
MetaBrain: Web Information Extraction and Visualization

João Teixeira Gabriel Barata Daniel Gonçalves

Department of Computer Science and Engineering, IST

Av. Rovisco Pais, 1000 Lisbon

{joao.teixeira,gabriel.barata}@ist.utl.pt, daniel.goncalves@inesc-id.pt

ABSTRACT

Nowadays, the web is a huge source of information on

different branches of knowledge. This knowledge, however,

is dispersed across many sites, making it difficult to

interrelate and understand. In the past few years some

approaches have been developed to ease the extraction of

this information, from Open Information Extraction to

simpler data mining. Usually these solutions work as

standalone applications and are developed from scratch and

are brittle, very sensitive to changes in the data sources.

This makes it difficult for the final user to fully explore the

potential of using different algorithms together to better

extract and analyze information. In this paper we propose a

new approach where users can create their own

personalized information extractors and visualizations,

without needing to type a single line of code, in an easy and

highly flexible manner using a special-purpose interface.

Since raw data is most times difficult to understand, we also

study how the user can create customized visualizations of

this extracted data with low effort. A prototype of this

concept, MetaBrain, has been implemented and tested.

Preliminary heuristics evaluation, demonstrate favorable

results for the concept.

Author Keywords

Information Extraction, visualization, user interaction.

ACM Classification Keywords

H.5.2 User Interfaces - Graphical user interfaces (GUI),

H.5.m Miscellaneous.

INTRODUCTION

The versatility of the web is also its biggest problem. Since

anyone is free to create their website in any way they want,

there is no unifying structure for all this information. More

than a huge repository of knowledge, the web contains a

whole set of hidden implicit information. The way people

express their thoughts reflect an unconscious collective of

trends and patterns which are not obvious at first sight.

What color does the Internet relate to the term apple?

Surprisingly, white is the color that more frequently co-

occurs with apple in web pages, next to red and green.

Apple Inc. and Snow White may be to blame for this.

Traditionally, Information Extraction (IE) focuses on

extracting information from specific pre-defined domains.

Changing domains implies that new extraction rules need to

be manually created, making it hard to scale. Manually

querying search engines in order to extract large quantities

of information is also not the right approach, since it is

tedious and error-prone as pointed out by Etzioni [6]. A

possible solution to this problem is the use of Open

Information Extraction [2], which states that a high amount

of relashionships are expressed through a compact set of

relation-independent lexico-syntactic patterns. This is only

one of several techniques [3,5,7] which allow the extraction

of information from the Web using only statistics and

probabilities.

Although many new tools for web IE have recently

appeared, these tools are usually designed to use a single

type of IE technique with no possibility of interaction with

others. It may be in the best interest of the user to use

different IE techniques simultaneously, thus discovering

hidden and unexpected patterns in apparently unrelated

data. For example, the possibility to automatically

extracting a list of Operating Systems and see how popular

each one is on different search engines or social networks,

for different kind of users. Another problem found in these

tools is that most are developed from scratch. Currently,

there is no unified framework with different IE modules

available for programmers or other users to use as a basis

for their IE tools. Also, state of the art tools like

TextRunner [1] lack advanced search options, like the

selection of search engine to use, or the possibility to

extract the retrieved data. These options may be important

for advanced users.

Our research aims at finding ways for normal web users to

access the collective unconscious that is the Internet. Given

the giant number of possible extraction scenarios this can

be a very complex and difficult task. Our efforts were

directed at creating the best interface to make this task as

easy as possible. Since raw data from these techniques, at

times, is difficult to understand, we also analyzed several

information visualization techniques, from simple bar

charts to hierarchical tree-maps, with the objective of

creating a good and easy way for the user create and export

their customized visualizations.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
NordiCHI 2010, October 16–20, 2010, Reykjavik, Iceland.

Copyright 2010 ACM ISBN: 978-1-60558-934-3...$5.00.

In the next sections, we detail how we extract information

from the web. Then we explain our design and interaction

decisions for our solution prototype. This is followed by the

result analysis of the prototype’s heuristics evaluation and

finally. We conclude with our final remarks and talk about

future work.

CREATING CUSTOMIZED IE SOLUTIONS

There are different approaches to extract information from

the web without the use of complex natural language

parsers. Different algorithms use different features to

extract the information. Generally, we find three different

classes of approach that use: number of results found for a

given query [9]; lexico-syntactic patterns [5,6]; and word

co-occurrence [8]. Next we’ll see how we can use these

different classes together to create customized IE tools.

Selected Information Extraction approaches

The number of results can be used as a way to identify the

popularity of one or more concepts on the Internet, and also

to measure the validity of extracted data. For example, if

“fishing water” has more results than “fishing wall” then

fishing is probably more related to water than to a wall.

By using lexico-syntactic patterns like C{,} “such as ”

IList, where C is a concept and IList is a list of instances

from that concept, it is possible to generate special queries

to use in search engines that will be able to map concepts to

instances or instances to concepts.

Recent works have been created to prove the validity of

using term co-occurrence to do opinion mining [7,8]. With

the rise of micro-blogging usage, it is now possible to more

easily extract the general Internet opinion of a given

concept by looking at what words co-occur with that

concept.

Putting It All Together

Each one of these approaches is a way to extract a different

type of information, so it would be good if we could use

them together or alone, depending on what we want to

extract. We can think of each one of these as a different

search module. If we would like to extract a list of cities

and then check their popularity online, instead of manually

executing two different searches it would be good to create

a single search query for the whole extraction.

Because these modules are domain independent it’s a

matter of defining a way to direct a module’s output to

another’s input. In order to do this we can standardize all

the three modules’ main input as a single query parameter

and their output (result set) as a table (Figure 1), were the

rows represent the different extracted information and the

columns represent the extracted information (primary

column) and some auxiliary attributes of the extraction.

Looking at only the primary column of a result set we get a

list of results which can be iterated by another search

module as its input parameter. This way it is possible to

easily create multi-level search queries. Figure 1 also shows

a result of a multi-level search.

A prototype library was implemented with these

capabilities and also the possibility to customize each

search parameters (thresholds, search engine, etc.). Several

search engines can be used, including social networks. A

modular approach was used to create this library in order

for it to be easily expansible with new search engines, IE

algorithms, or simple web service APIs. Also, since some

IE modules need to sometimes perform thousands of search

queries, a cache system was developed to make the searches

faster when possible. The direct use of this library still

requires programming skills. Hence, we developed a

special-purpose interface, Metabrain, which allows even

non-programmers to perform IE and visualization tasks in a

more natural way.

METABRAIN PROTOTYPE

With the library complete, we started looking into how we

could create a GUI simple enough to allow regular Internet

users to interact with it, without neglecting all the advanced

options required by expert users. With this in mind, we

decided to use HTML and Javascript, in order to create a

very dynamic interface with standards-compliant

technology. Also, it is easy to connect with our Python

library. We want not only the users to extract information

but also for them to create meaningful visualizations of the

raw data. All these visualizations were implemented using

the Protovis framework [4].

Data Set Creation

Since the use of IE tools may not be common to most users,

an effort was made to simplify every possible step of the

extraction process, without disregarding the needs of

advanced users. By default all customization options are

hidden, although easy to access, and preset to a default

value. This way the only thing needed is for the users to

select what they want to extract. They can choose, and at

any time change, between the different available extraction

modules. These modules allow for the same type of IE

previously discussed plus easy access to public API

services, such as location to geographic coordinates and

search engine suggestions. Each module is accompanied by

a quick description of its purpose and a series of possible

input examples with explanations.

The design philosophy we follow is to only show relevant

information in the interface so, by default, there is only one

input section visible to the user. This reduces the visual

noise needed to complete his task. For a simple one level IE

Figure 1. Left: result set for an extraction of city instances.

Each row represents an extracted city, which is presented

on the Extracted column, the table’s primary column;

Right: result set for the number of results found for the

different cities extracted on the left table.

the process is very straightforward: select the IE module to

use, input the query parameter and search. For example, if

the user wishes to extract from the Internet a list of zodiac

signs, he just needs to select the Extract by Domain module

and use “zodiac signs” as the search query. By doing this, a

list of extracted zodiac signs is presented to the user, as

seen on Error! Reference source not found.b.

If the user wishes to create a multi-level search query, the

interface will evolve during the process, along with the

user’s needs. If, at any time, the user chooses to use the

result of one search as a term in another, the interface will

dynamically add a new input section where the second

search query can be defined. These secondary input

sections are called variables and have the form of %1, %2,

etc. Graphically, every new query to obtain the values for

each variable appears below the one in which it is used, and

one level deeper on the interface (Error! Reference source

not found.c). This helps users to effectively resort to

several variables at once without getting lost or confused.

In order to minimize the number of errors and not waste the

user’s time in vain, before initiating the final search query,

which may take from a few seconds to minutes or hours, it

is possible to do a preview search in a smaller scale. This

way, the user gets a quick glimpse of the kind of results

returned by the current query and can make any

adjustments necessary before starting the real long search.

To increase the possibilities of query creation it is also

possible to create Data Sets by importing users own

personal data (CSV) through our prototype. Before the data

is imported it is scanned and MetaBrain tries to guess what

type of data is in each column (text, numbers, coordinates,

etc.) Our guesses are then shown to the users so they can

confirm and make any changes necessary. We’ll discuss the

importance of this type of information in the next section.

Visualization

Now that we have a good and flexible approach that allows

even non-programmers to do customized IE from the Web,

the next step is to provide them with the possibility to

visualize this information in a more meaningful way than

the one provided by simple tables. We started by

identifying a set of requirements we would like the

visualization creation process to follow:

 Since the table of extracted information has multiple

columns, the user must be able to choose which columns

she or he wants to visualize.

 The user should be able to choose from several different

types of visualizations, from graphic bars to sunbursts or

even maps;

 All the visualizations must have its set of configuration

options, bar width for the graphic bars, palette color for

the sunbursts, etc.;

 During this process it must be easy to change between

different visualization types maintaining the users

previously selected preferences, if these are applicable to

the new type.

 The user must be able to always preview the visualization

being created. Configuration changes to the current

visualization should be applied instantly, without the

need to refresh.

Taking all these requirements into account, we decided to

divide the visualization process into 3 steps: choose data to

visualize (which columns); choose the visualization type;

preview and configure the visualization.

To address the first requisite we decided to let the user

choose which columns to visualize by using a drag and drop

metaphor. On the left side of the application a vertical list

of names is visible. These are the names of the different

columns existent in the selected data set and they are

divided by the type of data they contain, this division makes

the column selection easier for the user. On the right side of

this list are two large horizontal boxes, representing the

visualizations axis. The user is then able to drag columns

from the left list and drop them in the axis input boxes.

During the drag procedure these boxes are highlighted,

making the user aware of valid drop inputs.

We decided to use two axis after concluding, in a study,

that all the different visualizations we wanted to implement

required at least two degrees of freedom.

Figure 2. a) List of available extraction modules for the first input. b) Example of an extraction of the zodiac signs. c) Example of

a multi-level search query. The final result will be the popularity, on the selected search engine, of every extracted city.

The available visualizations list starts empty. While the user

makes column selections, these (columns selected, their

data type and position in the axis) are used to verify what

visualizations are available for this selected data. This way

we can minimize the errors of the user choosing a map

visualization type when no geographical data is selected.

When the user has finished selecting the columns and has

chosen the visualization, this information is used to

instantly create a preview of his visualization. Also, next to

his visualization a list of configurable options (colors, scale,

canvas size, etc.) appears with they’re default values

selected. After changing any of these options values the

preview is instantly refreshed. At any time during this

process the user can change the selected columns or choose

a different visualization. An example of a visualization

being created is shown on Figure 3. When the users are

satisfied with their visualization they can embed this

visualization into their website by copying a piece of code

into any webpage, much like embedding a YouTube video.

HEURISTIC EVALUATION

In order to test our design and interaction decisions we

conducted a heuristic evaluation of MetaBrain, using Jakob

Nielsen’s usability heuristics
i
. This evaluation allowed us to

find most major usability problems the interface might

have.

After a quick introduction to the purpose of our work, four

usability experts proceeded to freely test the prototype for a

few minutes and then received a list of four tasks to

execute. In two the users were asked to extract information

from the web, from given domains, and in the other two to

craft specific visualizations for that information. All were

successfully completed by all users. Overall, only ten

usability problems of relevant severity were identified.

Most were related to the data extraction interface,

especially to the fact of some search queries were taking

some minutes to finish and there was no indication of

progress, only a looping loading sign. This problem has

been solved by adding to the search interface the number of

queries to be performed and how many have already been

completed. All evaluation experts enjoyed the clean and

minimalistic design and the dynamic way in which they

could interact with the system. After completing the tasks,

some wanted to keep playing with the system, curious about

what other information MetaBrain would be able to extract.

This preliminary evaluation allowed us to find and correct

some usability problems. It is indicative that the interface

can be effective and easy to use. Further validation of this

will be provided by upcoming, more formal, user tests,

where we’ll take into account the number of errors and time

taken to complete the tasks.

CONCLUSION

We have presented an interface that allows us to extract and

visualize information from the web in meaningful manners.

Unlike previous research we strove to make this task as

simple and flexible as possible so that any type of users,

from less to more experienced, can create customized

solutions that fit their needs. A preliminary evaluation of

our prototype, MetaBrain, showed positive results. Further

user studies will allow us to better validate our choices.

REFERENCES

1. Banko, M., Cafarella, M.J., Soderland, S., Broadhead,

M., and Etzioni, O. Open information extraction from

the web. In Proc. of the IJCAI 2007.

2. Banko, M. and Etzioni, O. The Tradeoffs Between

Open and Traditional Relation Extraction. In Proc. of

ACL-08: HLT, 28-36.

3. Bollegala, D., Matsuo, Y., and Ishizuka, M.

Measuring semantic similarity between words using

web search engines. In Proc. WWW '07, ACM Press

(2007), 757-766.

4. Bostock, M. and Heer, J. Protovis: A Graphical

Toolkit for Visualization. In Proc. IEEE TVCG, 15

(2009), IEEE CS (2009), 1121-1128.

5. Cimiano, P. and Staab, S. Learning by googling.

SIGKDD Explor. Newsl., 6 (2004), 24-33.

6. Etzioni, O., Cafarella, M., Downey, Doug et al. Web-

scale information extraction in knowitall: (preliminary

results). In Proc. WWW '04, ACM (2004), 100-110.

7. Kramer, A.D. An unobtrusive behavioral model of

gross national happiness. In Proc. CHI '10, ACM

(2010), 287-290.

8. Ku, L., Lee, L., Wu, T., and Chen, H. Major topic

detection and its application to opinion

summarization. In Proc. SIGIR '05, ACM (2005), 627-

628.

9. Turney, P.D. Mining the Web for Synonyms: PMI-IR

versus LSA on TOEFL. Machine Learning: ECML

2001, Springer Berlin (2001), 491-502.

i
 http://www.useit.com/papers/heuristic/heuristic_list.html

