

 1

Relating Personally Relevant Social Information from
Heterogeneous Sources

João Guerreiro, Tiago Guerreiro, Daniel Gonçalves
INESC-ID / IST / Technical University of Lisbon

Av. Professor Cavaco Silva, IST Tagus Park, 2780-990 Porto Salvo, Portugal
jpvguerreiro@gmail.com, tjvg@vimmi.inesc-id.pt, daniel.goncalves@inesc-id.pt

ABSTRACT
Proliferation of online social applications and platforms has
generated enormous amounts of information that could be
helpful to the users. However, this information is sparse and
hard to integrate. We present a framework that inter-relates
information from different online sources and, with the help
of a user’s personal information, is able to provide useful
and relevant information from his perspective, in an
iterative information seeking process. Information retrieved
from the users' devices, due to its personal and trustable
character, works as a filter to information retrieved from
other less trustable and structured sources. We defined a
single structure to inter-relate the information as a coherent
whole, instead of separate chunks. To evaluate our
approach, we present an application that obtains relevant
information about people. The results, analyzed together
with the users, suggested that it is possible to obtain
relevant and inter-related information about someone,
resorting both to personal and public information.

Author Keywords
Information Inter-Relation, Online Social Information,
Personal Information, Iterative Search Process.

ACM Classification Keywords
I.2.4 Knowledge Representation Formalisms and Methods:
Semantic networks; H.3.3 Information Search and
Retrieval: Information filtering, Search process; H.5.2 User
Interfaces: Evaluation / Methodology

INTRODUCTION
The world-wide-web is a gigantic "information universe",
one where probably lies the answer to any of our doubts or
curiosities. Search engines can point the way to information
about almost everything (persons, events, institutions, etc.).
Sources like Wikipedia and similar sites provide additional
in-depth information about a variety of subjects. Also, in

the blogosphere people describe their entire life, their work,
personal matters, their children, among several other
subjects. In online social networks users expose their
interests, preferences and work-related information even
with strangers. Many people keep only a close relationship
with a small group of their social network "friends", adding
others for being friends of a friend (FOAF), having similar
interests or just to increase their connections count. All of
these online sources reinforce the idea that the Internet
contains many unknown or hard to recall information,
which can help users in several situations of their daily life.

However, this data is spread out by multiple applications
and platforms, and if the users need to obtain information
about someone or something, they have to search in each
one of these sources. The time the users lose with this
searching process is precious, and ways to automatically
collect the desired information are sorely missed. It is
inevitable to have to filter the relevant information from a
multitude of general-purpose or general-interest results in
order to find what the user is really interested in, given a
particular context, interests and taste.

Processes for automatically extracting personally relevant
information from public sources face the challenges of
dealing with an enormous amount of data and the
ambiguities therein. For instance, if a user wants to search
for information about someone there can be many people
with the same name. The user, however, wants results about
a specific person and might not be interested in everything
that can be found about that person. Rather, only some
particular aspects, stemming from similar interests, for
instance, might be relevant. Using current solutions, search
about some person would yield the same results for every
single user. Since important subjects for some user may not
be relevant for others, it would be very useful that the
search results could be based on the users, their profiles,
and on what is actually important for them.

A good way to get personally relevant results is to use
Personal Information as a dinstinguishing factor. Our
devices (personal computers and mobile devices) are aware
of most of our interactions, and have access to an enormous
amount of data about us, our activities and our
acquaintances. Documents, e-mails, calendar, SMSs, phone
calls and even face-to-face interactions are great examples

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UDISW 2010, February 7, 2010, Hong-Kong, China.
Copyright 2009 ACM 978-1-60558-246-7/08/04…$5.00

of this unique knowledge. All the data found in these (and
similar) sources constitute a user’s Personal Information.

The personal information in the users' devices can be used
to filter and guide the retrieval of public information.
Together, they will help the users to get information about
people, events, subjects and places that are personally
relevant to them instead of generic, one-size-fits-all, search
results. Different users have different interests and different
types of relations with others, so it is very unlikely that the
same results please all of them. What is relevant for some
user may not be for others. It is essential that the results are
filtered based on the user’s interests and what is relevant to
them. The credibility and individual character of personal
information can help filter the information from online
sources, resolving the ambiguity inherent to them and
presenting results with meaning and interest to the user.
Knowing that all the mail messages the user exchanged
with a friend were about soccer and mobile devices, it is
possible to disambiguate results and direct the searches to
these subjects, because those are the most important ones
between the user and his/her friend. For instance, if other
user with the same friend hates soccer and exchanged mail
messages about music, it is very unlikely that he finds the
information about soccer relevant. But on the other side, he
would like to get some information related to music.

However, having multiple information sources with
different structures, and some not structured at all, it is
essential to find a single representation in order to easily
inter-relate the information as a coherent whole, instead of
separated chunks.

We present an approach and underlying framework that
goes beyond the state of the art by inter-relating the users’
personal information and interactions with data from online
public sources. We use an iterative process of data
discovery that harmonizes data from different online
sources, using personal information to filter and better
understand it in context. All personally relevant information
is stored as an interconnected and consistent whole in an
RDF-based semantic network. We can establish relations
among different types of information and even reinforce the
confidence of replicated information from different sources.

While laying the ground work for applications in several
contexts and domains, we focus on searches about persons,
resorting to personal information existent on users’ devices
and on data from social networks, blogs and search engines.
Our evaluation shows that it is possible to retrieve, inter-
relate and present relevant information about someone,
from the users’ perspective, resorting to personal and public
social sources.

In the next section we discuss some applications that,
somehow, try to use public social information and/or
personal information to improve the users’ experience.
Then, we present our approach and the concrete framework,
focusing on the inter-relation of multiple sources. Finally,
we present an example web application that retrieves

information about a person, as well as the results achieved
in the user evaluation.

RELATED WORK
There are applications that, resorting to social web sources
or personal information, try to help the user getting
information about someone. A great majority of the
research in this area focuses on obtaining the users’
contacts context, to be aware of the right time to make a
call, or to select the best communication channel. Context
information often considered is related to location, contacts’
social interactions [8], instant messaging application status,
device state [2], idle time, schedule information, among
others. These applications are only usable as long as the
users allow and want their friends to be aware of their
context information. Also, it is limited to a restricted group
of people. Context Application [5] considers a contact as an
information repository, which should be used to add context
or personal information (photos, communication history,
etc). It uses that information, for instance, to create a Top
Contacts group based on the communication history. It has
the great advantage of enriching the users’ contacts
repository with information from external online databases,
such as the Yellow Pages. As a great example of
applications which make use of personal information from
the users’ devices, "Forget-Me-Not" [6] records social
interactions, together with sending/receiving documents,
and can recall that information upon user request, working
as a memory aid.

Another approach to obtain information about someone is
explored in "WhozThat?" [1], by resorting to online social
network profiles like Facebook or MySpace, for interest-
matching. On the other side, there are some approaches that
try to reconstruct a social network by analyzing the co-
occurrence of names on Web pages using search engines.
ReferralWeb [4] is one of the pioneers in this category and
is able to estimate the relation strength between two persons
or finding a path between them. Flink [7] adds information
from mail messages and self-created profiles, which can
help disambiguating the Web-mining count. However, these
applications are not designed to get information about a
person, unless related with the type of relationship.

What all the above approaches lack is making use of the
enormous quantity of information sources to help the users
with summarized and inter-related in-context information.
Furthermore, little attempt is made in trying to combine
personal information with that from public sources. This
knowledge could be used to help the user anytime,
anywhere, relating, summarizing and providing important
data when it is required, in a personally relevant way. In a
social environment it is natural to wonder "I know that
person, but where from?" or "Tomorrow it is Peter’s
birthday, I should give him a present. What are his bigger
interests?”. Our system is able to provide answers to those
questions by gathering and interrelating information from
the user’s devices enriched with public information sources,

 3

to offer the user context- and personally-sensitive
information when it is needed.

SCENARIOS
To provide a better understanding of our challenges and
goals, we outline a set of possible scenarios as well as the
main concepts underlying our approach. The framework
developed in this research context aims to help the user in
several different situations. We describe some meaningful
ones:

I am at a party and I find someone that seems familiar
talking to a friend of mine. Using his Bluetooth ID, I ask the
system about our past interactions. I get the information
that we were together two years ago at the IUI Conference,
and had exchanged 2 mail messages and a document (that I
can access if I want to). The document's subject is also
shown, as are the people I have forwarded it to. I ask for
more information about him. I keep drinking my gin and see
that he has interests in accessibility and loves cars; his wife
is Maria Lee and was in a conference in Japan a week ago.

I am at a meeting and my boss says that, after the last
break, we will discuss the case about John Terrence.
Apparently he does not know that I have no idea who he is,
but I see one opportunity to look good anyway. I search my
new mobile phone application for him and the results show
me that my friend Harris sent me and John some mails
about his PhD that involves blind people mobile device
usage. With that, it also shows the name of a foundation he
works with and some information about the recent work he
has done. After seeing the results I have an idea about who
he is, but to a better preparation I call my friend Harris
which apparently knows him better.

MANAGING INFORMATION FROM MULTIPLE SOURCES
There are many information sources that we can employ to
help the user seeking relevant information. The world-wide-
web provides us multiple applications and platforms that
can be very helpful when we are trying to get information
about a particular person.

Personal Content-Filtering of Public Sources
We are dealing with two different types of information:
personal information available in our devices; and public
information from online sources. Although the users'
devices provide reliable and relevant information from their
point of view, with a proper meaning to them, public
sources generally are much more ambiguous. As an
example, if a user searches for information about Tony
Parker on his devices, it is most likely that he/she finds
information about a single person (in a few cases there may
be two, but hardly more). However, if the user searches for
the same person in a search engine there will be thousands
of results relative to several different Tony Parkers. How
can the user know who is the "right" one? Also, there can
be a lot of information about the same person, how can the
user get information about the subjects that really matter to
him/her? The personal information retrieved from the user's

devices, is the perfect candidate to help filtering the
ambiguous information that public sources provide. Thus, it
is possible to identify which data is related to our search
and at the same time collect relevant results from the user’s
point of view. On the previous example, it would be
possible to filter the data about that specific Tony Parker,
on subjects that really matter to the user. If the user shared
some mail messages with him about politics and mobile
devices, that is most likely to be the desired information
rather than about rugby or football.

Some existent applications rely on other users to provide
their personal or contextual information, when trying to
know something about them. This can be a problem in two
specific ways: First, it is very difficult for someone to
accept that others have access to their information; Second,
this is only reasonable in an intimate social context (if we
share our information, it has to be with a very close friend).
To avoid privacy issues and dependency on what others
may provide, we consider only the personal information
existent in the users’ devices (personal computers and
mobile devices) and public sources of information.

Inter-related and Coherent Information
Our approach makes place for several possible information
sources. Most past and recent applications deal only with
one type of information, and those who deal with more do
not establish any relation between them. Each information
source has a single representation, and due to this
heterogeneity it is essential to find a single structure
capable of dealing with the different kinds of sources, inter-
relating the information and representing it as a coherent
whole, instead of isolated chunks. This would turn the
process of finding information about something and its
references much easier and general. For instance, if we
need some information about some person we could search
our mailbox trying to find some e-mail that talk about
him/her; search on Google and Wikipedia and finally search
in my SMS inbox. In possession of a unified integrated
index, we could search only for that person, immediately
obtaining information from all the above sources inter-
related as a coherent whole.

Like aforementioned, there are many sources that we can
use in the user's benefit and it is impossible to know when a
new one will appear. Considering this, it was crucial that
introducing a new information source could be easily done,
without changing and compromising other modules.

A lot of information can be retrieved from these sources, so
there was the need to keep and structure all that information
equally (either from users' devices or online sources). A
special attention had to be given to non-structured sources,
so the information could be converted to the common
representation. Since there is data more relevant, precise or
credible, there was the need to rate it, so the user (and the
system itself during his iterative searching process) could
have that perception.

Due to these differences in data precision and credibility,
and as previously mentioned, personal information in the
users' devices, being more credible and relevant from the
user point of view, can be used to filter information from
more ambiguous sources (mainly online). To accomplish
this we had to elaborate a process of continuous iterations,
so the information could be reevaluated and reweighted.
Thus, the information that really matters to the user can be
presented to him. To accomplish these challenges we built a
framework with an architecture divided in three main
modules, detailed in the following section.

Architecture
The framework architecture is based on three main
components: Plugins; Plugin Manager and Coordinator
(Figure 1). Plugins are responsible for extracting the data
from the different information sources and structure it into
the common representation. The non-structured information
is marked by the plugins, so it can be identified and sent to
the Natural Language Module by the Coordinator. These
plugins register in the Plugin Manager, which is responsible
for selecting which plugins are suitable for each search. The
Coordinator is responsible for requesting information from
the plugins, store the results in a knowledge base, and
iteratively requesting more information from the different
sources to clarify or reinforce some knowledge.

Plugins
One of the most important assumptions of our approach
relies in the ability to access personal and public
information. To feed the system with this essential data, the
system features a plugin based architecture corresponding
to the different information sources. Plugins are the direct
contact with those sources and each one of these plugins
inherits from a single entity due to the similarities and
shared properties between all of them.

Different sources have different structures and
representations, so the information retrieved from each
plugin needs to be transformed to a single one, to simplify
further information processing. To accomplish this, each
plugin has an adapter where it sends the information to be
processed and transformed into the unique representation.
With this, each plugin is able to produce structured
information or tag it as unstructured (subject to further
contextual processing by the natural language module).

The single representation used is a list containing tuples
with characteristics of the information found. These

features are: subject (search); predicate (relation); object
(information); a weight assigned to that tuple; and the
information source. The weight is the confidence the plugin
has on that piece of information ranging between 0 and 1.
These values depend on the credibility and relevance that
piece of information could have to the user. For example, if
the users find information about some person's interests and
favourite TV shows, it is understandable that the interests
are more relevant to them. Also, if an information chunk
needs further natural language processing, it has less
credibility, so less confidence. The weight is not relevant
when we desire to store concrete properties of a given
object, because they are not taken as probable or
improbable. For instance, the tuple referring that Tony
Parker sent me "DocumentX.pdf" needs to be weighted;
however, the size, extension and path of the document do
not need, because they are properties of that document.

The biggest advantage on a plugin based system is that it
eases the addition of new plugins, therefore easily
extending the system with new information sources. If a
new source is found, it is only required to add the self-
contained code of that plugin, without changing the other
parts of the architecture. As the iterative search process and
the Plugin Manager base their decisions on the capabilities
declared by the plugins upon registration, integration with
the remaining information sources is always assured. In that
matter, it is only necessary to choose the plugin main
capabilities upon registration.

The Plugin Manager's main task is to decide which plugins
should be called, considering the current search. To
accomplish this, it has to know which plugins can provide
useful and relevant information, and avoid making
repetitive and useless searches. Each plugin has to register
in the Plugin Manager informing what kind of information
they can obtain.

Coordinator
The main module of the system is the Coordinator which is
responsible for requesting information from the plugins,
store the results in the knowledge base, and iteratively
requesting more information from the different sources to
clarify or reinforce knowledge. Ultimately, it will gather the
data with higher confidence levels and send it to the user.
Indeed, without this module the information in the
knowledge base would grow uncontrollably in every
iteration and would retrieve everything in every search.

One of this module's main tasks is to ensure the storage of
the information received from the plugins in the knowledge
base. While some information sources are able to produce
structured knowledge, others are likely to need some extra
consideration. To this end, the framework features a simple
Natural Language module, one that is able to look into a
text and try to retrieve structured information from it. The
coordinator is responsible for deciding when this needs to
be performed, based on the type of reply given by the
plugins (structured or not structured).

Figure 1 – High-Level Architecture

 5

Structured information is based on tuples (Subject,
Predicate, Object, weight, source) due to our requirement of
small and concise/synthetic pieces of information, instead
of big paragraphs that would take longer to understand with
much useless information. The weight allows the plugins to
provide information with different confidence levels on
their trustworthiness or value. For instance, considering
Facebook, some persons fill their interests like an
enumeration (separated by commas or newlines), while
others write a text describing it. Considering the latter, as it
requires further analysis, its weight will be less than in the
former scenarios, because information already structured by
the user is most likely to be right than information
structured automatically by the Natural Language module.
In this case, the application scope defines the weight but
this can also be useful for a plugin to tag some piece of
information as less or more trustable. Besides the weight
given by the plugin to the information, the Coordinator
calculates a new value, considering also the weight it gives
to each plugin. It is natural that a search on a search engine
has less credibility than one performed on a social network
profile, due to their non-structured and structured character;
and personal information (from the user's document space)
is more credible and important, in the users' point of view,
than that from the aforementioned sources. The calculation
of the new weight consists only in a multiplication of the
two values, because we want both values to count the same.
We can have plugins that find their information relevant,
but the Coordinator does not assert much credibility to
those plugins, so the weight needs to be diminished, or
vice-versa, a plugin credible to the coordinator, but less
certain of its information.

The hardest task for the Coordinator is to decide what to
present to the user. The knowledge base is fed with
enormous amounts of information with several relations
between them. However, for a particular search, the user
desires a finite, concise and understandable result. What
should it iterate? When should it stop? The Coordinator
answers by analyzing the new information retrieved by the
plugins and compare it with the existent in the knowledge
base, to find out the necessity of iterating.

Knowledge Base
With an enormous amount of information that can be
retrieved from several sources, there is the need to store and
organize it to get real knowledge. Otherwise, the data
would be spread out, and it would be impossible to extract
meaningful and inter-related information. To represent the
information extracted we use a Knowledge base, a semantic

network which gathers all relevant information collected
from the different plugins, inter-relating it into a coherent
whole. Our internal representation is based on Subject-
Predicate-Object relations, for example "Tony Parker-
Interests in-Mobile Devices", since we need objective and
synthetic information. We do not want big descriptions that
take too long to read and understand, with higher detail
levels. One of our framework's bases is the simplicity and
atomic character of the stored and presented information.
To accomplish that, the Knowledge Base uses the Resource
Description Framework (RDF) which is a match to our
needs, representing the information as triples (Subject,
Predicate, Object). RDF is simple to use and allows some
manipulation due to its permissions to store everything.
There are no obligations or restrictions to the information
represented on the Knowledge Base, so the triple subject-
predicate-object can be anything we want.

The information considered is represented by resorting to
two different case frames: simple or weighted. The simple
case frame is used when we desire to store the properties of
a given object. They are not taken as probable or
improbable. They are just elements defining some entity. A
simple case frame example is the characterization of a
document (Figure 2), e.g., name, path, creation date,
modification date, keyword. In this case frame, it is used the
standard representation, with the subject being the node
representing the document, the predicate are the different
relations (characteristics) and objects are their values.

However, while the information that defines some node can
use the standard representation, when we need to represent
other features, it is not enough. In particular, to some
information we desire to add two extra items: weight and
origin. Figure 3 presents a scenario where the weighted case
frame is used. In this frame, the components of a traditional
relation are placed as links (predicates) between nodes and
objects. This enables us to include as many features as we
desire for this particular information. So, the subject would
be the node representing this piece of information; the
different predicates are the set subject, relation, object,
weight and source; and the objects are their values.

There is the need to access the information represented in
the Knowledge Base, either to present it to the user, or to
verify if there is information that need to be reinforced
when new information arrives. To accomplish that, we use
RDF SPARQL query language. Similar to traditional SQL,
SPARQL allows us to craft complex queries to inspect our
data in efficient ways.

Figure 2 - Simple RDF Case Frame Figure 3 – Weighted RDF Case Frame

Iteratively seeking for information
The coordinator checks, for each main field in the previous
iteration, the number of new triples with a reasonable value
of credibility (for example, 0.5 from 0 to 1). If there is a
considerable set of new and valuable information, it is not
required to search again that field. On the other hand, if
there are not new values (or only a few), it is worth to
search again that field. All those fields are marked to being
searched on the next iteration, so the Coordinator can send
to the Plugin Manager the kind of information to be
searched. In these iterations, the best/higher values in the
knowledge base are used as additional context. Thus, highly
valued information is used to improve the quality of the
results and help disambiguating.

Although the previous iteration checking may select the
main fields to be searched, when a lot of new information is
found (in all fields), it does not mean that there is not more
information useful in our sources of information (that can
be improved using appropriate context). To definitely stop
iterating, or to keep iterating even if our main fields are
well supplied, we consider the number of new values,
relating to the number of old values obtained in this
iteration. The number of new values has to be bigger than ¼
(parametrizable) the old ones to keep searching. If it is
smaller, there are only a few new values, so it is most
probable that the next iterations will converge to zero.
Hence, the ultimate decision is based on the ratio between
old and new information, one that verifies if the search is
converging. When this process is terminated, we need to
decide which information we present to the user. Since we
have all the data weighted, we can establish a limit and the
one with a bigger value can be presented to the user.

Updating knowledge
Each plugin assigns a different weight to the information it
extracts and the coordinator recognizes different degrees of
credibility for each plugin. Also, different plugins might
provide the same information about a concept, thus
accumulating evidence of its truthfulness, while in other
cases opposing information might result. To account for
this, the semantic network allows the different relationships
between concepts to be weighted, as an indicator of their
credibility and at the same time associate their source(s) of
information(s).

It is important to notice that the same information may be
retrieved from different plugins. It is likely that the
duplicated information is relevant. However, it is not trivial
to reinforce the information mostly due to the diversity of
forms it can be presented. We want similar values to be
marked as equals, so when both appear instead of having
two different values, the weight is recalculated. A good
example is someone that has in his Facebook interests
"Machines", and in his blog says to be interested in
"Machinery". We want both to be the same, and to
accomplish that we stem the information before inserting it
in the Knowledge Base. Stemming gets the root of the
word, so when we have similar words they count as the

same. When we want to show the information to the user,
we reconvert the stemmed word in the smaller word
originating that stemmed one (ex: "machine"), as we are
interested in the concepts and contexts and not an exact
copy of the original data.

When some information chunk, already indexed in the
knowledge base, presents itself again, the confidence on
that piece of data is reinforced. We developed an algorithm
that respects the value of the information and maintains a
normalized weight scale.

Consider that a relation is previously weighted with 0.8 (in
a scale from 0 to 1). A duplicated entry is detected with a
weight of 0.5. The weights are recalculated as follows:

The relation is to be reinforced. To this end, the initial 0.8
are guaranteed and we are only working with the remaining
weight percentage:

1 - OldWeight [0.8] = 0.2

We use the new weight (0.5 in the example) as a reference
value to scale the remaining weight (0.2):

AddWeight = 0.2 * ArrivingWeight[0.5] = 0.1

The calculated value is added to the old value:

NewWeight = OldWeight + AddWeight = 0.9

The new weight on the Knowledge Base would now be 0.9.
This algorithm allows us to always reinforce the
information when similar information arrives, but in a
moderate and consistent percentage. Since the old weight
was 0.8 and the information appears again, we always want
the new weight to be bigger than the old one. So, we use the
remaining 0.2 to help calculating the new value and add it
to the 0.8.

When new information is added or the weight recalculated,
there is a counter keeping the register of the number of new
and old (duplicated) pieces of information. This helps the
Coordinator in its iteration decision-making, by being
aware of the old information related to the new one. If there
is much more old information than new, there is no need to
continue interating, because it is converging to zero.

To keep recycling and refreshing the information we use
timestamps, so that older data starts losing its weight. It is
important because that information, someday correct, is
now incorrect or out of date. The older the information is
more weight it loses. If the information is still recent (1
month or less) the weight stills the same, and being the
information found on the same plugins, it does not change
the current weight. However, if the information is old
enough (more than one month), a new weight is calculated
to decrease its value. The expression used to find the value
to decrease is based on months (between 1 and 2 months
count as 2; between 2 and 3 count as 3, and so on). The
maximum value is 12, so information with 12 months or
more has the same value (12). The expression is:

Value to Decrease = ln((months/10) + 1)

 7

Since this expression possible month values are between 2
and 12, the values to decrease are between 0.18 and 0.79
approximately. The old weight minus the decreasing value,
results on our new weight (cannot be less than 0). An
example, a tuple with 5 months old and a weight of 0.8,
using this expression, is now near 0.4. If that information
appears on the next search, which means it is still relevant,
so it will increase its weight again. If it does not appear, it
means that the information might be incorrect or
obsolescent, so it maintains the lower weight.

EXAMPLE APPLICATION
To prove that our framework can provide relevant
information to the user and satisfactory results, we
developed an example application with the goal of
obtaining information about a person (Figure 4). The main
concern of our interface is to turn the process easy to
interact with, centering it on a simple search task, but at the
same time make use of all the features involving our
framework. That includes the personal and public
information, including its filtering, the iteration process, the
data from different sources and structures (also non-
structured) being represented as a coherent and inter-related
whole, the decision of what to present and all it brings.

This application resorts to four different types of
information sources: personal information existent on the
user devices (e-mails); social networks (facebook); blogs
(blogspot) and Wikipedia. We limited the sources in this
proof-of-concept application to these sources as they

represent different types of information, enough to prove
our assumptions and at the same time keep the system
evaluation simple. The users' devices (in this case, their
personal computers), provide us with e-mails, which are
rich interaction-wise and are likely to be useful for the user
and at the same time are helpful in filtering the enormous
quantity of information at public online sources (using the
information therein). To access this information, we use
Scribe, our personal information plugin-based monitor that
indexes information from various personal sources (e-mails,
documents, webpage visits, calendar, contacts) [3]. As a
representative social network we selected facebook as it is
widely spread worldwide and particularly within the
Portuguese society. Also, it is the most used and preferred
by those who tested our application. Blogspot/Blogger is
also a very popular blog platform and Wikipedia has
descriptions of many people, famous or important.

In this application we support searches for people with
different relationships with the users. It can be a very close
friend, some person they know but have not much
information or even a celebrity. We chose the information
sources with the intent to cover all these scenarios. Scribe
(Personal Information) and Facebook are more intimate, so
apply mostly to close friends, but there is also a big
probability to contain information about a "known" person.
On the other side, Wikipedia only contains information
about important people, and Blogspot is more transversal
and provides information on both these scenarios.

Application platform
There are many contexts where our framework can be used.
Using mobile devices as an entry point it is possible to use
our applications almost everywhere. Besides that, it is
perfectly possible that users want/need to use it in the
comfort of their homes or offices. For example, if someone
calls their home telephone and they are near their Laptop, it
is quicker and very useful to access the application there.
We found an online service accessible through a webpage
as the best option to deploy our framework’s applications. It
is thus accessible from every device. The only limitation for
this solution is the obligation to always be connected to the
Internet, but this application nature makes this an obligation
to all possible solutions. Also, it does not need previous
installation or configurations to perform a quick search.

Interface
The interface for this application is very simple and focused
on the search task. To search for somebody it is only
necessary to write the person's name and click enter/search.

On Figure 4 we can see that the results are divided in three
different columns. The left one is for the photo(s), to have a
visual idea/confirmation; at the center the description of the
person (interests, work information, birth, etc); and the right
column shows the interactions they had (in this case, the
mail messages exchanged).

Figure 4 – Example Application: Searching for a person

We only show results with a confidence superior to 0.5
(from 0 to 1), because less than that is information not
credible. Also, each item has a clickable icon indicating its
information source, and opening the concrete webpage from
where it came from, providing the information context and
access to more detailed information, if necessary (Figure 5).

EVALUATION
To acknowledge our approach as a success, some research
questions need to be answered: 1) Can our framework inter-
relate information from different sources (either personal,
or public)?; 2) Can we provide useful and relevant results
about persons, from the user’s point of view?; 3) Can this
system respond with relevant results independent of the
type of relationship the users’ have with the searched ones?

Procedure
The evaluation procedure was divided in two different
phases: preparation and execution. The preparation steps
included introducing the user to the evaluation, indexing
personal information available in the user's computers or
online services (webmail) as well as configuring other
services (like Facebook) to enable users' access to their
friends' profiles (using the provided APIs).

With all steps completed, all the ground work was set for
the evaluation. It was composed by 6 searches performed
by the users. We asked the users to choose 6 individuals
with different relation magnitudes (a public figure vs a
good friend or a relative). Besides wanting to evaluate the
results' trustworthiness, we also wanted to evaluate how the
results match the user's expectations. Thus, for each search,
we asked them to write the information they were expecting
to get from each one of them, the relevant information
about that person from their point of view. Then, the users
perform their tasks and, upon completion, answer a final
questionnaire validating the results, evaluating the
application by rating several system features with a 5-point
Likert Scale and offering subjective feedback.

Users
To evaluate GeniusPhone, and the underlying framework
and approach, we performed the evaluation with 14 users,

10 males and 4 females, with ages comprehended between
22 and 57 years (averaging 28 years old).

Tasks
Users had to search for some people in order to obtain
information about them. These searches were divided in
three types (2 Close, 2 Known and 2 Famous persons),
which differ in the different kinds of relationship the users
have with the searched ones.

Results
To prove our assumptions and answer our research
questions, after the users have performed each task, we
collected the data that we found helpful to evaluate our
system. Some of that data was automatically collected (total
information per plugin found and shown), but other
deserved a more careful analysis based on the users'
opinions, approval and the information they were expecting
to get from each search.

As our approach tries to provide relevant results from the
users' perspective, those results had to be analyzed by them.
They are the ones knowing which information is relevant,
irrelevant or garbage for them. Also, we needed help from
them to quantify the information they were expecting to get
but was not shown. We need to know if that information
was impossible to get, or our framework missed it.

Evaluating Users' Expectations and Results’ Relevance.
Before performing our tasks the users described what they
were expecting to get from each person. This information is
based on features they know about those persons and
believe to define them or are somehow related to them. It is
important to notice that we have not restricted this process
and are not aware, before the experiment, if the information
is correct or available in any of the searched sources. This
data is very important so we can analyze our results
accordingly to user expectations. To answer this question
we have to analyze some different aspects. First, which
information from users' expectations was, and was not
presented? Figure 6 shows the results, in percentage, for the
three different search types.

From this chart, we can observe that, regarding a Friend or
Known person search type, the values are below 50%, as to
Famous people the results are near 60%. Comparing
Friends to Known, having more interaction with close
friends it is understandable that it will improve the results,

Figure 5 - Clickable icons and the resulting webpages

Figure 6 - Users' expectations and achieved results

 9

giving them a little advantage. On the other side, Famous
searches have more available information on the Internet,
and on the searches we used, there was always information
to be found on our information sources.

Although these results are not outstanding, on most
scenarios, mainly respecting to Known and Famous people,
some relevant information is enough to enlighten and help
the users through their difficulties. Besides, it is important
to remember that the users’ expectations were not pre-
processed in any way. Also, we can observe on Figure 7
that if we consider only the information that was possible to
find using our sources, the results improve substantially.
This information was verified with the users in a post-test
analysis. This indicates that, from the information users
were expecting, only a small part was accessible to us but
somehow we missed it.

Figure 8 shows the relation of relevant information
elements found that were and were not expected by the
users (average values). It was possible to verify that it
presents more relevant information not expected than the
number of the users’ total expectations. Although users
were not expecting this data, they tagged it as relevant in a
post-test analysis and found it to be useful. Also, our
approach fits on scenarios that the information users need is
the one they do not remember at all, so they could not be
expecting it. These results suggest that, respecting to Friend
and Known searches, although not presenting all the
expected information, the expectations are exceeded and
show relevant information that the user did not remember.

Analyzing information sources. Figure 9 shows that blogs
have a minor contribution to the total results, though it has a
good success rate. Friend and Known searches are
dominated by information from Scribe and Facebook, with
a bigger predominance to the first (near 55%). On Famous
searches, the relevant results belong totally to Wikipedia.
This is perfectly understandable since users did not have
any interactions with them.

Search Types. Searches performed for a Famous person
present better results when compared to the users'
expectations, but on the other hand, present less relevant
information that was not expected. Indeed, the expected
information and retrieved one are very similar in this

scenario. Friend and Known searches' results suggest many
similarities between these two groups. However, it is
relevant to mention that Friend searches normally present
better results. This search type behaved better relating to
expected information and presents more relevant
information outside the expected range. Also, considering
the information not found that was expected by the users,
most of the items (greater percentage in Friends than in
Known) were not possible to retrieve as they were not
available (as verified with the users by post-checking the
sources). This combination of results suggests that when
more interaction happens, and consequently more personal
information is shared, the results are better.

Filtering with Personal Information. As some users had
friends or ”known persons” in common, we used that to
compare their searches and check if their personal
information influenced the public information search
results, by directing the searches. We could observe that
those who retrieved more personal information could guide
their searches and obtain relevant information from public
sources, i.e. blogs. These results could only be obtained
using two (2) iterations, as in the first one, for all those
searches, nothing was found on blogs. Those which could
get relevant personal information used it as context to help
filtering on other sources. The result was additional relevant
information, which could not be obtained by the users that
had no interactions or connections with them.

User’s Opinions. We are pleased to notice that users found
our system easy to interact with and attractive (4.7 and 4.1
averages on a 5-point Likert scale, respectively). More
important are the ratings to the results’ usefulness,

Figure 9 - Plugins influence on the number of relevant results

Figure 8 – Relevant information presented to the user
Figure 7 – Results for the information possible to get

understandability and relevance, which were rated with
average values between 4 and 4.1. These ratings suggest
that users were satisfied and found our application helpful.

Discussion
In this section, we analyze the results taking into account
the aforementioned research questions.

Except for Famous searches, the results are a combination
of information from different sources. Personal Information
and Facebook are more predominant but that is related to
the fact that almost everyone had Facebook and exchanged
e-mails with the users. However, the results represent a
unified and inter-related whole of information, instead of
separated chunks, gathered from different types of online
social sources and users’ devices.

During task execution it was possible to realize that, besides
presenting the information as a whole, it was also managed
as a whole. This could be observed since the same
information, even from different sources, was treated and
shown as the same, in a unified way. Also, this inter-
connection allows the information to be reinforced and gain
preponderance as a result and as context for further
iterations. Figure 10 presents an example where a piece of
information is shared by many sources, and although only
the interest in accessibility is marked with Scribe’s icon, the
remaining information could not be found or reinforced
without it. It was the Personal Information found on a first
iteration that allowed us to find the information from blogs
on a second one.

Results also suggest that, in average, the searches provided
relevant information. Although some expected information
was not shown to the users, it was majorly impossible to
obtain. Also, the suggestion that it presents more
information that was not expected adds great value to our
results, since for most scenarios the information users do
not remember is the most useful for them.

In every chart, we separate searches based on the different
scenarios to analyze if our framework is suitable for all of
them. We can observe that besides the different results on
the different charts, the three search types present good
results.

CONCLUSION
Trying to get more information about someone is a
recurrent task for many users. Nowadays, there are multiple
online resources where people expose their life, interests
and work data, which could allow other people to discover
or recall relevant and useful information. However, the
available amount of information is enormous and to be
useful it must be contextualized and summarized.

Our approach gathers personal information from the user’s
devices, and use it as a filter to the information available in
public sources like search engines and social networks.
After an iterative process of searching, renewing and
improving the information retrieved, from the user point of
view, it is able to present contextualized structured
information. An example application, evaluated with users,
was presented as valuable reaching the desired personal and
online data access, inter-relation and coherency goals.

The plugin based architecture allows us to easily extend the
framework, so in the future we plan to explore new
information sources. Particularly, we will extend our web
search plugins, adding more social applications and the
ability to recognize relevant chunks of information about
persons, particularly in personal web pages. Using this
platform, several scenarios can be explored, so we will try
to find new uses to it, mainly in mobile contexts.

ACKNOWLEDGMENTS
João and Tiago Guerreiro were supported by the Portuguese
Foundation for Science and Technology, grants
SFRH/BD/66550/2009 and SFRH/BD/28110/2006.

REFERENCES
1. Beach, A., et al.. WhozThat? Evolving an ecosystem for

context-aware mobile social networks. Network, IEEE,
22(4), pp. 50-55, (2008)

2. Begole, J. B. et al. Lilsys: Sensing unavailability. In
Proc. ACM conference on CSCW, pp. 511-514, (2004)

3. Gonçalves, D. (2007). Narrative Interfaces for Personal
Document Retrieval. PhD thesis, IST, TU Lisboa.

4. Kautz, H., Selman, B., and Shah, M. Referral Web:
combining social networks and collaborative filtering.
Commun. ACM 40, 3 (1997), 63-65.

5. Jung, Y., Anttila, A., and Blom, J. (2008). Designing for
the evolution of mobile contacts application. In Proc.
MobileHCI , ACM (2008), 449–452

6. Lamming, M. et al. “Forget-me-not: Intimate
Computing in Support of Human Memory. Proc. of
Next Generation Human Interfaces, (2004)

7. Mika, P.. Flink, Semantic Web technology for the
extraction and analysis of social networks, J. Web
Semantics 3 (2005) 211–223.

8. Raento,M. et al. "ContextPhone: A Prototyping Platform
for Context-Aware Mobile Applications,” IEEE
Pervasive Computing(2005), vol. 4, no. 2.

Figure 10 - Different sources reinforcing the same information

