
Understanding Stories about Personal Documents

Daniel Gonçalves, Tiago Guerreiro, and Joaquim A. Jorge

Department of Information Systems and Computer Engineering

Instituto Superior Técnico / Technical University of Lisbon

Av. Rovisco Pais, 1000 Lisboa, Portugal

daniel.goncalves@inesc-id.pt, tjvg@immi.inesc-id.pt, jaj@inesc-id.pt

Abstract

Hierarchies are the most common way to help users

organize their personal information. However, their

use is fraught with problems. In particular, the users’

documents, stored in the filesystem, are notoriously

difficult to manage and retrieve. A way to alleviate

those problems is to resort to a wide range of

knowledge about the users, their actions and the world

that surrounds them. Systems that have done so lack an

organizing principle that helps users refer to all the

information that might be relevant. We propose a novel

user interface paradigm, narrative-based interfaces,

that provides such an organizing principle, showing

how knowledge plays a central role in understanding

the users’ stories. An analysis of Quill, a prototype

narrative-based interface for personal document

retrieval, will show how narratives can successfully be

used to help users retrieve their documents.

1. Introduction

The use of hierarchies as a way to help users organize

their personal information is widespread. However,

classifying all items into the hierarchy is not an easy

task. While until recently the number of documents

each user had to deal with was sufficiently low to be

manageable using hierarchic classifications, this is

ceasing to be the case. Electronic documents now

pervade our daily lives, in their different forms. From

letters and other text documents to digital photographs

or videos, both the numbers and types of personal

documents have suffered a hitherto unseen growth in

recent years. Despite this fact, little has been done to

help users manage them in novel and meaningful ways.

Recently, desktop search systems, such as Google

Desktop, have become popular. However, the

interactions they provide are fairly restricted, due to the

limited expressive power they possess. Borrowing from

the paradigm that has pervaded Internet search since its

inception, keyword search, most of today’s desktop

search programs make it impossible to use information

other than keywords that might appear in documents to

retrieve them. Left out is a wealth of relevant

information about the users, their documents, and the

context in which they were handled, much of which

might be more meaningful to users than arbitrary

classifications in hierarchies. Indeed, studies of the

users’ email inboxes [14] have shown that email tools

are often used to manage documents. Every message in

a users’ inbox is associated to information such as its

sender and subject, which make it possible for users to

organize and retrieve their documents more easily than

dealing with the filesystem, even considering that email

tools provide no explicit support for those tasks.

 Recognizing the usefulness of autobiographic

information about documents, some studies have tried

to use it to help users manage those documents. In

Placeless Documents, documents could be organized in

“virtual collections” defined by filters of the

document’s metadata [3], and automatically updated

whenever new relevant documents appear. This idea

was also used by Baeza-Yate’s PACO [2]. More

recently, in Stuff-I’ve-Seen [4], all information

elements handled by the user are indexed, and can then

be retrieved with the help of keyword-based search,

after which the results can be filtered using the

available meta-data. MyLifeBits [5] aims at being able

to automatically record all information relevant for any

given user (contacts, documents, email messages,

events, photos, music, video, etc.), each with its own

meta-data properties. Items can be linked together if

they are somehow related (a photo to the contacts of

the persons shown in it, for instance). The resulting

interrelations graph can help users navigate their “bits”

of information in search of a specific one. Soule’s

Connections search tool [12] monitors file system calls

and creates a graph of related documents based on

when they were handled. The users can then find their

documents by navigating the graph. Kim’s Personal

Chronicling Tools [9] monitor the opening and

modifying of documents, placing content into the

clipboard, sentences entered using the keyboard,

applications used, instant messages sent and received,

etc. As is the case for Stuff-I’ve-Seen, search results

can be filtered based on the available meta-data.

All the above systems handle autobiographic

information in limited ways. Meta-data usually plays a

secondary role, allowing the filtering of results only

after a keyword search has been performed. Also, the

systems’ interfaces do not make it easier for users to

recall relevant autobiographic information. Filling in

values for arbitrary properties might be as cumbersome

as resorting to hierarchies.

We have developed a new interaction paradigm,

narrative-based interfaces, in which stories about the

users’ documents can be told, providing enough

information to the computer to find those documents.

The information elements in stories appear not as

unconnected data tidbits, but as a coherent whole. As

such, they will capitalize on the human’s associative

memories to help them recall relevant information.

Furthermore, narrative-based interfaces are natural, as

humans are natural-born storytellers.

In the next section, we will describe how our

prototype narrative-based interface, Quill was

designed, after which the interface itself will be

described. A discussion of how stories can be

understood and used by the interface will ensue. Then,

we will provide some experimental results that show

how the information contained in stories can be, with

the help of the common-sense knowledge, used to

understand them and successfully retrieve personal

documents. We will then conclude, pointing to possible

future work.

2. Studying Stories About Documents

To understand what to expect from document-

describing stories, we interviewed 20 users, collecting

60 such narratives. Resorting to contents and relational

analysis [8], we identified the different kinds of story

elements that might appear in stories, their relatively

frequencies, and the expected transition probabilities

between those elements [7]. This made it possible for

us to infer, using Hidden Markov Models, archetypical

story structures to be used in Quill to guide the

storytelling process and allow the system to build

expectations to better understand it the stories.

The qualitative analysis of the story transcripts also

yielded relevant results. Most notably, we found it is

important to maintain dialogues with the users, to

prevent them from digressing and also to help jog their

memories and recall more relevant information. Also, it

was verified that knowledge about the user and the

world is essential to understand the stories, as much of

the information required to comprehend them is taken

for granted by the users.

After gaining a thorough insight of document-

describing stories, two low fidelity prototypes of

possible interfaces were created and evaluated by users

[6]. The one that allowed stories more similar to those

told to humans to be told was chosen. It better

maintained the illusion of storytelling. Its development

led to the creation of Quill, described below.

3. The Quill Interface

The Quill interface (Figure 1) allows users to tell

their stories using a fill-in-the-blanks approach. Each

possible story element is suggested in turn to the user.

Whenever this happens, an incomplete sentence is

appended to the end of the story. The missing

information can then be entered with the help of a

specialized dialogue to the left of the story area (one

for each element). While the elements are suggested to

the users in the archetypical order inferred from stories

told to human listeners, they may choose another

element at all times. The users can also mention that

something didn’t take place (the document had no co-

authors, for instance), or that they do not remember

something: not knowing something to have happened

and knowing it didn’t happen are two different things.

Figure 1. The Quill narrative-based interface

As the story is written, the system continuously

searches for documents that match it. Thumbnails of

those documents are presented to the user at the bottom

of the screen. This takes advantage of the users’ visual

memories, allowing them to easily identify the target

documents without disrupting the story flow.

4. Gathering Information

In order for Quill to use stories to find documents, it

must access a wide range of knowledge. An index of

the users’ documents is necessary, as well as additional

autobiographic information that can be used to

understand the stories. To make this possible, we resort

to Quill’s Knowledge Base (KB). Relying on data

explicitly provided by the users would undoubtedly

fail. No one would be willing provide it. We prevented

the need for such manual annotations by creating a

plugin-based monitoring system that continuously

observes what happens in the users’ computers,

selecting relevant information, and updating the KB.

4.1. Documents

The first time the system runs, all documents already

in the users’ machine are indexed. From then on,

changes to those documents are continuously

monitored. For each document, a wealth of information

is stored in the KB, including all data that can be

gleaned from the filesystem (filenames, creation dates,

etc.). A more thorough processing of every document is

also performed. Text-based documents are converted to

plain text and tokenized. Then, the Porter stemming

algorithm [10] is used to find the stems of the different

words in the text. Finally, tfidf algorithm [11] selects

the keywords that best represent the document. Also,

all metadata associated to the documents is used (the

ID3 tags of .mp3 and .ogg files, for instance).

4.2. email

By indexing email messages, the system knows what

documents were sent or received by email, but also the

subjects they were related to, the people the user

knows, and when a document was handled or a subject

considered.

As for documents, all emails already present in the

users’ machines the first time the system is ran are

indexed and subjected to a treatment similar to the one

for documents Two real-time plugins, that work as

proxy POP3 and SMTP servers, keep the KB current.

All documents attached to email messages are also

indexed as personal documents. If the document

already exists somewhere in the filesystem, instead of

creating KB entries for a new document, the email

plugin simply annotates the existing document with the

information that it was sent by email as an attachment.

4.3. Calendar

Also important to understand stories about are the

users’ datebooks, as they provide a glimpse of the

wider context that surrounds them. All events are

analyzed and stored in the KB.

4.4. Web

To understand the subjects the users were interested

on, the news they were exposed to, and get a glimpse of

what was happening in the real world while they

handled their documents, all web pages visited by users

and documents they downloaded are also inspected. As

for the email plugins, some effort is taken in ensuring

that no duplicate document entries are created.

4.5. Applications

This plugin continuously monitors the processes

being run in the users’ machines, and resorts to a list of

relevant processes to filter those that might be relevant

(Office applications, for instance), storing that

information in the KB. Knowing which applications

were used can help understand when tasks described

mentioned by users took place, and when documents of

certain types might have been handled.

4.6. Printer

By intercepting operating system events produced

when a document is added to the print queue, it is

possible to know when a document was printed.

5. The Knowledge Base

Our Knowledge Base uses RDF and RDF Schema as

knowledge representation formalisms [13]0. We chose

RDF based on a set of requisites inferred from the

analysis of document-describing stories. The formalism

had to be flexible, as the stories in which users describe

their documents are varied and rich, and the knowledge

required to understand them should be represented in

an effective and uniform way. Also, not all elements

are equally accurate. For instance, a reference to Time

can be, for a document, that it was written “last

Thursday after lunch”, and for another “read last year

around summer time”. So, a single level of granularity

cannot be imposed by the formalism. A pre-

determined, non-extensible list of possible values is

also out of the question. Finally, while the stories

themselves convey lots of information about a user’s

documents, a large amount of knowledge is assumed to

be known. It is the case of a document’s Author, when

referring to documents created by the users themselves.

Things like a relative’s birthday and the like are also

taken for granted. In short, knowledge representing

facts about the world and the user is required, and

should be represented seamlessly with other

autobiographic information. Also, whenever possible

existing sources of knowledge should be reused.

RDF meets all these challenges. There is a

continuum of increasingly expressive languages in the

RDF family (RDF, RDFSchema, and three flavours of

OWL) allowing us, if necessary, to upgrade the

expressiveness of Quill at a later time, with little effort.

It is a W3C standard that aims to bring semantic

information to the World Wide Web. When this

becomes a reality, such information will help us

understand the users’ actions when on- and off-line.

All knowledge in RDF is stored as a set of triples, in

the shape (<subject>, <predicate>, <object>).

This is flexible, as it imposes little structure to what can

be represented. However, if becomes cumbersome to

deal with those triples directly. So, we created an

abstraction layer on top of RDF which we called Scroll.

Scroll allows more complex constructs than RDF

triples to be handled with ease. The usual methods for

KB interaction, Tell and Ask are available, but classes

and their attributes can also be directly handled.

Furthermore, Scroll was implemented as a semantic

network. We implemented path and node-based

inference, and designed a schema called iQuill (short

for Quill Inference Package), that defines a series of

case-frames for the representation of first-order logic

(FOL) like formulae in RDF (Fig. 2). Scroll can use

those case frames to perform inference. The

expressivity of iQuill is similar to FOL, without the

ability to represent negation and existential quantifiers

(for computational efficiency reasons). On the other

hand, procedural attachment and functions are allowed.

It is possible, for instance, to compare two strings, or

check the inequality of two numbers.

All knowledge gathered by the different monitoring

plugins is stored in the KB using the Quill RDFS

Schema. Two main classes are the basis for this

schema. The Document class contains all fields
required to store information about a document. The

most straightforward of those fields allow the

representation of data collected directly from the

filesystem, such as a document’s filename, size or

extension. Other information, such as the document’s

creator, keywords or title can also be represented, as

can references to different versions of the same

document. Instead of creating subclasses for the

different document kinds, we chose to store knowledge

about all documents in an uniform way, using just the

Document class. This prevents the need to treat some

documents as special cases, and makes it easier for

Quill to handle them.

The second major class, Event, allows the storage

of every relevant action detected by the system:

sending or receiving an email, accessing a web page,

meeting a co-worker, etc. Each event has a start and

finish time, a description, a set of participants and of

documents involved in it. The Event class is used for

every possible event, allowing them to be uniformly

handled by Quill. Two fields, eventType and

eventDirection allow the differentiation of several

kinds of events, if needed.

If Jack sent an email to user Jill arranging for a

meeting, with an attached figure, an Event of

eventType email and eventDirection OUT would

be recorded. Its participants would be Jack and Jill, it

would point to a Document with information about the

email body, and the figure as a related document.

Apart from the Document and Event classes

mentioned above, two other auxiliary classes are

defined in the Quill schema. The Person class

represents a person, with multiple aliases and email

Figure 3. Sample iQuill inference rule. It

returns as possible bindings for the x and y

variables all documents whose names contain

the string ‘foo’.

addresses. The Locus class is used to represent one of

the users’ machines, where documents might reside.

6. Understanding Stories

All the information in the KB is used by Quill to

understand stories and retrieve documents. We will

now describe how this is accomplished.

6.1. *atural Language Understanding

We constrained what the users can mention in their

stories as much as possible, within reasonable limits

based on the contents of stories gathered in the

interviews. Even so, in some of the story element

dialogues in Quill’s interface, free-form text is allowed.

Understanding that text becomes easier as the dialogue

in which the text is entered provides the first clue to

what its meaning might be. For instance, in the Time

dialogue any text entered by the user is likely to

describe an instant in time. The parsing of natural

language (NL) sentences is, thus, performed by the

different story element dialogues.

Sentences are first parsed using a chart parser and

context-free grammars, specific grammar for each

dialogue. We use augmented grammars to

automatically derive the phrases’ semantics during the

parsing process. Assuming compositional semantics

(the meaning of each component can be derived solely

from those of its sub-components), each rule in the

grammar is associated with a lambda calculus formula

that is evaluated when the rule is applied to generate

the semantics of the resulting phrase element.

This automatic extraction of semantics can be very

helpful in some cases. It is the case of the dialogue for

the Time element, which tries to parse text entered in it

as a reference to a time instant. In this case, the

semantics generated by the parser are timestamps that

can then be directly compared with a document’s

creation or modification date.

If the chart parsing algorithm fails, a chunk parser

[1] tries to decipher sentences one piece at a time. The

entire sentence does not need to be correctly parsed,

making the parser more tolerant to mistakes.

6.2. World Knowledge

Besides the knowledge gathered by the monitoring

system, a different, more general kind of knowledge is

also needed: common-sense knowledge about the

world. For instance, if a user mentions a document was

created around New Year’s Eve, Quill must know that

“New Year’s Eve” is a holiday that occurs on January

1st of every year. This kind of knowledge was stored in

the KB and used by the different story element

dialogues whenever needed. Continuing the example

above, if a chunk parser produced a noun phrase with

the expression “New Year’s Eve”, it would look in the

KB for some indication of what it could mean, and

discover the date it refers to and its periodicity. In this

way, instead of having to hard-code every such detail,

Quill’s understanding power can be enhanced just by

providing it with more knowledge in the KB.

6.3. Searching for a Document

Whenever the user enters a new element into the

story, a new set of inference rules is created by its

corresponding dialogue. The different inference rules

are then passed to the Document Searcher sub-module

of Quill. It evaluates each of those rules in the KB. A

score (positive or negative) would then be assigned to

each document thus identified. The sum of all scores

from all inference rules provides a ranking for all

documents. Those better ranked (with higher scores)

are suggested to the user in the document suggestion

area of the interface as probable matches.

7. Evaluation

To find if narrative-based interfaces are actually able

to help users retrieve their personal documents, and to

what extent can the autobiographic information and

knowledge stored in the knowledge base be of use, we

performed a user study in which the document retrieval

rate of Quill was measured. Twenty-one users were

interviewed and asked to retrieve three different

documents, for a total of 63 retrieval sessions. Before

trying to retrieve the documents, Quill’s monitoring

system was allowed to index their emails, agendas, and

documents. It is important to note that actual personal

documents of the users were considered, instead of a

pre-defined test-set. Only for their personal documents

can users tell meaningful stories.

We found that, overall, Quill allowed he users to

retrieve 87.9% of all documents sought. If considering

only text-based documents, the value reaches 95.2%,

whereas for non-text-based documents (photos, music,

etc.) it drops to 68.8%. These are very good results for

a general-purpose tool that does not have provisions for

special cases such as photo properties. It is conceivable

that, with Quill running for an extended period of time

on the users’ machines, continuously gathering

information, the results would improve, especially for

non-textual documents, for which contextual

autobiographic information plays an important role.

Another important result is that while keywords

might have sufficed to find 64.7% of documents,

information in the pathname would be required for

27.5% and, for 7.8% of documents, no textual

information employed by the users would have helped

find them: those documents were found solely with the

help of other autobiographic information, understood

based on the knowledge available to Quill.

8. Conclusions

Most tools used nowadays to help users manage their

personal documents fail to employ a wide range of

autobiographic information those users easily recall

and associate to those documents. Keyword search is

common and, even when other kinds of information can

be used, they appear only as a way to filter the results

of keyword search.

We’ve shown how narrative-based interfaces can

help users convey relevant information about their

documents to the computer, by telling stories about

those documents. To understand those stories, it is

important to possess a wide range of knowledge about

the users themselves, the environment that surrounds

them and their activities. We’ve seen how it is possible

to automatically collect such knowledge that, together

with common sense knowledge, can be employed to

understand stories and retrieve documents. In fact, our

prototype system, Quill, was able to successfully use it:

7.84% of all documents found using Quill would not

have been found by approaches that make no use of

additional knowledge.

In the future, it will be interesting to allow Quill to

index other relevant information sources, such as

instant messaging exchanges and SMS. As ubiquitous

computing becomes more of a reality, it will become

possible to gather a richer set of autobiographic

information, referring to the users’ activities away from

the computer. Also, we hope to see how narratives can

be used for other domains, such as structured document

annotation or the retrieval of real-world objects.

9. Acknowledgements
This work was supported in part by project BIRD, FCT

POSI/EIA/59022/2004

10. References

[1] S. P. Abney. Parsing by chunks. In S. P. Robert, C.

Berwick and C. Tenny, editors, Principle-Based

Parsing: Computation and Psycholinguistics, pages

257–278. Kluwer Academic Publishers, 1991.

[2] R. Baeza-Yates, T. Jones, and G. Rawlins. A New Data

Model: Persistent Attribute-Centric Objects, Technical

Report, University of Chile, 1996.

[3] P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping,

K. Petersen, M. Salisbury, D. B. Terry and J. Thornton.

Extending Document Management Systems with User-

Specific Active Properties. ACM Trans. on Information

Systems, 18(2), pp140-170, ACM Press 2000.

[4] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin and

D. C. Robbins. Stuff I’ve Seen: a system for personal

information retrieval and re-use. In SIGIR ’03:

Proceedings of the 26th annual international

ACMSIGIR conference on Research and development in

informaion retrieval, pages 72–79. ACM Press, New

York, NY, USA, 2003. ISBN 1-58113-646-3.

[5] J. Gemmel, G. Bell, and R. Lueder. MyLifeBits: a

personal database for everything. Communications of

the ACM, 49(1), pp. 88-95, 2006.

[6] D. Gonçalves, and J. Jorge, Telling Stories to

Computers. In Proceedings CHI2004, ACM Press, 27-

29 April 2004, Vienna, Austria.

[7] D. Gonçalves, and J. Jorge. “Tell Me a Story”: Issues on

the Design of Document Retrieval Systems. In

Proceedings DSV-IS’04, Lecture Notes on Computer

Science, Springer-Verlag, July 2004, Hamburg,

Germany.

[8] M. Huberman, and M. Miles. Analyse des données

qualitatives. Recueil de nouvelles méthodes. Bruxelles,

De Boeck, 1991.

[9] P. Kim, M. Podlaseck and G. Pingali. Personal

chronicling tools for enhancing information archival and

collaboration in enterprises. In CARPE’04: Proceedings

of the the 1st ACM workshop on Continuous archival

and retrieval of personal experiences, pp .56–65. ACM

Press, New York, NY, USA, 2004. ISBN1-58113-932-

2.

[10] M. F. Porter. An algorithm for suffix stripping. Program

14, pages 130-137. 1980.

[11] G. Salton. Automatic Text Processing, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, 1988.

[12] Craig A. N. Soules and Gregory R. Ganger.

Connections: using context to enhance file search. In

SOSP ’05: Proceedings of the twentieth ACM

symposium on Operating systems principles, pages

119–132. ACM Press, New York, NY, USA,

2005.ISBN 1-59593-079-5.

[13] W3C Semantic Web, http://www.w3.org/2001/sw/

[14] S. Whittaker, C. Sidner. Email overload exploring

personal information management of email. In

Conference proceedings on Human factors in

computing systems, pages 276-283, ACM Press, 1996.

