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Summary 
With the vast amount of documents users tend to accumulate in their hard drives, it is natural that they often for-

get where certain file is stored or even its name. However, sometimes they still recall a mental image of the doc-

ument’s layout. We developed a new approach to document retrieval that capitalizes on human visual memory to 

help users find their personal documents. The users can sketch the layout of the document using a calligraphic 

interface and the system will present them with those that match that sketch. Documents are processed to extract 

its relevant features, blocks are segmented and classified according to their contents and a description of the 

layout is created. We described the document in two different ways: grid-based and semantic-based. The inter-

face allows the user to choose from each of this search methods and includes also a complementary query by ex-

ample mechanism.  
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1. INTRODUTION 
Nowadays, we sometimes find it hard to find that docu-

ment that we know to be somewhere in our hard drive. 

Usually, this is not a trifling task, especially for older 

documents. It is often the case where, when looking for a 

document, we can’t remember its name, location, or any 

other kind of attribute usually used in a common search 

task. However, occasionally we can recall its appearance, 

how the first page looked like (it was written on two col-

umns, it had a picture downloaded from the Internet at the 

top of its rightmost column and an Excel table at the bot-

tom of the document with the results of the work, etc.). 

Even if most of the documents in our possession are simi-

lar, filtering them by appearance provides a simple yet 

effective of greatly narrowing down the possible choices 

when looking for a particular one. 

The visual memory of the user plays a crucial role in the 

recognition of objects and also documents. Human beings 

can easily remember and perceive images rather than 

words. So we use this fact to construct a new kind of doc-

ument retrieval model. 

One of the best and easier ways to describe a visual re-

presentation of something, in this case of a document, is 

to sketch it. Calligraphic interfaces are much enjoyed by 

users because they feel like they can express their ideas 

and intentions easily and without too many constraints. 

Also, touch-screen-based devices, such as PDAs, Tablet 

PCs and even Smartphones, are becoming more and more 

available to the general public. 

This paper presents a system capable of retrieving docu-

ments similar to a sketch drawn by the user in a calli-

graphic interface. In order to accomplish this we had to 

process the documents so they could be effectively in-

dexed. This involved transforming the first page of the 

document to an image. This image was then processed 

and segmented into blocks classified according to their 

content: text, image, graphic, table, horizontal line and 

vertical line.  

From each block, relevant features were extracted. We 

used those features to create two distinct indexation me-

thods: a grid method, based on the spatial distribution of 

the blocks, and a semantic method, that makes use of 

more high level characteristics of the blocks. This allows 

users to specify queries using high-level semantic descrip-

tions of their document appearances (“a two-column doc-

ument with an image on the top of the right column…”), 

rather than simply comparing sets of pixels. 

Finally, we created a retrieval interface, capable of query 

by sketch and query by example. It allows the use of both 

indexation methods. It was initially conceived with a sys-

tem of rectangles and colors to describe the document to 

search for. Then CALI [Fonseca00] library was incorpo-

rated to make the recognition of free-form user sketches, 

according to some descriptive language [Albuquerque00]. 

To make this interface a reality, we had to study how us-

ers describe the layout of their documents, how many 

details they can recall and how accurately they are able to 

draw them. 

Throughout the rest of this document we will describe 

every step of the retrieval process and the design and de-

velopment of the calligraphic interface. Section 2 refer-

ences some previous projects in this area and their ac-



complishments. In Section 3 we describe the algorithms 

used to process the document image and extract its rele-

vant features. Section 4 details the document description 

methods implemented and the indexation technique. Sec-

tion 5 explains the design and functionalities of the inter-

face. Section 6 summarizes the work done and possible 

future work in the area. 

2. RELATED WORK 
In the last decades, as an attempt to help users retrieve 

their documents based on their appearance, some systems 

were studied and developed. Some address only part of 

the problem (document processing and segmentation, 

image indexation, etc.) while others tried to produce 

complete document retrieval solutions. 

This subject is addressed essentially in Content-Based 

Image Retrieval (CBIR) systems, more specifically the 

Query by Sketch category. These systems exploit infor-

mation gathered from the contents of images. A certain 

number of methodologies, techniques and tools related 

with image processing were studied with the aim of iden-

tifying and comparing features useful to the development 

of classification and retrieval systems based on the (al-

most) automatic interpretation of image contents.  

QBIC [Faloutsos94] was the first system of this type, 

making use of global features like area, circularity and 

eccentricity in shape comparison. Query by Example [Ka-

to92] is a complementary method to query by sketch, 

taking advantage of some image already in the database 

chosen by the user similar to the result intended. 

Most of these solutions make explicit reference to images. 

More recently it has emerged a larger awareness of the 

problems of document retrieval, whether through key-

terms or from the document image obtained from its 

layout. Our approach follows a series of methods desig-

nated by SBIR (Sketch-Based Image Retrieval) since it 

starts with a sketch of an image to try to recover it. The 

objective is to expand these sorts of algorithms so that a 

sketch may retrieve not only images but also documents, 

calling then SBDR (Sketch-Based Document Retrieval). 

One system that already tries to employ such a method is 

WISDOM++ [Berardi04]. They present an approach for 

semantic structure extraction in document images. They 

first extract layout structures and then use textual content 

to automatically label these structures, applying machine 

learning techniques to support the process. 

3. THE SKETCH-A-DOC INTERFACE 
We have created two different interfaces for our system. 

The first can be seen in Fig. 1. Its main area is a canvas, 

where users can draw a sketch representing the layout of 

the documents they want to retrieve as a series of rectan-

gles. To the left of the canvas is a tool palette where the 

type of block to be drawn can be chosen by the user. Each 

block will have a color, predefined according to its type, 

as follows: 

� Red: text block; 

� Green: image; 

� Blue: graphic; 

� Yellow: horizontal line; 

� Magenta: vertical line; 

� Cyan: table. 

The user, of course, needs only select the type of block, 

and not the color. This method has the disadvantage of 

being a little restrictive than free-form hand-drawn 

sketches, but it can be more precise and less error-prone. 

Also, a selection tool allows the users to select already 

drawn blocks and delete or move them. Three buttons 

allow the user to choose the type of search to be per-

formed grid- or semantic-based (described below), and to 

provide some similar document to start the search instead 

of drawing a sketch (query by example). To the right of 

the canvas, the interface also includes an area to display 

the best ranked results. There are two preview modes to 

show the results: Normal: shows the thumbnails with the 

result documents; Sketch: shows the thumbnails with 

sketch representation (obtained with the rectangle and 

colors system) of the result documents. Double-clicking a 

thumbnail will open the respective document. The users 

can also save their sketches and after a while load them to 

perform a new search, editing or not the original sketch. 

An alternative to the rectangle and color system is to use 

the CALI recognizer library [Fonseca00], publicly avail-

able and with verified high recognition rate, coupled with 

a visual grammar capable of identifying any of those six 

elements (Fig. 2). This grammar [Albuquerque00] was 

compiled with the help of studies about the most typical 

ways users draw a set of shapes and what those shapes 

represent. In this manner users can draw as they are used 

to and the system will recognize the layout they meant to 

sketch: 

� Text block  ->  {WavyLine} 

� Image  ->  {Rectangle Line} 

      If  Contains (Rectangle, Line) 

      And  Oblique (Line) 

 

Fig. 1 – Rectangle-based Interface 



� Graphic  -> {Rectangle Triangle} 

        If Contains (Rectangle, Triangle) 

� Table  -> {Rectangle, Cross} 

     If Contains (Rectangle, Cross) 

� Hor. Line  -> {Line} 

If Horizontal (Line) 

� Vert. Line  -> {Line} 

If Vertical (Line) 

In this case the rectangle icons disappear since only a 

scribble, besides the selection tool, is needed.  

To perform a search using a similar document as a start-

ing point, the user can click the query by example option. 

An open dialog is shown, from which the sample docu-

ment is chosen. This document is processed as if were to 

be indexed, all of its features are extracted and used to 

find documents that resemble this one. It is also possible 

to select a document from the results of a query and ask 

for others similar to that document, thus helping the user 

to iteratively refine the search process. 

3.1 Scoring 
After a query is entered, a scoring algorithm is applied 

according to the index method chosen to search in – the 

user can choose either one of the two indexation methods, 

grid- or semantic-based.  In the first, the document’s page 

is divided into several grid cells, and the type of ele-

ment(s) in the cells is recorded. In the second, a high-

level description of the content blocks, their size, and 

relative positions is stored. 

If the grid-based method was chosen, for each block giv-

en by the query, the system looks for every document that 

has the same type of block in the same grid cells. For 

each match the document is awarded one point. After all 

blocks have been processed the documents with the high-

est scores are presented to the user. 

 

The scoring in the second method is a bit more complex. 

For every feature, it seeks the entries that match the query 

and then the ones in the immediate feature neighborhood. 

For instance, consider a block with the following features: 

size=”small”, type=”text”, xOrigin=”centerLeft”, yOri-

gin=”3/10”. The algorithm would look for blocks with-

size=”verySmall”/”small”/”medium”, type=”text” / ”im-

age”/”graphic”/”table”/ vLine”/ ”hLine”, xOrigin=”left” / 

”centerLeft”/”centerRight”, yOrigin=”2/10”/”3/10”/ 

”4/10”, varying one feature at a time. It bestows ten 

points to a document that exactly matches the query in the 

same position, two points for each matched feature in the 

feature neighborhood of the query, and one point to every 

block of the same type in the feature neighborhood, even 

if no other feature is matched. This accounts for possible 

errors remembering the block, and allows documents that 

only partially match the query to be nevertheless found. 

4. DOCUMENT ANALYSIS 
Underlying the interface we’ve just described is a repre-

sentation of the appearance of all indexed documents. To 

obtain it, the main challenge was to get a high-level de-

scription of the documents according to their layout. 

To extract the required features from a document we first 

have to transform it into a format more amenable to 

processing, abstracting from the underlying file format 

(pdf, etc.). We grab the first page of the document and 

turn it into to an image, since there are many techniques 

capable of image processing and block segmentation, to 

identify relevant areas in the images. 

4.1 Image Pre-Processing 
Using a module developed in the personal document re-

trieval project Quill [Gonçalves08] to extract an image 

from most document types, we produce images of the 

cover pages of documents. As our objective is to produce 

a high-level description of document appearances, we 

then process those images. The first step is to convert the 

 

Fig. 2 – Grammar Shapes 

Fig. 3 – Sketch-based Interface 



image to black and white pixels only, using a basic thre-

shold algorithm (Fig.4).  

This led to an image reflecting the overall structure of the 

document page, but also resulted in several “impurities”, 

stranded pixels created by the thresholding process. 

When trying to identify relevant content blocks in the 

image, one block could be, mistakenly, included in an 

adjacent one or its type mistaken, just because there was 

some small group of pixels, “noise” data, in some inap-

propriate location in the document image. To solve this 

problem, and since we are only concerned with the over-

all features of the page, we decided to apply an erosion 

filter (Fig. 5) with a simple cross flat structuring element 

to minimize those spurious pixels and improve the effi-

ciency the next processing step: block segmentation. 

\

        

 

 

 

4.2 Block Segmentation 
Many studies have already been made about image and 

document block segmentation and classification. Some of 

them are strict rule-based approaches and others more 

dynamic, resorting to machine learning techniques. For 

simplicity and effectiveness’ sakes, we employed the 

RLSA (Run-Length Smoothing Algorithm), an adaptive 

rule-based algorithm. Instead of the basic version, an im-

proved two-step block segmentation version [Shih96] was 

adopted. This algorithm is able to detect content blocks in 

a document image, while at the same time classifying 

those blocks according to their type. To detect content 

blocks, the RLSA algorithm starts by finding content lines 

(uninterrupted horizontal sequences of pixels), and then 

grouping those closer than a predefined threshold. How-

ever this block classification method does not account for 

tables, which were one of the block types we needed to 

identify. It only classified in according to five categories: 

text, image, graphic, horizontal line and vertical. 

To adapt the algorithm to our needs, its rules and parame-

ters were modified, although the same basic features are 

used for block classification: 

� Height of each block - H; 

� Ratio of width to height (aspect ratio) - R; 

� Density of black pixels in a block - D; 

� Horizontal transitions of white-to-black pixels per 

unit width – THx; 

� Vertical transitions of white-to-black pixels per unit 

width – TVx; 

� Horizontal transitions of white-to-black pixels per 

unit height – THy. 

The width to height ratio is used to detect horizontal and 

vertical lines. THx and TVx are used for table and text 

discrimination. THy is also used in table recognition. Both 

density D and height H allow the discovery of images and 

graphics, according to some threshold. This part was 

done with caution because it was an innovation to the 

RLSA classification algorithm. Unlike the original me-

thod we decided to identify tables, images and graphics 

first and let the text blocks be the “otherwise” rule, as 

blocks of other types are easier to identify than text 

blocks, that can take many different shapes. Images are 

easily classified since they usually have more “ink” densi-

ty and are larger than most blocks. Graphics frequently 

occupy an identical space to images; the difference is that 

their density is much lower. To identify tables, we created 

a new set of rules:  

 

Fig. 4 – Document Analysis Process. Left to right: the original document; the document after thresholding and 

applying the erosion filter; the result of the RSLA; the final result, with all blocks colored according to their type. 

Fig. 5 – Example of erosion 



� H <= 30 and D < 0.9 and 0.15 < THx < 1.7 and 1.7 < 

TVx < 4.8 and THy > 5.0 

� 30 < H <= 60 D < 0.8 and 1.8 < THx < 3.8 and 2.4 < 

TVx < 4.8 

� 60 < H <= 90 and 0.25 < D < 0.85 and 2.2 < THx < 

4.8 and 3.0 < TVx > 6.2 and THy < 12.5 

� H > 90 and 0.15 < D < 0.6 and THx > 3.7 and 6.0 < 

TVx > 20.0 and THy > 10.0 

As can be seen, the block detection and classification 

algorithm is sensitive to the values of several parameters. 

To choose the most appropriate values for these parame-

ters, mentioned above, we performed an experiment in 

which several values were tried and the quality of the 

results evaluated. We used a set of 46 documents, repre-

sentative of different block types, sizes and combinations 

commonly found in personal documents. Text blocks 

were formatted with character sizes varying from 8 to 32 

points mixed with commonly used fonts with and without 

serifs, like Times New Roman, Arial, Garamond, Book-

man Old Style and Comic Sans MS. For some of these 

fonts the character sizes are almost the same and so the 

results are also equal, but for others the spacing, thickness 

and size are slightly different. We did this so that the es-

timated parameter values would adequately encompass a 

wide range of documents. Tables with a wide variety of 

number of columns and number of rows and also more or 

less filled with text and varying sizes were also used to 

allow the estimation of the parameters necessary to identi-

fy them.  

We were able to infer the parameter values that give us, 

on average, the best results. The process was a bit ar-

duous since the original algorithm didn’t take on account 

tables, which are easily mistaken for text blocks or graph-

ics, depending on whether they are more or less filled 

with text. Overall, we found that our algorithm is able to 

correctly identify and classify 87.5% of all blocks. 

5. DOCUMENT DESCRIPTION 
Instead of following only one approach we decided to 

describe the documents in two ways: grid-based and se-

mantic-based.  

5.1 Grid Description 
This is the most straightforward approach; it is based in 

spatial organization features only. 

We divide the document layout according to a pre-

established 4x10 grid. We chose to partition the docu-

ment in 40 units (4 columns and 10 rows) because after 

some analysis we concluded that almost no document was 

formatted in more than 3 columns and they were not split 

vertically with more than one type of block. The number 

of rows was chosen empirically, and 10 was the number 

held expressive enough. 

 

Fig. 6 – Grid of a document layout 

For instance, in Fig.6 we have a document with the grid 

overlaid on it. According to this kind of description we 

would get something like: There is a text block in cells 

[2,3,6,7], another in [9,10,13,14,17,18,21,22] and another 

one at [23, 24, 27, 28, 31, 32]; there is an image at [11, 

12, 15,16,19,20]; and there is also a table located at cells 

[25,26,29,30]. This description is very simplistic, but 

good enough to portray the layout of the first page of a 

document. In this case there aren’t any intersections on 

the same grid cell but if there were the algorithm would 

use the same cell number on the description of different 

blocks. This provides a description of the page in which 

the type of element present in each area of it is known. 

We can then match this description to that of a sketch 

drawn by the user. 

5.2 Semantic Description 
This approach is more high-level than the one described 

in section 4.1. It does not depend on a pre-determined 

grid, as it is based mainly on parameters such as the 

types, proximity and relative sizes of blocks. This de-

scription, based on semantically relevant entities and con-

cepts, can be used as the basis for a description of docu-

ments in simple English, making it self-explanatory. A 

user who reads such a description would have no trouble 

understanding it. This allows applications in which a 

high-level or natural language-based description provided 

by the user can be compared to the indexed documents.  

The description for the topmost part of the document in 

Fig.4 would look like this (the number between brackets 

represents the id of the block): [2] – element of type text 

with 32,81 % of page width and 35,62 % of page height, 

with origin at left and 3/10 of page height. It’s below [1], 

on top of [5] and left of [3, 4]; [3] – element of type im-

age with 32,43 % of page width and 26,46 % of page 

height, with origin at centerRight and 3/10 of page height. 

It’s below [1], on top of [4], and right of [2]. 

Since every block is described this way, the neighbor-

hoods are also well identified with relevant features like 

block size and type.     

5.3 Indexing 
After describing the documents, all we had to do was 

transcribe the document descriptions to some simple, easy 



and helpful format. XML seemed to be the adequate 

choice, even for the reason that it is so widely spread. 

At description time. each document results in one XML 

file containing all high level features obtained from the 

processing stage. Then, by the time the indexation func-

tion is called to process all documents intended, two other 

XML files are created, one for each type of document 

description – grid and semantic – containing information 

about all documents in the index. 

Both files depict a tree where leafs are the document file 

locations. The grid description XML file follows the sim-

ple tree: grid cell number -> block type –> file. The se-

mantic description XML file follows a more sophisticated 

tree involving the content block sizes, types and coordi-

nates. This index can be used to filter documents accord-

ing to the possible values of all different features. Each 

entry references the block size (“verySmall”, “small”, 

“medium”, “big”, “veryBig”), its type, its origin in the x 

coordinate (“left”, “centerLeft”,  “centerRight”, “right”) 

and its origin in the y coordinate (“1/10”, “2/10”, … , 

“9/10”, “1”). It also contains references to the documents 

classified in the feature neighborhood, easily allowing the 

navigation in the feature space to look for similar, but not 

exactly equal, documents.   

Since it is not efficient to parse the XML files every time 

a query is introduced, this is done only once, at the time 

of the first query, and its elements are stored in a nested 

dictionary, that provides an easy and effective way to find 

documents that match the query. So, for the semantic ap-

proach, there will be something like: semanticIndex 

[size][type][xOrigin][yOrigin]; where the last dictionary 

also contains four more dictionaries for each of the block 

neighborhood directions: top, bottom, left and right. 

While for the grid approach the structure is more 

straightforward: gridIndex[type][cell9umber]. 

Providing the right indices the results are obtained right 

away.   

6. CONCLUSIONS 
The users often resort to their visual memories when de-

scribing documents. However, modern operating systems 

and applications do not allow them to use those memories 

to retrieve their documents. We presented a document 

retrieval system in which a calligraphic interface allows 

the users to draw sketches of document appearances in 

order to retrieve them. 

To do so, we had to process the images representing the 

first pages of documents. This required some modifica-

tions to the RLSA algorithm, and the tuning of its para-

meters to include a new type of block: tables. We also 

developed two separate document descriptions. One 

based simply on block spatial distribution – grid-based – 

and the other, more complex, based not only on attributes 

like size and location but also block adjacency, giving a 

semantic-based description of documents that can be used 

in high-level applications. The interface we designed al-

lows the use of both indexing methods and query-by-

example. User tests will allow us to determine which me-

thod provides better results. If it is possible to identify 

situations or types of documents in which a method out-

performs the other, it would be interesting to let the sys-

tem automatically decide the best method to adopt in each 

case.  

One of the next steps in this research is to improve the 

grid description to include the percentage or ratio of how 

much of the grid cell is occupied by the block. Also, there 

are some aspects to be explored about the semantic index. 

The retrieval process will be adjusted to consider more 

neighborhood features and adapt them to the scoring al-

gorithm. 

As for the interface, it will undergo of usability tests, re-

sulting in possible modifications. We would as well like 

to include a relevance feedback facet to improve the qual-

ity of the results and another search method – for each 

feature, one would choose from a predefined set of val-

ues, as if constructing a semantic description of the doc-

ument. Also, we intend to test the interface and the re-

trieval process as a whole, including each of the methods 

(grid and semantic), to see which one presents the best 

performance in terms of retrieval success.  
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