to compute time is Clust.Mean that uses a k-means clustering
algorithm (Hartigan & Wong, 1979). It first finds all LO that are seen by a user. Then, it finds users that have seen those LO and
divides them into three clusters (using k-means) considering their time on LO (Distance function:Euclidean). The idea for having
three groups is to segment the users based on their learning speed (slow, normal, and quick users). In a situation where there is not
enough data to make three clusters (like estimating score for a user having users’ binary scores for only one LO), we generate two
(slow and quick users). Finally, to estimate time for a target LO, we compute the average time of the users (who are in the same
cluster as the target user 𝑢) on the target LO (algorithm 3).

Algorithm 3: Clust.Mean algorithm.
Input: User 𝑢, Transaction data 𝐷, target 𝐿𝑂𝑡𝑔𝑡 (unvisited by 𝑈)
Output: Estimated time/score for 𝐿𝑂𝑡𝑔𝑡.

1 𝑆𝑒𝑒𝑛𝑢 ← Determining all LO seen by 𝑢.
2 𝐴𝐿𝐿𝑠𝑒𝑒𝑛 ← Determining users that have visited 𝑆𝑒𝑒𝑛𝑢.
3 𝐶𝑙𝑢𝑠𝑡 ← Clustering (𝐴𝐿𝐿𝑠𝑒𝑒𝑛+𝑆𝑒𝑒𝑛𝑢) in 3 or 2 groups using their time/score.
4 𝐶𝑙𝑢𝑠𝑡𝑡𝑔𝑡 ← Find the target cluster (includes 𝑢) from 𝐶𝑙𝑢𝑠𝑡 and drop 𝑢 from that cluster.
5 𝑇𝑡𝑔𝑡 ← Average time/score of users in 𝐶𝑙𝑢𝑠𝑡𝑡𝑔𝑡 on 𝐿𝑂𝑡𝑔𝑡.
6 Return 𝑇𝑡𝑔𝑡

Although other clustering algorithms could have been used, we used k-means, due to its simple implementation and effi-
ciency (Rokach & Maimon, 2005).

Clust.Median is another approach for estimating time. This approach is similar to Clust.Mean but it employs the median
operation rather than mean.

4.2.3.2. MF.Predict approach. We also used a Matrix Factorization (MF) approach (Koren, Bell, Volinsky, et al., 2009; Nabizadeh,
Jorge, Tang, & Yu, 2016; Rafsanjani, Salim, Aghdam, & Fard, 2013) to estimate time. MF is opted since it performs well having
𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 issues (Gillis, 2012). 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 occurs when a small portion of LO is opted while 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (Burke, 2002)
happens when we deal with a large data (users–LO).

MF discovers latent relations between LO and users (Koren, 2008). Assume that 𝑇 is a matrix that contains 𝑛 users and 𝑚 LO,
while entries are users’ time for LO. 𝑇 will be decomposed into two matrices by applying a MF technique:

𝑇 ≈ �̂� = 𝐴 ⋅ 𝐵𝑇 (2)

In Eq. (2), 𝐴 is a user matrix with 𝑛 rows (as users) and 𝑓 columns, while 𝐵 is a LO matrix that has 𝑚 LO (as rows) and 𝑓
columns. 𝑓 is the total number of latent features that are learned from previous users’ feedback. Finally, we use a dot product
Eq. (3) to predict the time of a LO 𝑖 for a user 𝑢.

�̂�𝑢𝑖 = 𝐴𝑢 ⋅ 𝐵
𝑇
𝑖 (3)

4.2.4. Score estimation approaches
To estimate score, we used similar methods as time estimation while using the users’ score instead of time. In datasets that we

have used in this paper, score is presented as a binary variable (1: completing a LO, 0: not completing a LO). Thus, a score indicates
the ability of a user to correctly complete a LO.
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Fig. 2. Example of our method; Red dash-line: ignored LO, blue dash-line: ignored lessons. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

4.2.5. Illustrative example of path generation
Fig. 2 depicts an instance of our approach. As presented in this figure, our approach finds six paths (start by 𝑠𝑝) using the DFS

algorithm and computes their score and time (time of LO are written on their top). To compute the time for a path, we sum the time
of its LO. For instance, the time for Path 1 is 60 min, which it exceeds the user’s time (50 min). Hence, the last lesson is dropped
(LO 4 & 10). In Fig. 2, blue dashed-line depicts the ignored lessons while the red one indicates the dropped LO (due to exceeding
the user’s time). Similar to the time, a path’s score is computed by summing the score of its LO.

4.2.6. Path recommendation
After generating a path, it will be recommended lesson by lesson (algorithm 4). This algorithm allows the recommender to

monitor and collect a user’s interactions data, like his/her learning score and time. It has two main benefits:

1. Monitoring users constantly results in detecting their failure in early stages and avoid wasting their time by adjusting the
recommended path.

2. Collected data is used to make paths that fit users’ competency level. It raises users’ satisfaction and keeping users engaged
with the recommender.

In our method, by completing a lesson, a user’s score (𝑈𝑠) is compared with the estimated (expected) score (𝐸𝑠) for that lesson.
If 𝑈𝑠 ⩾ 𝐸𝑠, the user will receive LO for the next lesson, otherwise, the 𝑈𝑠 needs to be compared with a score threshold (𝛿𝑠). The
𝛿𝑠 is determined by a course expert considering the usual educational principles to pass a lesson or a course, and it is equal to
the minimum score to pass a lesson (i.e. 50% of the max possible score). If 𝑈𝑠 < 𝛿𝑠, the user could not learn the lesson, and the
recommender reshows the visited LO by the user for that lesson. In the case that 𝛿𝑠 ⩽ 𝑈𝑠 < 𝐸𝑠, auxiliary LO (Section 4.2.6.1) will
be recommended to help the user on that lesson.

4.2.6.1. Auxiliary LO. Auxiliary LO are not in the initial generated path for a user, and they will be recommended when he/she
could not obtain the estimated/expected score from a lesson. Whenever auxiliary LO are needed, our recommender generates two
ranking lists for LO of a lesson using the method in Section 4.2.2. Two lists are made since there are two types of LO, expository and
evaluative. To recommend auxiliary LO, the method goes through each list and recommends LO with the highest rank, which are
not seen by the user. In the case that recommending auxiliary LO result in exceeding the user’s limited time (𝑇𝑢), our recommender
ignores the lessons from the end of the path that exceed the 𝑇𝑢 (algorithm 5).

5. Evaluation and discussion

In our evaluation, we first used offline methods to compare the performance of our estimation approaches with the ones
introduced in Nabizadeh et al. (2018), Rafsanjani (2018) and Johns, Mahadevan, and Woolf (2006). We then assessed the quality
of our recommender approach in a live environment. For that, the performance of two groups of users were compared, one group
used our recommender while another group used an e-learning system that delivered LO with a predefined order (A/B test).

5.1. Offline evaluation

This section is aimed to assess the quality of our estimation approaches. Since we compared our approaches with the ones
introduced in Nabizadeh et al. (2018), to have a more accurate comparison, we used the datasets (Table 2) and the evaluation
approach used in that paper. To this end, we initially specified a path (a series of LO) that a user selected previously. Next, we hid
(ignored) the score and time for a few LO (from the end of the path) and re-estimated them using our methods (these LO are called
unobserved LO). Here, the training data was the set of observed LO while test data was the set of unobserved LO.
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Algorithm 4: Path Recommendation algorithm.
Input: Path 𝑃 , User available time 𝑇𝑢, transaction data 𝐷.

1 for (𝑖 = 1 to number of lesson in 𝑃 ) do
2 Recommend LO of 𝐿𝑖 to 𝑢; ⊳ 𝐿 indicates a lesson.
3 𝑈𝑠 ← Obtained score of 𝑢 on 𝐿𝑖;
4 𝛿𝑠 ← Minimum score to pass a lesson;
5 if (𝑈𝑠 ⩾ 𝐸𝑠) then
6 𝑇𝑢 ← 𝑇𝑢 − 𝑇𝐿𝑖 ; ⊳ 𝐸𝑠 Computed score for a lesson.𝑇𝐿𝑖:Time of U on 𝐿𝑖.
7 if (𝑇𝑢 < 𝑇𝐿𝑖+1 ) then
8 Terminate; ⊳ 𝑇𝐿𝑖+1:Estimated (expected) time for the next lesson.

9 else if (𝛿𝑠 ⩽ 𝑈𝑠 < 𝐸𝑠) then
10 𝐿𝑎𝑢𝑥 ← Estimating auxiliary LO using algorithm 5;
11 𝑇𝑎𝑢𝑥 ← Estimating time for 𝐿𝑎𝑢𝑥;
12 if (𝑇𝑎𝑢𝑥 ⩽ 𝑇𝑢) then
13 Recommend 𝐿𝑎𝑢𝑥;
14 𝑇𝑢 ← 𝑇𝑢 − 𝑇𝑎𝑢𝑥;
15 𝑈𝑠𝑎𝑢𝑥 ← Obtained score of 𝑢 on 𝐿𝑎𝑢𝑥;
16 if (𝑈𝑠𝑎𝑢𝑥 ⩾ 𝐸𝑠) then
17 Go to Line 1;
18 else if (𝛿𝑠 ⩽ 𝑈𝑠𝑎𝑢𝑥 < 𝐸𝑠) then
19 Go to Line 9;
20 else
21 Go to Line 24;

22 else
23 Terminate;

24 else
25 𝑇𝑟𝑒𝑠ℎ𝑜𝑤 ← Time to re-read the same LO;
26 if (𝑇𝑟𝑒𝑠ℎ𝑜𝑤 ⩽ 𝑇𝑢) then
27 Reshow the same LO;
28 𝑇𝑢 ← 𝑇𝑢 − 𝑇𝑟𝑒𝑠ℎ𝑜𝑤;
29 𝑈𝑠𝑟𝑒 ← Obtained score of 𝑢 on same LO;
30 if (𝑈𝑠𝑟𝑒 ⩾ 𝐸𝑠) then
31 Go to Line 1;
32 else if (𝛿𝑠 ⩽ 𝑈𝑠𝑟𝑒 < 𝐸𝑠) then
33 Go to Line 9;
34 else
35 Go to Line 24;

36 else
37 Terminate;

Algorithm 5: Generating auxiliary LO for a lesson.
Input: User 𝑢,Lesson 𝐿,Threshold 𝛿𝑠,Data 𝐷,Estimated score (𝐸𝑠),Obtained score (𝑢𝑠).
Output: Auxiliary LO for a lesson.

1 𝐿𝑂𝐸𝑥 ← Select all Ex LO of L ; ⊳ Ex: Expository LO.
2 𝐿𝑂𝐸𝑣 ← Select all Ev LO of L ; ⊳ Ev: Evaluative LO.
3 if (𝛿𝑠 ⩽ 𝑢𝑠 < 𝐸𝑠) then
4 for ( 𝑖 = 1 to 𝑛 (number of 𝐸𝑥 𝐿𝑂)) do
5 𝑇𝑖 ←Estimating time for 𝐸𝑥𝑖 using 𝐷 ; ⊳ No Score/Completion Rate for 𝐿𝑂𝐸𝑥.
6 𝑉𝑖 ←Estimating visited rate for 𝐸𝑥𝑖 using 𝐷;

7 𝐴𝑢𝑥𝐸𝑥 ← Selecting an unvisited LO using 𝑇 and 𝑉 ; ⊳ Explained in 4.2.2.
8 for ( 𝑗 = 1 to 𝑚 (number of 𝐸𝑣 𝐿𝑂)) do
9 𝑆𝑗 ← Estimating score for 𝐸𝑥𝑗 using 𝐷;

10 𝑇 𝑗 ← Estimating time for 𝐸𝑥𝑗 using 𝐷;
11 𝐶𝑗 ← Estimating completion rate for 𝐸𝑥𝑗 using 𝐷;
12 𝑉𝑗 ← Estimating visited rate for 𝐸𝑥𝑗 using 𝐷;

13 𝐴𝑢𝑥𝐸𝑣 ← Selecting an unvisited LO using 𝑆, 𝑇 , 𝐶 and 𝑉 ; ⊳ Explained in 4.2.2.

14 Return (𝐴𝑢𝑥𝐸𝑥 , 𝐴𝑢𝑥𝐸𝑣);

Table 2
Brief explanation of the datasets.
Datasets Users LO Transactions Course graph

Mooshak 144 31 2646 ×
Enki 61 59 917 ✓
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Table 3
Optimum MF parameters. Determined by the cross-validation (Nabizadeh et al., 2016).
Datasets 𝜆 𝜂 𝑓 𝑖𝑡𝑒𝑟

Mooshak 0.09 0.01 10 60
Enki 0.01 0.09 5 30

Fig. 3. Score computation-Average MAE.

5.1.1. Generating mf.predict model
Before evaluating our estimation approaches, we needed to build an optimal model for the MF.Predict approach by optimizing

its parameters (Regularization: 𝜆, Learning rate: 𝜂, Iteration’s number: 𝑖𝑡𝑒𝑟, Factors’ number: 𝑓 ). The 𝜆 is to avoid overfitting to
training data while the 𝜂 is useful, especially when the training data is large. The 𝜂 is significant for having the balance between
the convergence rate and the accuracy of the algorithm (Luo, Xia, & Zhu, 2013) (Optimized parameters are in Table 3).

5.1.2. Evaluating estimation approaches
In this section, the quality of our introduced estimation approaches were compared with six other methods in the literature,

which are:

1. Median, Mean:
The median and mean of time (or score) of users that already seen a LO was computed and assigned as time (or score) of
that LO for a target user. These methods were used in Nabizadeh et al. (2018) as baselines.

2. UA.Median, UA.Mean: First, authors computed how good (for score) or quick (for time) was a user in comparison to the
others in completing LO (ratio). Next, a multiplication of the average (or median) of time (or score) of other users on the
target LO and the ratio gave the time (or score) of the LO for the user (Nabizadeh et al., 2018).

3. IRT.Predict: It was introduced in Nabizadeh et al. (2018) and it was relied on a 2 Parameters Item Response Theory
(2PL-IRT) (An & Yung, 2014).

4. IRT-3PL: It was proposed in Johns et al. (2006), which predicted time and score using a 3 parameters Item Response Theory
(3PL IRT).

Fig. 3 shows the average Mean Absolute Error (MAE) results for the score estimation. Regarding these results, MF.Predict
performed worse than the others. It could have two reasons: MF-based methods required enough data to train; or MF-based methods
often performed well for sparse data. Fig. 3 also presents a few approaches outperformed other methods for each dataset. Among
these approaches, the Clust.Median performed well for both datasets.

In time estimation, like estimating score, the performance of a few approaches were competitive. Regarding the results in Fig. 4,
Median, Mean, Clust.Median and Clust.Mean outperformed the rest of approaches in Mooshak data, while in Enki it was not
clear. Among the mentioned methods, Clust.Mean and Clust.Median were the ones that performed well in estimating score for
both datasets (IRT-3PL performed well in estimating score but it generated more outliers or bad estimations than the Clust.Mean
and Clust.Median). So, we wanted to select one of the two approaches, Clust.Mean or Clust.Median to estimate time and score.
For that, we conducted another evaluation (Section 5.1.3).

In the evaluation approach, raising the number of unobserved LO (window size in Figs. 3 and 4) leads to reducing the observed
LO cases, which it reduces the size of the training dataset. In general, a larger training set leads to have more precise results but in
our case it was not clear due to not having enough data for monitoring how the window size influenced the results of evaluation.

5.1.3. Underestimation and overestimation assessment
As mentioned previously, both Clust.Median and Clust.Mean performed well in score and time computation. For opting one

of them, we evaluated them in the case of underestimating and overestimating the score and time. This evaluation was performed
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Fig. 4. Time computation-Average MAE.

Fig. 5. Interface of our recommender. Lessons are in the Resources tab, like Strings.

Table 4
Under and Over estimating time and score in Clust.median and Clust.Mean.

Methods Enki Mooshak Enki Mooshak

Over Under Over Under Over Under Over Under

Score Clust.Median 88% 12% 90% 10% 98.80% 1.20% 99.70% 0.30% TimeClust.Mean 79.80% 20.20% 90.90% 9.10% 98.80% 1.20% 99.60% 0.40%

because time underestimation is riskier than overestimation since a user might not finish a path within the computed time, while
overestimating score is riskier since user might not get the computed score.

Regarding the results in Table 4, although both methods performed well in time estimation, Clust.Mean performed better in
score estimation. Thus, we selected Clust.Mean to estimate time and score for users.

5.2. Online evaluation

This section is aimed at assessing the quality of our recommender approach. Thus, we briefly describe the implementation of
our recommender. We then explain our experiment to assess the quality of the recommender.

5.2.1. Recommender implementation
We developed our approach using Google Web Toolkit (GWT) (Hanson & Tacy, 2007) and integrated it with an e-learning system,

called Enki (Paiva, Leal, & Queirós, 2016). Enki was embedded in Mooshak system (Leal & Silva, 2003). Mooshak manages coding
contest (automating evaluation of codes), and can communicate with other e-learning systems, like learning management system
(LMS). Fig. 5 depicts the GUI of our recommender.

5.2.2. Groups formation
32 participants were divided in control and experimental groups to attend a short course on C# programming (5 lessons,59

LO). Both groups used two different models of the Enki. The experimental group used the one that guided participants using
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Table 5
Testing Groups’ homogeneity. 𝑃 -value was estimated using the Fisher exact test (McDonald, 2009) that did not reject
the null hypothesis (two groups were similar).

Gender Portuguese level Coding level

M F Know None None Generic Know C#

Control 13 3 14 2 5 11 0
Experimental 13 3 10 6 7 9 0

𝑃 -value = 1 𝑃 -value = 0.22 𝑃 -value = 0.716

Fig. 6. Comparing the effectiveness of both groups on different LO and lessons.

recommendations while control group used the model that delivered LO having a predefined order. Finally, we compared their
performances.

Due to having a small group of participants that were so diverse, to ensure that both groups had negligible differences, we
assigned participants to groups manually using three criteria (Table 5). Knowing Portuguese language was considered since some of
the participants did not know Portuguese and it could affect their performance. These participants could use the Google translator.

5.2.3. Experimental methodology
Users use a system when it makes the learning process more efficient, effective and attractive. These are the common measures

in educational studies (Vesin et al., 2013). Effectiveness is the number of correctly completed LO/lessons by users. Efficiency is the
time that users spend to get their goals, while the attractiveness shows their satisfaction with the system. We used these measures
to assess the groups’ performances and to validate the following hypotheses:

1. Our recommender promoted a higher lesson coverage than the baseline (assessing the effectiveness and efficiency on the
course).

2. Users of our recommender got better scores on the final exam than the ones without recommendation (assessing the
effectiveness on the final exam).

3. Considering the course’s time, experimental group was more satisfied with the exam’s score than the control group (assessing
the attractiveness).

In our experiment, first, both groups attended a course for 2 h. Then, they attended a small exam for 1 h (equal for both groups
having 5 practical questions) to assess their knowledge on the learned lessons during the course. The questions should be answered
by correct compilable solutions. Finally, groups answered two different short questionnaires to provide their opinions about the
systems (control group: 2 questions, experimental group:5 questions).
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Fig. 7. Comparing the efficiency of both groups on different LO and lessons.

Fig. 8. Sum of time that participants spent on each lesson.

5.2.4. Course performance
To validate the first hypothesis, we first compared the completion of LO and lessons (effectiveness) by the groups. As shown in

Fig. 6, the control group completed more LO from the first two lessons while the experimental group was able to complete more
lessons. One possible reason is, the control group received the LO sequentially and answered them as they were received while the
experimental group completed only those LO that were recommended. Hence, the experimental group could complete more lessons
than the other group.

Secondly, we assessed both groups in terms of efficiency for the course coverage. For that, we monitored the time that groups
spent on LO and lessons. As shown in Figs. 7 and 8, the control group mainly focused on the first two lessons while the other group
completed four lessons within the same amount of time. Therefore, Figs. 6 to 8 show that the efficiency and the effectiveness of the
experimental group were highly enhanced in comparison to the control group.

To evaluate how significant was the difference between the course coverage of two groups (first hypothesis), we estimated the
𝑝-value (Wasserstein, Lazar, et al., 2016) using the groups’ time. For that, we counted the lessons that a user spent more than five
5 min for them, since for each lesson a user needed to complete one expository LO (a video 3–4 min), and one evaluative (at least
1 min). So, two samples having 16 values were made. The estimated 𝑝-value using the Wilcoxon–Mann–Whitney (Neuhäuser, 2011)
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Fig. 9. Sum of the participants’ scores on each question.Correct answer = 1, otherwise 0.

Fig. 10. Frequency of final scores for participants in both groups.

and Kruskal–Wallis tests (McKight & Najab, 2010) was 0.001024, which strongly rejected the null hypothesis (i.e. same course
coverage for the groups). In this paper, the significance level is 0.1.

Using score, we also made two samples including 16 values by counting the lessons that had at least one LO graded for each user.
The 𝑝-value 0.07727 (via both tests) rejected the null hypothesis. So, the p-values show that the efficiency and the effectiveness of
our recommender were higher than the baseline.

5.2.5. Final exam performance
In the final exam, we compared the effectiveness of both groups. It allowed us to assess the difference between the gained

knowledge and also to determine how much our recommender was successful in achieving our main goal. The exam was similar
for both groups and had one question per lesson (5 questions). The time of the exam was not considered since in all educational
exams participants have a similar amount of time and they can spend it as they want.

Fig. 9 shows that the experimental group performed better the other group in answering all questions except the second one (all
experiment group answered 1st question correctly). The reason is, each question was associated with a lesson and the control group
could complete the second lesson better (Fig. 6).

The minimum and the maximum scores for the exam (for a participant) were 0 and 5. Fig. 10 shows that the worst result was
made by the control group, while the best score was obtained by the experimental group. Although the experimental group got more
‘‘4’’ and ‘‘5’’ than the other group, the number of participants that their scores were equal or less than 2 (9 participants), and more
than 2 (7 participants) was equal for both groups. So, if we consider 3 as the passing score for the exam, both groups performed
almost similar.

To validate the second hypothesis, we estimated the 𝑝-value (0.9571) using similar methodology applied for the first hypothesis.
Fig. 10 and the 𝑝-value show that although the experimental group got more higher scores than the other group, this difference was
not statistically significant. We believe that the relatively small size of the samples may partly explain this lack of significance.

5.2.6. Participants’ satisfaction assessment
This evaluation was made in two steps. First, after the exam, a questionnaire (using a five-point Likert scale) was provided to

gather the experimental group’s opinions about the quality of our recommender. We limited our questionnaire to the following
statements since any other statement could be related to the Enki and not our recommender (might mislead us). The statements
were:
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Fig. 11. Participants’ opinions about the quality of the recommender.

Fig. 12. Participants’ opinions about achieving the goal by the systems.

1. Recommendations were generated quickly.
2. Recommendations were helpful for completing the course.
3. Auxiliary LO were helpful to learn a lesson and answer the questions.

As shown in Fig. 11, 87.5% of participants ‘‘agreed’’ or ‘‘strongly agreed’’ with the first statement, while 75% of them had the
same opinions about the third statement. In addition, 50% of them were satisfied with the usefulness of the recommended LO in
completing the course (second statement).

In the second step, we collected the groups’ opinions about the success of the systems in achieving our main goal. For that, two
statements were designed and participants rated them using a five-point Likert scale. The statements were:

1. I could understand most of the course within time.
2. Regarding the time for the course, I am satisfied with my final score.

Fig. 12(a) shows that the control group was more satisfied with the amount of the course that they completed than the other
group (first statement). It is against the results in Figs. 6 to 8 (higher course coverage by the experimental group). One reason could
be that the participants were not careful enough and rated the statement mechanically. Fig. 12(b) presents almost similar results
for both groups, which comply with the results in Fig. 10 (similar groups’ results for the exam). A reason for having such results is,
confusing the course’s score with the exam’s score by the participants. Hence, since some of the participants in the control group
had a good performance on the course, they high rated this statement. So, due to having this problem, the third hypothesis was not
tested.

6. Discussion

Although we could generate paths and maximize users’ score under their given time, our recommendation approach has several
drawbacks. In this section, we highlight the main drawbacks of our study.

6.1. Dataset availability

One of our main challenges was the lack of publicly available datasets in e-learning area, which contains the users’ score and
time for Lessons or LO. Although there were several relevant datasets, they were often proprietary and could not be released due to
the privacy concerns. To this end, we could not perform extensive experiments (i.e. offline assessment) and evaluate our approaches
in the case of scalability issue. So, we employed two relatively small datasets for the offline evaluation.
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6.2. Experiment size

In a test involving human subjects, opting an appropriate sample size is one of the main problems. An under-sized test might
not challenge the approaches enough to depict their shortages while an over-sized test besides being costly (i.e. money and time),
might not be essential. In this study, although we performed offline and online tests, our work could benefit from tests with longer
duration and more users.

6.3. Accuracy of estimation methods

As detailed in Section 4.2.3, we introduced various methods to estimate time and score. Although the selected method
(Clust.Mean) could estimate score and time (results in Section 5.1.2), it generated some outliers (i.e. bad estimations) that need
to be studied. Also, this method performed well in overestimating and underestimating time while for score it did not perform as
expected.

7. Research recommendations

The proposed methods and obtained results as well as the mentioned limitations suggest additional research directions. The most
promising ones are:

7.1. Cold start problem

We selected the Clust.Mean approach to estimate time and score (Section 4.2.3), which needed sufficient amount of data (from
users and LO) for estimation. So, in the case that there is not enough data, it suffers from Cold-start problem (i.e. not having enough
data from LO or users to estimate time or score).

7.2. Users and LO metadata

In this study, we used the minimal users’ information (i.e. score and time) to estimate score and time since users often do not
share additional information (e.g. feedback on the difficulty of LO). It is of interest to analyze the effect of using various type of
information (e.g. difficulty level of LO) in enhancing the results accuracy.

7.3. Scalability and big data

One of the main features of path recommenders is to react rapidly to keep users engaged with the recommender. It can be affected
by large scale datasets. So, it is important to design a scalable system, which handles large datasets. Although our opted estimation
approach (Clust.Mean) theoretically should be able to handle the large datasets, because of inaccessibility of large datasets we
could not confirm it.

7.4. Update scheduling

In our method, we updated users’ time and score after completing each lesson. It is of interest to find an appropriate time
to update a user’s profile since users have various progress speed that updating repeatedly might be computationally costly and
unnecessary while delaying it might mislead the users. Also, the used information to generate a path can have different priorities
for users, so, it can be important to build paths and update users’ profiles considering these priorities.

7.5. User-centered course structure

A path recommender often generates paths from a course graph, which is similar for all users (designed by a course expert). It
is significant to build paths considering the users’ preferences to follow a course because users might not always follow the same
structure as a course expert to learn a course. For instance, in our method, expository LO were recommended to users first while
users might prefer to initially receive evaluative LO (e.g. Socratic order).

7.6. Evaluation framework

One of the main drawbacks in path recommenders is the lack of a general evaluation framework that enables the researchers to
assess and compare their methods. It can include information regarding the available data, key factors that need to be evaluated
(e.g. grade), the required information as well as the metrics that need to be used for the evaluation. It can be significantly useful
in promoting the research in this area.
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8. Conclusion

This paper is aimed at recommending a path that fulfills a user restricted time while maximizing his/her score. For that, we first
briefly explain a method that is introduced in Nabizadeh et al. (2018), which has a similar goal to our method, and describe its
drawbacks. Next, we present our adaptive method. In this method, initially the DFS algorithm is used to find all lesson sequences from
a two-layered course graph, which start by a starting point. Then, our method assigns LO to each lesson of each path, computes score
and time for paths by our approaches, and recommends a path that fulfills the restricted time of a user while maximizing his/her
score. Recommending a path occurs lesson by lesson, which results in having a control environment for the path recommendation
and collecting the user’s interaction data to update the path for him/her. During the path recommendation, if the user could not
get the expected score from a lesson, our method recommends auxiliary LO. Our recommender is assessed using offline and online
approaches while user satisfaction is assessed using questionnaires. In the future, our goal is to extend our approach to identify
users’ starting points automatically, and also tackle the user and LO cold start.
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