
Automating Repetitive Tasks in User Interaction

Gabriel Barata, Tiago Guerreiro, Daniel Gonçalves

Dep. Engª. Informática, IST

Av. Rovisco Pais, 1000 Lisboa

gabriel.barata@ist.utl.pt, tjvg@vimmi.inesc-id.pt ,daniel.goncalves@inesc-id.pt

Abstract

Computer users constantly face situations where

repetitive tasks emerge and there is no easy way to

automate them. Although there are several application

launchers currently available, they lack of automating

power to face the uniqueness of the repetitive tasks that

arise from everyday usage. Many times, users have to

resort to scripting languages and macro recorders to

perform these tasks. However, these means are too

farfetched for a common user.

We propose an approach capable of monitoring

user activity, learn which tasks are recurrent and

suggest an automation capable of completing the

repetitive task. All this is done without disturbing the

user or requiring his intervention. Preliminary user

tests show that our solution can help users perform at

least 169% faster for simple tasks.

1. Introduction

Nowadays, computer users are constantly facing

recurrent tasks arising from the everyday usage. Most

of these tasks tend to be unique, making them hard to

automate. Application Launchers, such as Launchy,

Enso or Dash Command, are very popular nowadays,

but they are only useful for automating well known

tasks, such as launching applications and calculations.

Often, users have to resort to scripting languages and

macro recorders in order to automate recurrent tasks.

However, this is out of reach of the regular user and not

applicable to many cases.

A few approaches try to address these issues.

SMARTedit [4,5] is a text editor which resorts to a

machine learning algorithm to automate repetitive

tasks. This algorithm, Version Space Algebra [3],

allows the composition of more complex version

spaces from simpler ones. However, SMARTedit

adopts the macro recorder concept, requiring the user

to start and stop the recording of the repetitive task.

The Adaptive Programming Environment [7,8],

hereafter referred as APE, automates repetitive tasks on

a programming environment. APE avoids the macro

concept by adopting the Implicit Programming by

Example technique [6], which consists of monitoring

the user’s activity and detect recurrent tasks without

requiring his intervention. APE is constantly

monitoring the user and uses the Karp-Miller-

Rosenberg (KMR) algorithm [1] to detect repetitive

patterns of actions and, therefore, infer which tasks are

recurrent. However, APE only operates over a single

application and is not able to detect conditional and

variable loops.

In order to bridge these gaps, we developed a new

system for Microsoft Windows, named Blaze, which is

able to automate repetitive tasks without requiring any

user intervention. Blaze operates over the whole

operating system, covering any recurrent task the user

may perform in the file-system or any application. To

attain this, Blaze also adopts the Implicit Programming

by Example technique, using a data mining algorithm

to identify repetitive tasks.

2. The Blaze System

As many recurrent tasks on modern operating systems

are related to launching the same applications over and

over again, Blaze takes the form of an application

launcher, offering the user the same expressive power

once granted by command line interfaces.

Unlike other application launchers, Blaze features

an advanced text prediction algorithm which allows it

to tolerate typos. The user input is separated into text

tokens and a string contention algorithm and the

Levenshtein distance [2] are used to match them with

the indexed items. If the user mistypes something,

Blaze can still understand it (Figure 1).

Figure 1 – Blaze tolerating typos.

In order to automate recurrent tasks, Blaze presents

three automation agents: the Observer, which is

responsible for monitoring user activity; the

Apprentice, whose duty is to detect recurrent tasks; and

the Assistant, which is responsible for composing

automations capable of completing the recurrent task

and, non-intrusively, notify the user.

The Observer is capable of monitoring every user

action regarding the file-system, the mouse and the

keyboard. To each action is associated contextual

information, related to the application in which it

occurred. User actions may be combined in order to

produce more complex user actions. For instance, if the

user presses sequentially the keys “H”, “E”, “L”, “L”

and “O”, the respective key press actions are

compressed to a single type “hello” action. Moreover,

to each action is associated an id and, to each id, is

associated a set of generalizations. A generalization

describes a possible relationship between two or more

actions. For example, a generalization describing the

relationship between “type «hello 1»” and “type «hello

2»” could be “type «hello f(n)»” in which f(n) describes

the numeric sequence {1, 2, 3, …}.

The Apprentice is the one responsible for

identifying which tasks are recurrent or not. As every

action has an id and there are no more than 20 actions

in memory at the same time, each id can be treated as a

letter from an alphabet and, therefore, finding a

repetitive pattern can be treated as a string search

problem, more precisely, the Longest Repeated

Substring (LRS) problem. The best way to find the

longest non overlapping substring of ids is to build a

suffix-tree [9] and find all of its deepest internal nodes.

Figure 2 – Automation example.

The edge leading to one of these nodes represents a

common prefix of suffixes of the input string. This

allows us to keep track of all common prefixes of

suffixes and pick the longest one as the longest non

overlapping repeated substring. Although KMR would

also be suitable for this task, the suffix-tree approach is

more efficient, as it solves the problem in linear time

and space.

Every time a repetition is detected, the Assistant

uses the list of longest non overlapping substrings of

ids and the list of generalizations to produce one or

more sets of actions capable of automating the

recurrent task. Moreover, in order to not disturb the

user, it notifies him by lighting up the system tray icon

and by displaying a button in the main interface. The

user can choose to accept the suggestion or just ignore

it. Figure 2 depicts the suggestion composed by Blaze

after the user typed “Hello 1”, “Hello 2” and “Hello 3”.

3. Tests

In order to validate our approach we carried out both

user and performance tests. Twenty users were asked to

perform a set of 7 simple but typical tasks, and the time

and number of errors was recorded. Most of the users

had ages between 18 and 25 and used a computer daily,

although only 50% of them were familiarized with

application launchers. As shown in Chart 1, tests

revealed that Blaze, on average, allows users to

perform repetitive tasks 2.98 times faster. For more

complicated tasks, involving the repetition of over

larger sets of items, the gain would be even larger.

Performance tests demonstrated that Blaze does not

consume too much computational resources, presenting

low CPU time usage and an average of 36 Megabytes

of used memory, barely noticeable in a modern system.

Chart 1 – User tests results.

4. References

[1] Karp, Richard M., et al. Rapid identification of repeated

patterns in strings, trees and arrays. STOC '72: Proceedings

of the fourth annual ACM symposium on Theory of

computing, pp. 125-136. Denver, Colorado, USA, ACM,

1972

[2] Levenshtein, Vladimir. Binary Codes Capable of

Correcting Deletions, Insertions and Reversals. Soviet

Physics - Doklady, 10, pp. 707-710, February 1966

[3] Lau, Tessa, et al. Version Space Algebra and its

Application to Programming by Demonstration. ICML '00:

Proceedings of the Seventeenth International Conference on

Machine Learning, pp. 527-534. Stanford, California, USA,

Morgan Kaufmann Publishers Inc., 2000

[4] Lau, Tessa, et al. Learning Repetitive Text-Editing

Procedures with SMARTedit. In H. Lieberman, Your Wish is

My Command, pp. 209-225. San Francisco, CA: Morgan

Kaufmann Publishers Inc., 2001

[5] Lau, Tessa, et al. Programming by demonstration using

version space algebra. Machine Learning, 53 (1-2): pp. 111-

156. Hingham, MA, Kluwer Academic Publishers, October

2003

[6] Ruvini, Jean-David. The Challenges of Implicit

Programming by Example. IUI ’04, Madeira, Portugal, 2004

[7] Ruvini, Jean-David, Dony, Christophe. APE: learning

user's habits to automate repetitive tasks. IUI '00:

Proceedings of the 5th international conference on Intelligent

user interfaces, pp. 229-232. New Orleans, Louisiana, USA,

ACM, 2000

[8] Ruvini, Jean-David, Dony, Christophe. Learning Users'

Habits to Automate Repetitive Tasks, In H. Lieberman, Your

Wish is My Command, pp. 271-295. San Francisco, CA:

Morgan Kaufmann Publishers Inc., 2001

[9] Stephen, Graham A. String Searching Algorithms, pp.

191-201. World Scientific, October 1994

