
Sketch-a-Doc: Sketch a Document to Find It

Filipe Rodolfo Alves, Manuel João Fonseca, Daniel Gonçalves
Dep. Engª. Informática, IST

Av. Rovisco Pais, 1000 Lisboa
filipe.alves@ist.utl.pt, {mjf,daniel.goncalves}@inesc-id.pt

Summary
With the vast amount of documents users tend to accumulate in their hard drives, it is natural that they often for-

get where certain file is stored or even its name. However, sometimes they still recall a mental image of the doc-

ument’s layout. We developed a new approach to document retrieval that capitalizes on human visual memory to

help users find their personal documents. The users can sketch the layout of the document using a calligraphic

interface and the system will present them with those that match that sketch. Documents are processed to extract

its relevant features, blocks are segmented and classified according to their contents and a description of the

layout is created. We described the document in two different ways: grid-based and semantic-based. The inter-

face allows the user to choose from each of this search methods and includes also a complementary query by ex-

ample mechanism.

Key Words
Document Retrieval, Sketches, Calligraphic Interfaces, Personal Information Management

1. INTRODUTION
Nowadays, we sometimes find it hard to find that docu-

ment that we know to be somewhere in our hard drive.

Usually, this is not a trifling task, especially for older

documents. It is often the case where, when looking for a

document, we can’t remember its name, location, or any

other kind of attribute usually used in a common search

task. However, occasionally we can recall its appearance,

how the first page looked like (it was written on two col-

umns, it had a picture downloaded from the Internet at the

top of its rightmost column and an Excel table at the bot-

tom of the document with the results of the work, etc.).

Even if most of the documents in our possession are simi-

lar, filtering them by appearance provides a simple yet

effective of greatly narrowing down the possible choices

when looking for a particular one.

The visual memory of the user plays a crucial role in the

recognition of objects and also documents. Human beings

can easily remember and perceive images rather than

words. So we use this fact to construct a new kind of doc-

ument retrieval model.

One of the best and easier ways to describe a visual re-

presentation of something, in this case of a document, is

to sketch it. Calligraphic interfaces are much enjoyed by

users because they feel like they can express their ideas

and intentions easily and without too many constraints.

Also, touch-screen-based devices, such as PDAs, Tablet

PCs and even Smartphones, are becoming more and more

available to the general public.

This paper presents a system capable of retrieving docu-

ments similar to a sketch drawn by the user in a calli-

graphic interface. In order to accomplish this we had to

process the documents so they could be effectively in-

dexed. This involved transforming the first page of the

document to an image. This image was then processed

and segmented into blocks classified according to their

content: text, image, graphic, table, horizontal line and

vertical line.

From each block, relevant features were extracted. We

used those features to create two distinct indexation me-

thods: a grid method, based on the spatial distribution of

the blocks, and a semantic method, that makes use of

more high level characteristics of the blocks. This allows

users to specify queries using high-level semantic descrip-

tions of their document appearances (“a two-column doc-

ument with an image on the top of the right column…”),

rather than simply comparing sets of pixels.

Finally, we created a retrieval interface, capable of query

by sketch and query by example. It allows the use of both

indexation methods. It was initially conceived with a sys-

tem of rectangles and colors to describe the document to

search for. Then CALI [Fonseca00] library was incorpo-

rated to make the recognition of free-form user sketches,

according to some descriptive language [Albuquerque00].

To make this interface a reality, we had to study how us-

ers describe the layout of their documents, how many

details they can recall and how accurately they are able to

draw them.

Throughout the rest of this document we will describe

every step of the retrieval process and the design and de-

velopment of the calligraphic interface. Section 2 refer-

ences some previous projects in this area and their ac-

complishments. In Section 3 we describe the algorithms

used to process the document image and extract its rele-

vant features. Section 4 details the document description

methods implemented and the indexation technique. Sec-

tion 5 explains the design and functionalities of the inter-

face. Section 6 summarizes the work done and possible

future work in the area.

2. RELATED WORK
In the last decades, as an attempt to help users retrieve

their documents based on their appearance, some systems

were studied and developed. Some address only part of

the problem (document processing and segmentation,

image indexation, etc.) while others tried to produce

complete document retrieval solutions.

This subject is addressed essentially in Content-Based

Image Retrieval (CBIR) systems, more specifically the

Query by Sketch category. These systems exploit infor-

mation gathered from the contents of images. A certain

number of methodologies, techniques and tools related

with image processing were studied with the aim of iden-

tifying and comparing features useful to the development

of classification and retrieval systems based on the (al-

most) automatic interpretation of image contents.

QBIC [Faloutsos94] was the first system of this type,

making use of global features like area, circularity and

eccentricity in shape comparison. Query by Example [Ka-

to92] is a complementary method to query by sketch,

taking advantage of some image already in the database

chosen by the user similar to the result intended.

Most of these solutions make explicit reference to images.

More recently it has emerged a larger awareness of the

problems of document retrieval, whether through key-

terms or from the document image obtained from its

layout. Our approach follows a series of methods desig-

nated by SBIR (Sketch-Based Image Retrieval) since it

starts with a sketch of an image to try to recover it. The

objective is to expand these sorts of algorithms so that a

sketch may retrieve not only images but also documents,

calling then SBDR (Sketch-Based Document Retrieval).

One system that already tries to employ such a method is

WISDOM++ [Berardi04]. They present an approach for

semantic structure extraction in document images. They

first extract layout structures and then use textual content

to automatically label these structures, applying machine

learning techniques to support the process.

3. THE SKETCH-A-DOC INTERFACE
We have created two different interfaces for our system.

The first can be seen in Fig. 1. Its main area is a canvas,

where users can draw a sketch representing the layout of

the documents they want to retrieve as a series of rectan-

gles. To the left of the canvas is a tool palette where the

type of block to be drawn can be chosen by the user. Each

block will have a color, predefined according to its type,

as follows:

� Red: text block;

� Green: image;

� Blue: graphic;

� Yellow: horizontal line;

� Magenta: vertical line;

� Cyan: table.

The user, of course, needs only select the type of block,

and not the color. This method has the disadvantage of

being a little restrictive than free-form hand-drawn

sketches, but it can be more precise and less error-prone.

Also, a selection tool allows the users to select already

drawn blocks and delete or move them. Three buttons

allow the user to choose the type of search to be per-

formed grid- or semantic-based (described below), and to

provide some similar document to start the search instead

of drawing a sketch (query by example). To the right of

the canvas, the interface also includes an area to display

the best ranked results. There are two preview modes to

show the results: Normal: shows the thumbnails with the

result documents; Sketch: shows the thumbnails with

sketch representation (obtained with the rectangle and

colors system) of the result documents. Double-clicking a

thumbnail will open the respective document. The users

can also save their sketches and after a while load them to

perform a new search, editing or not the original sketch.

An alternative to the rectangle and color system is to use

the CALI recognizer library [Fonseca00], publicly avail-

able and with verified high recognition rate, coupled with

a visual grammar capable of identifying any of those six

elements (Fig. 2). This grammar [Albuquerque00] was

compiled with the help of studies about the most typical

ways users draw a set of shapes and what those shapes

represent. In this manner users can draw as they are used

to and the system will recognize the layout they meant to

sketch:

� Text block -> {WavyLine}

� Image -> {Rectangle Line}

 If Contains (Rectangle, Line)

 And Oblique (Line)

Fig. 1 – Rectangle-based Interface

� Graphic -> {Rectangle Triangle}

 If Contains (Rectangle, Triangle)

� Table -> {Rectangle, Cross}

 If Contains (Rectangle, Cross)

� Hor. Line -> {Line}

If Horizontal (Line)

� Vert. Line -> {Line}

If Vertical (Line)

In this case the rectangle icons disappear since only a

scribble, besides the selection tool, is needed.

To perform a search using a similar document as a start-

ing point, the user can click the query by example option.

An open dialog is shown, from which the sample docu-

ment is chosen. This document is processed as if were to

be indexed, all of its features are extracted and used to

find documents that resemble this one. It is also possible

to select a document from the results of a query and ask

for others similar to that document, thus helping the user

to iteratively refine the search process.

3.1 Scoring
After a query is entered, a scoring algorithm is applied

according to the index method chosen to search in – the

user can choose either one of the two indexation methods,

grid- or semantic-based. In the first, the document’s page

is divided into several grid cells, and the type of ele-

ment(s) in the cells is recorded. In the second, a high-

level description of the content blocks, their size, and

relative positions is stored.

If the grid-based method was chosen, for each block giv-

en by the query, the system looks for every document that

has the same type of block in the same grid cells. For

each match the document is awarded one point. After all

blocks have been processed the documents with the high-

est scores are presented to the user.

The scoring in the second method is a bit more complex.

For every feature, it seeks the entries that match the query

and then the ones in the immediate feature neighborhood.

For instance, consider a block with the following features:

size=”small”, type=”text”, xOrigin=”centerLeft”, yOri-

gin=”3/10”. The algorithm would look for blocks with-

size=”verySmall”/”small”/”medium”, type=”text” / ”im-

age”/”graphic”/”table”/ vLine”/ ”hLine”, xOrigin=”left” /

”centerLeft”/”centerRight”, yOrigin=”2/10”/”3/10”/

”4/10”, varying one feature at a time. It bestows ten

points to a document that exactly matches the query in the

same position, two points for each matched feature in the

feature neighborhood of the query, and one point to every

block of the same type in the feature neighborhood, even

if no other feature is matched. This accounts for possible

errors remembering the block, and allows documents that

only partially match the query to be nevertheless found.

4. DOCUMENT ANALYSIS
Underlying the interface we’ve just described is a repre-

sentation of the appearance of all indexed documents. To

obtain it, the main challenge was to get a high-level de-

scription of the documents according to their layout.

To extract the required features from a document we first

have to transform it into a format more amenable to

processing, abstracting from the underlying file format

(pdf, etc.). We grab the first page of the document and

turn it into to an image, since there are many techniques

capable of image processing and block segmentation, to

identify relevant areas in the images.

4.1 Image Pre-Processing
Using a module developed in the personal document re-

trieval project Quill [Gonçalves08] to extract an image

from most document types, we produce images of the

cover pages of documents. As our objective is to produce

a high-level description of document appearances, we

then process those images. The first step is to convert the

Fig. 2 – Grammar Shapes

Fig. 3 – Sketch-based Interface

image to black and white pixels only, using a basic thre-

shold algorithm (Fig.4).

This led to an image reflecting the overall structure of the

document page, but also resulted in several “impurities”,

stranded pixels created by the thresholding process.

When trying to identify relevant content blocks in the

image, one block could be, mistakenly, included in an

adjacent one or its type mistaken, just because there was

some small group of pixels, “noise” data, in some inap-

propriate location in the document image. To solve this

problem, and since we are only concerned with the over-

all features of the page, we decided to apply an erosion

filter (Fig. 5) with a simple cross flat structuring element

to minimize those spurious pixels and improve the effi-

ciency the next processing step: block segmentation.

\

4.2 Block Segmentation
Many studies have already been made about image and

document block segmentation and classification. Some of

them are strict rule-based approaches and others more

dynamic, resorting to machine learning techniques. For

simplicity and effectiveness’ sakes, we employed the

RLSA (Run-Length Smoothing Algorithm), an adaptive

rule-based algorithm. Instead of the basic version, an im-

proved two-step block segmentation version [Shih96] was

adopted. This algorithm is able to detect content blocks in

a document image, while at the same time classifying

those blocks according to their type. To detect content

blocks, the RLSA algorithm starts by finding content lines

(uninterrupted horizontal sequences of pixels), and then

grouping those closer than a predefined threshold. How-

ever this block classification method does not account for

tables, which were one of the block types we needed to

identify. It only classified in according to five categories:

text, image, graphic, horizontal line and vertical.

To adapt the algorithm to our needs, its rules and parame-

ters were modified, although the same basic features are

used for block classification:

� Height of each block - H;

� Ratio of width to height (aspect ratio) - R;

� Density of black pixels in a block - D;

� Horizontal transitions of white-to-black pixels per

unit width – THx;

� Vertical transitions of white-to-black pixels per unit

width – TVx;

� Horizontal transitions of white-to-black pixels per

unit height – THy.

The width to height ratio is used to detect horizontal and

vertical lines. THx and TVx are used for table and text

discrimination. THy is also used in table recognition. Both

density D and height H allow the discovery of images and

graphics, according to some threshold. This part was

done with caution because it was an innovation to the

RLSA classification algorithm. Unlike the original me-

thod we decided to identify tables, images and graphics

first and let the text blocks be the “otherwise” rule, as

blocks of other types are easier to identify than text

blocks, that can take many different shapes. Images are

easily classified since they usually have more “ink” densi-

ty and are larger than most blocks. Graphics frequently

occupy an identical space to images; the difference is that

their density is much lower. To identify tables, we created

a new set of rules:

Fig. 4 – Document Analysis Process. Left to right: the original document; the document after thresholding and

applying the erosion filter; the result of the RSLA; the final result, with all blocks colored according to their type.

Fig. 5 – Example of erosion

� H <= 30 and D < 0.9 and 0.15 < THx < 1.7 and 1.7 <

TVx < 4.8 and THy > 5.0

� 30 < H <= 60 D < 0.8 and 1.8 < THx < 3.8 and 2.4 <

TVx < 4.8

� 60 < H <= 90 and 0.25 < D < 0.85 and 2.2 < THx <

4.8 and 3.0 < TVx > 6.2 and THy < 12.5

� H > 90 and 0.15 < D < 0.6 and THx > 3.7 and 6.0 <

TVx > 20.0 and THy > 10.0

As can be seen, the block detection and classification

algorithm is sensitive to the values of several parameters.

To choose the most appropriate values for these parame-

ters, mentioned above, we performed an experiment in

which several values were tried and the quality of the

results evaluated. We used a set of 46 documents, repre-

sentative of different block types, sizes and combinations

commonly found in personal documents. Text blocks

were formatted with character sizes varying from 8 to 32

points mixed with commonly used fonts with and without

serifs, like Times New Roman, Arial, Garamond, Book-

man Old Style and Comic Sans MS. For some of these

fonts the character sizes are almost the same and so the

results are also equal, but for others the spacing, thickness

and size are slightly different. We did this so that the es-

timated parameter values would adequately encompass a

wide range of documents. Tables with a wide variety of

number of columns and number of rows and also more or

less filled with text and varying sizes were also used to

allow the estimation of the parameters necessary to identi-

fy them.

We were able to infer the parameter values that give us,

on average, the best results. The process was a bit ar-

duous since the original algorithm didn’t take on account

tables, which are easily mistaken for text blocks or graph-

ics, depending on whether they are more or less filled

with text. Overall, we found that our algorithm is able to

correctly identify and classify 87.5% of all blocks.

5. DOCUMENT DESCRIPTION
Instead of following only one approach we decided to

describe the documents in two ways: grid-based and se-

mantic-based.

5.1 Grid Description
This is the most straightforward approach; it is based in

spatial organization features only.

We divide the document layout according to a pre-

established 4x10 grid. We chose to partition the docu-

ment in 40 units (4 columns and 10 rows) because after

some analysis we concluded that almost no document was

formatted in more than 3 columns and they were not split

vertically with more than one type of block. The number

of rows was chosen empirically, and 10 was the number

held expressive enough.

Fig. 6 – Grid of a document layout

For instance, in Fig.6 we have a document with the grid

overlaid on it. According to this kind of description we

would get something like: There is a text block in cells

[2,3,6,7], another in [9,10,13,14,17,18,21,22] and another

one at [23, 24, 27, 28, 31, 32]; there is an image at [11,

12, 15,16,19,20]; and there is also a table located at cells

[25,26,29,30]. This description is very simplistic, but

good enough to portray the layout of the first page of a

document. In this case there aren’t any intersections on

the same grid cell but if there were the algorithm would

use the same cell number on the description of different

blocks. This provides a description of the page in which

the type of element present in each area of it is known.

We can then match this description to that of a sketch

drawn by the user.

5.2 Semantic Description
This approach is more high-level than the one described

in section 4.1. It does not depend on a pre-determined

grid, as it is based mainly on parameters such as the

types, proximity and relative sizes of blocks. This de-

scription, based on semantically relevant entities and con-

cepts, can be used as the basis for a description of docu-

ments in simple English, making it self-explanatory. A

user who reads such a description would have no trouble

understanding it. This allows applications in which a

high-level or natural language-based description provided

by the user can be compared to the indexed documents.

The description for the topmost part of the document in

Fig.4 would look like this (the number between brackets

represents the id of the block): [2] – element of type text

with 32,81 % of page width and 35,62 % of page height,

with origin at left and 3/10 of page height. It’s below [1],

on top of [5] and left of [3, 4]; [3] – element of type im-

age with 32,43 % of page width and 26,46 % of page

height, with origin at centerRight and 3/10 of page height.

It’s below [1], on top of [4], and right of [2].

Since every block is described this way, the neighbor-

hoods are also well identified with relevant features like

block size and type.

5.3 Indexing
After describing the documents, all we had to do was

transcribe the document descriptions to some simple, easy

and helpful format. XML seemed to be the adequate

choice, even for the reason that it is so widely spread.

At description time. each document results in one XML

file containing all high level features obtained from the

processing stage. Then, by the time the indexation func-

tion is called to process all documents intended, two other

XML files are created, one for each type of document

description – grid and semantic – containing information

about all documents in the index.

Both files depict a tree where leafs are the document file

locations. The grid description XML file follows the sim-

ple tree: grid cell number -> block type –> file. The se-

mantic description XML file follows a more sophisticated

tree involving the content block sizes, types and coordi-

nates. This index can be used to filter documents accord-

ing to the possible values of all different features. Each

entry references the block size (“verySmall”, “small”,

“medium”, “big”, “veryBig”), its type, its origin in the x

coordinate (“left”, “centerLeft”, “centerRight”, “right”)

and its origin in the y coordinate (“1/10”, “2/10”, … ,

“9/10”, “1”). It also contains references to the documents

classified in the feature neighborhood, easily allowing the

navigation in the feature space to look for similar, but not

exactly equal, documents.

Since it is not efficient to parse the XML files every time

a query is introduced, this is done only once, at the time

of the first query, and its elements are stored in a nested

dictionary, that provides an easy and effective way to find

documents that match the query. So, for the semantic ap-

proach, there will be something like: semanticIndex

[size][type][xOrigin][yOrigin]; where the last dictionary

also contains four more dictionaries for each of the block

neighborhood directions: top, bottom, left and right.

While for the grid approach the structure is more

straightforward: gridIndex[type][cell9umber].

Providing the right indices the results are obtained right

away.

6. CONCLUSIONS
The users often resort to their visual memories when de-

scribing documents. However, modern operating systems

and applications do not allow them to use those memories

to retrieve their documents. We presented a document

retrieval system in which a calligraphic interface allows

the users to draw sketches of document appearances in

order to retrieve them.

To do so, we had to process the images representing the

first pages of documents. This required some modifica-

tions to the RLSA algorithm, and the tuning of its para-

meters to include a new type of block: tables. We also

developed two separate document descriptions. One

based simply on block spatial distribution – grid-based –

and the other, more complex, based not only on attributes

like size and location but also block adjacency, giving a

semantic-based description of documents that can be used

in high-level applications. The interface we designed al-

lows the use of both indexing methods and query-by-

example. User tests will allow us to determine which me-

thod provides better results. If it is possible to identify

situations or types of documents in which a method out-

performs the other, it would be interesting to let the sys-

tem automatically decide the best method to adopt in each

case.

One of the next steps in this research is to improve the

grid description to include the percentage or ratio of how

much of the grid cell is occupied by the block. Also, there

are some aspects to be explored about the semantic index.

The retrieval process will be adjusted to consider more

neighborhood features and adapt them to the scoring al-

gorithm.

As for the interface, it will undergo of usability tests, re-

sulting in possible modifications. We would as well like

to include a relevance feedback facet to improve the qual-

ity of the results and another search method – for each

feature, one would choose from a predefined set of val-

ues, as if constructing a semantic description of the doc-

ument. Also, we intend to test the interface and the re-

trieval process as a whole, including each of the methods

(grid and semantic), to see which one presents the best

performance in terms of retrieval success.

7. REFERENCES
[Albuquerque00] Albuquerque, Maria. Fonseca, Manuel

J. Jorge, Joaquim A. Visual Languages for Sketching

Documents, IEEE Symposium on Visual Languages,

IEEE Computer Science Press, 09/2000

[Berardi04] Berardi, M. Lapi, M. Malerba, D. An inte-

grated approach for automatic semantic structure ex-

traction in document images, In S. Marinai & A. Den-

gel (Eds.), Document Analysis Systems VI. 6th Inter-

national Workshop, DAS 2004, Lecture 9otes in

Computer Science, Vol. 3163, 179-190, 2004

[Faloutsos94] Faloutsos, C. Equitz, W. Flickner, M. Nib-

lack, W. Petkovic, D. Barber, R. Efficient and Effec-

tive Querying by Image Content, In Journal of Intelli-

gent Information Systems, 3:231-262, 1994

[Fonseca00] Fonseca, Manuel J. Jorge, Joaquim A.

CALI: A Software Library for Calligraphic Interfaces.

Actas do 9ono Encontro Português de Computação

Gráfica, Marinha Grande, Portugal, 02/2000

[Gonçalves08] Daniel Gonçalves, Joaquim A. Jorge, In

Search of Personal Information: Narrative-Based In-

terfaces. In Proceedings International Conference on

Intelligent User Interfaces (IUI'2008), 13-16 January,

Maspalomas, Canary Islands, Spain. 2008

[Kato92] Kato, T. Kurita, T. Otsu, N. Hirata, K. A Sketch

Retrieval Method for Full Color Image Database, In

Proc. of the 11th Intl. Conf. On Pattern Recognition,

pages 530-533, The Netherlands,Aug. 1992.

 [Shih96] Shih, Frank Y. Chen, Shy-Shyan. Adaptive

document block segmentation and classification, Sys-

tems, Man, and Cybernetics, Part B, IEEE Transac-

tions on, Volume: 26, Issue: 5, 797-802, 10/1996

