

���������	��
����	
��
�����	���������	��
����	
��
�����	���������	��
����	
��
�����	���������	��
����	
��
�����	

���������
��������
��������������
��������
��������������
��������
��������������
��������
�����

�

�

�

�

�

�

�

�

�������
������
����
�������
�����
������ �!
�!���
�������
������
����
�������
�����
������ �!
�!���
�������
������
����
�������
�����
������ �!
�!���
�������
������
����
�������
�����
������ �!
�!���

��!������
����"�����!��!������
����"�����!��!������
����"�����!��!������
����"�����!

�#�$��
������!
	�����!�#�$��
������!
	�����!�#�$��
������!
	�����!�#�$��
������!
	�����!

%��!���&

�

��!!����'(�
)���
�
�*���'(�
$�
+���
$�
������

��
�����,����
��-���#�� �
�
$�
��)���$���!

�������$��.�������$��.�������$��.�������$��.
 ������
	����$�
������
����$�
$�
��������

/0��/0��/0��/0��

���!�$����.
 ������
$�
������!�$�$�
�1 �� �
$�
��!*��

�����!.
 ������
������
2�����
	$�����!

 ������
/�!1
������
����!
�����$��
���*����

 ������
/�(�
��3���
������$�
���(�
������!

 ������
�#���
/����
+�!)��
$�
�����

 ������
	����$�
������
����$�
$�
��������

 ������
	�3)��
�#���
+��$�!
/����

 ������
4�����$�
5�������
����6����
����
$�
�����

��������	

��

i

Resumo

m dos problemas da extracção de conhecimento ainda sem solução é a descoberta de padrões

em dados temporais. Uma das abordagens mais usadas para explorar este tipo de dados é a

descoberta de padrões sequenciais, uma vez que os dados temporais podem ser encarados como

sequências de eventos. No entanto, os algoritmos existentes apresentam algumas deficiências,

nomeadamente a falta de foco nas expectativas do utilizador e o elevado número de padrões que

descobrem. Para além disso, a utilização de restrições, geralmente aceite como solução para o

problema, pode transformar o processo num simples teste de hipóteses, especialmente quando se

usam restrições mais fortes, como é o caso das linguagens regulares.

Nesta dissertação, argumenta-se que é possível usar algoritmos de descoberta de padrões

sequenciais com restrições, para descobrir informação desconhecida, mantendo o processo de

descoberta focado nas expectativas e conhecimento do utilizador. De forma a demonstrar a

validade do argumento, é proposta uma nova metodologia para explorar sequências de eventos

baseada na utilização de relaxamentos de restrições. Estes relaxamentos estabelecem condições

mais fracas que as restrições impostas, tornando possível a descoberta de padrões que não são

completamente aceites. Adicionalmente é proposta uma hierarquia de relaxamentos, indo desde

relaxamentos conservativos até a relaxamentos aproximados e não aceites.

De modo a facilitar a aplicação da nova metodologia, são propostas várias extensões aos

algoritmos de descoberta de padrões sequenciais existentes, de modo a lidar de forma eficiente com

as restrições-Ω, também propostas.

U

iii

Abstract

ne of the main unresolved problems that arises in the data mining process is treating data that

contains temporal information. A complete understanding of this phenomenon requires that

the data should be viewed as a sequence of events. Sequential pattern mining is the approach most

commonly used to explore nominal sequences, enabling the discovery of frequent sequential

patterns. The main drawback of algorithms for this task has been their lack of focus on user

expectations and the high number of discovered patterns. However, in some cases, the solution

most commonly adopted, based on the use of constraints, can transform the mining process into a

hypothesis-testing task. This risk is even stronger when mining sequential data, where more

restrictive constraints, like regular languages, have been used.

In this dissertation, we argue that it is possible to use constrained sequential pattern mining

algorithms, over nominal data, to discover unknown information, keeping the process centered on

the user. In order to demonstrate the validity of this thesis, we propose a new methodology based

on the use of Ω-constraint relaxations. A constraint relaxation establishes a weaker condition than

the original constraint, making possible the discovery of patterns that are not completely accepted

by the original constraint. We propose a new hierarchy of relaxations that ranges from conservative

ones, to approximately accepted and non-accepted relaxations.

Additionally, we propose several extensions to existing sequential pattern mining algorithms,

in order to deal efficiently with constraints and, in particular with gap and Ω-constraints.

O

v

Palavras Chave

Descoberta de padrões temporais

Descoberta de padrões sequenciais

Restrições temporais

Restrições de conteúdo

Relaxamentos de restrições

Key Words

Temporal Data Mining

Sequential Pattern Mining

Content Constraint

Temporal Constraints

Constraint Relaxation

vii

Acknowledgements

I would like to thank those who have been present in these years, and have in some way

contributed to this thesis.

To my advisor, Professor Arlindo Oliveira, for the continuous discussions along these years,

and the numberless readings and comments of this dissertation.

To Professor Pavão Martins, for his support and confidence since my early days as a teaching

assistant at Instituto Superior Técnico.

To PmeLink.PT staff, for the possibility to apply new mining methodologies over real-life data

and for their availabity to answer all my questions.

To Professor Pedro Lourtie and Professor João Ventura, for their comments in the exploration

of Mathematical Analysis data.

To Gregory Piatetsky-Shapiro, for his readiness on allowing the reproduction of an issue of the

"KDnuggets news".

To my students, for their presence, cheerfulness and joviality. To Sofia Pinto, for her

friendship and patience with me, for our long discussions about research and career expectations.

To my parents and sister, my special thank for their continuous support and encouragement

through all these years.

Finally, to Pedro, for his presence, patience, encouragement and unlimited support.

Lisbon, May 2004

Cláudia Martins Antunes

ix

Contents

RESUMO .. I

ABSTRACT ...III

PALAVRAS CHAVE ... V

KEY WORDS... V

ACKNOWLEDGEMENTS ..VII

CONTENTS... IX

FIGURES INDEX ...XIII

TABLE INDEX .. XVII

ALGORITHMS INDEX...XIX

CHAPTER 1 INTRODUCTION .. 1

1 – PROBLEMS IN PATTERN MINING OVER TEMPORAL DATA .. 2
2 – MAIN CONTRIBUTIONS .. 3
3 – DISSERTATION OUTLINE.. 4

CHAPTER 2 TEMPORAL DATA MINING: AN INTRODUCTION .. 7

1 – DATA MINING: BASIC CONCEPTS ... 8
2 – DATA MINING: PROCESS OVERVIEW .. 10

2.1 – Pre-processing ... 11
2.2 – Data Mining ... 14
2.3 – Post-processing.. 17

3 – TEMPORAL DATA MINING ... 18
3.1 – Pre-processing of Temporal Data ... 19
3.2 – Mining Operations on Temporal Data .. 30
3.3 – Post-processing for Temporal Information ... 35

4 – OPEN ISSUES IN TEMPORAL DATA MINING.. 35
SUMMARY ... 35

Contents

x

CHAPTER 3 RELATED WORK AND THESIS STATEMENT ...37

1 – RELATED WORK: SEQUENTIAL PATTERN MINING ...37
1.1 – Problem Statement and Analysis ..38
1.2 – Constraints for Sequential Pattern Mining...43
1.3 – Unconstrained Algorithms..48
1.4 – Algorithms for Sequential Pattern Mining with Constraints..52
1.5 – Review of Related Work..55

2 – THESIS STATEMENT..56
SUMMARY..57

CHAPTER 4 SEQUENTIAL PATTERN MINING: NEW ALGORITHMS ..59

1 – PATTERN-GROWTH METHODS WITH GAP CONSTRAINTS..60
1.1 – GenPrefixSpan..60

2 – COMPARISON BETWEEN GSP AND GENPREFIXSPAN ...62
3 – SPARSE – SEQUENTIAL PATTERN MINING WITH RESTRICTED SEARCH ..63

3.1 – Support-Based Pruning ..64
3.2 – Candidate Generation ..65
3.3 – Candidate Pruning..66

4 – EXPERIMENTAL RESULTS ...67
SUMMARY..73

CHAPTER 5 CONSTRAINTS FOR MINING EVENT SEQUENCES ...75

1 – Ω-CONSTRAINTS...76
2 – TEMPORAL CONSTRAINTS ..77

2.1 – Reusable Time Ontology...78
2.2 – The Hierarchy of Temporal Constraints...79

3 – CONTENT CONSTRAINTS ..81
3.1 – Content Constraints with Context-free Languages...82

4 – ALGORITHMS FOR Ω–CONSTRAINTS ...85
5 – EXPERIMENTAL RESULTS ...88

5.1 – Constrained versus Unconstrained Mining ..88
5.2 – Regular versus Context-Free Languages ...91

SUMMARY..92

CHAPTER 6 CONSTRAINT RELAXATIONS...95

1 – NAÏVE RELAXATION...98
2 – CONSERVATIVE RELAXATIONS...98

2.1 – Legal ...99
2.2 – Valid-suffix..99
2.3 – Valid-prefix ...100

3 – APPROX RELAXATIONS ..101
3.1 – Algorithm ε-accepts ..102

4 – NON-ACCEPTED RELAXATIONS ..104
5 – DISCUSSION..105
6 – SIMPLE EXAMPLE ...106
7 – EXPERIMENTAL RESULTS ...108

7.1 – Constraint Relaxations combined with Item Constraints ...112
SUMMARY..114

Contents

xi

CHAPTER 7 CASE STUDIES .. 115

1 – APPLICATIONS ... 115
1.1 – PmeLink.PT.. 115
1.2 – Analysis of Enforced Precedence between Subjects .. 119
1.3 – Analysis of LEIC Students’ Behaviours ... 124

2 – EFFICIENCY EVALUATION ... 133
2.1 – Comparison between GenPrefixSpan and SPaRSe.. 133
2.2 – Comparison between Constrained and Unconstrained Mining... 133
2.3 – Evaluation of Constraint Relaxations.. 136

3 – EFFECTIVENESS EVALUATION ... 140
SUMMARY ... 143

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 145

1 – CONCLUSIONS ... 145
2 – FUTURE WORK .. 147
3 – CLOSING REMARKS ... 149

REFERENCES .. 151

APPENDIX A KDNUGGETS POLLS (OCTOBER 2003).. 163

APPENDIX B EXPERIMENTAL SETUP... 165

xiii

Figures Index

Figure 2.1 – The knowledge discovery process ... 11
Figure 2.2 – Time series representation in time domain.. 20
Figure 2.3 – Representing a time series using linear segments.. 21
Figure 2.4 – Comparing two time series with the Euclidean distance .. 21
Figure 2.5 – Comparing two time series using time windows.. 22
Figure 2.6 – Comparing two time series using Dynamic Time Warping ... 22
Figure 2.7 – Comparing two time series using a probabilistic measure ... 23
Figure 2.8 – Representing a time series using the Discrete Fourier Transform, with k=2 23
Figure 2.9 – Representing a time series using Discrete Wavelet Transform, with k=3 ... 24
Figure 2.10 – Comparing two time series in frequency domain.. 24
Figure 2.11 – Representing a time series using clustering as a discretization method... 26
Figure 2.12 – Representing a time series using SDL... 27
Figure 2.13 – Comparing two time series using the blurry matching [Agrawal 1995b]... 28
Figure 2.14 – Example of an episode ... 28
Figure 3.1 – A deterministic finite automaton .. 45
Figure 3.2 – A pushdown automaton... 47
Figure 3.3 – Illustration of GSP behavior ... 50
Figure 3.4 – Illustration of PrefixSpan behavior .. 52
Figure 4.1 – SPaRSe profiling for very low support thresholds .. 65
Figure 4.2 – Hash-tree used in candidate generation ... 66
Figure 4.3 – Candidate pruning example .. 67
Figure 4.4 – Performance with different dataset densities (support set to 10%)... 68
Figure 4.5 – Memory requirements in the presence of different dataset densities .. 69
Figure 4.6 – Performance with different support thresholds in dense datasets ... 69
Figure 4.7 – Performance with different support thresholds for sparse datasets.. 70
Figure 4.8 – Performance with different gap constraints (support set to 10%)... 70
Figure 4.9 – Performance with different dataset sizes (support set to 10%).. 71
Figure 4.10 – Memory requirements in the presence of different dataset sizes ... 71
Figure 4.11 – Performance with different average sequence length (support set to 33%) 72

Figures Index

xiv

Figure 5.1 – Constraint's hierarchy..77
Figure 5.2 – Reusable Time Ontology ..78
Figure 5.3 – Temporal Constraints: regular and convex constraints..80
Figure 5.4 – Pushdown automaton with itemsets ..83
Figure 5.5 – Extended pushdown automaton equivalent to the PDA in Figure 5.4 ...84
Figure 5.6 – Two other extended pushdown automata...85
Figure 5.7 – DFA representing the content constraint for the dataset D10C10T2S4I2 ...89
Figure 5.8 – Comparison of processing times spent by unconstrained and constrained mining89
Figure 5.9 – Comparison of number of discovered patterns by unconstrained and constrained mining90
Figure 5.10 – Comparison of the average times spent per pattern by unconstrained and constrained mining90
Figure 5.11 – Deterministic (left) and non-deterministic ePDAs (right) defined over unconstrained patterns.....91
Figure 5.12 – Comparison of processing times spent by different formal languages...91
Figure 5.13 – Comparison of number of discovered patterns by different formal languages.................................91
Figure 5.14 – Comparison of the average times spent per pattern by different formal languages.........................92
Figure 6.1 – Hierarchy of relaxations...96
Figure 6.2 – An extended pushdown automaton ...97
Figure 6.3 – Pushdown automaton for well-behaved customers..107
Figure 6.4 – DFA defined over unconstrained patterns..108
Figure 6.5 – ePDA defined over unconstrained patterns..108
Figure 6.6 – Number of discovered patterns using the DFA in Figure 6.4..109
Figure 6.7 – Number of discovered patterns using the ePDA in Figure 6.5..110
Figure 6.8 – Processing time using the DFA in Figure 6.4..110
Figure 6.9 – Processing time using the ePDA in Figure 6.5..111
Figure 6.10 – Average time spent by pattern, using the DFA in Figure 6.4..111
Figure 6.11 – Average time spent by pattern, using the ePDA in Figure 6.5 ..112
Figure 6.12 – Comparison of processing times of Approx Relaxation combined with item constraints with DFA in

Figure 6.4 (on the left) and with the ePDA in Figure 6.5 (on the right)...112
Figure 6.13 – Comparison of number of discovered patterns by Approx Relaxation combined with item

constraints, with the DFA in Figure 6.4 (on the left) and with the ePDA in Figure 6.5 (on the right)113
Figure 6.14 – Comparison of processing times of Non-Accepted variants with the DFA in Figure 6.4 (on the left)

and with the ePDA in Figure 6.5 (on the right)..113
Figure 6.15 – Comparison of number of discovered patterns by Non-Accepted variants with the DFA in Figure

6.4 (on the left) and with the ePDA in Figure 6.5 (on the right) ...113
Figure 7.1 – Distribution of the length of sequences on the PmeLink.PT dataset ..116
Figure 7.2 – Distribution of the size of the baskets in PmeLink.PTdataset ..116
Figure 7.3 – nPDA for specifying constraints over the dataset PmeLink ...117
Figure 7.4 – Number of patterns discovered in the dataset PmeLink.PT ...118
Figure 7.5 – Distribution of the length of sequences on dataset AMs1982-2001...120
Figure 7.6 – Distribution of the number of enrollments per semester in AMs1982-2001 (size of itemsets)120
Figure 7.7 – Distribution of students per time interval...120

Figures Index

xv

Figure 7.8 – DFA for representing the results on Mathematical Analysis subjects in 4 semesters, after 1994... 121
Figure 7.9 – DFA for representing the results on Mathematical Analysis subjects in 4 semesters, before 1994 121
Figure 7.10 – DFA for representing results on Mathematical Analysis subjects in 6 semesters, before 1994..... 122
Figure 7.11 – DFA for representing the results on Mathematical Analysis subjects in 6 semesters, after 1994. 123
Figure 7.12 – DFA for specifying the model curriculum for LEIC specialty areas ... 125
Figure 7.13 – Distribution of the length of sequences on dataset LEIC1989-2001 .. 126
Figure 7.14 – Distribution of the number of enrollments per semester in LEIC1989-2001 (size of itemsets) 126
Figure 7.15 – Students per specialty area.. 126
Figure 7.16 – Support for approvals and failures (subjects in the first 6 semesters of the model curriculum) .. 127
Figure 7.17 – Support for approvals and failures (subjects in the last 4 semesters of the model curriculum) ... 127
Figure 7.18 – PDA for specifying the curricula on each scientific area, where students conclude three subjects in

a determined scientific area at most on 4 semesters ... 128
Figure 7.19 – DFA for finding optional subjects... 130
Figure 7.20 – DFA for discovering IAR frequent curricula .. 132
Figure 7.21 – Performance w/ variable support in dataset PmeLink.PT (left) and LEIC1989-2001 (right). 133

Figure 7.22 – PDA for specifying constraints over the dataset PmeLink ... 134
Figure 7.23 – Performance (on the left) and average time spent for each pattern (on the right), using different

types of content constraints in dataset PmeLink... 134
Figure 7.24 – Performance (on the left) and average time spent for each pattern (on the right), using different

types of content constraints in dataset LEIC1989-2001 ... 135
Figure 7.25 – DFA for specifying constraints over dataset LEIC1989-2001 .. 135
Figure 7.26 – nPDA for specifying constraints over dataset LEIC1989-2001.. 136
Figure 7.27 – Number of discovered patterns using different content constraints.. 136
Figure 7.28 – Performance (on the left) and average time spent for each pattern (on the right), using different

constraint relaxations in dataset PmeLink.PT .. 137
Figure 7.29 – Performance (on the left) and average time spent for each pattern (on the right), using different

constraint relaxations in dataset LEIC1989-2001... 137
Figure 7.30 – Performance (on the left) and average time spent for each pattern (on the right), using approx

variants in dataset PmeLink.PT ... 138
Figure 7.31 – Performance (on the left) and average time spent for each pattern (on the right), using approx

variants in dataset LEIC1989-2001.. 138
Figure 7.32 – Number of discovered patterns with Non-accepted variants on LEIC1989-2001 139
Figure 7.33 – Performance (on the left) and average time spent for each pattern (on the right), using Non-

accepted variants in dataset LEIC1989-2001 .. 139

Figure 7.34 – Performance (on the left) and average time spent for each pattern (on the right), using Non-

accepted variants in dataset PmeLink.PT ... 139
Figure 7.35 – DFA for specifying the anticipated abandon reasons ... 141
Figure 7.36 – Precision and Recall chart... 142

xvi

xvii

Table Index

Table 1 – Database example ... 60
Table 2 – Processing Times for GSP and GenPrefixSpan .. 63
Table 3 – Patterns discovered with a 50% support threshold and an unconstrained process 89
Table 4 – Dataset used to exemplify the mining process .. 107
Table 5 – Comparison of the results achieved with and without constraints... 107
Table 6 – Discovered patterns with several relaxations using DFA in Figure 6.4 ... 109
Table 7 – Discovered patterns with several relaxations using ePDA in Figure 6.5.. 109
Table 8 – Number of discovered patterns with unconstrained mining... 117
Table 9 – Purchase patterns of Stock products .. 118
Table 10 – Patterns discovered on dataset AMs1982-2001, for 10% of support ... 121
Table 11 – List of common subjects, distributed by scientific area... 124

Table 12 – Patterns in Scientific Areas, discovered with an ΩΩΩΩ–constraint... 128
Table 13 – Patterns in a single scientific area discovered with the Approx relaxation ... 129
Table 14 – Patterns in scientific areas with one error.. 129
Table 15 – Patterns with optional subjects attended by LEIC students ... 131
Table 16 – Artificial Intelligence frequent curricula.. 132
Table 17 – Set of relevant sequences for abandons .. 141
Table 18 – Precision and Recall ... 142
Table 19 – Parameters for synthetic data generation... 165

xix

Algorithms Index

Algorithm 1 – GSP pseudocode (without taxonomies and only with max_gap=δδδδ) .. 49
Algorithm 2 – Pseudocode for the join procedure .. 49
Algorithm 3 – PrefixSpan pseudocode .. 51
Algorithm 4 – SPIRIT pseudocode... 53
Algorithm 5 – PrefixGrowth pseudocode ... 54
Algorithm 6 – GenPrefixSpan pseudocode .. 61
Algorithm 7 – SPaRSe pseudocode .. 64
Algorithm 8 – Pseudocode for the main procedures of GenPrefixGrowth algorithm.. 86
Algorithm 9 – Pseudocode for the discoverL1 procedure in GenPrefixGrowth .. 86
Algorithm 10 – Pseudocode for the discoverFList procedure in GenPrefixGrowth ... 87

Algorithm 11 – Pseudocode for �–acceptsCFL algorithm ... 103

1

Chapter 1

Introduction

"As time passes, objects are created and destroyed, and

people gain, and forget, information." [Hayes 1995]

ime has been one of the most interesting phenomenon for men. Understanding its relation to

the observed changes has been a target, for thousands of years, from complex philosophical

questions to the study of human behavior. Temporal data appears naturally in almost everything in

nature, from engineering to medicine and finance domains, and with the improvements on the

digital storage capabilities in the last decades, the interest on the discovery of hidden information,

by automatic means, has exploded.

In general, we can consider two kinds of temporal data: real-valued and nominal data. The

automatic analysis of real-valued data has deserved a considerable attention in the last decades,

especially from the seventies until now. Examples of these are the analysis and prediction of

continuous signals, like financial time series. This interest is probably due to the financial impact of

such prediction and to the challenge of being able to predict a theoretically unpredictable behavior.

However, for nominal data, traditional automatic data exploration/mining techniques usually

treat temporal data as unordered collections of events, ignoring its temporal information. They

usually center their attention on the analysis of the data that occurs at the same instant (intra-

transactional analysis), instead of analyzing the relations of data between different instants (inter-

transactional analysis). Examples of such techniques are mechanisms for data classification, data

clustering and mining frequent patterns.

As an answer to this problem, Temporal Data Mining has appeared in the last decade as an

T

Chapter 1 – Introduction

2

extension to traditional data mining techniques. It provides the ability to explore the dynamic

aspects of entities, instead of only exploring its static characteristics, and simultaneously

performing inter-transactional analysis. In this manner, the classification and clustering of

temporal data, as well as the discovery of temporal patterns, is currently being addressed.

1 – Problems in Pattern Mining over Temporal Data

The most usual technique to discover temporal patterns in nominal data is known as Sequential

Pattern Mining. It was first introduced in 1995 [Srikant 1995] as an extension of the frequent

pattern mining task, and, since then, several algorithms have been proposed. Nevertheless the

advances on the performance of those algorithms, the large number of discovered patterns (usually

thousands or hundreds of thousand), has been the main drawback of these approaches. Note that the

combinatorial nature of sequential patterns is even stronger than for patterns in general, and the

simple optimization of the corresponding algorithms is not sufficient to reduce the number of

patterns, considerably.

Another issue on data mining techniques, in general, and in pattern mining in particular, is the

lack of focus on user expectations and background knowledge. In fact, most of the time, the results

are not sufficiently interesting and/or are too difficult to analyze. In order to minimize this problem,

recent approaches use constraints to restrict the number and scope of the discovered patterns.

Using constraints makes it possible to focus the mining process into areas or sub-spaces where

useful information is likely to be gained. In the last years, several categories of constraints have

been used, most of them related to the duration of sequences and the impact of the proximity

among events (gap constraint), and more recently with the content of transactions (for example

item constraints and regular languages). Despite the efforts to capture the semantics of the

application domains, they have been applied seldom, in a non-integrated way. Indeed, it was only

in the last few years, that the data mining community has understood the need for a theoretical

framework for data mining that is able to deal with the presence of background knowledge, among

other things [Mannila 2000b].

However, the existence of such ability to represent background knowledge and efficient

algorithms to discover the hidden patterns does not solve the entire problem. As pointed by some

authors [Hipp 2002], restricting the search too much approximates the mining process to a simple

hypothesis-testing task, since the process will only find already known patterns. In fact, the use of

Chapter 1 – Introduction

3

regular languages as constraints goes against the first goal of data mining – the discovery of

unknown information. Nevertheless, it is undeniable the adequacy of these or other formal

languages to represent the knowledge about sequential phenomena.

In this dissertation, we argue that it is possible to use constrained sequential pattern mining

algorithms, over nominal data, to discover unknown information, keeping the process centered on

the user.

2 – Main Contributions

In order to demonstrate the validity of this thesis, we propose a new methodology to mine nominal

event sequences, based on the use of constraint relaxations to guide the sequential pattern mining

process. The methodology makes use of sequential pattern mining algorithms and two concepts:

the Ω-constraint and constraint relaxations.

The Ω-constraint aggregates a content, a temporal and an existential constraints in a unique

object. The content constraint is composed of an item constraint, specifying the set of items

relevant for the analysis, a taxonomy for allowing generalized patterns, and a formal language to

specify the characteristics that the sequences of itemsets may have, in order to be interesting for the

analysis. The temporal constraint is defined based on the concepts of time interval and other

related concepts, defined in the "Reusable Time" ontology [Zhou 2002]. It specifies a restriction

over the timestamps of transactions. It uses a time interval that includes the period of interest, a

maximal allowed time gap to consider, and the time granularity of the data. Finally, the existential

constraint is just the minimum support threshold, as is usual in sequential pattern mining

algorithms.

While this constraint serves as a way to capture the user background knowledge, the use of a

constraint relaxation enables the discovery of unknown information. A constraint relaxation

establishes a weaker condition than the original constraint, and in this manner, makes possible the

discovery of patterns that are not completely accepted by the original constraint. Relaxations of Ω-

constraints include a relaxation both over the content and the temporal constraint. While the first

one is based on the relaxation of the associated formal language, establishing weaker conditions to

accept a sequence as valid, the last one is specified as the maximal time error accepted

Chapter 1 – Introduction

4

In particular, we make the following contributions:

• We propose the use of constraint relaxations to guide the pattern mining process, enabling

the discovery of unknown information.

• We propose a new type of constraints – the Ω-constraints, which provide a mean to represent

background knowledge about nominal temporal data. In this manner, we contribute to the

specification of a theoretical framework to deal with sequential and temporal data.

• We propose a hierarchy of constraint relaxations, from conservative ones, that accept patterns

that are subsequences of accepted sequences, to non-conservative ones: the Approx accepted,

which accepts sequences that dist a pre-defined error to some accepted sequence, and the

non-accepted relaxation, which enables the discovery of completely unknown and

unexpected patterns.

• We present the concretization of those relaxations when applied to Ω–constraints, in the

particular case when the content constraint is based on a context-free language (represented

as a pushdown automaton). In parallel, we extend pushdown automata to deal with sequences

of itemsets.

• We present an extension to the PrefixGrowth algorithm – GenPrefixGrowth to efficiently

deal with Ω–constraints and constraint relaxations.

• We propose an efficient algorithm – ε-acceptsCFL, for verifying if a sequence is

approximately accepted by a specific pushdown automata.

• We analyze and explain the sequential pattern mining problem and its two main approaches:

apriori-based and pattern-growth methods, stating clearly the advantages and disadvantages

of each approach. We propose two new algorithms: one resulting from the generalization of

pattern-growth methods to use gap constraints – GenPrefixSpan, and the other – SPaRSe,

which optimizes the apriori philosophy, by constraining the search space. In this manner, we

demonstrate that apriori-based algorithms are able to compete with pattern-growth methods,

and outperform them in dense datasets.

• Finally, we show the results of the new methodology when applied to real-world problems.

3 – Dissertation Outline

The dissertation comprises eight chapters. The first chapter (Chapter 2) introduces the concepts and

the process of knowledge discovery, paying a particular attention to the problem of temporal data

Chapter 1 – Introduction

5

mining and its main areas.

In Chapter 3 we present a detailed description of the sequential pattern mining problem,

presenting an analysis of its complexity. Additionally, we survey the proposed constraints applied

to sequential pattern mining, formally introducing the concepts of deterministic finite (DFA) and

pushdown automata (PDA), used in the rest of the dissertation. After the description of the two

main approaches and the corresponding adaptations to deal with regular languages as constraints,

we present our thesis statement, explaining the meaning of each claim in detail.

We begin Chapter 4 by presenting the generalization of PrefixSpan – GenPrefixSpan,

generalizing the first algorithm in order to be able to deal with gap constraints. We finish the first

section with a comparison between GSP and GenPrefixSpan, identifying the continuous reduction

of the search space, used by pattern-growth methods, as the first cause for their differences on

performance. In the second section, we present a new apriori-based algorithm – SPaRSe, which

combines the simplicity of the candidate generation and test philosophy with the continuous

reduction of the search space. With this new algorithm, we show that, with some specific

improvements, apriori-based algorithms can compete with pattern-growth methods, showing

similar performances on the generality of situations. Studies on performance and scalability in

synthetic datasets are presented in the last section of this chapter.

In Chapter 5, we present the Ω–constraint, describing its aggregated constraints in detail. A

particular attention is given to the definition of the temporal constraint and the concept of time

interval, as defined in the "Reusable Time" ontology. Additionally, in terms of the content

constraint, we present the extension of pushdown automata to deal with sequences of itemsets. We

finish the chapter with the adaptation of existent algorithms to use Ω–constraints, presenting the

GenPrefixGrowth algorithm. We demonstrate that this algorithm in conjunction with Ω–constraints

outperforms GenPrefixSpan in the generality of situations.

The description of the new methodology for mining sequential / temporal patterns is made in

Chapter 6, were a hierarchy of constraint relaxations is proposed. In particular, we propose a new

algorithm – ε-acceptsCFL, to verify if a sequence is approximate accepted by a given context-free

language, represented as a pushdown automaton. The chapter ends with a performance study of the

usage of each constraint relaxation.

Finally, Chapter 7 presents the results obtained by the application of the new methodology on

three real-life datasets. The thesis concludes in Chapter 8, where a summary of the dissertation and

achieved results is presented. Moreover, some guidelines for future research are suggested.

Chapter 1 – Introduction

6

7

Chapter 2

Temporal Data Mining: an introduction

In this chapter, the field of data mining is introduced, by presenting its core concepts and an

overview of the major steps of the mining process. Following this introduction, temporal data

mining is addressed, by exploring its goals, applications, techniques and related problems. A

particular attention is given to pre-processing, mining and post-processing operations over

temporal data.

he analysis of registered data was traditionally made by statisticians, who tried to give a

precise portrait of populations. Data mining, as the natural successor of statistics, tries to go

further, providing automatic means to classify and predict future behaviors.

The term data mining has been overused, most of the times to mean the whole process of

knowledge discovery in databases (usually called KDD). In this context, it has been defined as “the

nontrivial extraction of implicit, previously unknown and potential useful information from data”

[Frawley 1992]. In the last decade, data mining techniques have gained acceptance as a viable

means for finding full information in data, and its use has expanded to commercial domains, like

customer relationship management, market basket analysis or credit card fraud detection, to

scientific and engineering applications.

The analysis of temporal data has been used in a variety of domains, from engineering to

scientific research, finance and medicine. In engineering matters, temporal data usually arises with

either sensor-based monitoring, such as telecommunications control (e.g. [Das 1997], [Das 1998],

[Grossman 1998]) or log-based systems monitoring (see, for instance [Mannila 1996] and

[Mannila 2000a]). In scientific research it appears, for example, in spatial missions (e.g.

[Keogh 1997] and [Oates 1999]).

T

Chapter 2 – Temporal Data Mining: an introduction

8

In finance, the prediction of time series is the paradigmatic example of temporal data mining.

See, for instance, the work of [Fama 1970], [Faloutsos 1994], [Refenes 1995], [Berndt 1996],

[Chan 1999], [Gavrilov 2000] or [Ge 2000]. Nevertheless, over the last years the analysis of

product sales or inventory consumption has also been of great importance to business planning (see

for instance [Agrawal 1995c], [Srikant 1996] and [Zaki 1998a]).

In healthcare, temporal sequences are a reality for decades, with data originated by complex

data acquisition systems like ECG’s (see, for instance [Grossman 1998], [Ge 2000],

[Dajani 2001]), or even with simple ones like the ones that measure the patient temperature or the

effectiveness of treatments [Shahar 1996], [Caraça-Valente 2000]. In the last years, with the

development of medical information systems, the amount of data has increased considerably, and

more than ever, the need to react in real-time to any change in the patient behavior is crucial

[Coiera 1994], [Antunes 2001a].

1 – Data Mining: basic concepts

In order to understand the data mining field, some basic concepts are needed, and in particular it is

important to make the distinction between data and information. The definitions adopted here are

the most commonly accepted by the data mining community [Kohavi 1998].

The term data is used to mean the recorded facts that describe the state or behavior of some

entity, in accordance with a set of attributes, also known as fields or variables, each of which

corresponds to a particular value. These values belong to specific sets – the attribute domains,

which represent the values that can be taken by the attribute. In general attribute domains can

belong to one of two types:

- Real-valued or continuous, subsets of real numbers, where there is a measurable

quantity in a given range.

- Categorical, finite sets of discrete values. There are two types of categorical attributes:

o Nominal, denote that there is no ordering between values, such as names and

colors. These sets are usually called alphabets.

o Ordinal, denote that there is an ordering among the values, such as in an

attribute taking on the values low, medium, or high.

Another term commonly used is feature, which corresponds to a particular instantiation of an

attribute. However, the term feature is usually misused as attribute, like in "feature selection".

Chapter 2 – Temporal Data Mining: an introduction

9

When a set of attributes describes some property, we are in the presence of a dimension. Examples

of common dimensions are space and time.

The terms instance and record denote a single object of the world. In general, they are

represented by feature vectors, which correspond to the set of features that describes them at

particular instants of time.

Unfortunately, the definition of information is not so consensual. In general, it has been used to

denote the set of patterns or expectations that underlie the data [Witten 2000], and from a

mathematical point of view, the generation of information can be seen as data compression

[Adriaans 1996], since information can be seen as a model to represent several instances. Another

way to view information is as the next step in the road of knowledge, since it corresponds to an

abstraction of the already known (recorded) data.

When dealing with temporal data, additional terms are needed.

The term transaction was inherited from the database community, and refers to the facts

recorded in a single transaction (in the sense of the operations performed on databases). In this

context, an item is one of the transacted values, and an itemset, a set of items transacted in the same

instant and by the same entity, i.e. the items belonging to the same transaction.

When dealing with transactions, two kinds of analysis can be performed:

- Intra-transactional, where the analysis is performed among the data transacted at the

same time.

- Inter-transactional, where the analysis is performed among the data transacted at

different time instants.

Note that intra-transactional analysis is particularly interesting for describing the state of some

instance and to inter-relate its static characteristics. The analysis of its behavior cannot be

performed with an intra-transactional analysis, but an inter-transactional one is able to describe it.

An event has been defined as a pair (e, t), where e is the event type and t a positive integer,

called the timestamp [Bettini 1998]. In this context, the event type specifies the item transacted at

the corresponding time instant. However, this notion can be extended, as proposed below.

First, timestamps may be replaced by a set of time attributes, completely specifying the time

dimension. Second, in order to deal efficiently with simultaneous transactions performed by a

unique instance, the event type can be replaced by the set of transacted items – the itemset. In this

manner, the representation of simultaneous or parallel events is compacted in a natural way, and

Chapter 2 – Temporal Data Mining: an introduction

10

the temporal data corresponding to the behavior of some instance may be represented by a

sequence of events, called an event sequence in the rest of this text. If registered items are real-

valued, the event sequence is usually called a time series, and, if they belong to a nominal domain,

a nominal event sequence.

Related to the concept of event sequence appears the notion of subsequence. A subsequence of

an event sequence s is an event sequence that contains part of the events of s, preserving the

original order among events.

In the rest of this dissertation, we will adopt the extended version of the event notion.

2 – Data Mining: process overview

With the information discovery as a target, the knowledge discovery task receives data as input and

returns information as the result. But several questions arise:

- How to deal with data from several distinct sources?

- How to represent different data types?

- How to treat inconsistent data?

- How to deal with noise, outliers and missing values?

- How to learn the information, that is, how to extract the patterns that underlie the data?

- How to deal with large amounts of data?

- How to evaluate the relevancy of discovered information?

- How to deal with user expectations?

- How to use background knowledge?

- How to avoid the discovery of already known information?

In order to deal with all of these questions, knowledge discovery has been seen as a process

composed by a iterative sequence of steps, as illustrated in Figure 2.1.

These steps can be classified into three main categories: pre-processing, data mining and post-

processing tasks.

In general, we can view the pre-processing stage as the preparation of data before the

application of data mining tools, and the post-processing as the evaluation and presentation of the

discovered information to the final user.

Chapter 2 – Temporal Data Mining: an introduction

11

DW Information

DB

DB DB

Pre-
processing

Post-
processing

...

...

...

Table

...

...

...

Table

...

...

...

Data
Mining

Data Data Models

Figure 2.1 – The knowledge discovery process

Nowadays, it is usual to perform the mining process directly over the data in some data

warehouse, avoiding part of the pre-processing stage. A data warehouse is a "subject-oriented,

integrated, time-variant, and non-volatile collection of data in support of management's decision

making process" [Inmon 1996]. However, and since data warehouses are mostly constructed from

the integration of multiple heterogeneous data sources, their construction involves some or all the

efforts required to prepare the data for the mining process – the pre-processing operations,

described next.

2.1 – Pre-processing

The pre-processing stage consists of a set of operations performed over data in order to improve its

quality, and, consequently, the mining results.

Recent statistics have shown that the pre-processing stage occupies about 75% of the overall

time of the data mining process (In KDnuggets Past Polls: "Data preparation part in data mining

projects", Sep 30 – Oct 12, 2003, reproduced in Appendix A). The time spent in this stage reveals

the poor quality of the majority of the existent data, and the importance of these operations when

dealing with large datasets.

The generality of pre-processing operations can be categorized as belonging to three main

types of techniques: data integration, data cleaning and data reduction [Han 2001a].

Data Integration

Data integration operations are used to merge the data from multiple, possibly heterogeneous, data

sources. The key difficulties are related to the different schema behind the different data sources

and to the existence of duplicated records.

The first issue is one of the major problems in data integration, since it requires the

Chapter 2 – Temporal Data Mining: an introduction

12

identification of equivalencies between the entities existent in different data sources (usually

known as the entity identification problem).

The second challenge in data integration is the identification and removal of redundancies. This

is not a trivial issue, but can be approached using correlation analysis between attributes. If the

correlation between two attributes is zero, then the attributes are independent and there is no

redundancy between the attributes. Otherwise, one attribute is correlated with the other, which

means that we are in the presence of some redundancy. Another problem is the removal of

duplicated records, which consists in identifying the existence of multiple records for the same data

entry.

Data Cleaning

Once the integration of the distinct data sources is achieved, data cleaning operations aim to ensure

the data quality. In general, they deal with three distinct situations: missing values, outliers or noise

and data inconsistencies.

Missing Values. A frequent problem is the existence of several instances with no recorded value

for a large number of their features. As several authors have noted, the vital attributes for an

organization are usually correctly filled, but other attributes, less fundamental for the core business,

are usually blank or incorrectly filled. In the majority of cases, this problem reflects the poverty of

the tools for gathering the data.

There are several approaches to deal with this problem, which mainly consist on ignoring the

records that contain missing values or on replacing the missing value with an accepted value. Since

the first solution implies the exclusion of a large number of instances, it may reduce the richness of

the data, impairing the results of the mining process. The replacement of missing values has been

widely accepted as the solution for this problem. There are several strategies for choosing the new

value, ranging from the use of a new value such as "unknown", to the use of the mean value of the

attribute or the most probable value to fill in the missing value.

Outliers or Noise. Outlier values correspond to unexpected values, and are usually referred to as

noise. This problem is mostly related with continuous attributes, where there is an order relation

between values. The goal is to identify the outliers and to smooth the data, by choosing the most

adequate value to replace them.

This identification can be done by grouping the values in clusters, and recognize as outliers the

Chapter 2 – Temporal Data Mining: an introduction

13

values that are outside those clusters. Again, there are several strategies to choose the new value,

and they mostly involve the analysis of the neighborhoods of the outlier, either by adopting the

mean value between the precedent and subsequent values for the outlier (binning methods), by

calculating the new value considering a function that better fits the data (regression methods) or by

discretizing the values.

Inconsistent data. Data inconsistencies mostly appear as a result of the data integration operations

and are easily corrected when functional dependencies among attributes and data constraints are

known. When this happens, automatic or semi-automatic tools can be used, but otherwise, mainly

manual processing can be applied.

Data Reduction

In general, databases contain very large amounts of data, which can result from the large number of

records, the large number of attributes per record or simply from the inherent complexity of data.

Since those characteristics can increase the difficulty of the mining process, the data reduction is a

real need.

The simplest form of data reduction is the use of a data sample obtained from the original

database. Given that this sample can be considerably smaller than the entire database, and that there

is some danger of losing interesting data records, the sample has to be selected in order to be

representative of the original data.

Another popular technique is dimensionality reduction, which consists in removing the

attributes that seem redundant and irrelevant. In this manner, each record is transformed into a

smaller feature vector. By this reason, it is commonly known as feature selection. One of the most

popular approaches is based on the use of Principal Components Analysis, but others use

transformations like the Discrete Fourier and Wavelet Transforms to compress data, as will be

described in section 3.1.

More advanced techniques try to infer some parametric model to represent the data, for

example by using linear regression to infer the line that best approximates the data points, or by

using grammatical inference methods to infer some generative model able to generate existent data.

Other Operations

As described above, when there is a large number of attributes, it is possible to choose the most

relevant ones for the task. However, sometimes, existent attributes are not able to reflect the

Chapter 2 – Temporal Data Mining: an introduction

14

structure of the domain and the construction of new attributes can help to have a new insight in the

inner nature of the problem. This construction is usually achieved by the combination of existent

attributes, either by the Cartesian product of nominal attributes or by the conjunction of Boolean

attributes.

Additionally, there are two other important techniques usually used in order to improve the

quality of data: data smoothing and the use of concept hierarchies.

One of the most usual smoothing techniques is normalization. The normalization is made by

scaling the possible values for some attribute, so that they fall within a specified interval, usually

from 0.0 to 1.0. In this manner, similarities may be detected, ignoring scale differences. This kind

of transformation is applied to continuous values, and there are several strategies to make the

transformation.

Concept hierarchies are also used to reduce the number of possible values for some attribute,

by replacing low-level by higher-level concepts. When the attribute is continuous, this technique

corresponds to the discretization of the original values, and concept hierarchies can be constructed

automatically based on the analysis of the data distribution. When attributes are categorical, their

values are already discrete, but can belong to a large set of distinct values. In this case, a concept

hierarchy can be applied to abstract the values, loosing some detail but possibly improving the

performance of data mining techniques. Concept hierarchies for categorical attributes are usually

known as taxonomies.

2.2 – Data Mining

The term data mining also identifies the discovery step, itself, and it mainly makes use of machine

learning algorithms to perform it. The great challenge of data mining is to adapt existent machine

learning algorithms to use large amounts of "dirty" data in an efficient way, using all known

information, to focus the discovery process in accordance with user expectations.

Several other challenges can be enumerated, but, among them, the analysis of complex data

types has deserved a particular attention in the last few years, in particular, the analysis of temporal

data.

The most relevant mining operations are classification/prediction, clustering and association

analysis, succinctly described below.

Chapter 2 – Temporal Data Mining: an introduction

15

Classification and Prediction

The aim of classification methods is to learn a classifier for predicting the value of a specific

attribute, known as the class or concept attribute. In general, a classifier c can be seen as a function

from a set of instances ��to a set of class labels � (c: � � �). In order to discover such functions,

classification methods use a set of already classified instances, called the training set.

Formally, a class Ci is a subset of the domain S, consisting of all instances that satisfy the class

description desci. The final goal is to discover these descriptions, which can be achieved by the

discovery of the common properties among the set of training instances that belong to the same

class.

Whenever those descriptions are available, it is possible to define a classification rule for each

class. Those rules state that all instances that satisfy the description of a particular class belong to

that class. A rule is said to be correct with respect to a specific training set, if its description covers

all the instances of a given class (positive instances) and none of the instances of other classes

(negative instances).

The distinction between classification and prediction is somehow diffuse. Most of the times the

only difference is that the term classification is applied to categorical domains, while prediction is

used on numerical domains. In this context, prediction methods try to discover the values for

missing or unseen features, mostly by analyzing real-valued features and temporal data. While

prediction methods are essentially based on the use of statistical techniques for regression,

classification use several different models to discriminate existent concepts, such as decision trees,

neural networks, support vector machines or Bayesian models, to name a few. Given that

classification and prediction methods make use of classified instances, they are known as

supervised methods.

A detailed description of classification and prediction methods for the analysis of temporal data

is presented in section 3.2.

Clustering

Unlike classification, clustering is used when no labeled data exists, which means that it is an

unsupervised operation. Indeed, the first goal of clustering is to partition the data in natural classes,

clusters, by analyzing the similarities and dissimilarities between instances.

One of the main difficulties is to discover the number of classes. After this, it is necessary to

Chapter 2 – Temporal Data Mining: an introduction

16

identify those classes, assign a new label to each one and discover their descriptions, like for

classification methods.

In this manner, clustering is able to identify regions with different characteristics, contributing

to define the overall distribution of data. Correlations among attributes may also be found, which

may help in the feature selection pre-processing task.

Given that each instance should be similar to other instances in the same cluster, and dissimilar

to the instances on other clusters, it is usual that clustering methods make use of a similarity

measure, in order to identify the clusters. This similarity measure, also called a distance function, is

essential to perform clustering, but can be quite hard to define, especially in the presence of

complex data types. Section 3.2 describes clustering approaches to temporal sequences, and

enumerates several similarity measures for this type of data, depending on the type of

representation used.

Association Analysis and Frequent Itemset Mining

Association Analysis is another unsupervised task, which tries to capture existent dependencies

among attributes and its values, described as association rules. An association rule is an

implication of the form A�B, where A and B are propositions (sets of pairs attribute/value), and

expresses that when A occurs, B also occurs with a certain probability. This probability is known as

the rule confidence and is given by the conditional probability P(B|A).

In basket analysis, one of the major applications of association analysis, A and B correspond to

itemsets, and the rule A�B means that if A is transacted, then B will also be transacted at the same

time, with a certain probability.

This kind of discovery is usually applied to the transactions on a given database, performing an

intra-transactional analysis, and, in its pure form, it is not able to perform inter-transactional

analysis.

The most well known approach to discover association rules is the apriori algorithm

[Agrawal 1994]. It acts in two steps: first, it discovers the frequent itemsets (this task is usually

known as frequent itemset mining) and then it generates the rules. The notion of the frequency of

an itemset is defined using a minimum support threshold: an itemset is frequent if its support is

greater or equal to the minimum support accepted. The support of an itemset A is given by the

probability of its occurrence in the database P(A).

Chapter 2 – Temporal Data Mining: an introduction

17

In order to discover frequent itemsets, apriori acts iteratively: first, it generates possible

different itemsets (candidates) and then it chooses the frequent ones by scanning the database. It

begins by trying the itemsets composed of one item, then of two items and so on, until there are no

eligible candidates. The task of counting the support for each candidate is the most costly operation

in apriori-based approaches, since it involves several database scans.

In the last few years, several other algorithms for association analysis have been proposed. For

an overview of such methods, see for example [Zaki 1999].

The main drawback of association analysis is the huge number of discovered associations.

Indeed, most of the times they are uninteresting and useless to the final user, mostly due to the lack

of focus and the general inability to represent background knowledge in the discovery process.

2.3 – Post-processing

The mining operations performed in the data mining stage develop models to explain or describe

the data. Nevertheless, as seen above, most of the times there are several hypotheses to describe the

data, and naturally, it is necessary to choose the "best ones" to present to the final users.

The post-processing stage aims to perform the analysis of the achieved results, and to present

the best ones to the final user. In this manner, there are two core tasks to perform: the evaluation of

results and their presentation. Despite the fact that the presentation of the models is extremely

important, the research on visualization has been almost exclusively concerned with data

visualization [Fayyad 2002]. An exception to this general panorama is the system PEAR

[Poças 2003], which permits the manipulation and analysis of the discovered association rules.

On the contrary, the choice of the best results to present to the users has motivated a large

number of researchers. In essence, the evaluation of models is concerned with four aspects: its

simplicity, its certainty, its utility and its novelty.

Simpler explanation models are usually preferred because they are easier to understand and

because they are more suitable for generalizing beyond known instances. This simple principle is

known as the Occam's razor. The difficult is on choosing between models with different

certainties. The Minimum Description Length gives an answer to the challenge of choosing the best

and simpler model, minimizing the sum of the description length of the explanation model and the

description length of the data given the model [Mitchell 1997].

The certainty of a model can be stated as the measure of the trust that an user should put on the

Chapter 2 – Temporal Data Mining: an introduction

18

model. In the case of classification models, this certainty is the accuracy or precision, which is the

probability that the model correctly classifies unseen instances. For association rules, this certainty

is given by its confidence, as described before.

Utility measures determine the interestingness of models. In general, it is concerned with two

aspects: the usefulness and the novelty of the models. Again, utility measures are different for

classification and association models.

While the support of an association rule (as previously defined – section 2.2) measures its

usefulness, the coverage indicates the usefulness of a classification model. In particular, the

coverage of a class description is the probability that an arbitrary instance, belonging to that class,

is covered by that description.

Novelty measures define the contribution of models to increase the knowledge about the

domain. An example of such measures is the lift of an association rule, which reflects the strength

of the effect, by measuring the ratio between the confidence of the rule and the support of the

basket on the consequent of the rule. Several other interestingness measures exist, for both

classification models and association rules. A survey of those measures can be found in

[Hilderman 1999].

3 – Temporal Data Mining

Since the great majority of phenomena occur over time, the analysis of temporal data has been one

of the data mining goals, from its beginning. However, traditional data mining operations are not

able to deal with their intrinsic dynamic nature, since they usually treat temporal data as unordered

collections of events, ignoring temporal information. As seen before, they usually center their

attention into the analysis of the data transactions (intra-transactional analisys), instead of

analyzing the relations between different transactions (inter-transactional analisys).

In the last decade, the exploration of temporal data, usually called temporal data mining,

achieved a considerable attention in the data mining community. Its main goal is to provide the

ability to explore the dynamic aspects of entities, instead of only exploring its static characteristics.

In particular, with this kind of analysis, it is possible to infer some cause-effect relations, allowing

for the understanding of the evolution of analyzed entities [Roddick 2002].

Given that, the analysis of temporal data has been a reality for centuries, any overview of the

Chapter 2 – Temporal Data Mining: an introduction

19

techniques used is necessarily incomplete. The next sections do not aim to describe all these

techniques, but simply to survey the approaches mostly used by members of the data mining

community in the analysis of temporal data. It is clear that many other approaches have been used,

for example, in the signal processing and pattern recognition areas, but almost all of them were not

used in the knowledge discovery process, and are unknown for the majority of "data miners". Since

those techniques were mostly applied in the analysis of continuous signals or images, and the goal

of this dissertation is to deal with nominal data, we do not survey them.

3.1 – Pre-processing of Temporal Data

The pre-processing of event sequences can be roughly seen as the selection of the most adequate

representation for data. This choice is especially important when dealing with time series, since

direct manipulation of continuous, high-dimensional data in an efficient way is extremely difficult.

The representation of event sequences, in general, can be addressed in several different ways.

One first possibility is to use the data with only minimal transformations, either keeping it in its

original form or using windowing and piecewise linear approximations to obtain manageable sub-

sequences. A second possibility is to use a reduction that maps the data to a more manageable

space, either continuous or discrete. Another possibility is to use a generative model, either

statistical or deterministic, inferred from the data. While the three first approaches deal directly

with time series, parametric models have been mostly applied to nominal event sequences.

One issue that is relevant for all the representation methods addressed is the ability to discover

and represent the subsequences of a sequence. The method mostly used to find subsequences is to

use a sliding window of size w and place it at every possible position of the sequence. Each such

window defines a new subsequence, composed by the elements inside the window

[Faloutsos 1994].

Measuring the Similarity between Temporal Sequences. After representing each sequence in a

suitable form, it is, in general, necessary to define a similarity measure between sequences, in order

to determine if they are closely related.

An important issue in measuring similarity between two sequences is the ability to deal with

outlying points, noise in the data, amplitude differences (scaling problems) and the existence of

gaps and other time axis distortion problems (translation problems). As such, similarity measures

need to be sufficiently flexible to be applied to sequences with different lengths, noise levels, and

time scales. There are many proposals for similarity measures, but the model used to represent

Chapter 2 – Temporal Data Mining: an introduction

20

sequences clearly has a great impact on the similarity measure adopted. In this manner, after the

description of each category of representation models, we present the similarity measures usually

used.

Time Domain Continuous Representation

The simplest approach to represent a time series consists in using it without any pre-processing

[Agrawal 1995a] [Lin 1998]. Figure 2.2 illustrates this situation.

time

Figure 2.2 – Time series representation in time domain

However, as been said, mining operations do not deal efficiently with this kind of data. An

alternative consists in finding a piecewise linear function able to approximately describe the entire

sequence.

In this way, the original sequence is partitioned in several segments and each segment is

represented by a linear function. Despite the fact that sequence partition can be achieved using

different approaches, all of them first have to define or discover the number of segments, and then

partition the original data [Das 1997], [Guralnik 1999]. The objective is to obtain a representation

that can be used to detect significant changes in the sequence.

A proposal to discover the number of segments consists on segmenting a sequence by

iteratively merging two similar segments. Choosing which segments are to be merged is done

based on the squared error minimization criteria [Keogh 1997]. An extension to this model consists

on associating a weight value to each segment, which represents the segment importance relatively

to the entire sequence. In this manner, it is possible to compare sequences mainly by looking at

their most important segments [Keogh 1998].

With this representation, a more effective similarity measure can be defined, and consequently,

mining operations may be more easily applied. Figure 2.3 exemplifies a time series using linear

segments, presenting the original with grey and the approximation with solid lines.

Chapter 2 – Temporal Data Mining: an introduction

21

time

Figure 2.3 – Representing a time series using linear segments

While this is a relatively straightforward representation, not much is gained in terms of the

ability to manipulate the generated representations. One possible application of this type of

representations is on change-point detection, where the goal is to identify the points where a

significant change in behavior takes place. One significant advantage of these approaches is the

ability to reduce the impact of noise. However, problems with amplitude differences (scaling

problems) and the existence of gaps or other time axis distortion are not addressed easily.

Similarity Measures. When no pre-processing is applied to the original sequence, a simple

approach to measure the similarity between two sequences consists on comparing the ith element of

each sequence. The similarity measure most used with time-domain continuous representations is

the Euclidean distance, by viewing each sub-sequence with n points as a point in Rn. Figure 2.4

illustrates the use of this method to compare two time series, where the illustration on the right

assumes n=3.

Time

d

X

Y

Z

Figure 2.4 – Comparing two time series with the Euclidean distance

This simple method, however, is insufficient for many applications. In order to deal with noise,

scaling and translation problems, a simple improvement consists on determining the pairs of

portions of sequences that agree in both sequences after some linear transformation is applied. A

concrete proposal [Agrawal 1995a] achieves this by finding one window of some fixed size from

each sequence, normalizing the values in them to the [-1, 1] interval, and then comparing them to

determine if they match, as illustrated in Figure 2.5.

Chapter 2 – Temporal Data Mining: an introduction

22

Figure 2.5 – Comparing two time series using time windows

After identifying these pairs of windows, several non-overlapping pairs can be joined, in order

to find the longest match length. Normalizing the windows solves the scaling problem and

searching for pairs of windows that match solves the translation problem.

A more complex approach consists on determining if there is a linear function f, such that a

long subsequence of one sequence can be approximately mapped into a long subsequence of the

other [Das 1997]. Since, in this approach, the subsequences do not necessarily consist of

consecutive original elements but only have to appear in the same order, this similarity measure

allows for the existence of gaps and outlying points in the sequence.

In order to surpass the high sensibility of the Euclidean distance to small distortions in the time

axis, the Dynamic Time Warping (DWT) technique has been used [Berndt 1996]. This technique

consists on aligning two sequences so that a predetermined distance measure is minimized. The

goal is to create a new sequence, the warping path, whose elements are (i, j) points with i and j the

indexes of original sequence elements that match. Algorithms for using dynamic time warping

techniques have been proposed in [Keogh 1999] and [Yi 1998]. Figure 2.6 illustrates this method.

Figure 2.6 – Comparing two time series using Dynamic Time Warping

A different similarity measure consists on describing the distance between two sequences using

a probabilistic model [Keogh 1997].

The general idea is that a sequence can be ‘deformed’, according to a prior probability

distribution, to generate the other sequence. This is easily accomplished by composing a global

shape sequence with local features, where each one is allowed some degree of deformation. In this

Chapter 2 – Temporal Data Mining: an introduction

23

way, some elasticity is allowed in the global shape sequence, allowing for stretching in time and

distortions in amplitude. The degree of deformation and elasticity are governed by the prior

probability distributions. Figure 2.7 exemplifies the usage of this type of measure.

Figure 2.7 – Comparing two time series using a probabilistic measure

Compression Based Representations

The main idea of Compression Based Representations is to transform the time series, from time to

another domain, and then to use a point in this new domain to represent each original sequence.

The simplest compression is to represent each sequence as a point in the n-dimensional space,

with n being the sequence length. Another possibility is to map each subsequence to a point in a

new space with coordinates that are the derivatives of each original sequence point (the derivative

at each point is determined by the difference between the point and its preceding one

[Gavrilov 2000]).

However, with these methods almost no reduction is performed. The most usual reduction

approach is to use the Discrete Fourier Transform (DFT) to transform a sequence from the time

domain to a point in the frequency domain [Agrawal 1993]. Choosing the k first frequencies, and

then representing each sequence as a point in the k-dimensional space, achieves this goal. The DFT

has the attractive property that the amplitude of the Fourier coefficients is invariant under shifts,

which allows for extending the method to the problem of finding similar sequences ignoring shifts.

This technique is illustrated in Figure 2.8.

time Hz

Hz

Hz

Figure 2.8 – Representing a time series using the Discrete Fourier Transform, with k=2

Chapter 2 – Temporal Data Mining: an introduction

24

A more recent approach uses the Discrete Wavelet Transform (DWT) to translate each

sequence from the time domain into the time/frequency domain [Chan 1999]. The DWT is a linear

transformation, which decomposes the original sequence into different frequency components,

without loosing the information about the instant of the occurrence of elements. Its features,

expressed as the wavelet coefficients, represent the sequence. Again, only a few coefficients are

needed to approximately represent the sequence. Figure 2.9 exemplifies the usage of wavelets for

representing time series.

Figure 2.9 – Representing a time series using Discrete Wavelet Transform, with k=3

With these kinds of representations, time series became a more manageable object, leading to

the definition of efficient similarity measures and an easier application of common data mining

operations. However, these methods do not solve either amplitude differences or time distortions.

Similarity Measures. When Compression Based Representations are used, a simple approach is to

compare the points, in the new domain, which represent each sequence. For example, the similarity

between two sequences may be reduced to the similarity between two points in the frequency

domain, again measured using the Euclidean distance [Agrawal 1993], [Chan 1999], as Figure 2.10

illustrates.

time Hz

Hz

Hz

Figure 2.10 – Comparing two time series in frequency domain

In order to allow for the existence of outlying points in the sequence, the discovery of

sequences similar to a given query sequence is reduced to the selection of points in a neighborhood

of the query point. However, this method may allow for false hits, and after choosing the neighbor

Chapter 2 – Temporal Data Mining: an introduction

25

points in the new domain, the distance in the time domain is computed to validate the similarity

between the chosen sequences (for instance, using the Euclidean distance as described in the

previous section).

Notice that this method implies that sequences have the same length. In order to be able to deal

with different lengths, the method was improved to find relevant subsequences in the original data

[Faloutsos 1994]. Another important issue is the fact that to compare different time series, the

number of Fourier coefficients chosen to represent the sequences must be the same for all of them,

which may not be the optimal one for each sequence.

Representations Achieved by Discretization

A third approach to deal with time series is the translation of the original sequence to a sequence

composed of nominal symbols. There are two problems related with this translation: choosing the

domain of the new symbols – alphabet, and making the translation from the real-valued elements

to new symbols.

The alphabet definition is sometimes simplified by assuming that digits or characters are used.

However, this decision implies that the new sequence is an artificial transformation of the original

one, potentially more difficult to analyze and understand.

Automatic Conversion Methods. The simplest way to define the alphabet is to choose a set of

nominal symbols (alphabet) without any special meaning, and then proceed with the translation

itself. This kind of approach introduces some level of artificiality but is especially useful when

there is no knowledge about the series domain.

A simple method to discretize time series is to segment a sequence by computing the change

ratio from one time point to the following one, and representing all consecutive points with equal

change ratios by a unique segment. After this partition, each segment is represented by a symbol,

and the sequence is represented as a string of symbols [Huang 1999]. A particular case occurs

when change ratios are classified into one of two classes: large fluctuations (symbol 1) or small

fluctuations (symbol 0). This way, each time series is converted into a binary sequence, which can

then be manipulated in a natural way by genetic algorithms [Szeto 1996], for example.

Clustering is another approach to convert a sequence into a discrete representation. First, the

sequence originates a set of sub-sequences with length w, by sliding a window of width w. Then,

the set of all sub-sequences is clustered, originating k clusters, and a different symbol is associated

Chapter 2 – Temporal Data Mining: an introduction

26

with each cluster. The nominal version of the initial sequence is obtained by substituting each sub-

sequence by the symbol associated to the cluster that it belongs to [Oates 1999].

Figure 2.11 illustrates the translation of one sequence, if we associate the symbol a to

ascending segments (solid lines), symbol b to descending segments (dotted lines) and symbol c to

flat segments (grey lines). Its final representation would be <bcacbcacbcacbcacbca>.

time

Figure 2.11 – Representing a time series using clustering as a discretization method

Another method to convert time series into a sequence of symbols is based on the use of self-

organizing maps – SOM [Giles 2001], [Guimarães 2000]. This conversion consists on three steps:

first, a new series composed by the differences between consecutive values of the original time

series is derived; second d-sized windows over the series are given as input to the SOM, which

finally outputs the node closer to the input. Each node is associated with a symbol, which means

that the resulting sequence may be viewed as a sequence of nominal symbols.

The advantage of these methods is that time series are partitioned in a natural way, depending

on their values. These transformed time series are more amenable to manipulation and processing

than the original time series, since the number of possible different values is reduced. However, the

symbols of the alphabet are usually chosen externally, which means that most of the times users

impose symbols in some artificial way.

Alphabet Specification Languages. A way to define the alphabet without loosing the original

meaning is to define a language able to describe all different entities relevant to the domain, and

simultaneously, to provide some similarity measure between different sequences.

One such language is the Shape Definition Language (SDL) proposed by Agrawal

[Agrawal 1995b], which is able to describe shape queries to pose to a sequence database and is able

to perform ‘blurry’ matching. A blurry match is one where the important thing is the overall shape,

therefore ignoring the specific details of a particular sequence. The first step in the representation

process is defining the alphabet of symbols and then translating the original sequence to a sequence

of nominal symbols. The translation is done by considering transitions from an instant to the

Chapter 2 – Temporal Data Mining: an introduction

27

following one, and then assigning a symbol of the alphabet to each transition.

Figure 2.12 presents the new sequence (s’=< zero stable Up Up Up down stable Down down

disappears >) corresponding to sequence s=< 0 0 0.5 2 4 6 5 4.5 1.5 0.5 0 >, using the alphabet

Σ={zero, stable, Up, down, Down, disappears}.

Figure 2.12 – Representing a time series using SDL

Another language used to specify patterns is the Constraint-Based Pattern Specification

Language (CAPSUL) [Chakravarty 2000], which like SDL describes patterns by considering some

abstraction over the values at each time interval. The key difference between these two languages

is that CAPSUL uses a set of expressive constraints upon temporal objects, which allows

describing more complex patterns, for instance, periodic patterns. Finally, to perform each of those

abstractions the system accesses an ontology, where relations among values are defined.

Similarity Measures. When a sequence is represented as a sequence of nominal symbols, the

similarity between two sequences is, in general, achieved by comparing each element of one

sequence with the corresponding one in the other sequence, as proposed in the first similarity

measure described above. However, if the categorical symbols are not ordered some provisions

must be taken to allow for blurry matching.

One possible approach is to use the Shape Definition Language, where a blurry match is

automatically possible. This is possible because the language defines a set of operators, such as

any, noless or nomore, which allows describing overall shapes, solving the existence of gaps in an

elegant way [Agrawal 1995b].

Figure 2.13 exemplifies two cases of similarity between two pairs of sequences. Both pairs are

considered similar since they verify the query

��������������	
�����������������������
��������������������

Chapter 2 – Temporal Data Mining: an introduction

28

Figure 2.13 – Comparing two time series using the blurry matching [Agrawal 1995b]

Another possibility is to use well-known algorithms for approximate string matching

[Navarro 2001] to define a distance over the space of strings of discrete symbols [Huang 1999],

[Mannila 1997]. This distance, usually known as edit distance, reflects the amount of work needed

to transform a sequence to another, and is able to deal with different sequence lengths and the

existence of gaps. Insertion, deletion, replacement and transposition are the operations usually

accepted to transform a string into another one. The edit distance will be formally defined in

Chapter 6, section 3.

Generative Models

A significantly different approach consists on applying data reduction techniques in order to obtain

a model that can be viewed as a generator for the sequences, as described in section 2.1. There are

different types of models, to represent event sequences, in general, and nominal ones, in particular.

These models can be classified into two main categories: graph-based models and formal

languages.

Graph Based Models. One possible approach is based on the use of acyclic graphs that define

partial orders or constraints between basic events – episodes. In this context, an event is a pair (A,

t), with A a symbol to describe the event type [Mannila 1995] [Guralnik 1998]. Note that with this

kind of model, it is possible to represent events that occur either in sequence or in parallel. Further

developments were proposed: one for dealing with events that occur during a set of different

instants [Laxman 2002] and other for building a mixture model that generates, with high

probability, sequences similar to the one that one wishes to model [Mannila 2000a].

A
B

C

A

Figure 2.14 – Example of an episode

Chapter 2 – Temporal Data Mining: an introduction

29

Figure 2.14 shows an example of an episode, with four events: first A occurs, second B and C

occur in parallel and then A occurs again.

In order to deal with different time granularities (for example hours, days or weeks), TAGs

were proposed [Bettini 1998]. A TAG (Timed Finite Automaton with Granularities) is essentially a

standard finite automaton with a set of clocks, each of which as an associated granularity. Instead

of each transition being conditioned only by the input symbol, it also depends on the values of the

different clocks. In this manner, the transitions are constrained both by the content and by the

temporal information contained in the sequence of events.

These models can be viewed as graph-based models, since one or more graphs that describe the

relationships between basic events are used to model the observed sequences.

Formal Languages. An alternative approach to describe the relations between events is based on

the use of a formal language. A formal language is a set of nominal sequences generated by some

grammar.

Grammars may belong to a variety of classes [Hopcroft 1979], ranging from regular

[Lang 1998], [Juillé 1998], [Oliveira 2001], to context-free [Sakakibara 1997], [Sakakibara 2000],

context-sensitive and natural grammars. Given that regular grammars are equivalent to finite

automata, context-free grammars to non-deterministic push-down automata, context-sensitive to

linear bounded automata, and grammars for natural languages to Turing machines, formal

languages can also be seen as a kind of graph-based models. We choose to distinguish them,

because they have been exhaustively studied and their properties are well known.

Extensive research in grammatical inference methods has led to many interesting results

[Miclet 1996], [Honavar 1998], [Oliveira 2000] but has not yet found its way into a significant

number of real applications. Usually, grammatical inference methods are based on discrete search

algorithms that are able to infer complex grammars. Neural net-based approaches have also been

tried (see, for example [Moody 1992]) but have been much less successful when applied to

complex problems [Horne 1995], [Giles 1992]. However, some recent results have shown that

neural-network based inference of grammars can be used in realistic applications with some

success [Giles 2001] and regular languages can be used to represent background knowledge in

some mining operations [Garofalakis 1999], [Han 2001b].

When there are probabilities associated to the relations between the occurrences of events, we

are in the presence of a probabilistic model. Either Stochastic Grammars [Carrasco 1994],

Chapter 2 – Temporal Data Mining: an introduction

30

[Stolcke 1994], [Higuera 1998], [Smyth 1999] or Hidden Markov Models [Ge 2000], [Smyth 1997]

are examples of such models.

Similarity Measures. When a generative model is obtained from a dataset, the similarity measure

between sequences can be obtained by verifying how close the sequence fits one of the available

models.

For deterministic models (graph-based models, regular grammars or context-free), verifying if

a sequence matches a given model provides a yes or no answer, and, therefore, the distance

measures are necessarily discrete, and, in many cases, only take one of two possible values.

For stochastic generative models, it is possible to obtain a number that indicates the probability

that a given sequence was generated by a given model.

In both cases, this similarity measure can be used effectively in classification problems,

without the need to resort to complex heuristic similarity measures between sequences.

It is clear that formal languages obtained by induction from examples can be used for

prediction and classification, since it is possible to verify if the model can generate a given

sequence, and what is the most likely event after the observed ones.So far, however, these methods

have not been extensively applied to actual problems in data mining, mainly due to the difficulties

inherent to the inference process.

3.2 – Mining Operations on Temporal Data

As has been noted, temporal data mining methods perform inter-transactional analysis, discovering

information related to dynamical behavior of target entities. In this context, prediction and

association analysis have deserved more attention than classification and clustering.

In particular, while prediction of event sequences allows for the identification of trends,

association analysis is able to provide a set of relations among events, identifying the impact of

some occurrences over others.

In this section, it is presented a small overview of the several approaches to temporal mining

operations.

Classification and Prediction

In the specific domain of prediction, care must be taken with the domain where prediction is to be

applied. Well-known and generally accepted results on the inherent unpredictability of many

Chapter 2 – Temporal Data Mining: an introduction

31

financial time series [Fama 1970], [Weigend 1994] imply that significant gains in prediction

accuracy are not possible, no matter how sophisticated the techniques used. However, financial

time series forecasting has been the focus of research on prediction on the last decades. As such,

several authors have presented work that aims specifically to obtain algorithms that can be used to

predict the evolution of time series using genetic algorithms [Cortez 2001], [Szeto 1996], recurrent

neural networks, or available background knowledge on economics and finance [Levitt 1996],

[Mannila 1999].

In the vast literature on computer-assisted prediction of time series, a large fraction is based on

neural networks. In order to deal with this kind of data, two main types of neural networks are

used: time delay neural networks (TDNN) and recurrent neural networks (RNN).

A TDNN receives an entire input sequence as a single input, using delay units to hold the past

values of the original sequence. On one hand, this kind of networks imposes that the length of the

sequence cannot be variable and too long, because of its nature and the resulting unmanageable

size of the TDNN, respectively. On the other hand, it only performs a static association mapping

between the input and output patterns, since for each input sequence it retrieves the output pattern

associated with the prototype of the most frequent input vector configuration [Berthold 1999]. A

neural network is called recurrent (RNN) if cross, auto and backward connections are allowed.

These networks have shown to be adequate to dynamic learning tasks and can be used to learn a

mapping function from the space of input sequences to the space of output sequences. The main

drawback of these networks resides on the complexity and computational costs of their training

algorithms, mainly because of their complex topologies [Berthold 1999].

Applications of RN networks can be found in the financial and medical fields [Giles 2001],

[Guimarães 2000]. A good example of such applications is the work by Giles et al., which

combines discretization with grammar inference, and applies the resulting automaton to explicitly

predict the evolution of financial time series, using recurrent neural networks.

Classification is one of the most typical operations in supervised learning, but only recently has

deserved some attention in temporal data mining.

Since traditional classification algorithms are difficult to apply to sequences, mostly because

there are a vast number of potentially useful features for describing each example, an interesting

improvement consists on applying some data reduction technique to extract relevant features. One

approach to implement this idea consists on discovering frequent sub-sequences, and then using

them, as the relevant features to classify sequences with traditional methods, like Naive Bayes or

Chapter 2 – Temporal Data Mining: an introduction

32

Winnow [Lesh 1999]. Another possibility is to use support vector machines (SVMs), with some

improvements, that may include the incorporation of non-linear time alignments into the kernel

function, extending the original method to the case of variable length sequences

[Shimodaira 2001]. Applications on the analysis of electroencephalograms [Blankertz 2002] or on

speech recognition [Shimodaira 2001] using SVMs have already been proposed.

Another classification method that deals specifically with nominal event sequences is based on

the merge operator [Keogh 1998]. This operator receives two sequences and returns a sequence

whose shape is a compromise between the two original ones. The basic idea is to iteratively merge

a typical example of a class with each positive example, building a more general model for the

class. Using negative examples is also possible, but then is necessary to emphasize the shape

differences. This is accomplished by using an influence factor to control the merge operator

function: a positive influence factor implies the generalization of the input sequences, and a

negative reinforces the differences between the positive and negative shapes.

Classification and prediction are relatively straightforward if generative models are employed

to model the data. Deterministic and probabilistic models can be applied in a straightforward way

to perform classification [Lesh 1999] since they give a clear answer to the question of whether a

sequence matches a given model, but have not been used widely.

Clustering

There are two central problems in clustering temporal data: choosing the number of clusters and

initializing their parameters, and defining a similarity measure among event sequences.

Considering that the number of clusters (say K) is known, and that a sequence is viewed as

being generated according to some probabilistic model (for example, a Markov model), clustering

may be viewed as modeling the data sequences as a finite group of K sequences in the form of a

finite mixture model. Using the EM algorithm [Dempster 1997] their parameters could be

estimated and each group would correspond to a cluster [Smyth 1999]. Learning the value of K, if

it is unknown, may be accomplished by a Monte-Carlo cross validation approach as suggested by

some authors [Smyth 1997].

A different approach proposes to use a hierarchical clustering method to cluster temporal

sequences [Ketterlin 1997]. The clustering algorithm used has been the COBWEB [Fisher 1987]

and it works on two steps: first, it groups the elements of the sequences, and then it groups the

sequences themselves. Considering a simple time series, the first step is accomplished without

Chapter 2 – Temporal Data Mining: an introduction

33

difficulties, but to group the sequences is necessary to define a generalization mechanism for

sequences. Such mechanism has to be able to choose the most specific description for what is

common to different sequences.

Association Analysis

One possible modification to the formulation of association rules, when dealing with temporal data,

consists on extending the notion of a typical rule A�B to be a rule with a new meaning: A �TB

(which states: if A occurs then B will occur within time interval T) [Das 1998]. Stating a rule in this

new form allows for controlling the impact of the occurrence of an event in the probability of the

occurrence of another event, within a specific time interval. An easy way to find temporal

association rules is to adapt the algorithms for discovering sequential patterns, imposing some

constraint (a gap constraint) on the notion of contained in when the support of each sequence is

counted – this is usually called sequential pattern mining.

There are several sequential pattern mining algorithms from which GSP [Srikant 1996] is the

best-well known apriori-based algorithm. Like apriori, it acts iteratively: first it generates possible

different sequences and then it chooses the large ones, by scanning the database, until there are no

candidates. Given that the task of counting the support for each candidate is the most costly

operation, another possibility is to avoid the candidate generation step. Two examples of such

proposals are the PrefixSpan and SPADE algorithms.

PrefixSpan (PREFIX projected Sequential PAtterN mining) [Pei 2001] acts recursively

reducing the search space at each step, avoiding the generation of non-frequent sequences. SPADE

(Sequential PAttern Discovery using Equivalence classes) [Zaki 1998a] scans the database only

three times, by transforming the initial database into a vertical database, where each entry is an

item id-list (a list of customer and transaction id pairs). This new layout allows for the restriction of

the search-space like PrefixSpan.

A more recent method to find sequential patterns is SPAM [Ayres 2002], a depth-first

algorithm which maintains the entire database in memory, represented as a bitmap. SPAM uses a

lexicographic sequence tree to generate candidate sequences and uses candidate pruning techniques

like GSP, to reduce the number of candidates. The use of bitmaps simplifies the support counting

procedure, which becomes a simple check of the bitmap values: if all bits for the specified

sequence are set, then the candidate is supported by the current database sequence. However,

SPAM assumes that the entire database and all used data structures completely fit into main

Chapter 2 – Temporal Data Mining: an introduction

34

memory, and the use of any constraint was not introduced.

As pointed before, one of the main problems of algorithms for mining patterns is the lack of

focus or user control [Ng 1998]. An interesting family of algorithms, named SPIRIT (Sequential

Pattern mining with Regular Expressions) [Garofalakis 1999] adapt apriori-based algorithms to use

regular expressions (embedded in the algorithm as finite automata) to constrain the generation of

candidates, which reduces the acceptable candidates for which support counting is needed.

PrefixGrowth is a pattern-growth method that like SPIRIT uses regular languages to constrain the

mining process [Pei 2002b], and cSPADE expands SPADE to use several constraints [Zaki 2000].

A similar task is the discovery of frequent episodes in a unique event sequence. The goal is

essentially the same: to find all frequent episodes in the given event sequence, given a class of

episodes (which can be seen as a constraint). A description of algorithms for this task can be found

in [Mannila 1995], [Mannila 1996] and [Guralnik 1998].

When applied to temporal data, association analysis has two additional goals: to identify time

periodicities among data (known as periodicities analysis) and to find valid time periods during

which association rules hold [Chen 2000].

In order to discover periodicities or cyclic rules between temporal data, it is necessary to search

for frequent patterns in a restricted portion of time, since they may occur repeatedly at specific

regular time instants but on a little portion of the global time considered. A method to discover

such rules is based on the application of an algorithm similar to apriori that, after having obtained

the set of traditional rules, detects the cycles behind the rules. A more efficient approach to

discover cyclic rules consists on inverting the process: first, it discovers the cyclic patterns and then

generates the rules [Özden 1998]. A natural extension to this method consists on allowing the

existence of different time units, such as days, weeks or months, and is achieved by defining

calendar algebras to define and manipulate groups of time intervals. Rules discovered are

designated calendric association rules [Ramaswamy 1998]. A similar idea was applied in the

search of periodicities in time series [Han 1998]. The main idea is to look for the discovery of

periodic segments, recognizing that only some segments have cyclic behavior.

An approach to determine time periods during which association rules hold, is also apriori-

based and consists on partitioning the initial data in several time periods and then applying the

pattern mining process to each partition [Lee 2001].

Chapter 2 – Temporal Data Mining: an introduction

35

3.3 – Post-processing for Temporal Information

In general, the evaluation criteria for discovered temporal patterns apply to temporal data with a

particular emphasis, given the complexity of this kind of data. Again, simpler models are preferred

and the trade-off between accuracy and coverage remains unchanged. Furthermore, to our

knowledge, there are no specific interestingness measures for discovered temporal patterns, except

for the definition of support, as stated above.

4 – Open Issues in Temporal Data Mining

From the survey presented, it is clear that there are several approaches to explore temporal data.

However, the number and the diversity of solutions reflect the small consensus among what the

best solutions are, and shows that the key problems of dealing with real temporal data are not

resolved yet.

In particular, the analysis of nominal event sequences has deserved relatively little attention,

when compared with the exploration of time series. Sequential Pattern Mining is one the few

approaches specifically designed to deal with nominal sequences, but even state of the art

sequential pattern mining algorithms are still likely to discover large amounts of patterns, many of

them useless when applied in real problems.

Summary

In this chapter, we have introduced the data mining field, presenting its fundamental concepts

and techniques, and motivating the need for special procedures when dealing with temporal

data.

We have presented an overview of the pre-processing, mining and post-processing techniques

applied to this type of data. In terms of pre-processing, we have categorized and described

the existent models to represent temporal data: time-domain continuous, and compression

based representations, models achieved by discretization and generative models.

For mining temporal data, we have succinctly explained the existent methods to perform the

main tasks of data mining: classification, prediction, clustering and pattern mining. The

existence of so many different approaches reflects the small consensus among them.

Chapter 2 – Temporal Data Mining: an introduction

36

37

Chapter 3

Related Work and Thesis Statement

In this chapter, we review related work, presenting the sequential pattern mining problem

and the approaches to deal with it. After identifying the open issues in sequential pattern

mining and its application to temporal data, we make our thesis statement, posing the

research questions that have driven this work, and giving an overview of how these questions

are answered.

he exploration of nominal sequences in general, and of nominal event sequences in particular,

has deserved some attention only in the last decade. Among the few existent approaches to

this problem, sequential pattern mining is the one that has been most explored.

In general, we can see sequential pattern mining as an approach to perform inter-transactional

analysis of nominal event sequences. Indeed, sequential pattern mining was motivated by the need

to perform this kind of analysis, mostly in the retailing industry, but with applications in other areas

like the medical domain.

This dissertation focuses on the problem of pattern mining over nominal temporal data,

presenting a new mining methodology based on the use of the sequential pattern mining approach.

For this reason, a detailed review of the related work in this area is presented below.

1 – Related Work: sequential pattern mining

Sequential Pattern Mining algorithms address the problem of discovering the existent maximal

frequent sequences in a given database. Algorithms for this problem are relevant when the data to

T

Chapter 3 – Related Work and Thesis Statement

38

be mined has some sequential nature, i.e., when each piece of data is an ordered set of elements,

like event sequences in the case of temporal information, or nucleotides and amino-acid sequences

for problems in bioinformatics.

The problem was first introduced by Agrawal and Srikant, that established the basic concepts

involved in pattern detection [Agrawal 1995c]. Some interesting issues were added in subsequent

work [Srikant 1996], like the use of taxonomies and the introduction of time constraints. In the last

years, several sequential pattern mining algorithms have been proposed, but not all of them assume

the same conditions. Despite the fact that the use of constraints is somehow orthogonal to the

general philosophy of pattern mining algorithms, the use of gap constraints (the simplest form of

time constraints) has a great impact on their design and efficiency.

In this section, we will introduce the problem of sequential pattern mining formally, describing

its adaptations to deal with nominal temporal data.

1.1 – Problem Statement and Analysis

In order to introduce the problem formally, we will begin by giving the definitions of sequence and

its related concepts.

Definition 1 - An item is an element from a totally ordered set Σ, called the item

collection.

Items represent the objects under analysis, e.g., the objects manipulated in a given transaction.

They correspond to the atomic entities in sequential pattern mining.

An itemset, also called a basket, represents the set of items that occur together. If the data is

time dependent, an itemset corresponds to the set of items transacted at a particular instant by a

particular entity. Formally,

Definition 2 - An itemset is an ordered set of non-repeated items.

The itemset composed of items a and b is denoted by (a,b). The ith item of the itemset an is

denoted by an
i.

The assumption that the items in an itemset are in a specific order facilitates the design of

sequential pattern mining algorithms, avoiding the repetition of some operations (such as the

generation of repeated sequences). This assumption also enables the definition of two predicates

over itemsets.

Chapter 3 – Related Work and Thesis Statement

39

Definition 3 - Given two itemsets a=(a1,…,an) and b=(b1,…,bm), with n<m: a is a

prefix-itemset of b iff for all 1�i�n ai is equal to bi.

Definition 4 - Given two itemsets a=(a1,…,an) and b=(b1,…,bm), with n<m: a is a

suffix-itemset of b iff for all 1�i�n ai is equal to bm-n+i.

Moreover, we can define the notion of contained in for itemsets:

Definition 5 - Given two itemsets a=(a1,…,an) and b=(b1,…,bm), a is contained in b

(denoted by a⊆b) iff there exist integers 1�i1<i2<…<in�m such that a1= bi1, a2= bi2,

…, an=bin.

Finally, we are able to define the concept of sequence.

Definition 6 - A sequence is an ordered set of itemsets. A sequence is maximal, with

respect to a set of sequences, if it is not contained in any other sequence of the set.

A sequence with k items is called a k-sequence. The number of elements (itemsets) in a

sequence s is the length of the sequence and is denoted by |s|. The ith itemset in the sequence is

represented by si and <> denotes the empty sequence. The result of the concatenation of two

sequences x and y is a new sequence denoted by xy.

The set of considered sequences is usually designated by database or dataset (DB), and the

number of sequences by database size (|DB|).

Definition 7 - A sequence a=<a1a2...an> is contained in another sequence

b=<b1b2...bm>, or a is a subsequence of b, if there exist integers 1�i1<i2<…<in�m

such that a1⊆bi1, a2⊆bi2, …, an⊆bin.

If s' is a subsequence of s is, this relationship is denoted by s'⊆s, and by s'⊂s if s' is a proper

subsequence of s, i.e. if s' is a subsequence of s but is not equal to s.

Prefixes and suffixes are subsequences with specific meanings.

Definition 8 - A sequence a=<a1a2...an> is a prefix of another sequence

b=<b1b2...bm> if n�m and ai=bi for i<n and an is a prefix-itemset of bn. The prefix is

said to be a proper maximal prefix if it is equal to the original sequence without the

last item on the last itemset.

Chapter 3 – Related Work and Thesis Statement

40

Definition 9 - A sequence a=<a1a2...an> is a suffix of another sequence b=<b1b2...bm>

if n�m, and ai=bm-n+i for 2�i�n and a1 is a suffix-itemset of bm-n+1. The suffix is said

to be a proper maximal suffix if it is equal to the original sequence without the first

item of the first itemset.

In order to define the sequential pattern mining problem, two other notions are needed:

frequent sequences and sequential patterns.

Definition 10 - Given a database D of sequences and some user-specified minimum

support threshold σ, a sequence is frequent in the database D, if it is contained in at

least σ sequences of D. A sequence is called a sequential pattern in a database D, if

it is a maximal sequence with respect to the set of frequent sequences.

Finally, the sequential pattern mining problem may be stated in its entirety.

Definition 11 - Given a database D of sequences and some user-specified minimum

support threshold, the sequential pattern mining process aims to discover the set of

sequential patterns in D.

Sequential Pattern Mining over Nominal Temporal Data

When applied to nominal temporal data, the problem of sequential pattern mining can be restated,

by redefining some of the previous definitions and introducing the formal definition of event,

according to the notion introduced in Chapter 2 , section 1.

Definition 12 - An event is a pair e=(a, t), where a is an itemset and t a positive

integer, called the timestamp.

As before, the itemset represents the set of items transacted at a particular instant, in this case

at instant t. The itemset of an event e is denoted by e.set and the timestamp by e.time. Additionally,

a sequence is now composed of events.

Definition 13 - An event sequence, or just a sequence, s=<e1e2… en> is an ordered list

of events, whose timestamps respect the following order:

∀i∈ : 1 � i < n � e.timei < e.timei+1

The rest of the definitions remain valid when applied to temporal data.

Chapter 3 – Related Work and Thesis Statement

41

Problem Analysis

What makes the problem of sequential pattern mining more challenging than frequent itemset

mining? It is clear that frequent itemset mining is just a particular case of sequential pattern mining,

since frequent itemsets are a particular case of sequential patterns – 1-sequential patterns.

Sequential pattern mining requires, in addition to the discovery of frequent itemsets, the

arrangement of those itemsets in sequences and the discovery of which of those are frequent.

To understand why there exists a significant increase in the number of potential patterns,

assume that there is a database to be mined with the minimum support threshold (the minimum

number of sequences in the database that have to contain the pattern) set to σ and with n =|Σ|

different items in the item collection Σ. The goal of frequent itemset mining is to find which

itemsets are frequent from the | I�| different possible existent itemsets, where ��is the powerset of Σ

(excluding the empty set), and its value is given by equation (1).

 121
1

−=−
��
�

�

�

��
�

�

�
=�

=

n
n

j

n

j
I (1)

To understand the sequential pattern mining problem, let's begin by considering that the

database has sequences with at most m itemsets and each itemset has at most one item. In these

conditions, there would be nm possible different sequences with m itemsets and

1

1
1

1 11

1 −
−=−

−
−=

++

=
� n

nn
n

n
n

mmm

k

k (2)

different arbitrary length sequences.

Similarly, if each itemset has an arbitrary number of items, there would be Sm possible frequent

sequences with m itemsets, with the value of Sm given by equation (3).

mnm

m IS)12(|| −== (3)

In this case, there would be S sequences in general (equation 4).

)2(
22

12)12(
1

22
1)12(

)12(
11

1

nm
n

nmn

n

mnm

k

knS Θ=
−

+−−=−
−

−−=−=
++

=
� (4)

The number of different items and the average length of frequent sequences are tightly

connected: a large number of items in a short sequence may imply a reduced number of frequent

patterns, since the probability of the generality of items has to be small. In this way, algorithms will

run efficiently. The opposite situation is a large sequence with a reduced number of items, where

the probability of each element to occur in a large number of sequences is high. This leads to the

Chapter 3 – Related Work and Thesis Statement

42

existence of many patterns, and consequently a large amount of processing time. The concept of

database density, proposed here, quantifies this relationship.

Definition 14 - (Density) The database density (�) is the ratio between the number of

existing frequent sequences (F) and the number of possible sequences (S).

nm

F
S
F

2
≈=ρ (5)

The database density depends on the support considered, since the number of frequent

sequences (F) depends on the minimum support threshold accepted. The density is higher when the

minimum support thresholds are low, since a larger number of frequent sequences exist.

One parameter that has impact on the density is the number of different items existent in the

database (n). On one side, a large number of items allows for a potentially large number of

different sequences. Since with many distinct sequences, their probability to be frequent is low,

there will exist (all other conditions being equal) a smaller number of patterns and the database

density will be low. On the other side, more reduced number of items generates a smaller number

of potential sequences, which will be more frequent in the database, increasing the number of

patterns and consequently the density of the database.

Despite the potentially large number of sequences (given by expression (4)), only a small

fraction will be, in general, supported by the database. In particular, at most there only exist |DB|/σ

sequences of length m that are frequent.

Given the discrepancy between the number of different sequences and frequent ones, the

difficulty of the data mining process resides in figuring out what sequences to try and then

efficiently finding out which of those are frequent [Srikant 1996].

Like in frequent itemset mining, one of the most common techniques used to minimize the

number of sequences that should be tried is the exploration of the anti-monotonicity

property [Ng 1998].

Definition 15 - (Anti-Monotonicity) Given any set S, a constraint C is anti-monotone if

and only if

∀S': (S'⊆S ∧ S satisfies C � S' satisfies C).

In particular, the frequency of a sequence is an anti-monotone constraint, which means that a

sequence cannot be frequent unless all its subsequences are frequent. The generality of sequential

Chapter 3 – Related Work and Thesis Statement

43

pattern algorithms use this property to avoid testing the majority of possible sequences, minimizing

their processing times. In general, they discover the 1-frequent patterns, then the 2-sequence

patterns and so on, until there are no k-sequence patterns.

Interestingness Measures for Sequential Patterns

As noted before, to our knowledge and to date, no interestingness measure was proposed

specifically for event sequences, except the notion of support, which can be stated by equation (6).

 |DB|
|}s's:DB{s'|

)ssup(
⊆∈=

 (6)

Other interestingness measures used in pattern mining are applied to association rules and not

to the patterns themselves. In this manner, in order to use them in sequential pattern mining, a

definition of a sequential rule is needed.

Definition 16 - A sequential rule is an association rule S�T, where S and T are

sequences.

In this manner, a sequential rule is similar to an association rule, and the adaptation of the

existent interestingness measures is possible. The confidence of the sequential rule S�T can be

defined as the conditional probability of the sequence T given S as in equation (7).

)sup(
)sup(

)(
)(

)(
S

ST
SP

STP
TSconf ==� (7)

Similarly, the lift can be defined by equation (8).

)sup(

)(
)()(

)(
)(

T
TSconf

TPSP
STP

TSlift
�=

×
=� (8)

As happens with association rules, the discovery of sequential rules can be achieved by

discovering the sequential patterns and generating all possible sequential rules for each sequential

pattern. For example, from the sequential pattern S1S2S3S4 it is possible to generate the sequential

rules S1S2S3�S4, S1S2�S3S4 and S1�S2S3S4.

1.2 – Constraints for Sequential Pattern Mining

Despite the reasonable efficiency of pattern mining algorithms, the lack of focus and user control

have been factors that have impaired their generalized use, since the usually large number of

Chapter 3 – Related Work and Thesis Statement

44

discovered patterns makes the analysis of novel information a difficult task.

In order to solve this problem, several authors proposed the use of constraints [Pei 2002a].

Definition 17 - A constraint is a predicate on the set of finite sequences.

In this manner,

Definition 18 - Given a database D of sequences, and some user-specified minimum

support threshold σ and constraint C, a sequence is frequent if it is contained in at

least σ sequences in the database and satisfies the constraint C.

This approach has been widely accepted by the data mining community, since it gives the user

the possibility to control the mining process, either by introducing his background knowledge

deeply into the process or by narrowing the scope of the discovered patterns. The use of constraints

also reduces the search space, which contributes significantly to achieve better performance and

scalability levels [Srikant 1997], [Pei 2002a], [Garofalakis 1999].

The simplest constraint is to impose that only some items are of interest – item constraints,

permitting the reduction of the discovered patterns. Examples of such constraints are Boolean

expressions over the presence or absence of items [Srikant 1997] and the naïve relaxation

[Garofalakis 1999], as explained in section 1.4.

Another constraint involves the specification of the maximum distance between consecutive

elements – gap constraints, either in temporal or non-temporal data. It consists on imposing a limit

in the maximum distance between two consecutive elements in the sequence. This simple

constraint is very useful to reflect the impact of some itemset on another one, in particular, when

each transaction occurs at a particular instant of time. In this manner, it is possible to specify that

an event has greater impact on near events than on distant ones. When using gap constraints, the

notion of contained in has to be adapted.

Definition 19 - A sequence a=<a1a2...an> is a δ-distance subsequence of

b=<b1b2...bm> if there exist integers 1�i1<i2<… <in�m such that a1⊆bi1, a2⊆bi2, … ,

an⊆bin and ik–ik-1�δ. The sequence a is a contiguous subsequence of b if a is a 1-

distance subsequence of b, i.e., the items of a can be mapped to a contiguous

segment of b.

Chapter 3 – Related Work and Thesis Statement

45

Note that a contiguous subsequence is a particular case of δ-distance subsequence and is the

most restrictive notion of subsequence. A δ-distance subsequence s' of s is denoted by s' ⊆ δ s.

Using δ=1 eliminates the possibility of having gaps between consecutive items. In the rest of this

text this is designated by gap=0. When applied to event sequences, the gap may reflect the time

interval allowed between consecutive events

More recently, regular languages have been proposed [Garofalakis 1999] and used to constrain

the mining process [Zaki 2000], [Pei 2002b], reducing the number of discovered patterns.

Next, the concepts related to regular and context-free languages are introduced.

Regular Languages

In order to define the term regular language we make use of the notion of finite automaton, among

others.

Definition 20 - A Finite Automaton is a tuple �=(�, �, δ, q0, �), where: � is a finite

set of states; � is a finite set of symbols, called the alphabet; q0∈�, designates the

initial state; ��⊆�, the set of accepting or final states; and δ is the transition

function mapping �x� to �.

An automaton can be viewed as composed by a set of states and a set of transitions from state

to state that occur on symbols chosen from an alphabet [Hopcroft 1979]. Finite automata are

usually represented as directed graphs, where the vertices correspond to states and arcs to

transitions, as illustrated in Figure 3.1.

q4q1

a

q2 q3b c d

b

d
Figure 3.1 – A deterministic finite automaton

We can consider two kinds of finite automata: Deterministic Finite Automata (DFA), where

there is one and only one transition for each pair (state, symbol), and Nondeterministic Finite

Automata (NDFA), where it is possible to exist none, one or more than one transition for each pair

(state, symbol). Any language accepted by any NDFA can also be accepted by an equivalent DFA.

A language is a set of finite sequences of symbols from some alphabet; those sequences are

Chapter 3 – Related Work and Thesis Statement

46

usually called strings. A language is accepted by an automaton if it corresponds to the set of strings

accepted by the automaton. A string is accepted by an automaton if its symbols define a path in the

graph that represents the automaton, beginning in the initial state and reaching an accepting state.

Examples of strings accepted by the DFA represented in Figure 3.1 are bb (beginning on state q1

and going to state q2 with the first b and then achieving state q4 with the second b), abb, add and

aaabcd; a, aa and abca are examples of non-accepted strings.

Definition 21 - A language is regular if it is accepted by a DFA.

When applied to sequential pattern mining, strings are replaced by sequences (as defined in the

previous section), and symbols are replaced by itemsets. In this new context, the transition function

maps Qx��(�) to Q, with ��(�) representing the powerset of �.

Context-Free Languages

Despite the fact that regular languages provide a simple and natural way to model sequential

patterns, there are interesting patterns that these languages are not powerful enough to describe.

Consider, for example, the following problem: a company wants to find out typical billing and

payment patterns of its customers, but wants to restrict the search to customers, who have paid all

their bills. This is equivalent to the requirement that an equal number of invoices and payments are

registered. Additionally, it is known that an invoice always precedes a payment. In a semi-formal

way, if an invoice is represented by an a and a payment by a b, the model has to be able to describe

sequences that have the same number of a's and b's, and the number of b’s that have occurred at a

given instant never exceeds the number of a’s that have occurred until that moment. Therefore, it

has to be able to accept sequences like abab as well as aabbab, and reject strings like aabbb or

baab.

Note that no finite automata can be used to model this constraint, because they have finite

memory. Since regular languages are not expressive enough to describe some interesting

constraints the simplest approach to this problem is to climb one-step up on the Chomsky hierarchy

[Chomsky 1956].

Context-free languages (CFLs) are at the next level in this hierarchy, and are strictly more

powerful than regular languages. This type of languages represents a formalism of great

importance, since it is powerful enough to describe the structure of many interesting problems

while remaining simple enough to allow for the construction of efficient parsers [Allen 1995].

Chapter 3 – Related Work and Thesis Statement

47

CFLs have been widely used to represent programming languages and, more recently, to model

biological sequences [Searls 1992] [Searls 1995].

In this thesis, we propose the use of context-free languages instead of regular languages for

constraining the mining process, and for this reason, they are introduced next.

Unlike regular languages, context-free languages are not equivalent to the languages generated

by deterministic finite automata. However, DFAs can be extended with a stack memory in order to

recognize these new languages. These automata are known as Pushdown Automata (PDA).

Definition 22 - A pushdown automaton is a tuple ��=(�, Σ, Γ, δ, q0, Z0, �), where: �

is a finite set of states; Σ is an alphabet called the input alphabet; Γ is an alphabet

called the stack alphabet; δ is a mapping from �×Σ∪{ε}×Γ to finite subsets of

�×Γ*; q0∈� is the initial state; Z0∈Γ is a particular stack symbol called the start

symbol, and ��⊆� is the set of final states [Hopcroft 1979].

The language accepted by a pushdown automaton is the set of all inputs for which some

sequence of moves causes the pushdown automaton to empty its stack and achieve a final state.

As an example, the following PDA accepts the language exemplified above:

M = ({q1, q2}, {a, b}, {S, X}, δ, q1, S, {q2})

δ(q1, a, S) = {(q2, XS)}, δ(q2, a, S) = {(q2, XS)},

δ(q2, a, X) = {(q2, XX)}, δ(q2, b, X) = {(q2, ε)} and δ(q2, �, S) = {(q2, ε)}

This automaton is represented in Figure 3.2.

q2q1 (a, S)�push X

(a, S)�push X
(a, X)�push X

(b, X)�pop

(ε, S)�pop

Figure 3.2 – A pushdown automaton

As an example, the “(a, S)�push X” transition label is used to indicate that when the input

symbol is a and the top stack symbol is S, then X is pushed into the stack. When applied to

sequences instead of strings, pushdown automata have to be redefined. In Chapter 5, section 3.1

Chapter 3 – Related Work and Thesis Statement

48

these adaptations are described in detail.

Generalized Patterns

A complementary proposal to the use of constraints was based on the idea of generalized patterns.

This proposal makes use of taxonomies, which capture the existent is-a relation between items, as

introduced in Chapter 2, section 2.1. Like constraints, taxonomies facilitate the introduction of

background knowledge into the mining process, by representing known relations between items

(for example, the knowledge that two items belong to the same category).

Generalized patterns include items across different levels of the taxonomy, and their goal is to

find rules about infrequent items at low abstraction levels, but that are frequent at higher-levels.

Since algorithms that find generalized patterns discover more patterns, their final step involves

filtering redundant patterns. This is achieved by pruning all the patterns deemed non-interesting

using an interestingness measure, which considers a pattern as redundant if it does not convey any

more information that another pattern, and is less general than the second pattern. A detailed

description of an algorithm to discover generalized patterns can be found in [Srikant 1995].

1.3 – Unconstrained Algorithms

There are two main approaches to the sequential pattern mining problem: apriori-based and

pattern-growth methods. We are going to study these two different philosophies by analyzing their

best-known implementations, GSP [Srikant 1996] and PrefixSpan [Pei 2001], respectively. There

are several implementations of apriori-based methods. However, most of them assume some

specific conditions (for example that the entire dataset fits in memory), allowing for significant

improvements. Although GSP considers time constraints and uses taxonomies, if no taxonomy is

provided, and time constraints are not set (min-gap assumes 0, max-gap assumes ∞ and the sliding

window size is 0) both algorithms have similar goals: to discover sequential patterns, without

considering any constraints and without any database restrictions.

Apriori-based Methods

Like the original approach to sequential pattern mining (AprioriAll [Agrawal 1995c]), GSP follows

the candidate generation and test philosophy, used by the apriori algorithm (as described in

Chapter 2 , section 2.2). It begins with the discovery of frequent 1-sequences (k=1), and then

generates the set of potentially frequent (k+1)-sequences from the set of frequent k-sequences, as

Chapter 3 – Related Work and Thesis Statement

49

presented in Algorithm 1. Potentially frequent sequences are usually called candidates.

The generation of potentially frequent k-sequences (k-candidates) uses the frequent (k-1)-

sequences discovered in the previous step, which may reduce significantly the number of

sequences to consider at each moment, as shown in candidateGeneration pseudocode.

Algorithm 1 – GSP pseudocode (without taxonomies and only with max_gap=δδδδ)

In this procedure, any two frequent (k-1)-sequences, such that the proper maximal prefix of one

is equal to the proper maximal suffix of the other, are combined to create a k-candidate by joining

the last item of the second sequence to the first sequence, in accordance to the procedure join

(Algorithm 2). In this pseudocode, the following notation was used: an represents the nth itemset of

the sequence a and ai
n represents the nth item of ai; the symbol “\” denotes the difference operation

among sets.

Algorithm 2 – Pseudocode for the join procedure

In order to illustrate the joining procedure consider three sequences: x=(a,b)cd, y=bc(d,e) and

z=c(d,e,f). Joining x and y will create the sequence (a,b)c(d,e), and joining y and z will generate

������������������	
������δ��
� ��������������������������
� ����������������������≠∅�� ��!�!�!�!��
� � "���#�!
!#�������#�
�����������
� � "���#�!
!#������
�$������"����δ��
� � �������������
�$�"�����	
�����δ��
�������������������������∪�����

�#�!
!#������
�$�#�!
!#������
�$�#�!
!#������
�$�#�!
!#������
�$�������"������δ��
� �����#�%�����#�%�����#�%�����#�%�∈"��!�!�!�!��
� �
�
�
�
���������������
��
&'�(�������������������δ��
� � � "��"�)���
�������������������������"��

��
&'�(�������
��
&'�(�������
��
&'�(�������
��
&'�(�������������������δ��
��������������������������*∃�⊂δ∧+�+,����∧��∉������

����
����
�#�!
!#�������#�
���#�!
!#�������#�
���#�!
!#�������#�
���#�!
!#�������#�
������������
� �����#�%�����#�%�����#�%�����#�%�#∈�����!�!�!�!��
� � �����#�%�����#�%�����#�%�����#�%�&∈�����!�!�!�!��
� � � "��"�∪-�
��#��&��
�������������������������"��

����������
�$����������
�$����������
�$����������
�$�"�������	
������δ��
� �����#�%�����#�%�����#�%�����#�%�∈���!�!�!�!��
� � �����#�%�����#�%�����#�%�����#�%��∈"��!�!�!�!���
� � �
�
�
�
���⊂δ���%���%���%���%���
� � � � �.������� �
� �����∈"�/��.������0	
������
���������������������������

-�
�-�
�-�
�-�
��������
� ����++�
� 	���+�+�
�
�
�
�
���,��∧�	,��∧��∀�1
1�/�
,�
����
� � �����2 ��	�

�
�
�
�
���3��∧�	,��∧��∀�1
1���/�
,�
��∧��)����,���∧��,�)��	4��
� � �����2 ��	�
����
�
�
�
���3��∧�	3��∧��∀�1
1���/�
,�
��∧��)����,���∧�4,+�	+∧�,�)��	4��
� � �����2 ����	�

�
�
�
�
���,��∧�	3��∧��∀�1
1�/�
,�
����∧�4,+�	+�∧��,�)��	4��
� � �������2 �	�
���������������������������

Chapter 3 – Related Work and Thesis Statement

50

c(d,e,f). Note that x and z cannot be joined.

Note that to decide if one sequence s is frequent or not, it is necessary to scan the entire

database, verifying if s is contained in each sequence in the database. This check is performed by

the procedure supportPruning.

In order to reduce the time needed to scan the database and count the support for each

candidate, GSP adopts a particular scheme: it maintains all candidates in a hash-tree and for each

sequence s in the database, it increments the counter of the candidates contained in s. In this

manner, GSP only scans the database once per step.

Knowing that the frequency of a sequence is an anti-monotone property, GSP adopts two other

optimizations. The first is that it only creates a new k-candidate when there are two frequent (k-1)-

sequences with the prefix of one equal to the suffix of the other (join procedure). The second one

is that, before counting their support, it eliminates all candidates that have some non-frequent

maximal subsequence (candidatePruning procedure), in accordance with the anti-monotonicity

property (verified by isPossibleFrequent procedure). By using these strategies to reduce the

number of candidates, GSP reduces the time spent in scanning the database, increasing its general

performance.

In general, apriori-based methods can be seen as breath-first traversal algorithms, since they

construct all k-patterns simultaneously. Consider a database that is composed of sequences with

items belonging to the set Σ={a, b}. If all possible arrangements of these two elements are

frequent, GSP works as illustrated in Figure 3.3.

ba

aa ab(ab) ba bb

aaa aaba(ab) (ab)a (ab)b aba abb baa babb(ab) bba bbb

1st step

2nd step

3rd step

Figure 3.3 – Illustration of GSP behavior

At the end of the first iteration, GSP would have found a and b as frequent 1-sequences. At the

end of the second step, it would have found {aa, (ab), ab, ba, bb}. Finally, at the end of the third

iteration, GSP would have found all arrangements of 2 items taken 3 at a time, including the basket

Chapter 3 – Related Work and Thesis Statement

51

(ab): {aaa, a(ab), aab, (ab)a, (ab)b, aba, abb, baa, b(ab), bab, bba, bbb}.

Note that, at each step GSP only maintains in memory the already discovered patterns and the

k-candidates.

Pattern-growth Methods

Pattern-growth methods are a more recent approach to deal with the sequential pattern mining

problem. The key idea is to avoid the candidate generation step altogether, and to focus the search

on a restricted portion of the initial database.

PrefixSpan [Pei 2001] is the most representative of the pattern-growth methods and is based on

the recursive construction of the patterns, while simultaneously restricting the search space to

projected databases, as shown in Algorithm 3.

Algorithm 3 – PrefixSpan pseudocode

Its main loop consists on recursively constructing each sequential pattern by joining another

frequent item to the already known frequent prefixes, as shown in procedure run (the

discoverFList procedure finds the items that frequently appear after α).

An α-projected database is the set of subsequences in the database, which are suffixes of the

sequences that have prefix α. Each α–projected database is constructed by registering which

sequences on the database contain α (createProjDB procedure). At each step, the algorithm

looks for the frequent sequences with prefix α, in the corresponding projected database. In this

way, the search space is reduced at each step, allowing for better performance in the presence of

small support thresholds, since the support counting operation is performed in specific portions of

the original database.

In general, pattern-growth methods can be seen as depth-first traversal algorithms, since they

construct each pattern separately, in a recursive way. If we consider the same database as

previously, PrefixSpan would work as illustrated in Figure 3.4.

����
5��#�����
5��#�����
5��#�����
5��#�������σ��
�����������������������������63�7��σ������

�
��������������α������σ������
� ��'
����!
��8��(�
��α�σ�������
� �����#�%�����#�%�����#�%�����#�%�&∈��'
��!�!�!�!��
� � α9���α&��
� � �����∪�α9�
� � ���∪����α9�� ���σ�����#�����-���α9������
���������������������������

�
���#�����-�����#�����-�����#�����-�����#�����-����α������
� �����#�%�����#�%�����#�%�����#�%�∈���!�!�!�!��
� �
�
�
�
��α�⊆��
� � � ��.�
��:���������;�����α��7��
� � � β�.����
5��α�����
� � � α����-����α����-���∪��β��
�������������������������α����-���

Chapter 3 – Related Work and Thesis Statement

52

ba

aa ab(ab)

aaa aaba(ab)

Figure 3.4 – Illustration of PrefixSpan behavior

At the first recursion step, PrefixSpan, like GSP, would have found a and b as frequent 1-

sequences. Before encountering the first frequent sequences with three items, it would have only

found {aa, (ab), ab} as frequent 2-sequences, since it expands only one branch at a time. Then,

PrefixSpan would find {aaa, a(ab), aab}. Only after it has discovered the maximal patterns with aa

as prefix, would it expand the (ab) branch in order to discover the patterns with (ab) as prefix. In

this manner, PrefixSpan is able to deal efficiently with projected databases, since at each step it has

only a few projected databases in memory.

PrefixSpan outperforms GSP in the generality of situations, with much better performances in

the presence of very low minimum support thresholds. The reasons for this difference are not well

understood and will be studied in Chapter 4.

1.4 – Algorithms for Sequential Pattern Mining with Constraints

From the constraints used in sequential pattern mining, the use of regular languages to restrict the

discovery process is the one that has deserved more attention among the community. Again, there

are essentially two approaches to this problem: an apriori-based – SPIRIT, and a pattern-growth

method – PrefixGrowth.

SPIRIT

SPIRIT [Garofalakis 1999] is a family of apriori-based algorithms that uses a regular language

(expressed as a finite automaton) and a gap constraint to restrict the mining process. Given that

most of the interesting regular languages do not represent anti-monotone constraints, the algorithm

uses constraint relaxations (weaker constraints) to manage the candidate generation and pruning

procedures, as described in Algorithm 4.

Chapter 3 – Related Work and Thesis Statement

53

Algorithm 4 – SPIRIT pseudocode

In this manner, the great differences between SPIRIT and GSP reside on the generation of

candidates that have to be accepted by the constraint relaxation (candidateGeneration

procedure) and on the candidate pruning step, which only accepts sequences that have all maximal

accepted subsequences frequent (isPossibleFrequent procedure). (The join procedure

remains identical to the one presented on Algorithm 2).

There are two other differences: the terminating condition on the main loop

(holdTerminatingCond) and the use of the set of all frequent sequences (L) instead of the set of

frequent (k-1)-sequences (Lk-1) as parameters to the candidate generation. Both differences are due

to the fact that even the proposed constraint relaxations may not be anti-monotone, and different

relaxations impose different terminating conditions and candidate generation procedures.

Four relaxations, representing a natural progression on imposing stronger relaxations in the

mining process and the corresponding SPIRIT implementations, have been proposed: naïve –

SPIRIT(N); legal – SPIRIT(L); valid – SPIRIT(V); and the regular language itself – SPIRIT(R).

Naïve relaxation only prunes candidate sequences having elements that do not belong to the

constraint alphabet (the alphabet of the finite automaton), which simply corresponds to an item

constraint. Since naïve relaxation is anti-monotonic, the terminating condition and the candidate

generation procedures are equal to the corresponding ones in GSP. The process ends when there is

no frequent (k-1)-sequence and the candidate generation procedure uses Lk-1 elements to generate

the k-candidates (Ck).

��<=<>��<=<>��<=<>��<=<>������	
������δ��"���
� "�9�����'#5#�
����"���
� �����������������������#�
�?
�$�"�9���
� ����
� ����#�����#�����#�����#��
� � "���#�!
!#�������#�
���������"�9���
� � "���#�!
!#������
�$����"������"9��δ��
� � �������������
�$�"�������	
������
� � ������∪��/�
� � ����� ��
� ���
'���
'���
'���
'�%�'!>��	
�#�
�$"��!����"�9��
��������������������������∈���∧��#�
�
��"���

�
�#�!
!#�������#�
���#�!
!#�������#�
���#�!
!#�������#�
���#�!
!#�������#�
���������"�9��
� �����#�%�����#�%�����#�%�����#�%�#∈��!�!�!�!��
� � �����#�%�����#�%�����#�%�����#�%�&∈��!�!�!�!�����
���� ���� ���� ���-�
��#��&��
� � �
�
�
�
����#�
�
��"�9���
� � � � "��"�∪�
�������������������������"��

�
�
�#�!
!#������
�$�#�!
!#������
�$�#�!
!#������
�$�#�!
!#������
�$����"������"9��δ��
� �����#�%�����#�%�����#�%�����#�%�∈"��!�!�!�!��
� �
�
�
�
���������������
��
&'�(����������������"9��δ��
� � � "��"�)���
�������������������������"��

�

��
&'�(�������
��
&'�(�������
��
&'�(�������
��
&'�(����������������"9��δ��
��������������������������*∃�⊂δ�∧�+�+,����∧���#�
�
��"�9�∧��∉���

�
����������
�$����������
�$����������
�$����������
�$�"�������	
������δ��
� �����#�%�����#�%�����#�%�����#�%�∈���!�!�!�!��
� � �����#�%�����#�%�����#�%�����#�%��∈"��!�!�!�!���
� � �
�
�
�
���⊂δ���%���%���%���%���
� � � � �.������� �
� �����∈"�/��.������0	
������
���������������������������

Chapter 3 – Related Work and Thesis Statement

54

The legal relaxation requires that every pattern is legal with respect to some state of the

automaton. A sequence is said to be legal with respect to q (with q being a state of the automaton)

if there is a path in the automaton, which begins in state q and is composed by the sequence

elements. The process ends when there are no legal k-sequences with respect to the initial state, and

the candidate generation step remains similar to the corresponding one in GSP.

The valid relaxation only accepts sequences that are valid with respect to any state of the

automaton. A sequence is said to be valid with respect to q if it is legal with respect to q and

reaches an accepting state. Given that this relaxation does not impose an anti-monotone constraint,

the candidate generation step has to be different: each frequent k-sequence is extended (at the

beginning) with a frequent element (an element that belongs to L1). The terminating condition

remains equal to the corresponding one in GSP. Note that the term valid was somewhat misused,

since the relaxation considers suffixes of accepted sequences. In the rest of this dissertation, this

relaxation is called valid-suffix.

Finally, the regular language itself imposes the most different terminating condition and

candidate generation procedure. Consider, for example, the automaton in Figure 3.1. Despite the

fact that a, ab and abc are not accepted, abcd is accepted. This show that it is possible to have

accepted sequences whose prefixes are not accepted. In order to deal with this situation, the process

only ends when it achieves the nth iteration (where n is the number of states in the automaton) and

there is no frequent sequence (all Lk are empty). Additionally, at each step, the candidate

generation procedure creates each candidate by enumerating all possible k-sequences accepted by

the automaton.

PrefixGrowth

Like SPIRIT, PrefixGrowth [Pei 2002b] uses regular languages, expressed as finite automata, to

constrain the mining process.

Algorithm 5 – PrefixGrowth pseudocode

����
5���@�%����
5���@�%����
5���@�%����
5���@�%������σ��"���
�����������������������������63�7��σ������"���

���#�����-�����#�����-�����#�����-�����#�����-����α������
� �����#�%�����#�%�����#�%�����#�%�∈���!�!�!�!��
� �
�
�
�
��α�⊆δ���%���%���%���%���
� � � ��.�
��:���������;�����α��7��
� � � β�.���
5��α�����
� � � α����-����α����-���∪��β��
�������������������������α����-���

��������������α�����σ������"���
� ��'
����!
��8��(�
��α, σ������"���
� �����#�%�����#�%�����#�%�����#�%�&∈��'
��!�!�!�!��
� � α9���α&��
� �
�
�
�
��α9�������
#''?�#�
�
��"�
� � �
�
�
�
��α9�#�
�
��"�
� � � � �����∪�α9�
� � � ���∪����α9�� ��σ����#�����-���α9�����"���
���������������������������

Chapter 3 – Related Work and Thesis Statement

55

It is a pattern-growth method, similar to PrefixSpan, but it only generates sequences that

potentially satisfy the constraint, this is, it only extends sequences that are prefixes of accepted

sequences. Algorithm 5 presents the pseudocode for PrefixGrowth. Another difference to

PrefixSpan is that the discoverFList procedure in PrefixGrowth also removes the sequences

that do not contain any accepted subsequence from the database.

Note that PrefixGrowth deals with non-monotonic constraints in an easier way than SPIRIT.

Indeed, it only requires that relaxed constraints are prefix-monotone. A constraint is prefix-

monotone if it is either prefix anti-monotonic or prefix-monotonic.

Definition 23 - (Prefix anti-monotonicity) A constraint is prefix anti-monotonic if for

each sequence α satisfying the constraint, so does every prefix of α�[Pei 2002b].

C is prefix anti-monotonic ���∀β:� β �is prefix of α ∧ α satisfies C � β satisfies C)

Definition 24 - (Prefix monotonicity) A constraint is prefix monotonic if for each

sequence α satisfying the constraint, so does every sequence having α as a prefix

[Pei 2002b].

C is prefix-monotonic � (∀α: α satisfies C � (∀β: α is prefix of β � β satisfies C))

An interesting issue is to note that neither PrefixSpan nor PrefixGrowth are able to deal with

gap constraints without some adaptations. Moreover, the differences on the performance of

PrefixSpan and GSP may be explained by this difference on goals. In order to clarify this issue, in

the next chapter we will propose a new pattern-growth method able to deal with gap constraints

(GenPrefixSpan), and we will compare the performance of this new algorithm with the

performance of GSP.

1.5 – Review of Related Work

The recent interest in performing inter-transactional analysis has lead to the definition of the

sequential pattern mining problem and the development of new algorithms to address it. However,

like for pattern mining, those algorithms "produce" a large number of patterns, most of them

useless and uninteresting for the final user.

In order to focus the discovery on user expectations, some authors have proposed the use of

constraints. On one hand, they introduce some difficulties in the mining process, and, as been

shown, it is necessary to use some constraint relaxations (with specific properties) to maintain the

efficiency of the algorithms. On the other hand, constraints have rarely been applied and have not

Chapter 3 – Related Work and Thesis Statement

56

been able to represent the user background knowledge, in an integrated form.

Another important issue related with the use of constraints is the inability to discover unknown

information. Some authors have pointed out that when used incautiously, constrained pattern

mining may reduce the data mining process to a hypothesis-testing task. Note that, when blindly

applied on the first step of the process, it prevents the discovery of unknown and unexpected

patterns, which is the first and foremost goal of data mining [Hipp 2002].

2 – Thesis Statement

We may formulate the central statement of the present thesis as:

It is possible to efficiently use constrained sequential pattern mining

algorithms over nominal temporal data to discover unknown

information, keeping the process centered on the user.

An analysis of the thesis statement leads to six questions that need further discussion:

• What does "unknown information" mean? Information is used as a synonymous of pattern

and the term unknown designates both the novel information in the reference frame of the

information system or of the user himself [Frawley 1992].

• What does "to center the process in the user" mean? Centering the process in the user has

essentially two aspects: the management of user expectations and the use of user background

knowledge in the mining process [Brachman 1996]. By expectation management, we mean

that the results of the process have to be in accordance with user expectations. This

management is done by constraining the discovery process using his background knowledge.

• How is the discovery performed? The discovery is performed by sequential pattern mining

algorithms (described in detail in Chapter 4 and Chapter 5).

• Which constraints may be used? As described in the above section, the problem of pattern

mining implicitly uses an existential constraint – the minimum support threshold, to identify

which are the frequent patterns. Additionally, other kinds of constraints have been used to

focus the discovery process, such as temporal constraints, taxonomies [Srikant 1995] and

formal grammars [Garofalakis 1999]. Despite the more recent efforts to study these

constraints, they have been used in a non-integrated way. This thesis proposes a new set of

constraints – Ω-constraints, which combine the most interesting currently existent constraints

Chapter 3 – Related Work and Thesis Statement

57

with new ones, in an integrated way. These constraints are defined in Chapter 5, in detail.

• How is the discovery of unknown patterns possible? The use of constraints helps on focusing

the search in accordance with user expectations, but prevents the discovery of unknown

patterns. In this thesis, we propose the use of constraint relaxations, instead of constraints by

themselves, for guiding the mining process. This approach will be proposed in Chapter 6,

where several relaxations are defined.

• What does efficiently mean? Sequential pattern mining algorithms show an acceptable

performance exploring large sparse datasets. However, in the presence of dense datasets or

very low support thresholds, their performance suffers a considerable degradation. In this

work, we argue that the use of constraints and constraint relaxations improve the performance

of those processes. In this manner, efficiently means that in the majority of situations,

constrained sequential pattern mining can be performed in less time than unconstrained

sequential pattern mining.

The validation of this thesis will be performed by comparing the number and interest of

discovered patterns, using unconstrained and constrained sequential pattern mining, with

constraints and with constraint relaxations. These evaluations will be conducted using synthetic

data (presented at the end of each chapter) and two real-life datasets, presented in Chapter 7.

Summary

In this chapter, we have presented a detailed description of sequential pattern mining and the

proposed solutions to it. Additionally, we have presented our thesis statement, which

corresponds to a new data mining methodology. This methodology relies on the notion of

constraint relaxation, and aims to keep the focus on user expectations allowing for the

expression of existing background knowledge. This is done without compromising the main

goal of data mining: the discovery of unknown information. With the conjunction of a new

mining process and the use of constraint relaxations, the user is able to choose the level of

knowledge that he wishes to incorporate on the process.

Chapter 3 – Related Work and Thesis Statement

58

59

Chapter 4

Sequential Pattern Mining: new algorithms

In this chapter, PrefixSpan is generalized in order to deal with gap constraints –

GenPrefixSpan. A comparison between GSP and GenPrefixSpan is performed and the results

presented. Section 3 presents a new apriori-based algorithm – SPaRSe, which combines the

simplicity of apriori-based algorithms with the efficiency of pattern-growth methods. With

this new algorithm, we show that with some specific improvements, apriori-based algorithms

can compete with pattern-growth methods. Studies on performance, scalability and memory

requirements in synthetic datasets are presented in the last section of this chapter.

he rapid growth of the amount of stored digital data and the recent developments in data

mining techniques, have lead to an increased interest in methods for the exploration of data,

creating a set of new data mining problems and solutions. Frequent Structured Mining is one of

these problems, whose target is to discover hidden structured patterns in large databases. Sequences

are the simplest form of structured patterns, while trees and graphs are other examples of structured

patterns.

The main approaches to sequential pattern mining, namely apriori-based and pattern-growth

methods, are being used as the basis for other structured pattern mining algorithms. However, and

despite the fact that pattern-growth algorithms have shown better performance in the generality of

situations, its advantages over apriori-based methods are not sufficiently understood.

In this chapter, we present a comprehensive comparison of these approaches to sequential

pattern mining, in order to explain the main reasons why pattern-growth methods outperform

apriori-based approaches. However, a fair evaluation of the methods requires that they have exactly

the same goals, which is not true for the best-known algorithms, GSP and PrefixSpan. In order to

T

Chapter 4 – Sequential Pattern Mining: new algorithms

60

accomplish our goal, we present a generalization of PrefixSpan (GenPrefixSpan) that deals with

gap constraints, and maintains the pattern-growth philosophy. Finally, we analyze the conditions

under which apriori-based methods become as efficient as pattern-growth methods, presenting a

new apriori-based algorithm – SPaRSe (Sequential PAttern mining with Restricted SEarch).

1 – Pattern-Growth Methods with Gap Constraints

In Chapter 3 , section 1, we have described the two well-known algorithms for sequential pattern

mining. In this section, we will study the effectiveness of these algorithms when dealing with gap

constraints.

As referred, GSP is a generalization of AprioriAll that deals with gap constraints. However

when gap constraints are used, the PrefixSpan algorithm (and also PrefixGrowth) cannot be applied

directly. To illustrate this limitation, consider for example the data in Table 1 and a minimum

support threshold of 40%, which means, in this case, that a pattern has to occur at least twice in the

database. Additionally, assume that the gap constraint is set to zero, which means that only

contiguous sequences are allowed.

Table 1 – Database example

Database
pumpu acjcde ababa achcde nozrs

PrefixSpan finds a, c, d and e as frequent items, which constitute the f_list. Then, it recursively

calls the main procedure (run) with α=a and an α-projected database equal to {cjcde, baba,

chcde}. Next it recursively proceeds with α=ac and an α-projected database equal to {jcde, hcde},

and it finishes this branch. Similarly for element c: run is called with α=c and an α-projected

database equal to {jcde, hcde}. Since there is no frequent element at distance 1, the search stops

and cde is not discovered. This happens because the α-projected database only maintains the suffix

after the first occurrence of α (procedure createProjDB in Algorithm 3).

1.1 – GenPrefixSpan

The generalization we propose for PrefixSpan (GenPrefixSpan) is based on the redefinition of the

method used to construct projected databases. Instead of looking only for the first occurrence of α,

every occurrence is considered. For instance, again using the example in Table 1, the creation of

the c-projected database would give as result {jcde, de, hcde, de} instead of {jcde, hcde} as before.

Chapter 4 – Sequential Pattern Mining: new algorithms

61

It is important to note that, including all suffixes after the occurrence of an element may

change the number of times that each pattern appears, thus modifying the database size. In order to

be able to properly compute the support for each pattern, an id is associated with each original

sequence. In this manner, the support counting procedure ensures that each original sequence

counts at most once for each pattern support. For instance, for the same example the a-projected

database would be {1-cjcde, 2-baba, 2-ba, 3-chcde}, but the support for ab would remain one,

since baba and ba correspond to the same original sequence.

Given that this new method requires that the α-projected database considers all the occurrences

of α, the database considered at each step may be considerably larger than the previous one. This

means that the search space is no longer smaller at each step, as in the PrefixSpan

algorithm [Pei 2001].

Algorithm 6 – GenPrefixSpan pseudocode

Fortunately, the projected database creation can be improved for the subsequent steps. In fact,

for the remaining steps, in order to create αb-projected databases (with b a frequent item after α) it

is only necessary to look for the occurrences of b, whose distance to α is less than the maximum

distance allowed (δ+1), ensuring that αb is frequent in accordance with the established gap

constraint (as shown in the new createProjDB procedure in Algorithm 6). Therefore, the design

of GenPrefixSpan remains similar to the original PrefixSpan, as shown in Algorithm 6, and the

generation of the projected databases can be done with any of the proposed methods. All the

presented results on the final section use the pseudo-projection to generate the projected databases.

�������
5��#��������
5��#��������
5��#��������
5��#�������σ��δ��
� ��'
����!
��8��(�������<��	��σ������
� �����#�%�����#�%�����#�%�����#�%�&∈��'
��!�!�!�!��
� � �����∪��&��
� � ���∪����&�δ�σ�$�����-���&�δ�����������
���������������������������

��������������α�����σ��δ������
� ��'
����!
��8��(�������<��	��σ��δ������
� �����#�%�����#�%�����#�%�����#�%�&∈��'
��!�!�!�!��
� � α9���α&��
� � �����∪�α9�
� ���∪����α9�� ��σ�δ�$�����-���α9�δ�����#'����
������������������������������

����

����

$�����-��$�����-��$�����-��$�����-���α��δ�������
��������
� �����#�%�����#�%�����#�%�����#�%�∈���!�!�!�!��
� �
�7�

� � ����#������#������#������#������

� � �
��.�
��:���������;�����α��
��
� � � β�.���
5�α��
��
� � � α����-���α����-���∪��β��
� � ���
'���
'���
'���
'��
� �δ0++��∧���
�������∨�
0δ��
�������������������������α����-���

Chapter 4 – Sequential Pattern Mining: new algorithms

62

The difference between the use of createProjDB in the first and remaining steps resides in

the firstStep flag, which ensures that in the first step all occurrences of α are considered and

that, for the remaining steps, only the occurrences of α at a legal distance are considered. Note that

when there is no gap constraint, the creation of projected databases (createProjDB(b,∞,DB,true))

is similar to the corresponding procedure defined in original PrefixSpan, since it only generates the

projection relative to the first occurrence of α. In this manner, the performance of GenPrefixSpan

and PrefixSpan are similar in the absence of gap constraints.

Another interesting issue is that when only contiguous patterns are allowed, the procedure

createProjDB only looks for the first itemset after α, which increases its performance.

2 – Comparison between GSP and GenPrefixSpan

In order to understand and identify what are the most time consuming operations of each algorithm,

we have performed a profiling study, recording the total time spent by the main steps of each

algorithm. Both GSP and GenPrefixSpan were executed in a set of synthetic datasets (described in

detail in section 4) with several different values for minimum support threshold.

As other pattern-growth methods, GenPrefixSpan generally outperforms GSP, and shows much

better results for low minimum support threshold values. In order to understand why this happens,

let us analyze the time spent in each step of GSP when using low minimum support values.

We have considered the two main steps of GSP: candidate generation and candidate test.

Candidate generation includes generateL1, which corresponds to the initial step, where frequent

1-sequences are discovered; candidateGeneration – the procedure that defines the sequences

potentially frequent and candidatePruning – the procedure that eliminates some of the

candidates, in accordance to the anti-monotonicity property.

The step of candidate testing corresponds to supportPruning, the procedure that counts the

support for each potentially frequent sequence, by performing the database scan.

Table 2 shows that the support-based pruning procedure consumes almost the totality of

processing time. For GenPrefixSpan, the relative results are quite different: the processing time

spent in scanning the database is approximately 50% (Table 2), and uses much less time than GSP

for low minimum support values.

Chapter 4 – Sequential Pattern Mining: new algorithms

63

Since both methods spend a large percentage of time scanning the database, what makes

GenPrefixSpan much faster than GSP? The answer lies in the reduction of the search space. In fact,

at each recursion step, GenPrefixSpan usually scans a smaller database, since the α-projected

database has more sequences than the αb-projected database.

Table 2 – Processing Times for GSP and GenPrefixSpan

 GSP GenPrefixSpan
sup CandidateGeneration Candidate Test Total Find Elements Create Proj DB Total

50% 0,01s 0% 3,19s 100% 3,19s 0,88s 50% 0,89s 50% 1,78s
40% 0,01s 0% 4,90s 100% 4,91s 1,33s 53% 1,16s 47% 2,49s
33% 0,02s 0% 9,08s 100% 9,10s 2,01s 55% 1,67s 45% 3,68s
25% 0,02s 0% 17,32s 100% 17,34s 3,40s 55% 2,74s 45% 6,15s
10% 1,26s 1% 157,63s 99% 158,89s 18,71s 58% 13,41s 42% 32,13s

3 – SPaRSe – Sequential Pattern Mining with Restricted Search

The results of this analysis lead us to analyze the possibility of applying a search restriction to

apriori-based methods. In this section, we present a new algorithm, which combines the candidate

generation and test philosophy with the restriction of the search space obtained from the use of

projected databases.

SPaRSe (Sequential Pattern mining with Restricted Search) is a new algorithm obtained by

adapting GSP to use restricted databases. It acts iteratively like apriori-based algorithms, in that

after discovering the frequent elements, it looks for patterns with growing length at each step. It

finishes when there are no more potential frequent patterns to search. The key idea is to maintain a

list of supporting sequences for each candidate, and to verify the existence of quorum only in the

subset of sequences that support both generating candidates.

Algorithm 7 describes the main procedure of SPaRSe. Note that its main procedure is identical

to the main procedure of GSP, since the patternDiscovery procedure aggregates the

functionalities of candidateGeneration, candidatePruning and supportPruning in GSP.

The difference to GSP is the fact that SPaRSe generates and tests each candidate separately.

Procedure satisfies counts the support for one candidate and returns true if it is frequent and

false otherwise. This behavior is similar to the behavior of supportPruning in GSP. (The

join procedure remains identical to the one presented on Algorithm 2).

Chapter 4 – Sequential Pattern Mining: new algorithms

64

Algorithm 7 – SPaRSe pseudocode

3.1 – Support-Based Pruning

However, what makes SPaRSe more than a variant of GSP, is the restriction of the search space in

a way similar to PrefixSpan: it associates each frequent discovered pattern with the set of

sequences where it appears. This set is called the support database. In this manner, it is possible to

count the support of a new candidate, only in the intersection of the support databases of its

parents. Note that the anti-monotonicity property implies that if a sequence does not support a

pattern, then it could not support any of its super-patterns. When the support of a candidate is

counted, only the potential support sequences are scanned.

In SPaRSe a pattern is not only a sequence in itself, but it contains the information that lists the

sequences where it occurs, which correspond to its support database. This simple modification

justifies the new procedure for generating candidates – createNewCandidate. This simple

inclusion allows for constraining the search considerably, improving the global average

performance. However, maintaining support databases for each discovered pattern, and for every

candidate of length k, may be prohibitive in terms of memory.

A simple contribution to minimize this problem is to use an array of bits to represent the

support database. Note that, in GenPrefixSpan an α-projected database uses more memory (since it

also keeps the sequence identification and the index of the α occurrence). However,

��#=����#=����#=����#=��������	
������δ��
� ��������������������������

� ����������������������≠∅�� ��!�!�!�!��
� � �#������
��8��?���������	
�����δ��
� � ����� ��

�������������������������∪�����

�

�#������
��8��?�#������
��8��?�#������
��8��?�#������
��8��?���������	
�����δ��
� �����∅�
� �����#�%�����#�%�����#�%�����#�%�∈�����!�!�!�!��
� � ��������������#�%�#�%�#�%�#�%��∈�����!�!�!�!��
� � � �����#��A�@"#�!
!#��������

� � �
�
�
�
������#�
�
����	
�����δ��∧�
� � � �
��
&'�(���������.���������

� � � � �����δ������
� � � � �����∪����
����������

����

���#��A����#��A����#��A����#��A�@"#�!
!#��@"#�!
!#��@"#�!
!#��@"#�!
!#���#��&��

� ��-�
��#.���������&.���������

� �.�������.�����∩���.�����
���������������������������

�

��
&'�(�������
��
&'�(�������
��
&'�(�������
��
&'�(�������������������δ��
��������������������������*∃�⊆δ∧+�+,���∧�∉������

�

#�
�
�#�
�
�#�
�
�#�
�
�����	
������δ��
� ���.��������

� ���7�

� ��������������#�%�#�%�#�%�#�%��∈�.�����!�!�!�!��
� �
�
�
�
������⊆δ������� ������
����������������������������0����

Chapter 4 – Sequential Pattern Mining: new algorithms

65

GenPrefixSpan is a depth-first traversal algorithm, which avoids having all projected databases in

memory at the same time.

In the case of breath-first traversal algorithms, as SPaRSe, the solution may be to redesign the

candidate generation and test procedure: instead of generating all candidates at once and then

testing them, it is possible to generate and test each one alone, minimizing the memory

requirements, which explains the design of the patternDiscovery procedure.

Note that with this change, it does not make sense to use sophisticated data structures, as hash-

trees, to count the support for each candidate. Usually, apriori-based algorithms use hash-trees to

store all candidates, and scan the database once to count the support for all candidates. Generating

and testing each candidate alone invalidates this strategy.

However, for very low support thresholds SPaRSe does not work better than GenPrefixSpan,

spending long times in the candidate generation and pruning steps (as shown in Figure 4.1).

SPaRSe profiling

27%29%

44%

sPruning gCandidates cPruning

Figure 4.1 – SPaRSe profiling for very low support thresholds

3.2 – Candidate Generation

Remember that apriori-based methods generate k-sequence candidates by joining two (k-1)-

patterns, when the prefix of one is equal to the suffix of the other (join procedure). This operation

may consume a considerable amount of time when there are many frequent patterns. This happens,

since for every pattern it is necessary to verify which patterns have a prefix equal to its suffix.

To improve the generation of k-candidates, SPaRSe stores all (k-1)-patterns in a hash-tree.

Figure 4.2 exemplifies this data structure when storing the different combinations of two elements.

When the number of items is large and the database is sparse it is useful to use the same leave

to store sequences with different prefixes, justifying the use of a hash-tree instead of a suffix-tree.

Chapter 4 – Sequential Pattern Mining: new algorithms

66

b a

b a b a

b a

bbb bba

b a

baabab
b(ab)

b a

aaaaab
a(ab)

b a

abb
(ab)b

aba
(ab)a

Figure 4.2 – Hash-tree used in candidate generation

In order to generate a new candidate with length k, SPaRSe does not need to look for every

other candidate. The algorithm takes the suffix of the candidate and follows its path in the hash-

tree. The reached sub-tree contains the sequences that may match with s to generate a new

candidate. Now it is only necessary to verify if they really match with s, and then generate new

candidates.

Consider for example the sequence a(ab): following the path of its suffix (ab) in the hash-tree,

we discover the sequences that may match with it – abb, (ab)b, aba and (ab)a. Note that only (ab)b

and (ab)a are really appropriate to join with it and generate two new candidates: a(ab)b and a(ab)a.

Figure 4.2 shows the followed path with a doted line, and possible matching sequences in a

shadowed box.

By avoiding testing if any two patterns match, SPaRSe improves its performance by about

50%, for low support thresholds.

3.3 – Candidate Pruning

We have also considered another improvement, the use of a hash-tree to implement candidate

pruning.

The key idea of candidate pruning is to eliminate candidates that cannot be frequent, as stated

before. However, verifying if every maximal subsequence is frequent for every candidate may be

prohibitive, especially when low support thresholds are used.

Like candidate generation, this procedure may use a hash-tree to identify the potential frequent

patterns. Consider the hash-tree in Figure 4.3 and the candidate (ab)aa. It has three maximal

subsequences aaa, baa and (ab)a. Although the first and second ones are frequent patterns

(presented in shadowed boxes), the third one is not, since it is not stored in the hash-tree. Looking

for the path of each subsequence in the hash-tree reduces significantly the time needed to make this

discovery.

Chapter 4 – Sequential Pattern Mining: new algorithms

67

b a

b b a

b a

bbb bba

a

aaa

b a

abb
(ab)b

aba
(ab)a

Figure 4.3 – Candidate pruning example

In summary, SPaRSe is an apriori-based algorithm, which follows the candidate generation and

test philosophy. It has three fundamental differences to GSP:

- it generates and tests one candidate at a time;

- it uses support databases to count the support for each candidate;

- it uses a hash-tree to store frequent patterns.

These improvements directly contribute to accelerate the candidate generation and pruning

procedures. In the next section, it is shown how SPaRSe and GenPrefixSpan algorithms deal better

with datasets of different characteristics, and that either one of them may represent the best choice

for a particular application.

4 – Experimental Results

The comparison of sequential pattern mining algorithms over a large range of data characteristics,

such as different support thresholds, dataset sizes and sequence lengths, has been done by several

authors (see for instance [Agrawal 1995c], [Srikant 1996], [Zaki 1998a], [Pei 2001] or

[Ayres 2002]). However, as stated in Chapter 3, section 1.1, the results depend on the dataset

density, and to our best knowledge, there has been no study about the performance of sequential

pattern mining algorithms in dense datasets.

Our goal in this section is to understand the impact of those characteristics in the performance

of the algorithms. In order to do that, we compare the performance of GenPrefixSpan, SPaRSe, and

GSP, over several distinct synthetic datasets, considering all of the enumerated characteristics. The

performance of GSP only serves as a reference line to the performance of the other two algorithms,

since the execution times are generally much larger. Neither PrefixSpan nor SPAM [Ayres 2002]

could be used, since they do not deal with gap constraints.

The basic methods used by the different algorithms were the same (basic operations on

Chapter 4 – Sequential Pattern Mining: new algorithms

68

sequences, support verification, etc) which means that the comparisons are meaningful and

repeatable. The GSP algorithm follows the original description [Srikant 1996], and GenPrefixSpan

and SPaRSe the descriptions in this chapter. The datasets were maintained in main memory during

the processing, avoiding hard disk accesses.

To perform the study over a large range of different characteristics, we used the standard

synthetic data set generator from IBM Almaden (described in Appendix B). The datasets used in

these experiments were generated maintaining all, except one, of the parameters fixed, and

exploring different values for the remaining parameter. In general, the datasets contain 10.000

sequences (Parameter D of the generator set to 10), with 10 transactions each on the average

(C=10). Each transaction has on the average 2 items (T=2). The average length of maximal patterns

is set to 4 (S=4) and maximal frequent transactions set to 2 (I=2). These values were chosen in

order to follow closely the parameters usually chosen in other studies. The values for different

sequential patterns (Ns) and transactional patterns (Ni) were also chosen similarly, set to 5.000 and

10.000, respectively.

The next subsections present the performance results achieved using datasets with different

densities, followed by the studies on different support thresholds and different gap values. The

section finishes with the scalability studies.

Performance with different densities

The behavior of both algorithms is somehow different for different levels of density. As can be

observed in Figure 4.4, GenPrefixSpan achieves better results for sparse datasets, but shows

performances similar to the ones shown by SPaRSe for dense datasets.

Density

0

5

10

15

20

25

3,068 0,520 0,219 0,167 0,159 0,051 0,029 0,003

Density

Ti
m

e
(s

)

SPaRSe GenPrefixSpan

Figure 4.4 – Performance with different dataset densities (support set to 10%)

The main reason for this difference is that SPaRSe does not waste so much time generating

Chapter 4 – Sequential Pattern Mining: new algorithms

69

infrequent candidates for dense datasets. Since there are more patterns, both algorithms have to

generate a similar number of sequences, reducing the difference between their processing times.

The different values for density were achieved by varying the number of different items in the

dataset from ten to one thousand (N∈{10, 20, 30, 40, 50, 100, 500 and 1.000}).

We have also studied the memory requirements. As stated before, GenPrefixSpan requires

more memory than SPaRSe, since it has to maintain multiple indexes for the same sequence and

the corresponding pattern position for each occurrence.

Memory (Density)

0
2
4
6

8
10
12
14

3,068 0,520 0,219 0,167 0,159 0,051 0,029 0,003

Density

M
em

or
y(

M
b)

SPaRSe GenPrefixSpan

Figure 4.5 – Memory requirements in the presence of different dataset densities

Figure 4.5 shows that both algorithms require more memory when processing dense datasets,

since the number of patterns is higher.

Performance with different support thresholds

For different minimum support thresholds, the results are consistent. SPaRSe is comparable to

GenPrefixSpan in dense situations (Figure 4.6),

PerformancevsSupport

0

200

400

600

800

1000

1200

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
(s

)

GSP SPaRSe GenPref ixSpan

Figure 4.6 – Performance with different support thresholds in dense datasets

Chapter 4 – Sequential Pattern Mining: new algorithms

70

and shows worst results for sparse datasets (Figure 4.7).

PerformancevsSupport

0

5

10

15

20

25

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
(s

)

GSP SPaRSe GenPrefixSpan

Figure 4.7 – Performance with different support thresholds for sparse datasets

It is interesting to note that the execution times in sparse datasets are about ten times faster than

in dense datasets, for all the algorithms.

These results show that a great part of the efficiency of GenPrefixSpan is due to its memory

usage. In several other experiments, conducted in machines with less available memory, the results

were slightly different, with GenPrefixSpan showing worst results than SPaRSe for dense datasets.

However, in the presence of machines with less memory (say 250Mb) the results are again worst

for SPaRSe. In fact, since GenPrefixSpan works in a depth-first manner, it is able to manage hard-

disks access in a more efficient way.

Performance with different gap constraints

When comparing the algorithms for different gap constraints, the results are considerably different

(Figure 4.8). GenPrefixSpan is considerably worst than SPaRSe for less restrictive gaps.

Performance vs Gap

0
100
200
300
400
500
600
700
800

0 1 2 3 4 5 6 7
Gap

Ti
m

e
(s

)

SPaRSe GenPref ixSpan

Figure 4.8 – Performance with different gap constraints (support set to 10%)

In fact, while SPaRSe must scan the entire sequences for finding a pattern (even if it is not

Chapter 4 – Sequential Pattern Mining: new algorithms

71

present in the sequence), GenPrefixSpan only has to look for the itemsets in the positions near the

already discovered pattern prefix. When gap is set to zero, GenPrefixSpan only has to look at the

next position, reducing the amount of time needed in scanning the dataset. Furthermore, for longer

gaps, the number of sequences in the projected database increases, which also contributes to reduce

its performance.

Scalability

Since the most time consuming operation is scanning the database, the results achieved by

algorithms for bigger datasets are not surprising. All algorithms present worst behaviors for large

datasets, but with slightly different patterns of growth (Figure 4.9).

Scalabiltiy

0

100

200

300

400

500

1 5 10 50 100 150 200

#DB(in 1000)

Ti
m

e
(s

)

GSP SPaRSe GenPrefixSpan

Figure 4.9 – Performance with different dataset sizes (support set to 10%)

The results show that SPaRSe and GenPrefixSpan present a considerably better performance

for very large databases (larger than 10 thousands of sequences) than GSP.

It is interesting to see that GenPrefixSpan requires much more memory than apriori-based

algorithms (see Figure 4.10).

Memory (Scalability)

0
20
40
60
80

100
120
140
160

1 5 10 50 100 150 200
#DB(in 1000)

M
em

or
y(

M
b)

GSP SPaRSe GenPrefixSpan

Figure 4.10 – Memory requirements in the presence of different dataset sizes

This difference in memory requirements is due to the creation of projected large databases,

Chapter 4 – Sequential Pattern Mining: new algorithms

72

since GenPrefixSpan has to maintain multiple indexes for the same sequence and needs to store the

pattern position for each occurrence (see section 1.1 for details), wasting more memory than

SPaRSe. This is clearly most notorious for larger datasets.

Scale-up for different average sequence length

Another important factor in the performance of sequential pattern mining algorithms is the average

length of sequences. In order to evaluate different situations, the generated datasets include

sequences with different numbers of transactions. Indeed, the sequence length influences the time

spent when looking for each frequent candidate.

Sequence Length

0

1000

2000

3000

4000

5000

5 10 25 50 75 100
Seq. Length

Ti
m

e
(s

)

SPaRSe GenPrefixSpan

Figure 4.11 – Performance with different average sequence length (support set to 33%)

For long sequences (more than 25 itemsets), the probability of supporting every element is very

high. In this manner, SPaRSe is not able to reduce the search space (since the support databases

approximately maintain the original size) and its candidate pruning does not eliminate a significant

number of candidates. On the other side, GenPrefixSpan only has to look for the next position,

efficiently dealing with long sequences (Figure 4.11).

In summary, the synthetic experiments reveal essentially four aspects:

- GenPrefixSpan clearly outperforms GSP, maintaining the characteristics of pattern-

growth methods;

- SPaRSe and GenPrefixSpan show similar performances on dense datasets;

- GenPrefixSpan outperforms SPaRSe in sparse datasets, mainly due to the time spent on

candidate generation by SPaRSe;

- GenPrefixSpan requires much memory than SPaRSe and GSP.

Chapter 4 – Sequential Pattern Mining: new algorithms

73

Summary

In this chapter, we have presented and compared two new algorithms: GenPrefixSpan and

SPaRSe.

GenPrefixSpan is a generalization of the PrefixSpan algorithm to deal with gap constraints.

In order to achieve that goal, we have proposed a new method to generate projected

databases that store the subsequences of all occurrences of each frequent prefix. It is shown

that this new method keeps its performance advantages relatively to apriori-based algorithms

in the more difficult situation of low support thresholds.

The SPaRSe algorithm is another contribution of this thesis. In general, it can be viewed as

an apriori-based algorithm that matches the execution times of GenPrefixSpan, in most

situations. This algorithm conjugates the simplicity of candidate generation and test

philosophy, with the benefits that come from the restriction of the search space, used by

pattern-growth methods. Like apriori-based algorithms, SPaRSe deals naturally with

constraints, in particularly with gap constraints.

This chapter also presents a detailed discussion of advantages and disadvantages of both

approaches (apriori-based and pattern-growth methods) by comparing the performance and

memory requirements of SPaRSe and GenPrefixSpan in a diversity of situations. Identifying

the situations where each algorithm presents better results.

Chapter 4 – Sequential Pattern Mining: new algorithms

74

75

Chapter 5

Constraints for Mining Event Sequences

In this chapter, we propose a new theoretical framework for finding patterns over nominal

event sequences. This is achieved by the definition of a set of new constraints, which permits

the introduction of user background knowledge into the mining process. The chapter finishes

with a description of the extensions applied to sequential pattern mining algorithms to deal

with those constraints and some experimental results.

ata mining algorithms are usually unable to produce optimal results with respect to all the

trade-offs that they account for: usefulness versus certainty, concise and understandable

models versus highly accurate black boxes, sample size versus error rate, or simply model

expressiveness versus computation time. As pointed by Bayardo [Bayardo 2002], constraints play a

critical role in solving those problems by focusing "the algorithm on regions of the trade-off curves

(or space) known (or believed) to be most promising". By using constraints, the user assumes the

responsibility of choosing which of those aspects are most important for the current task.

When considering the discovery of patterns among nominal event sequences, the trade-offs

remain challenging and are mostly related to the inverse relation between the amount of discovered

patterns and the human ability to deal with those quantities. In order to deal with this problem

several categories of constraints have been proposed: existential, item, length, model-based,

aggregate, regular expression, and duration and gap constraints (as described previously in Chapter

3, section 1.2).

D

Chapter 5 – Constraints for Mining Event Sequences

76

1 – ΩΩΩΩ-constraints

Despite the efforts to capture application semantics using constraints, they have been used in a non-

integrated way, being seldom applied to the sequential pattern mining process. An exception is the

existential constraint, which is inherent to the pattern mining process, since it defines the notion of

frequency for each task.

Definition 25 - An existential constraint specifies the minimum threshold support

allowed in the mining process.

Although existential constraints play a fundamental role on pattern mining, they only capture

the knowledge about the number of entities that are significant for the specific business. As such,

they are not able to represent any other knowledge about the business domain.

However, the existence of this background knowledge is a reality. For example, taxonomies

defined over the items are often available, since they represent part of the business domain –

usually an accepted categorization of the items relevant to it. Another usually known issue is

related to the lifespan of items or just to the time interval that is interesting to the analysis.

The other constraints used in pattern mining, can be generally classified into two categories:

constraints over content and constraints over temporal aspects. Indeed, item, aggregate, model-

based constraints and regular expressions are concerned with content, since they specify which

entities are of interest to the mining task, just by enumerating which ones may be considered or by

enumerating interesting relations between different entities. Examples of constraints concerned

with temporal issues are duration, length and gap constraints, since they establish temporal

relations between the elements of the sequences.

The inexistence of a framework able to register these types of knowledge has hampered the

expansion of the use of pattern mining in general, and of pattern mining over nominal temporal

data in particular. In order to provide this integrated framework, we propose a new class of

constraints – the Ω-constraint.

Definition 26 - An Ω-constraint is a triple Ω = (ϕ, θ, σ), where ϕ is a content

constraint, θ is a temporal constraint and σ is an existential constraint.

The goal of this class of constraints is to allow an easier representation of background

knowledge, including content and temporal knowledge. This is achieved by the aggregation of

Chapter 5 – Constraints for Mining Event Sequences

77

three categories of constraints: existential constraints that are the core of pattern mining algorithms;

content and temporal constraints that are able to represent the existing knowledge about the

business domain structure and rules.

Constraint

Content
Constraint

Temporal
Constraint Ω −Constraint

Existential
Constraint

Figure 5.1 – Constraint's hierarchy

Figure 5.1 illustrates the relations between the four classes of constraints. The diagram is

represented in UML [Alhir 1998], where � represents the inheritance and � represents the

aggregation. Content and temporal constraints are defined next.

2 – Temporal Constraints

In general, temporal issues have been discarded from the sequential pattern mining process. For

example the interesting approaches to explore existent temporal relations, as the ones used by

Özden and Ramaswamy for discovering cyclic [Özden 1998] and calendric rules

[Ramaswamy 1998], did not have often been applied to sequential pattern mining. Actually, most

sequential pattern mining algorithms do not use any temporal constraint (see for instance

[Agrawal 1995c], [Zaki 1998a], [Pei 2001] and [Ayres 2002]). The easy matching of the position

of each sequence itemset with a time instant has lead to a simplification of the problem. Nominal

event sequences are usually represented without the timestamp of each event. In this manner,

algorithms do not have to concern themselves with temporal relations beside the sequential nature

of the data.

Like items, timestamps are used in accordance with the business domain. However, while

items are specific for each domain, the possible values for timestamps usually belong to a pre-

defined set of time-concepts. Since these concepts are common to most business domains and can

be represented in a similar way in the generality of applications, several representations have been

proposed.

Chapter 5 – Constraints for Mining Event Sequences

78

As described in Chapter 2, section 3.2, the most usual representation for time concepts is based

on the use of calendars that are formally defined as structured collections of time intervals.

However, calendars make use of a set of time concepts that have to be defined precisely, in order to

make possible the clear definition of time constraints.

Fortunately, the recent developments in the area of knowledge representation make possible

the creation, reuse and sharing of ontologies. An ontology is an explicit specification of a

conceptualization [Gruber 1998], which means that it is a specification of an abstract, simplified

view of the domain.

Since the representation of time is fundamental to any knowledge base that includes

representations of change and action, in the last years some Time Ontologies have been proposed

(Simple Time and Reusable Time [Zhou 2002], DAML-Time [Hobbs 2003], etc.). Like any other

ontology, those present a description of the concepts and relationships that can exist in a given

domain. In the case of Time Ontologies, several approaches can be followed, but a large number of

them follow the definitions proposed in [Allen 1983], where time points and time intervals are the

central concepts.

2.1 – Reusable Time Ontology

In concrete, the Reusable Time Ontology [Zhou 2002] is based on the notion of a time line, with

time being continuous and linear.

Time Interval

Time
Unit

Time
Quantity

Convex
TimeInterval

NonConvex
TimeInterval

Regular
Non Convex
Time Interval

Time
Point

StartingPoint
EndingPoint

Duration

Characteristic-
Time-Interval-Of

Location-Of

Granularity-Of

Calendar
Day

Calendar
Month

Calendar
Weekday

Figure 5.2 – Reusable Time Ontology

Chapter 5 – Constraints for Mining Event Sequences

79

The core concepts are TimePoint and TimeInterval, but include the concepts of

TimeQuantity, TimeUnit and TimeGranularity, as shown in Figure 5.2, again represented in

UML, and with the relations labeled with their names.

A TimePoint represents a specific time position on the timeline, which can be viewed as a

particular moment. A TimeInterval corresponds to a time-period that occurs between two time

points (the StartingPoint and the EndingPoint). Another way to see time intervals is to

consider them as approximations to time points [Hayes 1995], accepting some uncertainty on their

value. This means that a time interval may represent partial information about the location of a time

point. Time intervals are the most central concept for temporal pattern mining, since they can

represent both the lifespan of items and periods of interest. A TimeQuantity is an amount of time

that is represented by a real number and a TimeUnit. Time units correspond to the granularities of

time, such as year, month, day, hour, and so on.

This ontology defines two classes of time intervals, convex and non-convex ones. The first

class corresponds to connected intervals in the time line and the second is a disjoint and complete

decomposition of time intervals, which correspond to non-connected time intervals, i.e. with

"holes" in them. A special kind of non-convex time interval is the

RegularNonConvexTimeInterval, which is composed of several convex time intervals for

representing regularly recurring events.

As can be seen on Figure 5.2, the granularity is an attribute of a time point, which means that it

occurs anywhere in a certain time interval, with some uncertainty. The ontology also provides a set

of predefined ConvexTimeIntervals, for different days, weekdays and months –

CalendarDay, CalendarWeekday and CalendarMonth, respectively.

The Reusable Time Ontology also distinguishes between open and closed time intervals.

However, those concepts are not needed to define temporal constraints, and consequently are not

addressed in this text.

2.2 – The Hierarchy of Temporal Constraints

Using the concepts defined in the Reusable Time Ontology, the definition of temporal constraints is

considerably easier.

Chapter 5 – Constraints for Mining Event Sequences

80

Definition 27 - A temporal constraint is a triple θ = (∆, δ, γ), which specifies some

restriction over the timestamps of transactions. It is composed of:

i) a time interval (∆);

ii) a time quantity to represent the allowed time gap (δ);

iii) a time granularity (γ).

Time Interval

Time
Unit

Time
Quantity

Convex
TimeInterval

NonConvex
TimeInterval

Regular
Non Convex
Time Interval

Time
Point

StartingPoint
EndingPoint

Duration

Characteristic-
Time-Interval-Of

Location-Of

Granularity-Of

Calendar
Day

Calendar
Month

Temporal
Constraint

∆

δ

γ
Convex

Constraint
Cyclic

Constraint

∆

∆

Calendar
Weekday

Figure 5.3 – Temporal Constraints: regular and convex constraints

As in time intervals, we can distinguish two classes of temporal constraints: Convex Temporal

Constraints and Cyclic Constraints (Figure 5.3).

Definition 28 - A convex constraint is a temporal constraint, whose time interval is a

convex time interval.

These constraints are adequate to specify contiguous amounts of time, like the lifespan of some

item, as defined in Chapter 3, section 1.2. When using a convex time interval to verify if a time

instant belongs to the interval, it is only necessary to compare the corresponding time point with

the starting and ending points of the time interval.

Definition 29 - A cyclic constraint is a temporal constraint, whose time interval is a

regular non-convex time interval.

Chapter 5 – Constraints for Mining Event Sequences

81

Cyclic constraints are ideal to deal with cyclic patterns, since they permit the definition of non-

contiguous time intervals, but impose a determined periodicity. The verification of the satisfiability

of these constraints is more complex than for convex constraints, but still feasible: a time instant

belongs to a regular non-convex time interval, if and only if it belongs to any of the convex

intervals of the main interval.

The other two attributes of temporal constraints complement the role of ∆ (the time interval),

since γ (the time granularity) specifies the granularity of interest, and δ specifies the time gap

allowed between consecutive events.

3 – Content Constraints

Content has been the main focus of pattern mining and the use of constraints concerning content

has been widely studied by the data mining community, probably due to its generality. Examples of

this kind of constraints are item constraints and regular languages, as described in Chapter 3,

section 1.2.

Content constraints provide an integrated framework to represent the knowledge about the

items relevant in the business domain and registered along time. In order to answer these

challenges, we propose a new content constraint.

Definition 30 - A content constraint is a tuple ϕ=(Σ, τ, λ, π), which is defined over the

set of items, specifying the characteristics that sequences of itemsets may have. It

consists of:

i) the alphabet or set of items (Σ) to consider;

ii) a taxonomy (τ) defined over the set of items and the abstraction level (λ) to be

used in the mining process;

iii) a formal language (π) defined over the alphabet, for specifying the accepted path.

The alphabet corresponds to a general item constraint, specifying which are the items to be

considered relevant; the taxonomy (as defined in Chapter 2, section 2.1) is used to represent the

background knowledge about the items and existent is-a relations among them. The first difference

to existing approaches is the use of a specific abstraction level (λ). As noted in Chapter 3, section

1.2, the discovery of generalized patterns introduces the need to measure the interestingness of

Chapter 5 – Constraints for Mining Event Sequences

82

each discovered pattern, increasing the complexity of algorithms. In order to conjugate the benefits

of being able to represent background knowledge and the reduction of the number of discovered

rules, we propose the specification of the abstraction level that would be used in the pattern mining

process. In this manner, the discovered patterns would be as general as desired by the final user,

according to his expectations and knowledge domain. Simultaneously, it is possible to reduce the

number of patterns, agglomerating several possible sequences on more abstract ones, avoiding the

assessment of the interest of patterns.

Finally, the formal language specifies which sequential patterns are accepted as interesting to

the user. As pointed out in Chapter 2, section 3.1, there are several kinds of formal languages. In

this work, we propose the use of context-free languages to define the parameter π of the content

constraint. The next section explains how context-free languages can be applied to constrain the

sequential pattern mining process.

3.1 – Content Constraints with Context-free Languages

As pointed before (in Chapter 3), regular languages are unable to represent some of the most

interesting patterns. Since context-free languages are more general than regular ones and are able to

deal with part of those patterns, it is natural that we try to use them to guide the mining process.

The first problem that should be faced is related with the use of context-free languages with

itemsets. In fact, a language is a set of finite sequences of symbols, but sequential pattern mining

deals with sequences of itemsets. Considering that an itemset is not a symbol, the use of any formal

language to constrain the mining process is not directly possible. However, as shown in related

work (Chapter 3, section 1.4) the use of languages can be very useful.

A simple way to deal with this problem is to consider that each itemset corresponds to a

different symbol in a new alphabet that corresponds to the powerset of items in the original

alphabet (excluding the empty set).

For example, if there are three different items x, y and z, the new alphabet would be composed

of a, b, c, d, e, f and g, with the symbols a, b and c corresponding to the items x, y and z,

respectively, and the symbols d, e, f and g corresponding to the itemsets (x,y), (x,z), (y,z) and

(x,y,z), respectively.

The second problem that should be solved is the use of pushdown automata instead of finite

automata, since context-free languages are generated by (non)deterministic pushdown automata,

while regular languages are generated by deterministic finite automata. In general, the use of this

Chapter 5 – Constraints for Mining Event Sequences

83

class of languages in sequential pattern mining introduces two new challenges:

- to manipulate the pushdown stack effectively;

- and to deal with the non-determinism.

In fact, the non-determinism of some of the pushdown automata has influence on the efficiency

of mining algorithms, since the verification of the acceptability of each sequence can be much

slower.

However, the manipulation of the stack introduces additional difficulties when in the presence

of sequences of itemsets, instead of sequences of items (strings). A similar difficulty was also noted

by SPIRIT authors, which had to define some intermediate predicates in order to deal with

itemsets.

Context-free Languages with Itemsets

However, in order to solve these difficulties, the syntax and semantics of pushdown automata have

to be extended.

The problem is related to the fact that sequential pattern mining algorithms manipulate one

item per iteration, instead of an entire itemset. In this manner, we need to perform partial

transitions, corresponding to the item involved at the specific step iteration. To illustrate this

situation consider the pushdown automaton represented in the Figure 5.4.

q2q1

[(a,b),X]�pop

[ε, S]�pop

[(a,b), S]�push X

[(c), X]�no op

[(a,b), X]�push X

Figure 5.4 – Pushdown automaton with itemsets

The automaton generates sequences with the same number of baskets (a,b) on the left and right

side of c, which means that it generates sequences like (a,b)c(a,b) or (a,b)(a,b)c(a,b)(a,b).

Consider for example that algorithm PrefixGrowth is applied to find patterns that satisfy this

restriction, and it finds a, b and c as frequent. Then it has to proceed to discover which items are

frequent after a. At this point, there is already one problem: given that it has found a, which

operation should it perform over the stack? If it applies the push X, then c will be accepted after a.

However, if the push operation is applied after finding b, then it will accept as "potentially

Chapter 5 – Constraints for Mining Event Sequences

84

accepted" sequences like aaa, aaaaa and so on, since S remains on the top of the stack.

In order to deal efficiently with itemsets, we have to extend the notion of PDA.

Definition 31 - An extended pushdown automaton (ePDA) is a tuple 	=(�, Σ, Γ, δ, q0,

w0, �), with �, Σ, Γ, q0 and � defined as for pushdown automata; w0=Z0$ with Z0

the start symbol as in pushdown automata, and δ defined as a mapping function

from �×� (Σ)∪{ε}×Φ to finite subsets of �×Φ*, with � (Σ) representing the

powerset of Σ and Φ defined as follows

Φ = {w ∈ Γ ∪ {$}: w = x*$ ∧ x ∈ Γ}

The difference to pushdown automata is the transition function, which manipulates itemsets

and strings of stack elements instead of items and stack elements, respectively. Figure 5.5

illustrates an extension to the PDA illustrated in Figure 5.4.

q2q1

[(a,b),XY]�pop

[ε, S]�pop

[(a,b), S]�push XY

[(c), XY]�no op

[(a,b), XY]�push XY

Figure 5.5 – Extended pushdown automaton equivalent to the PDA in Figure 5.4

Note that the pop operation removes the top of the stack, which means that it removes the

entire queue XY.

Implementation Issues

With the proposed extension, it is now possible to represent more interesting constraints over

sequences of itemsets than with finite automata.

However, in order to explore sequential data with existing sequential pattern mining

algorithms, it is necessary to adapt those algorithms to use ePDAs instead of DFAs. In particular,

given that algorithms manipulate one item at each step (instead of entire itemsets), the

implementations of the algorithms have to be able to manipulate the stack elements in a partial

form. In this manner, at the implementation level, we need two new operations: a partial push –

addAtLast, which introduces a new symbol on the element on the top of the stack, and a partial

Chapter 5 – Constraints for Mining Event Sequences

85

pop – removeFirstOnLast, which removes the first element on the top of the stack.

q2q1

[ε, S]�pop

[(a,b,c), S]�push XYZ

[(a,b,c), XYZ]�push XYZ

[(d,e),XYZ]�pop

[(d,e),XYZ]�pop

q2q1

[ε, S]�pop

[(a,b), S]�push XY

[(a,b), XY]�push XY

[(c,d,e),XY]�pop

[(c,d,e),XY]�pop

Figure 5.6 – Two other extended pushdown automata

Now consider the automata in Figure 5.6. The number of items in both baskets is not equal, but

pop operations can be performed in different manners. When there are more elements in the top of

the stack than the items on the basket (exemplified on the automaton on the left), the pop operation

is performed by several removeFirstOnLast operations, one per each step: it removes the first

element on the top of the stack, until it has found the last item, then it removes the top of the stack.

In the presence of the other situation (illustrated by the automaton on the right), the pop operation

will remove X when it finds c, removes Y when it finds d and removes the top of the stack when it

finds e. The choice of each kind of pop operation can be determined by comparing the basket size

with the number of elements in the top of the stack.

Next, we will discuss how sequential pattern mining algorithms can be modified to use

efficiently temporal pattern mining constraints.

4 – Algorithms for ΩΩΩΩ–constraints

As shown before, the use of constraints may have a great impact on the design of sequential pattern

mining algorithms. Fortunately, the use of Context-Free Languages, instead of Regular languages,

does not imply any adaptation to existent algorithms, but only to the implementation of pushdown

automata (as explained in the last section). Moreover, those algorithms can be extended to use gap

constraints as well without any additional change.

In order to provide an algorithm that deals with Ω–constraints, we propose an extension of

GenPrefixSpan – GenPrefixGrowth, which follows the proposals of PrefixGrowth closely. In

general, the structure of this new algorithm remains the same, as shown in Algorithm 8.

Chapter 5 – Constraints for Mining Event Sequences

86

Algorithm 8 – Pseudocode for the main procedures of GenPrefixGrowth algorithm

The great difference to GenPrefixSpan resides on the verification that α is a valid prefix in

accordance to the Ω–constraint, as used by PrefixGrowth, and the inexistence of a specific

procedure to generate the projected databases.

In fact, the introduction of several constraints simultaneously, implies the verification of each

potential pattern by several different filters (content, temporal and existential ones). In order to deal

efficiently with this aggregation of constraints, the algorithm should avoid the multiple test of each

potential pattern.

For example, the first step of both algorithms consists on the discovery of frequent elements in

the database (call it discoverL1). In particular, discoverL1 in GenPrefixGrowth also has to

identify the sequences that have events belonging to the specified time interval. In this manner, the

first time that discoverL1 is called, it determines the minimum number of times that a sequence

has to occur, to be considered frequent, as illustrated in Algorithm 9.

Algorithm 9 – Pseudocode for the discoverL1 procedure in GenPrefixGrowth

In the following steps, the difference is the same: GenPrefixGrowth has to verify the

�

����������������������
5���@�%��
5���@�%��
5���@�%��
5���@�%���#�#&#������Ω�"����#
���Ω��
� Σ���.#'�%#&���
� ���-�����@��@��@��@�#��#?B#��#?B#��#?B#��#?B+Σ+CCCC�
� ��'
��!
��8���������Ω��Σ�����-����
� �����#�%�
�����#�%�
�����#�%�
�����#�%�
∈∈∈∈����7���2 �2 �2 �2 �+��'
�+�����!�!�!�!�����
���� ���� &���'
�B
C�

���� ����
�
�
�
��Ω.����
5;������&���%���%���%���%���

� � �
�
�
�
��Ω.#������&���%���%���%���%���

� � � � ���∪�&��
� � � ���∪��������-��B
C��&����'
���Ω��
���������������������������

!
��8����!
��8����!
��8����!
��8������#�#&#������Ω�"����#
���Ω��;'�%#&���Σ�����-��BC����-����
� �����#�%�
�����#�%�
�����#�%�
�����#�%�
∈∈∈∈����7���2 �2 �2 �2 �+��+�����!�!�!�!�����
� � ���.��������
��

� � ����!�Ω.�
�!���
#'D8����α����Σ�����-����������
� �
�
�
�
������!��%����%����%����%����

� � � ������ �

� Ω.������������������
��������������������������5∈∈∈∈Σ/�5�
�����������

�����������������-�������D8������������α��;'�%#&���Σ��
� � � � � � � � Ω�"����#
���Ω��
� ���-�����@��@��@��@�#��#?B#��#?B#��#?B#��#?B+Σ+CCCC�
� ��'
��!
��8��(�
������α��Ω��Σ�����-����
� �����#�%�
�����#�%�
�����#�%�
�����#�%�
∈∈∈∈����7���2 �2 �2 �2 �+��'
�+�����!�!�!�!�����
���� ���� &���'
�B
C�

� � α9�α&�
� �
�
�
�
��Ω.#������α9���%���%���%���%���

� � � ����∪�α9�
� � ���∪��������-��B
C��α9��Σ��Ω��
������������������������������

Chapter 5 – Constraints for Mining Event Sequences

87

acceptability of α in accordance to the imposed constraint. The new discoverFList procedure

performs this task, creating the projected databases simultaneously (Algorithm 10). Like in

GenPrefixSpan, the procedure has to discover the parallel and serial valid events, a task performed

by findParallelEvents and findSerialEvents, respectively.

Algorithm 10 – Pseudocode for the discoverFList procedure in GenPrefixGrowth

The great difference between the versions of discoverFList, is the simulation of α in the

automaton responsible for generating the formal language used in the content constraint

(Ω.simulate(α)). When the automaton is deterministic (either a finite or a pushdown automaton),

the simulation of α can improve the overall performance. The goal is to avoid the multiple

verification of the acceptability of α. After this simulation, the discovery of the items accepted

after α, is reduced to the verification that the item in consideration can be appended to α.

The easiest way to integrate this new constraint in the algorithm is to represent the constraint as

an object, able to perform each test. In this manner, the algorithm just has to receive it as an

argument, and let the constraint discover which sequences are accepted and frequent. This object-

based approach is very useful, since it allows the substitution of the constraint with any other that is

able to perform the same task. In this manner, there is no difference in algorithms that deal with

regular (DFA) or context-free languages (PDA).

Since the constraint encapsulates the methods to decide which elements are accepted, we are

no more in the presence of a simple algorithm able to deal with a specific constraint, but in the

presence of an algorithm able to deal with a class of constraints. As stated by other authors, these

constraints only have to be anti-monotonic or prefix-monotonic, if used by apriori-based or pattern-

growth methods, respectively.

In the next chapter, we will use the same algorithm with constraint relaxations, without adding

any change. In order to discover relaxed constrained patterns, it is only needed to define and

implement constraint relaxations, with accepts, acceptsPrefix, findParallelEvents,

!
��8��(�
�!
��8��(�
�!
��8��(�
�!
��8��(�
�����-�������D8������������α��Ω�"����#
���Ω��;'�%#&���Σ�����-��BC����-����
� Ω.
	�'#���α��
� �����#�%�
�����#�%�
�����#�%�
�����#�%�
∈∈∈∈����7���2 �2 �2 �2 �+��+�����!�!�!�!�����
� � ���.��������
��

� � ����.��
�
���
��

� � Ω.�
�!�#�#''�'D8����α�����Σ�����-����
� � Ω.�
�!���
#'D8����α����Σ�����-�����#'���
��������������������������5∈∈∈∈Σ/�5�
�����������

Chapter 5 – Constraints for Mining Event Sequences

88

findSerialEvents and simulate methods.

5 – Experimental Results

The use of constraints has been one of the main issues in sequential pattern mining. On one hand,

the discovered patterns correspond to the expected ones and on the other hand, processing times are

considerably smaller for constrained processes.

In this section we will show that these claims remain true when applying Ω-constraints, and

using GenPrefixGrowth to incorporate them into the mining process.

In order to support our claim we will show that:

- GenPrefixGrowth outperforms GenPrefixSpan whenever the Ω-constraint filters a

considerable number of patterns;

- the incorporation of Ω–constraints during the mining process is more efficient then

filtering the patterns in a post-processing step;

- the use of Context-Free Languages, as opposed to regular languages, does not invalidate

previous claims;

Section 5.1 will support the first two points; section 5.2 will support the third point.

5.1 – Constrained versus Unconstrained Mining

As pointed by several authors, the use of constraints inside the mining process, instead of filtering

the discovered patterns in accordance with the constraint, reduces the processing time needed to

discover all patterns. In this section, we will show that this claim remains valid when comparing

the use of Ω–constraints in both situations, whenever the constraint is significantly restrictive.

To illustrate the use of constraints, we have used a synthetic dataset, generated by the dataset

generator from IBM Almaden. The dataset contains 10.000 sequences, with 10 transactions each on

the average; each transaction has on the average 2 items; the average length of maximal patterns is

set to 4 and maximal frequent transactions is set to 2 (dataset D10C10T2S4I2). The values for

different sequential patterns (Ns) and transactional patterns (Ni) were also chosen similarly, set to

5.000 and 10.000, respectively. However, the number of different items was set to 10 in order to

increase the number of discovered patterns.

Usually, in real problems (eg. the ones addressed in Chapter 7), exists background knowledge

Chapter 5 – Constraints for Mining Event Sequences

89

that can be used to constraint the mining process. Since in synthetic datasets, there is no

background knowledge about its data, in order to define a Ω–constraint we have proceeded as

proposed in [Antunes 2002b]: first, the unconstrained patterns were discovered, then we have

manually defined a regular language able to represent part of the patterns, and finally this

constraint was applied to find accepted patterns. The constraint does not impose any temporal

restriction beside the gap constraint (also used by GenPrefixSpan) equal to zero (0). Table 3

presents the unconstrained patterns discovered using 50% as the minimum support threshold

Table 3 – Patterns discovered with a 50% support threshold and an unconstrained process

Unconstrained Patterns
2

(2,6)
(2,6)2
(2,5)
(2,5)2
(2,0)
(2,9)

262
22

2(2,6)
2(2,5)
222

2222
226

26
25
20
29
6

62
622

5
52

522
0

02
9
7

and Figure 5.7 shows an automaton defined over those patterns, which accepts about 20% of the

unconstrained patterns and accepts about 30% as valid prefixes.

q2q1

2

q32 5

2

6

Figure 5.7 – DFA representing the content constraint for the dataset D10C10T2S4I2

The results achieved are clear, and show that the initial claim is true. In fact, the performance

of constrained mining (with an Ω–constaint based on that DFA) can be extremely better than the

performance of unconstrained processes.

Performancevs Support

0
20
40
60

80
100

120
140

160
180

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

GenPrefixGrow th GenPrefixSpan

Figure 5.8 – Comparison of processing times spent by unconstrained and constrained mining

Chapter 5 – Constraints for Mining Event Sequences

90

Figure 5.8 shows that for very low support thresholds constrained mining can be ten times

faster than unconstrained mining. With this difference, it is clear that whenever the constraint is

significantly restrictive, the use of constrained pattern mining is much more efficient than any

filtering approach after unconstrained mining.

The level of restriction imposed by the constraint can be measured by the ratio between the

number of discovered patterns by constrained and unconstrained mining. As shown in Figure 5.9,

the constraint used accepts only 1% of the unconstrained patterns for 5% of support.

Nr. of Patterns

0

500

1000

1500

2000

2500

3000

3500

0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05
support

N
r.

 o
f P

at
te

rn
s

GenPrefixGrow th GenPrefixSpan

Figure 5.9 – Comparison of number of discovered patterns by unconstrained and constrained mining

Despite these results, it is undeniable that the use of constraints increases the complexity of

sequential pattern mining. Indeed, the time spent to verify the acceptability of each pattern is not

negligeble.

Average Time Spent for Each Pattern

0
100

200
300
400

500
600

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

T
im

e
(m

s)

GenPref ixGrow th GenPrefixSpan

Figure 5.10 – Comparison of the average times spent per pattern by unconstrained and constrained mining

For example, when using the constraint specified above (using a regular language), the time

spent for each discovered pattern is five times higher than for unconstrained mining (Figure 5.10).

Chapter 5 – Constraints for Mining Event Sequences

91

5.2 – Regular versus Context-Free Languages

In order to evaluate the use of context-free languages, consider another two Ω-constraints similar to

the previous one, but based on the pushdown automata represented in Figure 5.11.

q2q1

[(2),X]�pop[(2), S]�push X

[(5), X]�no op

[(6), X]�no op

[(2), X]�push X

q2q1

[(2),X]�pop[(2), S]�push X
[(2), X]�push X

[(2),X]�pop

Figure 5.11 – Deterministic (left) and non-deterministic ePDAs (right) defined over unconstrained patterns

These automata impose more restrictive constraints than the DFA defined above; they only

accept sequences with the same number of the item 2 before and after the item 5 and 6 (the

deterministic) and sequences with an arbitrary number of the item 2 (the non-deterministic one).

Performancevs Support

0

20

40

60

80

100

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

GenPrefixSpan DFA PDA NPDA

Figure 5.12 – Comparison of processing times spent by different formal languages

Figure 5.12 shows the processing times spent by unconstrained and constrained processes,

when in the presence of context-free languages.

Nr. of Patterns

0

20

40

60

80

100

0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05

support

N
r.

 o
f

P
at

te
rn

s

NPDA PDA DFA GenPref ixSpan
Figure 5.13 – Comparison of number of discovered patterns by different formal languages

Chapter 5 – Constraints for Mining Event Sequences

92

It is interesting to note, that when compared with the use of the DFA, the performance of the

algorithm using ePDAs is not impaired and is even better than the previous one. This is due to the

effective reduction on the number of discovered patterns, which contributes to keep the focus on

user expectations (Figure 5.13).

It is interesting to note that the use of context-free languages implies a considerable increase on

the time spent for each pattern.

Average Time Spent for Each Pattern

0

500

1000

1500

2000

2500

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
support

T
im

e
(s

)

GenPrefixSpan DFA PDA NPDA

Figure 5.14 – Comparison of the average times spent per pattern by different formal languages

In fact, the time spent for each pattern may be twenty times slower than for unconstrained

mining, and four times slower than for constrained mining with regular languages (see Figure

5.14). The time spent for each pattern decrease with the number of discovered patterns, which is

due to the decrease of the percentage of discarded sequences, the sequences that are not frequent

and accepted by the constraint.

Summary

In this chapter, we have proposed a new class of constraints – the Ω-constraints, which

aggregates content, temporal and existential constraints, in an unique object. The existential

constraint is the minimum support threshold, as is usual in sequential pattern mining

algorithms. A temporal constraint specifies some restriction over the timestamp of

transactions, and uses a time interval, a maximal allowed time gap and the time granularity

of the data in the database. Finally, a content constraint is defined over the set of items,

specifying the characteristics that sequences of itemsets may have. It uses an alphabet, a

taxonomy and a context-free language to specify those characteristics.

We have extended existent sequential pattern mining algorithms to deal with this new class of

constraints creating an algorithm able to deal with any prefix-monotone Ω-constraint

Chapter 5 – Constraints for Mining Event Sequences

93

instance – GenPrefixGrowth.

Experimental results show that the additional expressive power of context-free languages can

be used without incurring in any additional difficulties, and that post-processing methods are

outperformed by constrained pattern mining.

Chapter 5 – Constraints for Mining Event Sequences

94

95

Chapter 6

Constraint Relaxations

In this chapter, we propose the use of constraint relaxations to guide the mining process,

avoiding the exclusive discovery of already known patterns caused by the use of constraints.

Additionally, several relaxations over Ω-constraints are defined, and an evaluation of the

proposed relaxations is presented at the end of this chapter.

he use of constraints in the pattern mining process represents a first answer to the challenge

of exploring the existence of user expectations and background knowledge. However, its use

may transform the mining process into a simple hypothesis-testing task [Hipp 2002]. In order to

avoid this, without moving the user away from the center of the process, we propose a new general

data mining methodology: the use of constraint relaxations, instead of constraints by themselves,

to guide the mining process.

The notion of constraint relaxations has been widely used when real-life problems are

addressed. In sequential pattern mining they were first introduced in [Garofalakis 1999], where a

regular expression was used to constrain the mining process, and some relaxations were used to

improve the performance of the algorithm.

A constraint relaxation can be seen as an approximation to the constraint, and when used

instead of the constraint, it enables the discovery of unknown information, that will approximately

match user expectations. If these relaxations are used to mine new patterns, instead of simply used

to filter the patterns that satisfy the imposed constraint, the discovery of unknown information is

possible. Given that the user may choose the level of relaxation allowed, it is possible to keep the

focus and the interactivity of the process, while still allowing for the discovery of new and

T

Chapter 6 – Constraint Relaxations

96

unknown information.

In this manner, the objective of data mining will be achieved, while still addressing some

unsolved challenges of pattern mining, namely: how to use constraints to specify background

knowledge and user expectations; how to reduce the number of discovered patterns by constraining

the search space, and how to reduce the amount of processing time.

When applied over Ω-constraints, relaxations are applied to both temporal and content aspects.

Definition 32 - A constraint relaxation specifies a weaker condition than the

constraint itself. Ω-constraint relaxations have two components:

- an instance of a content constraint relaxation;

- the maximum time error allowed (�), specified as a TimeQuantity.

The maximum time error allowed serves to verify if the time instant belongs to the specified

time interval. It is assumed that this error has the same time granularity as the data.

In order to achieve those results, we propose four main classes of relaxations over Ω-

constraints, as illustrated in Figure 6.1. The differences between them result from the redefinition

of the acceptability notion for the formal language that defines the content constraint.

Constraint
Relaxation

Legal Valid-
suffix

Approximate
Constraint

Non-
Accepted

Conservative
Relaxation

Valid-
prefix

Approx
-Legal

Approx
-Suffix

Approx
-Prefix

Non-
Legal

Non-
Suffix

Non-
Prefix

Naive
Relaxation

Approx
-Naive

Non-
Approx

Figure 6.1 – Hierarchy of relaxations

The first class of relaxations is the Naïve relaxation, which corresponds to a simple item

constraint. However, in the context of constraints expressed as formal languages, it can be seen as a

relaxation that only accepts patterns containing the items that belong to the language alphabet.

Conservative relaxations group the other already known relaxations, used by SPIRIT

[Garofalakis 1999], and a third one – Valid-Prefix, similar to Valid-suffix.

It is important to note that conservative relaxations are not able to discover unknown patterns,

just sub-patterns of expected ones. Approximate matching at a lexical level has been considered an

Chapter 6 – Constraint Relaxations

97

extremely important tool to assist in the discovery of new facts, but ignored in most of the

approaches to pattern mining. It considers two sequences similar if they are at an edit distance

below a given threshold. An exception to this generalized frame is the AproxMAP [Kum 2003],

which uses this distance to count the support for each potential pattern. However, to our

knowledge, edit distance has not been applied to constrain the pattern mining process.

To address the need to identify approximate matching we propose a new class of relaxations –

the Approx relaxation, which accept the patterns that are at an acceptable edit distance from some

sequence accepted by the constraint.

Another important issue is related with the discovery of low frequency behaviors that are still

very significant to the domain. Fraud detection is the paradigm of such task. Note that the

difficulties in fraud detection are related with the explosion of discovered information when the

minimum support threshold decreases.

To address the problem of discovering low frequency behaviors, we propose an additional class

of relaxations – the Non-accepted relaxation. If � is the language used to constrain the mining

process, Non-accepted relaxations will only accept sequences that belong to the language that is the

complement of �.

Additionally, each of these relaxations can be combined, creating compositions of relaxations,

imposing particular filters. Examples of such compositions are approx-legal or non-approx.

Next, we will present each class of constraint relaxations. To illustrate the concepts, consider

the extended pushdown automaton in Figure 6.2:

q2q1

[(a,b),XY]�pop

[ε, S]�pop

[(a,b), S]�push XY

[(c), XY]�no op

[(a,b), XY]�push XY

Figure 6.2 – An extended pushdown automaton

Chapter 6 – Constraint Relaxations

98

1 – Naïve Relaxation

As stated, the Naïve relaxation only prunes candidate sequences containing elements that do not

belong to the alphabet of the language, For example, if we consider the automaton defined in

Figure 6.2, only sequences with a’ s, b’ s and c's are accepted by the Naïve relaxation.

In this manner, a sequence is accepted by the naive criterion in exactly the same conditions

than for regular languages. However, this relaxation prunes a small number of candidate sequences,

which implies a limited focus on the desired patterns.

Since Naïve relaxation is anti-monotonic, no change in sequential pattern mining algorithms is

needed.

2 – Conservative Relaxations

Conservative relaxations impose a weaker condition than the original constraint, accepting patterns

that are subsequences of accepted sequences. Among these constraint relaxations are Legal, Valid-

Suffix and Valid-Prefix, which are similar to the ones used by SPIRIT algorithms.

When used in conjunction with context-free languages, those relaxations remain identical, but

we have to redefine the related notions.

First of all consider the partial relation ψ, which maps from �×
×Γ* to �×Λ* representing the

achieved state q∈� and top of the stack λ∈Λ* (with Λ equal to Γ* as defined in Chapter 5), when

in the presence of a particular sequence s∈
 in a particular state q∈� and a string of stack symbols

w∈Γ*. Also, consider that λ.top is the operation that returns the first element on λ.

Definition 33 - ψ(qi, s=<s1… sn>, w) is defined as follows:

i) (qi, λ), if |s|=0 ∧ ∃ λ∈Λ*: λ=w

ii) (qj, λ), if |s|=1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj, λ)

iii) ψ(qj, <s2… sn>, λ.top), if |s|>1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj,λ)

Additionally, consider that the elements on each itemset are ordered lexicographically (as

assumed by sequential pattern mining algorithms).

Chapter 6 – Constraint Relaxations

99

2.1 – Legal

The Legal relaxation requires that every sequence is legal with respect to some state of the

automaton, which specifies the constraint language. The extension of the legal relaxation to

context-free languages is non-trivial, since the presence of a stack (on the automaton) makes the

identification of legal sequences more difficult. However, it is possible to extend the notion of

legality of a sequence with respect to any state of an extended pushdown automaton.

Definition 34 - A sequence s=<s1… sn> is legal with respect to state qi with the top of

the stack w, if and only if

i) |s|=1 ∧ ∃ � sk∈Σ∗; qj∈�; λ∈Λ*: δ(qi,sk,w)⊃(qj,λ) ∧ s1⊆sk

ii) |s|=2 ∧ ∃ � sk,sk'∈Σ∗; λ,λ'∈Λ*; qj,qj'∈�: δ(qi,sk,w)⊃(qj',λ)∧ s1 suffixOf sk

 ∧ δ(qj',sk',λ.top)⊃(qj,λ')∧ s2 prefixOf sk'

iii) |s|>2 ∧ ∃ � sk,sk'∈Σ∗;λ,λ',λ''∈Λ*; qj,qj',qj''∈�: δ(qi,sk,w)⊃(qj',λ) ∧ s1 suffixOf sk

 ∧ ψ(qj',s2… sn-1,λ.top) = (qj'',λ')�

 ∧ δ(qj'',sk',λ'.top)⊃(qj'',λ''') ∧ sn prefixOf sk'

This means that any sequence with one itemset is legal with respect to an extended pushdown

automaton state, if there is a transition from it, defined over a superset of the itemset (i). When the

sequence is composed of two itemsets, it is legal with respect to a state, if the first itemset is a

suffix of a legal transition from the current state, and the second itemset is a prefix of a legal

transition from the achieved state (ii). Otherwise, the sequence is legal if the first itemset is a suffix

of a legal transition from the state, and the last one is a prefix of a legal transition from the state

reached with s2… sn-1.

Examples of legal sequences with respect to the initial state of the automaton represented in

Figure 6.2 are: a, b and c (by rule i), bc and (a,b)c (by rule ii) and bca and (a,b)ca (by rule iii).

Examples of non-legal sequences are ac (by ignoring rule ii) or acb (by ignoring rule iii).

Note that ψ is only defined for non-empty stacks. Indeed, in order to verify the legality of some

sequence s, it is necessary to find a sequence of itemsets t that can be concatenated to s, creating a

sequence ts accepted by the automata.

2.2 – Valid-suffix

The Valid-Suffix relaxation only accepts sequences that are valid suffixes with respect to some state

Chapter 6 – Constraint Relaxations

100

of the automaton. Like for the legal relaxation, some adaptations are needed when dealing with

context-free languages.

Definition 35 - A sequence s=<s1… sn> is said to be a valid-suffix with respect to state

qi with the top of the stack w, if and only if

i) |s|=1 ∧ ∃ � sk∈Σ∗; λ∈Λ*; qj∈�: δ(qi,sk,w) ⊃ (qj,λ) ∧ s1suffixOf sk∧ λ.top=ε

ii) |s|>1 ∧ ∃ � sk',sk''∈Σ∗; λ',λ''∈Λ*;qj,qj',qj''∈�: δ(qi,sk,w) ⊃ (qj',λ)∧s1 suffixOf sk

 ∧ ψ(qj',s2… sn,λ.top)=(qj,λ') ∧ λ'.top=ε

This means that a sequence is a valid-suffix with respect to a state if it is legal with respect to

that state, achieves a final state and the resulting stack is empty. In particular, if the sequence only

has one itemset, it has to be a suffix of a legal transition to an accepting state.

As before, consider the extended pushdown automaton defined in Figure 6.2. Examples of such

sequences are b, (a,b), c(a,b) and bc(a,b). Negative examples are, for instance, bca or bcb. Note

that, in order to generate valid-suffix sequences with respect to any state, it is easier to begin from

the final states. However, this kind of generating process is one of the more difficult when dealing

with pushdown automata, since it requires a reverse simulation of their stacks.

In order to avoid this difficulty, make use of prefix instead of suffix validity could represent a

more useful relaxation, when dealing with context-free languages. Note that valid-suffixes are not

prefix-monotone, and could not be easily used by pattern-growth methods [Han 2001b].

2.3 – Valid-prefix

The valid-prefix relaxation is the counterpart of valid-suffix, and requires that every sequence is

legal with respect to the initial state.

Definition 36 - A sequence s=<s1… sn> is said to be prefix-valid if and only if:

i) |s|=1� ∧� ∃ � sk∈Σ*; λ∈Λ*: δ(q0,sk,Z0) ⊃ (qj,λ) ∧ s1 prefixOf sk

ii) |s|>1� ∧� ∃ � sk∈Σ*; λ,λ'∈Λ*;qj,qj'∈Q: ψ(q0,s1… sn-1,Z0)=(qj',λ')

 ∧ δ(qj',sk,λ'.top) ⊃ (qj,λ) ∧ sn prefixOf sk

This means that a sequence is prefix-valid if it is legal with respect to the initial state and the

first itemset is a prefix of a transition from the initial state. An example of valid-prefixes according

to the ePDA represented in Figure 6.2 is (a,b)c, while (a)c or bc are examples of non-valid

prefixes.

Chapter 6 – Constraint Relaxations

101

Sequences with valid prefixes are not difficult to generate, since the simulation of the stack

begins with the initial stack: the stack containing only the stack start symbol. The benefits from

using the suffix-validity and prefix-validity are similar. When using the prefix-validity to generate

the prefix-valid sequences with k elements, the frequent (k-1)-sequences are extended with the

frequent 1-sequences, in accordance with the constraint.

Note that the legal relaxation accepts all the patterns accepted by valid-suffix and valid-prefix

relaxations. In this manner, it is a less restrictive relaxation than the other two. Although these

relaxations have a considerable restrictive power, which improves significantly the focus on user

expectations, they do not allow for the existence of errors. This represents a strong limitation in

real datasets, since little deviations may exclude many instances from the discovered patterns.

3 – Approx Relaxations

In order to solve this problem we propose a class of relaxations that accepts sequences that have a

limited number of errors. If it is possible to correct those errors with a limited cost, then the

sequence will be accepted.

A new class of relaxations, called approx relaxations, tries to accomplish this goal: they only

accept sequences that are at a given edit distance for an accepted sequence. This edit distance is a

similarity measure that reflects the cost of operations that have to be applied to a given sequence,

so it would be accepted as a positive example of a given formal language. This cost of operations

will be called the generation cost.

Definition 37 - Given a Ω-constraint C, and a real number ε which represents the

maximum error allowed, a sequence s=<s1… sn> is said to be approx-accepted by C,

if its generation cost �(s, C) is less than or equal to ε.

The generation cost is defined as follows:

Definition 38 - Given a Ω-constraint C, and a sequence s=<s1… sn>, the generation

cost � (s, C) is defined as the sum of costs of the cheapest sequence of edit

operations O=<o1… ok> transforming the sequence s into some sequence t accepted

by the language C.

The edit operations considered are the traditional in approximate string matching

Chapter 6 – Constraint Relaxations

102

[Levenshtein 1965]:

- Insertion – Ins(x,i): adds the item x to the sequence at position i;

- Deletion – Del(x,i): deletes the item x from the sequence at position i;

- Replacement – Rep(x,y,i): substitutes the item x, that occurs at position i, by item y.

For example, considering the extended pushdown automaton defined above (Figure 6.2),

ac(a,b) and (a,b)(a,b) are approx-accepted sequences with one error, which result from inserting a

b on the first itemset, on the first example, and a c on the second position, on the second example,

respectively. c(a,b) and b(a,b) are non-approximate accepted with one error, since two edit

operations are needed to accept them.

The other four classes of approx relaxations are defined by replacing the acceptability by

legality and validity notions. In this manner, an Approx-Legal relaxation accepts sequences that are

approximately legal with respect to some state. Approx-Suffix and Approx-Prefix relaxations are

defined in a similar way. Finally, Approx-Naïve accepts sequences that have ε items (with ε the

maximum error allowed) that do not belong to the alphabet.

It is interesting to note that the ability of approx-relaxations to reduce the number of discovered

patterns depends on the size of the alphabet; in particular, it depends on the number of frequent

items. Suppose that there are m frequent items in a given database, and the alphabet of the formal

language used as constraint has n items, all frequent (with n<m). For each pattern with one item

accepted by the constraint (for example, a), if we are concerned with approximate patterns with one

error, the relaxation may find 3×m patterns with two items (for example (ab), ab and ba).

A solution to this proliferation is to associate an item constraint with the approx relaxation.

This conjunction allows for focusing the mining process on a smaller set of the approximate

accepted patterns, reducing the number of discovered patterns.

3.1 – Algorithm εεεε-accepts

Unfortunately, the better-known algorithms for edit distance are performed on two strings, and

cannot be applied to one string and a formal language. Agrep [Wu 1992] is an exception to this

general scenario, and it verifies if there exists a sequence in a given regular language (expressed as

an automaton) at a specific edit distance from the given sequence.

However, as pointed by its authors, agrep does not deal well with very large alphabets, and

sequential pattern mining algorithms usually deal with alphabets with thousands of symbols.

Chapter 6 – Constraint Relaxations

103

In order to deal with this situation and use context-free languages, we assume that useful

automata are small in general, and we propose �–acceptsCFL, a new algorithm to verify if a

sequence was approximately generated by a given extended pushdown automaton (ePDA). This

algorithm is illustrated in Algorithm 11.

Algorithm 11 – Pseudocode for �–acceptsCFL algorithm

The main idea behind �–acceptsCFL, is to avoid the generation of potential sequences, given

that this operation consumes a considerable amount of time in sequential pattern mining

algorithms. Since we consider that automata are usually small, the simulation of transitions is not

an expensive operation. (As several authors have noted, experts usually make use of a few simple

and small rules to express their background knowledge, so the combination of those rules usually

do not result in complex automata).

boolean ε-acceptsCFL(Sequence s, int ε, ePDA �=(�,�, Γ�δ,q0,Z0,�)){
 return aproxAcc(s,0,�.q0,new Stack(Z0),0,ε,�)
}

boolean aproxAcc(Sequence s, int i, � qj, Stack λ, int acε, int ε, ePDA �){
 // Exceeds maximal error
 if (acε >ε) return False
 // Proceeds with next element
 if (i<|s|) return accTrans(s,si,i,qj,λ,acε,ε,�)
 // Test the achievement of empty stack
 else if (λ.isEmpty()) return True
 // Try to achieve a final state
 else return accTrans(s,(),i,qj,λ,acε,ε,�)
}

boolean accTrans(Sequence s,Itemset si,int i,��qj,Stack λ,int acε,int ε, ePDA �){
 // Looks for the perfect transition
 for each q∈� {
 if (∃ tr: tr∈{qj.getApplicableTrans(q,λ,si)})
 return aproxAcc(s,i+1,q,copy(λ).apply(tr),acε,ε,�)
 }
 for each δ(q,a)∈�.δ(qj){
 dif�max(|si|,|a|)-|a ∩ si|
 //Try a mixture of edit operations (replacement+deletion+insertion)
 if (acε+dif�ε)
 ok�aproxAcc(s,i+1,q,copy(λ).apply(δ(q,a)),acε+dif,ε,�)
 if (ok) return True
 // If the itemset is not valid => try to ignore it (deletion)
 ok�aproxAcc(s,i+1,qj,λ,acε+|si|,ε,�)
 if (ok) return True
 // If deletion fails, try an insertion
 ok�aproxAcc(s,i,q,copy(λ).apply(δ(q,a)),acε+|a|,ε,�)
 if (ok) return True
 }
 return False
}

Chapter 6 – Constraint Relaxations

104

Instead of generating the possible sequences, considering possible errors, we verify if each

itemset performs a valid transition in the automaton, beginning on the initial state and with the

stack containing only the initial stack symbol. Whenever an itemset does not correspond to a valid

transition, the algorithm tries to replace it (which corresponds to the application of a Replacement

or a combination of Deletions and Insertions). If this fails, it tries to ignore it (which corresponds to

a Deletion) and finally it tries to introduce a valid transition (which corresponds to an Insertion).

Given that insertions and replacements only try valid transitions, instead of trying every possible

itemset, the performance of ε–acceptsCFL does not depend on the number of different items in

the database, but only on the number of states and alphabet used by the ePDA.

In general, approx relaxations can be seen as less restrictive than conservative ones. However,

this relation is only valid with respect to comparable relaxations, for example: approx-legal is less

restrictive than legal.

4 – Non-accepted Relaxations

Another important issue is the possibility to discover information that does not satisfy the

constraint imposed by the language.

Suppose that there is a model (expressed as a context-free language) able to describe the

frequent patterns existent on a large database (say for example that the minimum support allowed is

10%). If there are 3% of clients with a fraudulent behavior, it is possible that they are not

discovered either by using the unconstrained mining process, or by using any of the proposed

relaxations.

However, the model of non-fraudulent clients may be used to discover the fraudulent ones: the

fraudulent clients are known to not satisfy the model of non-fraudulent clients.

Definition 39 - A sequence s=<s1… sn> is said to be non-accepted by the language if it

is not generated by that language.

In fact, this is not really a relaxation, but another constraint (in particular the constraint that

only accepts sequences that belong to the language that is the complement of the initial constraint).

However, since they are defined based on the initial constraint, we choose to designate them as

relaxations.

Chapter 6 – Constraint Relaxations

105

The benefits from using the non-accepted relaxation are mostly related to the possibility of not

rediscovering already known information, which may contribute significantly to improve the

performance of sequential pattern mining algorithms. Moreover, since context-free languages are

not closed under complementation [Hopcroft 1979] (which means that the complement of a

context-free language is not necessarily a context-free language), the use of the complement

instead of the non-accepted relaxation could be prohibitive.

Note that using this new approach, it is possible to reduce the search space, and consequently

to reduce the minimum support allowed. The non-accepted relaxation will find all the patterns

discovered by the rest of the introduced relaxations, representing a small improvement in the focus

on user expectations. In fact, it finds all the patterns discovered by unconstrained patterns minus

the ones that are accepted by the constraint. Like for approx relaxations, an interesting

improvement is to associate a subset of the alphabet in conjunction with non-accepted relaxation.

This conjunction focus the mining process over a smaller part of the data, reducing the number of

discovered sequences, and contributing to achieve our goal.

As before, the sub-classes of Non-Accepted relaxations result by combining the non-

acceptability philosophy with each one of the other relaxations. While non-accepted relaxation

filters only a few patterns, when the constraint is very restrictive, the non-legal relaxation filters all

the patterns that are non-legal with respect to the constraint. With this relaxation is possible to

discover behaviors that completely deviate from the accepted ones, helping to discover the

fraudulent behaviors.

Non-accepted relaxations are particularly interesting when the constraint is not very restrictive.

5 – Discussion

The discussion about the concept of novel or unknown information is one of the most difficult in

pattern mining. While the concept is clear in the reference frame of a knowledge acquisition

system, the same is not true in the reference frame of the final user. Indeed, several interestingness

measures have been proposed for the evaluation of the discovered patterns [Hilderman 1999].

Moreover, this issue is more critical with the introduction of constraints in the mining process.

In fact, in the presence of constraints the concept of novel patterns becomes unclear even in the

reference frame of information systems, since they are then able to deal with that knowledge,

Chapter 6 – Constraint Relaxations

106

represented as the constraint.

In order to bring some light into the discussion, consider that,

Definition 40 - Given a model C as constraint, a pattern A is more novel than a pattern

B, if the generation cost of A in order to C is larger than the generation cost of B in

order to C (with the generation cost defined as above).

With this concept, it is now possible to understand the reason why non-accepted patterns can

be more novel than the patterns discovered by conservative relaxations. It is now clear that, despite

the differences between relaxations, all of them allow for the discovery of novel information.

Indeed, the conservative relaxations are able to discover failure situations, this is, situations when

for, some reason, the given model is not completely satisfied (Valid- Prefix and Valid-Suffix

identify failures in the begin and end of the model, respectively, and Legal identifies problems in

the middle of the model).

However, the great challenge of pattern mining is to discover novel information in accordance

to user expectations. It is clear from the definition of the novel relation, that an unexpected pattern

is more novel than an expected one. In fact, the challenge resides in the balance between the

discovery of novel but expected patterns, and the proposed relaxations cover a wide range of this

balance, giving to the user the option of which is the most relevant issue for the problem in hands:

the novelty of the information or to satisfy the expectations.

6 – Simple Example

In this section, we will illustrate the use of relaxations over Ω–constraints with a simple example.

Our goal is to validate our claim that they facilitate the discovery of unknown information, keeping

the mining process centered on the user.

Consider again the problem of identifying typical behaviors of some company customers.

Suppose that the company considers that a well-behaved customer is a customer, who always

makes at least one payment after receiving one or two consecutive invoices, and has made, at the

end of the period, all its payments. This constraint may be modeled by the pushdown automaton

presented in Figure 6.3, where a corresponds to an invoice, b to a payment, c to a second copy of

the invoice, d to a cancellation, e to an information request and r to an answer to those requests.

Chapter 6 – Constraint Relaxations

107

q4q3 (b, X)�pop

(a, S)�push X
(a, X)�push X

(b, X)�pop

q2 (a, X)�push Xq1 (a, S)�push X

(b, X)�pop

(ε, S)�pop

Figure 6.3 – Pushdown automaton for well-behaved customers

Suppose that the company has the dataset represented in Table 4.

Table 4 – Dataset used to exemplify the mining process

Dataset
eababraabb aababbaerb aaacbabab aebraaaccd aebaraacbe
aabbaberab ababaabbab aebaraaacb abaaaccder abaeraacbb

Table 5 presents the patterns discovered by unconstrained and constrained algorithms, and the

patterns discovered when constraint relaxations are used.

Table 5 – Comparison of the results achieved with and without constraints

Frequent Accepted Legal Prefix Approx.(�=1) Approx.(�=2)
Non-Acc (w/
Σ={a,c,d,e,r}

be
baa
era
braa
baba
baer
araa
abab
abaa
raacb
raaac
aaacb
aabbab
aaaccd
aebaraa

abab
aabbab

baba
abab
abaa
aabbab

abab
abaa
aabbab

abab
aabbab
ar�R(r,b,2)
aeb�D(e,2)
abaa�R(a,b,4)
aacb�R(c,b,3)

abab
aabbab
abaa�R(a,b,4)
abbab�D(b,2)
be�R(b,a,1) R(e,b,2)
br�R(b,a,1) R(r,b,2)
cd�R(b,a,1) R(r,b,2)
aer�R(e,b,2) D(r,3)
bae�D(b,1) R(e,b,3)
aacc�R(c,b,2) R(c,b,3)
aaacb�D(a,3) R(c,b,4)
aebar�D(e,2) R(r,b,5)
araa�R(r,b,2) R(a,b,4)
baba�D(b,1) I(b,5)
raacb�D(r,1) R(c,b,4)

aer
era
raac
araa
raaac
aaaccd

In order to permit an easy comparison, only maximal patterns are shown. In this manner, some

patterns appear only in some columns. In the column relative to the approx relaxation, are shown

the edit operations needed to transform each pattern to a pattern belonging to the context-free

language. As expected, by using the constraint itself we only discover two patterns, which satisfy

the context-free language. Therefore, these results are not enough to invalidate Hipp's arguments

about constraints. Nevertheless, with Legal and Valid-prefixes, it is possible to discover some other

intermediate patterns, which are potentially accepted by the complete constraint.

Finally, with approx and non-accepted relaxations, it is possible to discover unexpected

Chapter 6 – Constraint Relaxations

108

patterns. Indeed, the approx relaxation shows the most interesting behavior, since it is possible to

discover that it is usual that after sending the second invoice, customers pay their old bills (aacb).

With non-accepted relaxation, it is also possible to discover interesting patterns. In this case, it is

common that after three invoices without any payment, and the emission of two second invoices,

the customer account is canceled (aaaccd).

7 – Experimental Results

As shown in the previous chapter, the use of constraints can improve either the performance or the

focus on user expectations of sequential pattern mining. However, in some cases, the use of

constraints may block the discovery of novel information. In this section, we will show that the

initial claims remain true when applying constraint relaxations, and that their use also permits the

discovery of unknown information, keeping the process centered on user expectations.

In order to support our claims we will show that whenever the Ω-constraint filters a

considerable number of patterns:

• the use of constraint relaxations can be more efficient then unconstrained mining;

• the use of constraint relaxations reduces the number of discovered patterns.

The two Ω-constraints used in our experiments are the same that have been used before (in

Chapter 5, section 5): they do not impose any temporal restriction beside the gap constraint (also

used by GenPrefixSpan) equal to zero, and the content constraint is defined by a formal language.

q2q1

2

q32 5

2

6

Figure 6.4 – DFA defined over unconstrained patterns

The content constraints only specify restrictions on the accepted sequence of itemsets, in

accordance with the DFA represented in Figure 6.4 and with the ePDA in Figure 6.5.

q2q1

[(2),X]�pop[(2), S]�push X

[(5), X]�no op

[(6), X]�no op

Figure 6.5 – ePDA defined over unconstrained patterns

Chapter 6 – Constraint Relaxations

109

As expected, by using the constraint itself we only discover a few patterns, which constitute

already known information, since they satisfy the imposed language. However, the situation is

different for the relaxations. For example, Legal-Relaxation begins by accepting 50% of the

discovered patterns using a threshold support equal to 50%, and only accepts about 1% of the

patterns for a support threshold equal to 5% (see Table 6 and Table 7).

Table 6 – Discovered patterns with several relaxations using DFA in Figure 6.4

sup Unconstrained Accepted Prefix Legal Approx Non-Acc
0,50 28 5 18% 8 29% 14 50% 28 100% 23 82%
0,45 41 8 20% 13 32% 20 49% 39 95% 33 80%
0,40 53 8 15% 13 25% 20 38% 47 89% 45 85%
0,35 87 11 13% 17 20% 26 30% 72 83% 76 87%
0,30 127 14 11% 21 17% 34 27% 96 76% 113 89%
0,25 228 19 8% 30 13% 49 21% 156 68% 209 92%
0,20 422 27 6% 42 10% 67 16% 248 59% 395 94%
0,15 967 38 4% 62 6% 100 10% 449 46% 929 96%
0,10 3142 82 3% 132 4% 210 7% 1044 33% 3060 97%
0,05 24937 203 1% 334 1% 565 2% 3788 15% 24734 99%

Table 7 – Discovered patterns with several relaxations using ePDA in Figure 6.5

sup Unconstrained Accepted Prefix Legal Approx Non-Acc
0,50 28 1 4% 8 29% 14 50% 8 29% 27 96%
0,45 41 2 5% 12 29% 20 49% 12 29% 39 95%
0,40 53 2 4% 12 23% 20 38% 13 25% 51 96%
0,35 87 2 2% 15 17% 25 29% 20 23% 85 98%
0,30 127 3 2% 18 14% 30 24% 27 21% 124 98%
0,25 228 4 2% 22 10% 37 16% 48 21% 224 98%
0,20 422 4 1% 27 6% 47 11% 70 17% 418 99%
0,15 967 5 1% 33 3% 56 6% 131 14% 962 99%
0,10 3142 6 0% 44 1% 76 2% 278 9% 3136 100%
0,05 24937 8 0% 63 0% 110 0% 605 2% 24929 100%

A similar behavior is shown by Prefix-Valid and Approx-Accepted relaxations, both by the

regular or the context-free languages, as shown in Figure 6.6 and Figure 6.7.

Nr. of Patterns

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

40% 35% 30% 25% 20% 15% 10% 5%
support

N
r.

 o
f P

at
te

rn
s

Accepted Prefix Legal
Approx Non-Acc Unconstrained

Figure 6.6 – Number of discovered patterns using the DFA in Figure 6.4

Chapter 6 – Constraint Relaxations

110

In this manner, the claim that the use of constraint relaxations can reduce the search space is

validated.

Nr. of Patterns

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
support

N
r.

 o
f P

at
te

rn
s

Accepted Prefix Legal
Approx Non-Acc Unconstrained
Figure 6.7 – Number of discovered patterns using the ePDA in Figure 6.5

Another interesting result is related to the processing times spent by different approaches (see

Figure 6.8 and Figure 6.9), in particular in the presence of very low support thresholds.

Constrained mining is the most efficient, spending about 5% of the time spent by the

unconstrained approaches. Conservative relaxations present a similar performance, justified by the

low number of discovered patterns and by the similarity between its processing and the processing

of the constraint itself.

Performancevs Support

0

50

100

150

200

250

300

350

40% 35% 30% 25% 20% 15% 10% 5%
Support

T
im

e
(s

)

Accepted Prefix
Legal Approx
Non-Acc Unconstrained

Figure 6.8 – Processing time using the DFA in Figure 6.4

The most time consuming relaxation is the Non-Accepted, mostly due to the high number of

discovered patterns, identical to the number of unconstrained patterns.

The Approx relaxation also consumes a considerable amount of time, higher then the

unconstrained mining in the case of the context-free language (Figure 6.9). However, unlike non-

Chapter 6 – Constraint Relaxations

111

accepted relaxation those processing times are mostly due to the verification of the acceptability of

patterns.

Performancevs Support

0

100

200

300

400

500

600

700

800

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Accepted Prefix Legal
Approx Non-Acc Unconstrained

Figure 6.9 – Processing time using the ePDA in Figure 6.5

In general, relaxations spend a portion of time proportional to the number of discovered

patterns. When comparing the average time spent by each relaxation per discovered pattern, the

most expensive is the constrained process, followed by conservative relaxations, in the case of

regular languages, and by the Approx relaxation, in the case of context-free languages. This

difference is again due to the verification of the acceptability of patterns (see Figure 6.11).

Average Time Spent for Each Pattern

0

100

200

300

400

500

600

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

Ti
m

e
(s

)

Unconst. Acc Prefix
Legal Approx Non-Acc

Figure 6.10 – Average time spent by pattern, using the DFA in Figure 6.4

It is important to note that, in general, the average time spent for each discovered pattern

decreases when the number of patterns increases. This reduction is due to the decrease of the

percentage of discarded sequences, sequences that are not frequent and are accepted by the

relaxation.

Chapter 6 – Constraint Relaxations

112

Average Time Spent for Each Pattern

0

500

1000

1500

2000

2500

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

Ti
m

e
(s

)

Acc Pref ix Legal
Approx Non-Acc Unconst.

Figure 6.11 – Average time spent by pattern, using the ePDA in Figure 6.5

The exception to this general rule is the Approx relaxation based on a context-free language.

This difference of behavior is again explained by the verification of the acceptability of patterns.

Figure 6.11 shows that the time spent in that verification overwhelms the decrease of the

percentage of discarded sequences.

7.1 – Constraint Relaxations combined with Item Constraints

The poor performance achieved by the Approx and Non-accepted relaxations, can be improved, if

item constraints are used in conjunction with non-conservative relaxations, as proposed above.

In order to validate this idea, we have imposed an item constraint, restricting the relaxations to

just accepted sequences with items belonging to the formal language alphabet.

PerformancevsSupport

0
20
40
60
80

100
120
140
160
180

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Unconstrained Full Approx Approx

PerformancevsSupport

0
100
200
300
400
500
600
700
800

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Unconstrained Full Approx Approx

Figure 6.12 – Comparison of processing times of Approx Relaxation combined with item constraints with DFA in
Figure 6.4 (on the left) and with the ePDA in Figure 6.5 (on the right)

Figure 6.12 shows that in conjunction with item constraints (imposing a more restricted

alphabet) Approx relaxations are able to outperform unconstrained mining, both with regular and

context-free languages. These results are naturally achieved by reducing the number of discovered

patterns, as shown in Figure 6.13. In these figures, FullApprox refers to the Approx relaxation alone

and Approx refers to the use of the relaxation with the item constraint described above.

Chapter 6 – Constraint Relaxations

113

Nr. of Patterns

0

1000

2000

3000

4000

5000

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
support

N
r.

 o
f

P
at

te
rn

s

Unconstrained Full Approx Approx

Nr. of Patterns

0

1000

2000

3000

4000

5000

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
support

N
r.

 o
f

P
at

te
rn

s

Unconstrained Full Approx Approx
Figure 6.13 – Comparison of number of discovered patterns by Approx Relaxation combined with item

constraints, with the DFA in Figure 6.4 (on the left) and with the ePDA in Figure 6.5 (on the right)

A comparison of the number of discovered patterns, when using variants of non-accepted

relaxations, also validates our claim (see Figure 6.14).

PerformancevsSupport

0

50

100

150

200

250

300

350

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Unconstrained Full Non-Acc Full Non-Legal
Non-Acc Non-Legal

PerformancevsSupport

0

50

100

150

200

250

300

350

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Unconstrained Full Non-Acc Full Non-Legal
Non-Acc Non-Legal

Figure 6.14 – Comparison of processing times of Non-Accepted variants with the DFA in Figure 6.4 (on the left)
and with the ePDA in Figure 6.5 (on the right)

On one hand, the use of an item constraint in conjunction with non-accepted relaxations

considerably diminishes the number of discovered patterns (between 50% and 60% in the

conducted experiments – see Figure 6.15).

Nr. of Patterns

0

5000

10000

15000

20000

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f P

at
te

rn
s

Unconstrained Full Non-Acc Full Non-Legal
Non-Acc Non-Legal

Nr. of Patterns

0

5000

10000

15000

20000

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f P

at
te

rn
s

Unconstrained Full Non-Acc Full Non-Legal
Non-Acc Non-Legal

Figure 6.15 – Comparison of number of discovered patterns by Non-Accepted variants with the DFA in Figure
6.4 (on the left) and with the ePDA in Figure 6.5 (on the right)

On the other hand, Non-Accepted relaxations discover few patterns when the constraint is less

restrictive. When using more restrictive constraints, the Non-Legal relaxation seems to be more

interesting than the Non-Accepted one. The results also demonstrate that Non-Accepted relaxations

are only useful when the constraint is not sufficiently restrictive.

Chapter 6 – Constraint Relaxations

114

In summary, the use of relaxations helps focusing the process on user expectations, discovering

patterns that are closely related to existent background knowledge. Associated with the reduction

of discovered patterns, is the reduction of processing times, more evident for conservative

relaxations, but also possible for non-conservative ones, depending on the restrictive power of the

constraint.

Summary

In this chapter, we have proposed a new pattern mining methodology, based on the use of

constraint relaxations. A constraint relaxation imposes a weaker restriction, relaxing the

constraint chosen to represent user background knowledge. We propose a relaxation for Ω-

constraints, which includes a maximal time error on the verification of the temporal

constraint and a relaxation over the content constraint. The last one is based on the

relaxation of its associated formal language, establishing weaker conditions to accept a

sequence as valid. Experimental results show that the use of relaxations reduces the number

of discovered patterns when compared to unconstrained processes, but allows for the

discovery of unexpected patterns, when compared to constrained processes. The results also

show that the processing times spent in the mining process can be reduced if constraint

relaxations are used.

115

Chapter 7

Case Studies

In this chapter, we present the results achieved by applying the algorithms and methodologies

proposed in this dissertation, to real-life datasets. After reviewing the thesis statement, we

show that these results validate our claims.

n this thesis we claim that it is possible to discover unknown information, using sequential

pattern mining with constraint relaxations, without loosing the focus on user expectations, as

exposed in Chapter 3. In order to validate these claims, we present the results achieved by applying

this methodology to three real-life datasets: one resulting from the records of an online retail

company – PmeLink.PT, and the other two resulting from the data collected from IST student's

performance – AMs1982-2001 and LEIC1989-2001.

In this manner, we evaluate our methodology by comparing:

- the performance of each mining process;

- the number of discovered patterns;

- the ability to answer some relevant questions.

1 – Applications

1.1 – PmeLink.PT

PmeLink.PT is the first Online Business Center in Portugal, supporting Portuguese small and

medium enterprises (SMEs) in all of their business needs.

I

Chapter 7 – Case Studies

116

PmeLink.PT sells a large array of products, from furniture to small appliances, computer

equipment and accessories. In order to test the applicability of the proposed approach in a real-

world situation, we deployed a prototype integrated with the PmeLink.PT data warehouse. The

prototype has as first goal to identify the frequent sequences of purchases, providing an insight on

client's behavior and an aconselling mechanism, based on the past purchases of each client.

In this manner, it was possible to measure the performance and scalability of the approach on a

real-life data (dataset PmeLink.PT). The experiments and data are described above.

Data Statistics

The dataset explored in this work is composed of 5383 sequences, corresponding to the purchases

done by each PmeLink.PT client, in a period of two years.

Mean - 5.39; Mode - 2; Median - 3; Max - 168

0

200

400

600

800

1000

1200

1400

1600

1800

2 12 22 32 47 112
Length (in transactions)

Figure 7.1 – Distribution of the length of sequences on the PmeLink.PT dataset

Unfortunately, a great portion of those sequences are very short (30% have two itemsets).

Despite this, 89% of sequences have between 2 and 10 itemsets, with an average length of 5.39

itemsets, as illustrated in Figure 7.1.

Mean - 4.45; Mode - 1; Median - 3; Max - 45

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26 31
Size (items purchased)

Figure 7.2 – Distribution of the size of the baskets in PmeLink.PTdataset

Chapter 7 – Case Studies

117

The average itemset has 4.45 items, with 24% of them with one item and 92% with between 1

and 10 items. There are 281 different categories of products, used as the alphabet in our

exploration.

Finding purchase patterns

When explored with unconstrained sequential pattern mining, for low support thresholds, the data

exploration discovers 1335 patterns with support above 5% and 219113 with support above 1%.

These numbers hide any discovered information (see Table 8).

Table 8 – Number of discovered patterns with unconstrained mining

sup |Lk|
45% 2
40% 2
35% 7
30% 12
25% 18
20% 31
15% 64
10% 203
5% 1.335
1% 219.113

However, the patterns discovered with larger support thresholds do not give any relevant

information. For example, for 15% of support, 28 of the 64 discovered patterns have just one

itemset, and the rest of patterns involve the purchase of Paper A4, which is the product most sold

(present in 84% of the sequences). In this manner, the analysis of this data is very hard to perform

if one doesn't use any background knowledge.

In order to gain an insight on the business of PmeLink.PT, consider the non-deterministic PDA

illustrated in Figure 7.3.

q2q1

[(X), X]�pop
[(X), X]�noop

[(X), S]�push X

Figure 7.3 – nPDA for specifying constraints over the dataset PmeLink

This automaton accepts sequences composed of consecutive purchases of the same product. In

fact, each transition on the nPDA represents several transitions, one per product. For example, the

transition from q1, represents one transition for each product, like the transitions

[(staples),S]�push(staples) and [(clips),S]�push(clips), among others. We choose to use a

pushdown instead of a deterministic finite automaton, since the last one must have one additional

state per product, which would be somehow difficult to define and understand.

Chapter 7 – Case Studies

118

With this automaton, and constraining our exploration to Stock products, we are able to find 12

products that are consecutively purchased by at least 5% of clients, and 18 purchased by at least

1% of clients, as shown in Table 9.

Table 9 – Purchase patterns of Stock products

<(staples),(staples)>
<(clips),(clips)>
<(message-pads),(message-pads)>
<(dividers),(dividers)>
<(arch-lever files),(arch-lever files),(arch-lever files)>
<(correction-fluid),(correction-fluid)>
<(plastic covers),(plastic covers)>
<(ballpoint pens),(ballpoint pens)>
<(goods for original HP printers),(goods for original HP printers),(goods for original HP printers)>
<(disks and zips),(disks and zips)>
<(arch-lever files with box),(arch-lever files with box)>
<(goods for original Epson printers),(goods for original Epson printers)>

As can be seen, besides discovering which products are consecutively purchased, it is possible

to discover the number of times that they are purchased.

Nr. of Patterns

0
50

100
150
200
250
300
350
400
450
500

45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f P

at
te

rn
s

Acc. Prefix Legal Approx Non-Acc Unconstrained

Figure 7.4 – Number of patterns discovered in the dataset PmeLink.PT

When using constraint relaxations, it is possible to go one-step further and discover other

patterns of interest. Figure 7.4 shows that the use of constraint relaxations keeps the number of

discovered patterns well below from the number of unconstrained patterns.

Unfortunately, this data is not rich enough to enable the discovery of more interesting patterns.

Several other experiments were done, without any interesting result. Among those, experiments on

analyzing different time periods (for example constraining the search to the end of the year,

according to existing domain knowledge) were tried, without any other result.

Chapter 7 – Case Studies

119

1.2 – Analysis of Enforced Precedence between Subjects

The analysis of the curriculum of undergraduate programs and the corresponding student's

performance is a non-trivial task. For example, the garanty that some subject is placed in the right

semester is difficult to achieve. The difficulties are mainly related to the curriculum structure,

which consists of a sequence of sets of simultaneous subjects, and to the number of possible

curricula instantiations. Definitely, less than 50% of the students follow the established curriculum,

choosing a different sequence of subjects.

In the last years, the undergraduate programs at Instituto Superior Técnico (IST) have

introduced the existence of enforced precedences between subjects. An immediate consequence of

this approach is the avoidance of that variety of curricula, making that a student can only attend to

a subject after have concluded another preceding one.

However, despite the theoretical benefits of this approach, it disables that students create their

own curriculum, in accordance to their preferences and capabilities. Indeed, a detailed analysis of

the different instantiations of the same curriculum model, demonstrates that there are several

different ways to achieve the same results within the same time period.

Analysis Goals

In this section, we aim to analyze the effects of the imposition of precedences among the subjects

on Mathematical Analysis (AM) at IST, made in the academic year of 1994/1995.

In this manner, we will try:

- To identify the frequent sequence of results achieved in the subjects on Mathematical

Analysis, before and after the academic year of 1994/1995.

- To identify the sequence of results achieved by students who conclude all those subjects

between four and six semesters.

Data statistics

The dataset used to analyze these questions consists on the set of sequences corresponding to the

sequence of results on Mathematical Analysis subjects achieved by each IST student, between 1982

and 2001, excluding the students that do not enrolled on those subjects at least for four semesters.

The dataset (AMs1982-2001) contains 17933 sequences, corresponding to 17933 students

from the different undergraduate programs at IST. Since there are four required subjects on

Chapter 7 – Case Studies

120

Mathematical Analysis, the alphabet is composed by 8 symbols (one for each successful enrollment

– X, and one for each failure – ~X). Most of the students (69%) have between 4 and 6 enrollments

(they had attended classes from those subjects between 4 and 6 semesters), which leads to an

average sequence length equal to 6.29 semesters (see Figure 7.5).

0

1

2

3

4

5

6

7

8

4 9 14 19 24 29 34

Th
ou

sa
nd

s

Length (in semesters)Mean - 6.29; Median - 5; Mode - 4; Max - 35
Figure 7.5 – Distribution of the length of sequences on dataset AMs1982-2001

Figure 7.6 shows that the great majority of students attended one mathematical analysis subject

per semester. In this manner, the average size of itemsets is equal to 1.14.

0

20

40

60

80

100

120

1 2 3 4 5

T
h

o
u

sa
n

d
s

SizeMean - 1.14; Median - 1; Mode - 1; Max - 5
Figure 7.6 – Distribution of the number of enrollments per semester in AMs1982-2001 (size of itemsets)

Unfortunately, the data is non-equally distributed by the time intervals of interest: 66% of

students attended classes before 1994/95 and only 34% after that year (Figure 7.7).

66%

34%

Before 1994/95 After 1994/95
Figure 7.7 – Distribution of students per time interval

Chapter 7 – Case Studies

121

Finding Frequent Patterns of Results

A first analysis, using unconstrained sequential pattern mining, leads to the discovery of several

patterns (corresponding to sub-patterns of the entire sequence of mathematical subjects), like the

ones shown in Table 10.

Table 10 – Patterns discovered on dataset AMs1982-2001, for 10% of support
Discovered Patterns for 10% of support

<(AM1),(AM2),(AM3),(AM4)> <(AM1),(AM2),(~AM3)> <(AM1),(~AM2),(~AM3)>
<(AM3),(~AM4)> <(~AM2),(AM2)> <(~AM2),(AM3)>
<(~AM2),(~AM2)> <(~AM2),(~AM3),(~AM4)> <(~AM3),(AM2)>
<(~AM3),(AM3)> <(~AM3),(AM4)> <(~AM3),(~AM2)>
<(~AM3),(~AM3)> <(~AM3),(~AM4),(AM3)> <(~AM3),(~AM4),(~AM3)>
<(~AM1),(AM1)> <(~AM1),(~AM2),(AM1)> <(~AM1),(~AM2),(~AM1),(~AM2)>
<(~AM1),(~AM1)> <(~AM4),(AM4)>

From these results, we are only able to say that there are several different patterns of failure,

and that the patterns involving successful results are only frequent when considering very low

support thresholds. Note that for lower minimum support thresholds, this technique will discover

several rules (for 1% it will discover 221 patterns).

In order to discover how students conclude the four subjects on Mathematical Analysis, we

propose the use of two different DFAs that represent the flow of results that students achieve in

four semesters. Since we want to compare the results before and after the introduction of

precedences, we are going two use two different automata.

51 2 3AM1 AM2 AM3 4 AM4
Figure 7.8 – DFA for representing the results on Mathematical Analysis subjects in 4 semesters, after 1994

Figure 7.8 shows that in the presence of precedences, there is only one way to conclude all

subjects in four semesters, which correspond to not failing any subject. In this manner, the DFA

only accepts the sequence <(AM1)(AM2)(AM3)(AM4)>.

51 2AM1 AM2 3 AM3 4 AM4

~AM2

6

AM3

7

~AM1

AM2 8

(AM1,AM3)

~AM2

9 (AM1,AM3) 10

(AM2,AM4)

Figure 7.9 – DFA for representing the results on Mathematical Analysis subjects in 4 semesters, before 1994

Without precedences, and knowing that AM1 and AM3 function on the Fall semester and AM2

and AM4 on the Spring semester, there are four ways to conclude all subjects in four semesters:

Chapter 7 – Case Studies

122

<(AM1)(AM2)(AM3)(AM4)>, <(~AM1)(AM2)(AM1,AM3)(AM4)>, <(AM1)(~AM2)(AM3)(AM2,AM4)> and

<(~AM1)(~AM2)(AM1,AM3)(AM2,AM4)>, as shown in Figure 7.9.

Using a small value for the support (say 0.01%) and two Ω–constraints, defined over the two

automata above and with an adequate temporal constraint, we discover that:

- Before 1994/1995, 27.5% of students were able to conclude all subjects without failing,

and 5.5% of students were also able to conclude all subjects in 4 semesters. This results

in 33% of students concluding all subjects on 4 semesters.

- After 1994/1995, 32% of students are able to conclude all subjects without failing.

51 2AM1 AM2 3 AM3 4 AM4

~AM2

6 AM3

7

~AM1

AM2 8

(AM1,AM3)

~AM2

9

(AM1,AM3)

10

(AM2,AM4)

~AM3

11

12
AM4

AM3

~AM3

(AM2,AM4)

(AM1,~AM3)

13

(AM1,~AM3)

14

15

(AM1,AM3)

AM4

(~AM1,~AM3)

16 17

AM1

AM4

(~AM1,AM3)

18(~AM1,AM3)

(AM2,AM4)

19

20

21

22

23

24

25
26

28

29

27

(AM1,AM3)

~AM4

(AM2,~AM4)

(~AM2,~AM4)

(~AM2,AM4)

(AM1,AM3)

(AM1,AM3)

AM3

AM2AM1

AM3

~AM4

(~AM2,~AM4)

(~AM2,AM4)

(AM2,~AM4)
AM3

(~AM1,~AM3)

AM1

AM1

(~AM2,~AM4)

(~AM2,AM4)

(AM2,~AM4)

(AM2,AM4)

Figure 7.10 – DFA for representing results on Mathematical Analysis subjects in 6 semesters, before 1994

If we perform an identical analysis for 6 semesters (using the constraints defined over the DFA

shown in Figure 7.10 and Figure 7.11) we conclude that:

- Additionally, before 1994/1995, 5% of students were able to recover and conclude all

subjects in 5 semesters, and 6% in 6 semesters, which result on 44% of students

concluding all subjects on at least 6 semesters.

- After 1994/1995, 13.5% of students are able to conclude all subjects in 5 semesters and

10% in 6 semesters, which result on 55.5% of students concluding all subjects on at

least 6 semesters.

Chapter 7 – Case Studies

123

51 2AM1 AM2 3 AM3 4 AM4

~AM1

9

AM4

10

~AM4

AM4

~AM4

11

~AM3

12

~AM3

AM3

AM3

7

~AM2

14

~AM2

8

15

AM2

AM2

~AM3
AM3

AM3

6

13

~AM1

AM1

AM1

Figure 7.11 – DFA for representing the results on Mathematical Analysis subjects in 6 semesters, after 1994

These results show that, in fact, the imposition of precedences among the subjects on

Mathematical Analysis introduces some alterations on students' behavior. On one side, the

percentage of students that conclude all subjects in 6 semesters increase about 10%, but on the

other side, the number of students that conclude on 4 semesters decreases 1%. 1% is a little

difference, but students curricula do not show some frequent behaviors, like

<(AM1)(~AM2)(AM3)(AM2,AM4)>, <(AM1)(AM2)(~AM3)(AM4)(AM3)> or <(~AM1)(AM2)(AM1,AM3)(AM4)>.

It is important to note that there is no trivial way to perform an identical analysis. Usually, the

results are stored in separate records, difficulting the sequential analysis with simple queries.

Remember that those queries require several natural joins, one for each constraint on the required

sequence of results. In fact, the queries must define the entire automata with those operations,

which is not a simple task. No other kind of queries will be able to address this problem, because

without the sequence information, we are just able to discover how many students have approved

or failed in each subject.

In this manner, constrained sequential pattern mining is a natural way to perform this kind of

analysis, only requiring that "experts"design the possible curricula, which is trivial, since they are

publicly known.

Chapter 7 – Case Studies

124

1.3 – Analysis of LEIC Students’ Behaviours

Licenciatura em Engenharia Informática e de Computadores (LEIC) is an undergraduate program

on information technology and computer science at Instituto Superior Técnico, created in the

academic year of 1989/90.

The LEIC curriculum has a duration of five years (10 semesters) with 36 required subjects, a

final thesis and 4 optional subjects in the last year. Since 1989, the curriculum model of LEIC has

suffered two main reorganizations. Until 2003, LEIC has offered four specialty areas: PSI –

Programming and Information Systems; SCO – Computer Systems; IAR – Artificial Intelligence

and IIN – Information Systems for Factory Automation. In the first curriculum model, LEIC had 20

common subjects, 18 on the first three semesters and the other 2 on the following two semesters.

The enrollment on a specialty area was made on the fourth semester.

The distribution of common subjects per scientific area is shown on Table 11.

Table 11 – List of common subjects, distributed by scientific area

Common subjects
AL – Linear Algebra

AM1 – Mathematical Analysis 1

AM2 – Mathematical Analysis 2

AM3 – Mathematical Analysis 3

PE – Probability and Statistics

Mathematics

AN – Numerical Analysis

FEX – Experimental Physics

F1 – Physics 1 Physics

F2 – Physics 2

Computer Science TC – Theory of Computation

IP – Programming Introduction

AED – Algorithms and Data Structures

PLF – Logical and Functional Programming
Programming
Methodologies

POO – Object Oriented Programming

SD – Digital Systems

AC – Computer Architecture
Architecture and
Operative Systems

SO – Operative Systems

Artificial Intelligence IA – Artificial Intelligence

Information Systems SIBD – Information Systems and
Databases

Computer Graphics CG – Computer Graphics

There are 47 other subjects, distributed by each specialty area. The deterministic finite

automaton on Figure 7.12 shows the model curriculum for each specialty area.

Chapter 7 – Case Studies

125

0

1

2

3

4 5 6 7

8 9 10 11

16 17 18 19

12 13 14 15

(AM1,AL,IP,SD,FEX)

(AC,TC,AED,F1,AM2)

(PLF,SO,AN,F2,AM3)

(POO,SIBD,ASC,PE,TP1)

(POO,SIBD,ASC,PE,TCirc)

(POO,SIBD,TAI,PE,FA)

(POO,SIBD,ASC,AM4,PE)

(SCI1,IA,TP2,PBD) (CG,C,RC,SCI2) (M,AD,IHM,PC)

(SCI1,IA,CSE,SCD)
(SC1,IA,CSE,M)

(CG,C,SCI2,E)
(CG,C,RC1,E)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(IA,AD,FL,P) (CG,RC,TP,LP) (Rac,Apr,LN,IHM)

(IA,CC,PS,SCI) (CG,GCP,ACI,SAC) (AD,M,PAC,Rob)

20

21

22

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1)

(TFC2)

Figure 7.12 – DFA for specifying the model curriculum for LEIC specialty areas

The existence of two different transitions per semester for SCO students, are due to a minor

reorganization of the SCO curriculum on 1995/1996.

Analysis Goals

The analysis of the data referring to LEIC students' performance has essentially two main reasons:

to explain the low levels of success and to identify the most common profiles of LEIC students.

In this manner, we will try to answer two questions:

- 'What are the most common patterns on each scientific area, and what is the impact of

some subjects on others?'

- 'What are the common curricula instantiations for each specialty area, including optional

subjects?'

Data statistics

The dataset used to analyze those questions consists on the set of sequences corresponding to the

curriculum followed by each LEIC student, with his first enrollment made between 1989 and 1997.

From these, the students that do not enrolled in LEIC subjects more than seven semesters were

excluded (this removes 260 students out of 1706), since most of them have cancelled their

registration. Additionally, it is important to note that students that enrolled in 1997 have not

concluded their graduation until 2001, but have been registered for at least eight semesters, and

therefore may have concluded the 4th curricular year.

In this manner, the dataset (LEIC1989-2001) is composed of 1440 sequences, with an

average sequence length equal to 11.58 semesters. Most of the students (72%) have between 8 and

Chapter 7 – Case Studies

126

12 enrollments (they had attended classes between 8 and 12 semesters) – see Figure 7.13.

0

100

200

300

400

500

600

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Length (in semesters)Mean - 11.58; Median - 10; Mode - 10; Max - 24
Figure 7.13 – Distribution of the length of sequences on dataset LEIC1989-2001

Naturally, the number of students with an odd sequence length is reduced, since this situation

corresponds to students that have registered in only one semester on that year.

In terms of the number of enrollments per semester, its mean is 4.82 enrollments on subjects

per semester, with most students (75%) enrolling on between 4 and 6 units (see Figure 7.14).

Mean - 4.82; Median - 5; Mode - 5; Max - 11

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11
Size

Figure 7.14 – Distribution of the number of enrollments per semester in LEIC1989-2001 (size of itemsets)

Another interesting issue is the distribution of students per specialty area, shown in Figure

7.15.

55%

19%

13%

13%

PSI SCO IAR IIN

Figure 7.15 – Students per specialty area

Chapter 7 – Case Studies

127

This distribution conditions the number of enrollments per subject. For example, subjects

exclusive to Artificial Intelligence and IIN have at most 13% of support (Figure 7.16, Figure 7.17).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A L A M 1 FE X IP SD A ED A M 2 AC F1 T C A M 3 A N F2 P LF SO A M 4 ASC P E POO SIB D T A I T ci r c T P1 CC CSE IA PB D P P S SCD SCI1 T P 2 A CI C CG E GCP LP RC1 RC SA C SCI2 T P

Subjects

Support

Figure 7.16 – Support for approvals and failures (subjects in the first 6 semesters of the model curriculum)

It is interesting to note that only 823 students (57%) have concluded the final work (TFC1 and

TFC2). Since it is usual that students only took optional subjects in parallel or after finishing the

final work, the support for optional subjects is at most 57%. Since the options are chosen from a

large set of choices (130 subjects), their individual support is considerably lower. Indeed the

subject on Management (G) is the optional subject with more students, about 40%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A D A E I FT D IHM LN M P AC P C Rac RC2RDB LRob V LSI A AA RGECDP SDEP FACM PSDPA SB M SDAISFF SoD SP SR T P 3 V T FC1T FC2 G GF T E1GEC M P IG T T EconA CSIASA LC IA A T E2EDE1MV TAOSIA T SIContCVGEDE2CM GRCm1GRDSAP A G EA C IMI RN EB i o

Subjects

Support

Figure 7.17 – Support for approvals and failures (subjects in the last 4 semesters of the model curriculum)

Finding frequent curricula on scientific areas

The discovery of the most common patterns on each scientific area is easily achieved if we look for

students, who conclude the sequence of subjects in the same scientific area in at most four

Chapter 7 – Case Studies

128

semesters. This constraint can be specified by the pushdown automaton represented on Figure 7.18.

In this figure, each transition represents four transitions, one per scientific area. For example,

[(~X2),sa(X2)]�push(sa(X2)) represents [(~F1),F]�push(F), [(~AM2),AM]�push(AM)

[(~AED),MTP]�push(MTP), [(~AC),ASO]�push(ASO).

2 3[(X2), sa(X2)]�noop [(X3), sa(X3)]�pop 41 [(X1), S]�push(sa(X1))

5

[(~X1), S]�push(sa(X1))

6[(X2), sa(X2)]�push(sa(X2))

7

[(~X2), sa(X2)]�push(sa(X2))
[(X1,X3), sa(X1X3)]�pop

8

[(X2), sa(X2)]�pop
[(X1,X3), sa(X1X3)]�pop[(~X2), sa(X2)]�push(sa(X2))

9 [(X3), sa(X3)]�pop

Figure 7.18 – PDA for specifying the curricula on each scientific area, where students conclude three subjects in

a determined scientific area at most on 4 semesters

Also, consider that X1, X2 and X3 are the first, second and third subjects on some of the

following scientific areas: MTP, ASO, Physics and Mathematical Analysis. Also, consider

that sa is a function from the set of subjects to their scientific area, for example sa(IP)=MTP.

The first thing that we are able to discover, using an Ω–constraint defined over the PDA on

Figure 7.18, with a gap equal to zero and without any other temporal constraint, is that the majority

of students are able to conclude the sequence of MTP (61%) and ASO (57%) subjects without any

failure. Additionally, 6% of students are also able to conclude all but one of those subjects in four

semesters (see shadowed patterns in Table 12).

Table 12 – Patterns in Scientific Areas, discovered with an ΩΩΩΩ–constraint
Patterns Sup

<(IP),(AED),(PLF)> 61%
<(IP),(~AED),(PLF),(AED)> 6%
<(SD),(AC),(SO)> 57%
<(SD),(~AC),(SO),(AC)> 6%
<(FEX),(F1),(F2)> 35%
<(FEX),(~F1),(F2),(F1)> 5%
<(AM1),(AM2),(AM3)> 31%

When applying an Approx relaxation, we are able to discover part of the patterns followed by

students that are not able to conclude all subjects in four semesters, as specified in the previous

automaton. For example, one of the causes of failure on the sequence of ASO subjects is failing on

the subject of Operative Systems (SO). Since this subject is the third one in the sequence and it is

only offered in the Fall semester, students in that situation are not able to conclude the three

Chapter 7 – Case Studies

129

subjects in four semesters. Similarly, students that fail on the subjects of Physics 2 (F2),

Mathematical Analysis 3 (AM3) and Functional and Logic Programming (PLF) are not able to

conclude the corresponding sequences on 4 semesters, as shown in Table 13.

Table 13 – Patterns in a single scientific area discovered with the Approx relaxation
Patterns Sup

<(AM1),(~AM2),(~AM3),(AM2)> 6%
<(AM1),(~AM2),(AM2)> 6%
<(AM1),(AM2),(~AM3,AM3)> 6%
<(FEX),(F1),(~F2)> 22%
<(FEX),(~F1),(~F2),(F1)> 8%
<(FEX),(~F1),(F2),(F1)> 5%
<(~F2),(F1),(F2)> 6%
<(IP),(AED),(~PLF)> 12%
<(IP),(~AED),(PLF),(POO)> 6%
<(~IP),(~AED),(IP),(AED)> 5%
<(SD),(AC),(~SO)> 13%
<(~SD),(~AC),(SD),(AC)> 6%

Another interesting pattern found is that 6% of students fail in the first opportunity to conclude

Mathematical Analysis 3 (AM3), but seize the second opportunity, concluding that subject in the

first enrollment (shadowed line in Table 13).

Additionally, the use of the approx relaxation also contributes to analyze the impact of some

subjects on others. For example, an approx relaxation with one error discovers that 49% of the

students that conclude MTP subjects in 3 semesters fail on AM3 and 40% on F2. Similarly, 45% of

students that conclude ASO subjects in 3 semesters fail on AM3 and 39% on F2 (shadowed

patterns in Table 14).

Table 14 – Patterns in scientific areas with one error

Patterns Sup Patterns Sup
<(IP,SD),(AED),(PLF)> 57%<(IP,~SD),(AED),(PLF)> 8%
<(IP),(AED),(PLF,SO)> 53%<(IP),(AED),(PLF,~SO)> 10%
<(IP),(AED,AC),(PLF)> 53%<(IP),(AED,~AC),(PLF)> 8%
<(SD),(AC),(PLF,SO)> 51%<(SD),(AC),(~PLF,SO)> 8%
<(IP,AM1),(AED),(PLF)> 50%<(IP,~AM1),(AED),(PLF)> 15%
<(SD,AM1),(AC),(SO)> 47%<(SD,~AM1),(AC),(SO)> 15%
<(IP),(AED,AM2),(PLF)> 45%<(IP),(AED,~AM2),(PLF)> 16%
<(IP),(AED,F1),(PLF)> 45%<(IP),(AED,~F1),(PLF)> 16%
<(SD),(AC,F1),(SO)> 41%<(SD),(AC,~F1),(SO)> 16%
<(SD),(AC,AM2),(SO)> 41%<(SD),(AC,~AM2),(SO)> 16%
<(IP),(AED),(PLF,F2)> 36%<(IP),(AED),(PLF,~F2)> 24%
<(SD),(AC),(SO,F2)> 34%<(SD),(AC),(SO,~F2)> 23%
<(FEX,AM1),(F1),(F2)> 31%<(~AM1,FEX),(F1),(F2)> 6%
<(FEX),(F1),(SO,F2)> 31%<(FEX),(F1),(~SO,F2)> 5%
<(IP),(AED),(PLF,AM3)> 29%<(IP),(AED),(PLF,~AM3)> 30%
<(FEX),(F1,AM2),(F2)> 28%<(FEX),(F1,~AM2),(F2)> 7%
<(SD),(AC),(SO,AM3)> 27%<(SD),(AC),(SO,~AM3)> 26%
<(AM1),(AM2),(F2,AM3)> 23%<(AM1),(AM2),(~F2,AM3)> 8%
<(FEX),(F1),(F2,AM3)> 21%<(FEX),(F1),(F2,~AM3)> 14%

Finding Common Curricula Instantiations with Optional Subjects

The challenge on finding which students choose what optional subjects is a non-trivial task,

especially because all non-common subjects can be chosen as optional by some student. A simple

Chapter 7 – Case Studies

130

count of each subject support does not give the expected answer, since most of the subjects are

required to some percentage of students.

The other usual approach would be to query the database to count the support of each subject,

knowing that students have followed some given curriculum. However, this approach is also unable

to answer the question, since a considerable number of students (more than 50%) have failed one or

more subjects, following a slightly different curriculum.

In order to discover the optional subjects frequently chosen by students, we have used the

methodology previously proposed – the use of constraint relaxations, defining an Ω–constraint

based on the deterministic finite automaton shown in Figure 7.19.

This automaton accepts sequences that represent the curricula on the fourth curricular year for

each specialty area (the first for PSI students, the second one for SCO, the third for IAR and the

fourth for IIN). In practice, an Ω–constraint defined over this DFA filters all patterns that do not

respect the model curriculum for the last two curricular years.

2

3

5

4

(M,AD,IHM,PC)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(Rac,Apr,LN,IHM)

(AD,M,PAC,Rob)

6 7

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1) (TFC2) 81

Figure 7.19 – DFA for finding optional subjects

The use of constrained sequential pattern mining (with the specified constraint) would not

contribute significantly to answer the initial question, since it would only achieve results similar to

the ones obtained by the query explained above.

However, the use of the Approx-Accepted relaxation allows for the discovery of several

patterns. If the relaxation accepts at most two errors (ε=2) chosen from a restricted alphabet,

composed by every non-common subject, we are able to found the frequent curricula instantiations

with optional subjects. In general, students mostly attend Computer Graphics (PAC–Computed

Assisted Project; IHM–Human Machine Interfaces) and Management subjects (Economy–E;

Economical Theory 1–TE1; Financial Management–GF; Management–G; Management

Chapter 7 – Case Studies

131

Introduction–IG), as shown in Table 15.

Table 15 – Patterns with optional subjects attended by LEIC students
Specialty

Area Curricula Instantiations LEIC
support

Specialty
Support

<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, PAC) (TFC2, GF)>:22 1.5% 5%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, Econ) (TFC2, GF)>:33 2.5% 8%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, Econ) (TFC2, IG)>:28 2% 7%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1) (TFC2, GF, IG)>:33 2.5% 8%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G, PAC) (TFC2)>:22 1.5% 5%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, GF)>:32 2% 8%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, GCP)>:19 1% 5%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, GEC)>:23 1.5% 5%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, ARGE)>:18 1% 4%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G, TE1) (TFC2)>:29 2% 7%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, TE1, Econ) (TFC2)>:21 1.5% 5%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, TE1) (TFC2, GF)>:44 3% 10%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, TE1) (TFC2, IG)>:27 1,5% 6%
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TE1) (GEC)>:15 1% 4%

PSI

<(M, AD, IHM, PC) (AA, SoD, EP) (TFC1) (TFC2, TE2)>:15 1% 4%
<(M, AD, PAC, Rob) (EP, SDAI, SFF) (TFC1) (TFC2, IG)>:15 1% 8%
<(M, AD, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, IHM) (TFC2, GF)>:18 1% 10%
<(M, AD, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, Econ) (TFC2, GF)>:18 1% 10%
<(M, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, G) (TFC2)>:17 1% 10%

IIN

<(M, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, TE1) (TFC2)>:18 1% 10%
<(IHM, Rac, LN) (SP, V, PA, SR) (TFC1, TE1) (TFC2)>:15 1% 10% IAR
<(IHM, A, Rac, LN) (SP, V, PA, SR) (TFC1) (TFC2, GF)>:17 1% 10%
<(C) (VLSI, RC2, RDBL, AD) (AA, CDPSD, ARGE, SoD) (TFC1, G) (TFC2)>:23 1.5% 8%
<(Elect) (VLSI, RC2, RDBL, AD) (AA, CDPSD, ARGE, SoD) (TFC1, G) (TFC2)>:27 1.5% 10% SCO
<(RC1) (VLSI, RC2, RDBL, AD) (AA, CDPSD, ARGE, SoD) (TFC1, G) (TFC2)>:19 1% 7%

It is interesting to note that whenever IIN students have failed on some subject on the 4th year,

they choose an optional subject in Economy (TE1 or IG). The same happens for PSI and IAR

students (behavior identified by shadowed rules). Note that in order to discover these rules, we

have to be able to admit some errors on the sequence of subjects per specialty area, which is not

easily done by specifying some query to a database.

Another interesting issue is the inexistence of frequent optional subjects among IAR and SCO

students. Indeed, for the last ones there is only one frequent optional subject (Management – G).

Finding Artificial Intelligence curricula

As can be seen in previous analysis, the subjects exclusive to AI students have very low supports

(about 13%). Naturally, the sequences of consecutive subjects have supports even lower. Indeed,

the discovery of Artificial Intelligence (IAR) frequent curricula, like for IIN, is non-trivial, since

the number of students in these specialty areas is reduced.

Given that the application of unconstrained sequential pattern mining algorithms found 5866

patterns in this dataset (for 20% of support, since we were not able to try lower supports due the

memory requirements), and we want to found the sequence of subjects followed by IAR students,

the use of constrained or unconstrained sequential pattern mining does not help to answer this

second question.

Chapter 7 – Case Studies

132

However, if we use the proposed methodology, we have two alternatives: using a DFA

specifying the IAR model curriculum and an Approx-Accepted relaxation as above, or using a DFA

specifying PSI and SCO curricula models and a Non-Accepted relaxation with a restricted alphabet.

Table 16 – Artificial Intelligence frequent curricula

Patterns on Artificial Intelligence
<(AD,FL,P)(RC,TP)(IHM,Apr,Rac,LN)(SP,PA)> <(FA,TAI)(AD,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,SR)>

<(FA,TAI)(FL,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> <(FA,TAI)(AD,P)(RC,LP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)>

<(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,Rac,LN)(SP,V,SR)> <(FA)(AD,FL,P)(RC,TP)(IHM,Apr,Rac,LN)(SP)>

<(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(V,PA,SR)> <(FA)(AD,FL,P)(RC)(IHM,Apr,Rac,LN)(SP,PA)>

<(FA,TAI)(AD,FL,P)(RC,LP)(IHM,Rac,LN)(SP,V,PA,SR)> <(TAI)(AD,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)>

<(FA,TAI)(AD,FL,P)(RC,LP)(IHM,Apr,Rac,LN)(SP,V,SR)> <(TAI)(AD,FL,P)(RC,LP,TP)(IHM,Rac,LN)(SP,V,PA)>

<(FA,TAI)(AD,FL)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> <(TAI)(AD,FL,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,SR)>

<(FA,TAI)(AD,P)(RC,LP,TP)(IHM,Rac,LN)(SP,V,PA,SR)> <(TAI)(AD,FL,P)(RC,LP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)>

The patterns discovered by the second alternative (using a minimum support threshold equal to

2.5%) answer the question. (Table 16 shows the discovered patterns, excluding 8 patterns that are

shared by PSI students).

Note that we were not able to find the entire model curriculum for Artificial Intelligence,

because of the reduced number of students that have concluded each subject on the first enrollment.

This fact, explains the number of discovered patterns (24). However, it is smaller than the number

of patterns discovered with an unconstrained approach, confirming our claim about constraint

relaxations.

The Non-Accepted relaxation was defined using a constraint similar to the previous one with

the DFA represented in Figure 7.20, which corresponds to a DFA equal to the one presented in

Figure 7.12, without the model curriculum for IAR and IIN.

0

1

2

3

4 5 6 7

8 9 10 11

(AM1,AL,IP,SD,FEX)

(AC,TC,AED,F1,AM2)

(PLF,SO,AN,F2,AM3)

(POO,SIBD,ASC,PE,TP1)

(POO,SIBD,ASC,PE,TCirc)

(SCI1,IA,TP2,PBD) (CG,C,RC,SCI2) (M,AD,IHM,PC)

(SCI1,IA,CSE,SCD)
(SC1,IA,CSE,M)

(CG,C,SCI2,E)
(CG,C,RC1,E)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL) 20

21

22

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(TFC1)

(TFC2)

Figure 7.20 – DFA for discovering IAR frequent curricula

Additionally, the relaxation alphabet was composed of all the common subjects and the

advanced subjects specific to the Artificial Intelligence specialty area (38 subjects).

Chapter 7 – Case Studies

133

2 – Efficiency Evaluation

As pointed in [Zheng 2001], real-world datasets can be drastically different from synthetic datasets.

In this section, the real-world datasets PmeLink.PT and LEIC1989-2001 are used to validate the

efficiency studies performed in previous chapters.

First, we will compare the performance of GenPrefixSpan and SPaRSe, verifying if they show

similar behaviors in dense datasets. Then, we will compare the efficiency of constrained and

unconstrained sequential pattern mining. Finally, we assess the efficiency of the usage of constraint

relaxations.

2.1 – Comparison between GenPrefixSpan and SPaRSe

As seen in Chapter 4, SPaRSe and GenPrefixSpan show a similar performance in the presence of

dense datasets (remember Figure 4.4). The experiments on real-life datasets, previously described,

confirm those results and emphasize the differences in favor of SPaRSe, as shown in Figure 7.21.

Performancevs Support

0
100
200
300
400
500
600
700

45% 40% 35% 30% 25% 20% 15% 10% 5% 1%

Support

Ti
m

e
(s

)

SPaRSe GenPrefixSpan

Performance vs Support

0

200

400

600

800

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25%

Support

Ti
m

e
(s

)

SPaRSe GenPrefixSpan
Figure 7.21 – Performance w/ variable support in dataset PmeLink.PT (left) and LEIC1989-2001 (right)

In fact, LEIC1989-2001 is more dense (ρ=5.73 for sup=25%) than PmeLink.PT (ρ=4.48 for

sup=10%), and both more dense than the most dense synthetic dataset (ρ=3.07 for sup=10%). It

was not possible to determine the density of LEIC1989-2001 for lower supports due to memory

limitations, but it is obvious that its density would increase.

In this manner, we can conclude that apriori-based algorithms can achieve the performance of

pattern-growth methods in general, and outperform them on dense datasets.

2.2 – Comparison between Constrained and Unconstrained Mining

To compare the efficiency of constrained and unconstrained sequential pattern mining, we will

proceed as in Chapter 5. We will compare the time spent by constrained and unconstrained mining,

using the pushdown automata in Figure 7.3 and Figure 7.18 for mining the datasets LEIC1989-

2001 and PmeLink.PT, respectively. Simultaneously, we will evaluate the differences on the

Chapter 7 – Case Studies

134

performance when using deterministic finite automata and deterministic and non-deterministic

pushdown automata.

PmeLink.PT

Consider the deterministic pushdown automaton in Figure 7.22. It accepts the same number of

patterns that the non-deterministic one in Figure 7.3.

q2q1

[(X), X]�pop

[(X), S]�push X

Figure 7.22 – PDA for specifying constraints over the dataset PmeLink

As argued in Chapter 5, the use of non-deterministic pushdown automata essentially presents

the same behavior that deterministic ones, with a small decrease on performance. Additionally, it is

clear that their use improves the efficiency of sequential pattern mining, both by reducing the

number of discovered patterns, and by reducing the processing time (as shown in Figure 7.23 –

left).

Performancevs Support

0

2

4

6

8

10

12

45% 40% 35% 30% 25% 20% 15% 10% 5% 1%
Support

T
im

e
(s

)

GenPrefixSpan PDA nPDA

Average Time Spent for Each Pattern

0

200

400

600

800

1000

1200

45% 40% 35% 30% 25% 20% 15% 10% 5% 1%
support

Ti
m

e
(m

s)

GenPrefixSpan PDA nPDA
Figure 7.23 – Performance (on the left) and average time spent for each pattern (on the right), using different

types of content constraints in dataset PmeLink

Like in synthetic datasets, the average time spent for each discovered pattern decreases when

that number increases (Figure 7.23 – right).

LEIC1989-2001

In the LEIC1989-2001 dataset, the results are identical (see Figure 7.24). Since the number of

discovered patterns is not the same for the DFA, PDA and nPDA, the charts present some

fluctuations, but maintain similar the performances with any of the used automaton.

Chapter 7 – Case Studies

135

PerformancevsSupport

0

1

1

2

2

3

3

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
(s

)

Unconstrained DFA PDA nPDA

Average Time Spent for Each Pattern

0

50

100

150

200

250

300

350

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
support

Ti
m

e
(m

s)

Unconstrained DFA PDA nPDA
Figure 7.24 – Performance (on the left) and average time spent for each pattern (on the right), using different

types of content constraints in dataset LEIC1989-2001

The DFA used in this comparison accepts the curricula on MTP and ASO scientific areas, of

students that have failed at most once per subject Figure 7.25.

1

2

10

IP

6

~AED

3

AED

~IP
11AED

12

~AED

13

~PLF

4PLF

16

~POO

POO

(IP, PLF)

(IP,~PLF)

~PLF

PLF 9 (AED,~POO)

(AED, POO)

~POO

POO

8

PLF

(IP, PLF)

(IP,~PLF) 7

(AED,~POO)

14 15PLF

POO

(AED, POO)

5

17

20

SD

~SD

18

23

AC

~AC

21

25

AC

~AC

19

22

SO

~SO

24~SO AC

26

27

(SD,SO)
(SD,~SO)

AC

SO

AC

(SD,SO)
(SD,~SO)

Figure 7.25 – DFA for specifying constraints over dataset LEIC1989-2001

The nPDA used is illustrated in Figure 7.26. It accepts sequences in each scientific area, that

mimic the sequence of subjects attended by students, including the possibility of failure in the first

two subjects of each scientific area. (SD)(AC)(SO), (~SD)(AC)(SD,SO) and (SD)(~AC)(SO) are

examples of accepted sequences.

Chapter 7 – Case Studies

136

[(~IP),S]�pushMTP
[(IP),S]�pushMTP
[(PLF),MTP]�pushMTP
[(IP,PLF),MTP]�pushMTP
[(~SD),S]�pushASO
[(SD),S]�pushASO
[(SO),ASO]�pushASO
[(SD,SO),ASO]�pushASO
[(~AM1),S]�pushAM
[(AM1),S]�pushAM
[(AM3),AM]�pushAM
[(AM1,AM3),AM]�pushAM
[(~FEX),S]�pushF
[(FEX),S]�pushF
[(FEX,F2),F]�pushF
[(F2),F]�pushF

[(AED),MTP]�noop
[(~AED),MTP]�push(MTP)
[(AC),ASO]�noop
[(~AC),ASO]�push(ASO)
[(AM2),AM]�noop
[(~AM2),AM]�push(AM)
[(F1),F]�noop
[(~F1),F]�push(F)

[(AED,POO),MTP]�pop
[(POO),MTP]�pop
[(AC),ASO]�pop
[(AM2),AM]�pop
[(F1),F]�pop

Figure 7.26 – nPDA for specifying constraints over dataset LEIC1989-2001

Figure 7.27 shows that the number of discovered patterns, using the above constraints, is not

equal but is similar, which makes the comparison of their performance meaningful. These automata

were chosen for this reason.

Nr. of Patterns

0

1

2

3

4

5

6

7

8

9

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f P

at
te

rn
s

DFA PDA nPDA

Figure 7.27 – Number of discovered patterns using different content constraints

2.3 – Evaluation of Constraint Relaxations

Finally, the performance achieved with the use of constraint relaxations is also similar to the ones

achieved in synthetic datasets.

Chapter 7 – Case Studies

137

PerformancevsSupport

0

20

40

60

80

100

120

140

160

45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Acc. Prefix Legal
Approx Non-Acc Unconstrained

Average Time Spent for Each Pattern

0

200

400

600

800

1.000

1.200

1.400

45% 40% 35% 30% 25% 20% 15% 10% 5%
support

Ti
m

e
(s

)

Acc Prefix Legal
Approx Non-Acc Unconstrained

Figure 7.28 – Performance (on the left) and average time spent for each pattern (on the right), using different
constraint relaxations in dataset PmeLink.PT

In general, mining with conservative relaxations is as efficient as mining with the entire

constraint. However, the average time spent per discovered pattern is lower (Figure 7.28)

PerformancevsSupport

0
10
20
30
40
50
60
70
80
90

100

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Accepted Prefix Legal
Approx Non-Acc Unconstrained

Average Time Spent for Each Pattern

0

200

400

600

800

1000

1200

1400

1600

1800

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Acc Prefix Legal
Approx Non-Acc Unconst.

Figure 7.29 – Performance (on the left) and average time spent for each pattern (on the right), using different
constraint relaxations in dataset LEIC1989-2001

Naturally, Non-Accepted and Approx relaxations spent much more time than the other

relaxations, but this difference is mostly due to the number of patterns that they discover.

As in synthetic datasets, mining with Non-accepted and Approx relaxations can be less

efficient than unconstrained mining. This happens when the number of patterns discovered by these

relaxations is similar to the number of discovered unconstrained patterns, as is usual for Non-

accepted relaxations with a very restrictive constraint (as the ones used in this chapter).

As Figure 7.29 – right shows Approx relaxations are the most expensive per discovered pattern.

In fact, even when the number of discovered patterns is considerably lower than the number of

unconstrained patterns, it is possible that Approx relaxations spent more time than unconstrained

mining.

It is important to note that Approx relaxation shows a poor performance in PmeLink.PT dataset,

because it discovers a considerable number of patterns (about 250) and the constraint is specified

with a non-deterministic pushdown automata.

Chapter 7 – Case Studies

138

Approx Variants

When applied with a restricted alphabet Approx relaxations may present better performances, even

when non-deterministic pushdown automata are used.

Figure 7.30 shows that Approx with a restricted alphabet is able to spend so much time as

unconstrained mining, with the advantage that it finds about 20% of the patterns.

PerformancevsSupport

0

20

40

60

80

100

120

140

160

45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Unconstrained Full Approx Stock

Average Time Spent for Each Pattern

0

200

400

600

800

1000

1200

1400

45% 40% 35% 30% 25% 20% 15% 10% 5%
support

Ti
m

e
(s

)

Unconstrained Full Approx Stock
Figure 7.30 – Performance (on the left) and average time spent for each pattern (on the right), using approx

variants in dataset PmeLink.PT

Fortunately, with deterministic pushdown automata the results achieved by Approx relaxations

are much better, outperforming unconstrained mining in the generality of situations. Combining it

with an item constraint (restricting its alphabet), the results are even better, as shown in Figure

7.31.

PerformancevsSupport

0

10

20

30

40

50
60

70

80

90

100

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
(s

)

Unconstrained Full Approx w/ Reprovals

Average Time Spent for Each Pattern

0

100
200

300
400

500

600
700

800

65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

Ti
m

e
(s

)

Unconstrained Full Approx w/ Reprovals

Figure 7.31 – Performance (on the left) and average time spent for each pattern (on the right), using approx
variants in dataset LEIC1989-2001

Non-Accepted Variants

The results achieved with non-accepted relaxations are similar. When combined with an item

constraint, it can reduce the number of patterns that it discovers. For example, due to the memory

requirements of the large number of discovered patterns, it was not possible to discover

unconstrained and non-accepted patterns for supports below 25%, on the LEIC1989-2001 dataset.

Chapter 7 – Case Studies

139

Nr. of Patterns 5866

0

500

1000

1500

2000

2500

3000

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

N
r.

of
 P

at
te

rn
s

Unconstrained Full Non-Acc Non-Acc
Figure 7.32 – Number of discovered patterns with Non-accepted variants on LEIC1989-2001

However, with items restricted to the subjects exclusive to Artificial Intelligence (as in section

Finding Artificial Intelligence curricula) it is possible to discover part of the non-accepted patterns,

in an acceptable time. Figure 7.32 shows the number of discovered patterns and Figure 7.33 the

corresponding performance.

PerformancevsSupport

0

200

400

600

800

1000

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Unconstrained Full Non-Acc Non-Acc

Average Time Spent for Each Pattern

0
50

100
150
200
250

300
350

75%70% 65%60%55% 50%45% 40%35%30% 25%20% 15%10% 5%

Support

T
im

e
(s

)

Unconstrained Full Non-Acc Non-Acc
Figure 7.33 – Performance (on the left) and average time spent for each pattern (on the right), using Non-

accepted variants in dataset LEIC1989-2001

The results are similar, if an item constraint was applied with the Non-Accepted relaxation on

the PmeLink.PT dataset, as shown in Figure 7.34.

Performancevs Support

0
5

10

15
20
25
30
35

40
45
50

45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
(s

)

Unconstrained Full NonAcc Stock

Average Time Spent for Each Pattern

0
100
200
300
400
500
600
700
800
900

45% 40% 35% 30% 25% 20% 15% 10% 5%

support

T
im

e
(s

)

Unconstrained Full NonAcc Stock
Figure 7.34 – Performance (on the left) and average time spent for each pattern (on the right), using Non-

accepted variants in dataset PmeLink.PT

Chapter 7 – Case Studies

140

3 – Effectiveness Evaluation

In the last section, we have shown that the new methodology improves the efficiency of the mining

process, mostly by reducing the number of patterns that are discovered. However, we did not

discuss the quality of the discovered patterns when compared with the patterns discovered by an

unconstrained mining process.

The main reason for the lack of this discussion until this point is the inexistence of a precise

quality assessment of the discovered patterns. The only way to make such an assessement is to

compare the discovered patterns with the existing background knowledge, which has to be good

enough to distinguish between relevant and irrelevant patterns.

Analysis Goals

In order to perform such effectiveness evaluation, we considered a smaller problem whose results

can be easily analised. The selected problem is to find the reasons why students abandon LEIC

before concluding the 42 subjects required.

Data Statistics

The dataset used to analyze this question consists on the set of sequences corresponding to the

curriculum followed by each LEIC student, with his first enrollment made between 1989 and 1997.

From these, we have only considered the students that did not conclude 42 subjects and did not

have any enrollment on the last year. In this manner, the dataset includes all the students that

abandoned LEIC (at least temporarily). The dataset (LEICabandons) contains 489 sequences,

with an average sequence length equal to 4 semesters.

Finding Abandon Reasons

This problem was chosen because it is easy to enumerate some resons for abandon in LEIC. By

applying common sense, we can suggest two different reasons: the inability to conclude the first

computer science specific subjects (‘Programming Introduction’ -[IP], ‘Digital Systems’ -[SD],

‘Algorithms and Data Structures’ -[AED] and ‘Computer Architecture’ -[AC]), and the inability to

conclude the generic engineering subjects (‘Linear Algebra’ -[AL] and ‘Mathematical Analysis 1

and 2’ -[AM1, AM2]). This knowledge can be represented by the automaton in Figure 7.35.

Chapter 7 – Case Studies

141

Figure 7.35 – DFA for specifying the anticipated abandon reasons

The great difficulty in determining the effectiveness of our mining process is to determine

which ones are the relevant or interesting patterns. In order to choose those patterns, we applied the

pattern discovery algorithms on both the LEICabandons and LEIC1989-2001 datasets, and

identified as relevant the sequences that are frequent in the first dataset but are not frequent in the

second one. With a support of 50%, 91 sequences have been discovered. From these, 79 are

relevant by this criterion (as shown in Table 17).

Table 17 – Set of relevant sequences for abandons

Relevant Sequences
<(~AC,~AED)> <(~AL)(~AED,~F1,~TC)> <(~AM1)(~AC,~AED)> <(~IP)(~AED,~TC)>

<(~AC,~AED,~F1)> <(~AL)(~AED,~TC)> <(~AM1)(~AC,~AED,~F1)> <(~IP)(~TC)>

<(~AC,~AED,~F1,~TC)> <(~AL)(~F1,~TC)> <(~AM1)(~AC,~AED,~F1,~TC)> <(~IP)>

<(~AC,~AED,~TC)> <(~AL)(~TC)> <(~AM1)(~AC,~AED,~TC)> <(~SD)(~AC)>

<(~AC,~F1)> <(~AL,~AM1)(~AC)> <(~AM1)(~AC,~F1)> <(~SD)(~AC,~AED)>

<(~AC,~F1,~TC)> <(~AL,~AM1)(~AC,~AED)> <(~AM1)(~AC,~F1,~TC)> <(~SD)(~AC,~AED,~F1)>

<(~AC,~TC)> <(~AL,~AM1)(~AC,~AED,~TC)> <(~AM1)(~AC,~TC)> <(~SD)(~AC,~AED,~F1,~TC)>

<(~AED,~F1)> <(~AL,~AM1)(~AC,~F1)> <(~AM1)(~AED)> <(~SD)(~AC,~AED,~TC)>

<(~AED,~F1,~TC)> <(~AL,~AM1)(~AC,~TC)> <(~AM1)(~AED,~F1)> <(~SD)(~AC,~F1)>

<(~AED,~TC)> <(~AL,~AM1)(~AED)> <(~AM1)(~AED,~F1,~TC)> <(~SD)(~AC,~F1,~TC)>

<(~AL)(~AC)> <(~AL,~AM1)(~AED,~F1)> <(~AM1)(~AED,~TC)> <(~SD)(~AC,~TC)>

<(~AL)(~AC,~AED)> <(~AL,~AM1)(~AED,~F1,~TC)> <(~AM1)(~F1)> <(~SD)(~AED)>

<(~AL)(~AC,~AED,~F1)> <(~AL,~AM1)(~AED,~TC)> <(~AM1)(~F1,~TC)> <(~SD)(~AED,~F1)>

<(~AL)(~AC,~AED,~F1,~TC)> <(~AL,~AM1)(~F1)> <(~AM1)(~TC)> <(~SD)(~AED,~F1,~TC)>

<(~AL)(~AC,~AED,~TC)> <(~AL,~AM1)(~F1,~TC)> <(~F1,~TC)> <(~SD)(~AED,~TC)>

<(~AL)(~AC,~F1)> <(~AL,~AM1)(~TC)> <(~IP)(~AC)> <(~SD)(~F1)>

<(~AL)(~AC,~F1,~TC)> <(~AL,~AM1)> <(~IP)(~AC,~AED)> <(~SD)(~F1,~TC)>

<(~AL)(~AC,~TC)> <(~AL,~SD)(~AC)> <(~IP)(~AC,~AED,~TC)> <(~SD)(~TC)>

<(~AL)(~AED)> <(~AL,~SD)> <(~IP)(~AC,~TC)> <(~SD)>

<(~AL)(~AED,~F1)> <(~AM1)(~AC)> <(~IP)(~AED)>

A simple analysis of these sequences shows that most students that cancel their registration are

not able to conclude more than two subjects in the second semester. Additionaly, this analysis

shows that the cancellation reasons anticipated and represented in the automaton in Figure 7.35 are

close to the real reasons.

Assuming these sequences are relevant for this task, it is now possible to evaluate the

effectiveness of the new methodology by comparing its results with the results reached with

constraints, by counting the number of relevant sequences discovered with each relaxation. Table

Chapter 7 – Case Studies

142

18 shows the number of sequences discovered and the number of relevant ones per relaxation.

Table 18 – Precision and Recall

 Unconst. Accepted Legal Approx
(�=1)

Approx
(�=2)

Approx
(�=3) Non-Acc

Nr Total Retrieved 91 2 15 20 71 90 89

Nr Retrieved and Relevant 79 2 10 18 63 78 77

Recall 100% 3% 13% 23% 80% 99% 97%

Precision 87% 100% 67% 90% 89% 87% 87%

Considering the notions of precision and recall usually used for evaluating the effectiveness of

information retrieval algorithms, it is possible to compare the use of constraints with the use of

relaxations as proposed in this work.

When applied to the mining process, precision corresponds to the the ratio of relevant patterns

retrieved by the process to all patterns retrieved by the process, and recall corresponds to the ratio

of relevant patterns retrieved by the process to all relevant patterns in the dataset.

Applying those measures it is clear that there are significant differences among the relaxations,

as shown in Figure 7.36.

Precision and Recall

0%

20%

40%

60%

80%

100%

Accepted Approx (�=1) Approx (�=2) Approx (�=3) Unconst.

Constraint RelaxationsRecall Precision
Figure 7.36 – Precision and Recall chart

Since there are only two retrieved sequences when the constraint is used, it is clear that the

existing background knowledge is not complete, but is correct. In this manner, the recall of the

constrained process is usually very low. The existence of more accurate background knowledge

would increase the recall. On the other side, all the accepted sequences are relevant, which makes

the precision of the process 100%.

The relaxation that shows a better balance between those measures and the efficiency of the

process is the approx relaxation, because it is possible to adjust the number of patterns discovered

without compromising the precision. By increasing or decreasing the number of errors allowed, it

is possible to compensate the excessive selectivness of the background knowledge. Note that the

Chapter 7 – Case Studies

143

recall increases considerably when the number of allowed errors increase, but the decrease of the

precision is less accentuated.

From this analysis and the other experiments presented in this work, it is clear that the great

challenge of pattern mining, in general, and of sequential pattern mining, in particular, is to reach

the balance between the number of discovered patterns and the user’ s ability to analyze those

patterns with the ability to discover unknown and useful information. The use of constraint

relaxations, proposed in this work, represents a first step in this direction.

Summary

In this chapter, we validate our claims by exploring real-life datasets. The experiments

confirm the results achieved in synthetic datasets, both in the analysis of apriori-based

algorithms and pattern-growth methods, and in the evaluation of the use of constraint

relaxations.

In particular, we confirmed that apriori-based methods can present performances similar and

even better than pattern-growth methods. Also confirmed, is the claim that constraint

relaxations make the discovery of unknown information possible, maintaining acceptable

performances and the focus on user expectations

We also studied how the use of approximate relaxations can be used to move in the

precision/recall tradeoff curve, enabling the user to control the number of generated rules.

Chapter 7 – Case Studies

144

145

Chapter 8

Conclusions and Future Work

This chapter resumes the contributions made in this dissertation, presenting a final analysis

of the results and some conclusions. At the end of the chapter, we point out some open

problems and discuss possible approaches to solve them.

n this dissertation, we have proposed a new methodology to perform pattern mining over

nominal event sequences, keeping the focus on the user expectations, without loosing the ability

to discover unknown information.

1 – Conclusions

The new methodology is based on the use of the algorithms for sequential pattern mining and two

new concepts: Ω–constraints and constraint relaxations.

The Ω–constraint is a new class of constraints that can be used to introduce existing

background knowledge into the mining process. It aggregates the different issues related to

nominal event sequences, namely their content and temporal aspects. While Ω–constraints provide

a framework for representing knowledge about this type of data, constraint relaxations enable the

discovery of unknown information.

We have shown that the use of constraint relaxations turns the mining process more efficient

than unconstrained mining, making it spend much less time, but discovering patterns that are

unknown, yet related to existing background knowledge.

I

Chapter 8 – Conclusions and Future Work

146

The increase in the performance of the mining process is due to the reduction of the number of

discovered patterns, which directly contributes to keep the focus on user expectations. With respect

to performance concerns, we have also clarified the challenges in sequential pattern mining and

revealed the advantages and disadvantages of each approach to this problem. In particular, we have

shown that apriori-based methods can be as efficient as pattern-growth methods, and even better

for dense datasets if some optimizations are performed. The experiments on real-life datasets,

presented in the last chapter, show that advantage clearly.

Another important result of this dissertation is the definition of the Ω–constraints, which

contributes to the definition of a theoretical framework for data mining, providing an integrated

way to represent all the aspects related to the knowledge about sequential and nominal temporal

data. This class of constraints combines the concepts precisely defined on a Time Ontology and the

elegance of formal languages. In particular, we have shown that the use of more expressive

languages, like context-free ones, does not impair the performance of the process. In order to deal

with sequences of itemsets, we have extended the automata used to generate context-free languages

(pushdown automata).

Additionally, we have defined a set of constraint relaxations, based on the relaxation of the

formal language associated with the Ω–constraint. In this manner, their use provides a tool to keep

the focus on user expectations, since they essentially discover patterns that, in some way, are

related to the background knowledge introduced into the process. While conservative relaxations

find patterns that are subsequences of patterns accepted by the constraint, non-conservative ones

enable the discovery of other patterns, by accepting any sequences with a specific alphabet (Naïve),

by allowing some errors (Approx) or just by considering only the sequences that are not accepted

by the constraint (Non-Accepted).

The experiments with real-life datasets, in particular the ones performed over LEIC curricula,

prove our claims. Those experiments were particularly interesting due to the existence of an

accurate knowledge about the models behind the data. In fact, the success of the use of Non-

Accepted relaxation is conditioned by the existence of this knowledge, since it represents the only

way to find some specific but interesting patterns.

Those experiments have also shown that the ability to deal with errors is a real advantage,

which makes possible the discovery of unknown patterns that are similar to accepted ones (with

respect to some constraint), giving the user the ability to choose the level of similarity, by defining

the number of errors accepted.

Chapter 8 – Conclusions and Future Work

147

Unfortunately, the results with the PmeLink.PT data were not so promising, mainly due to the

inexistence of such accurate knowledge about the PmeLink.PT business. In this manner, we were

unabled to perform a such deep data analysis. Another important factor in these results is the nature

of the products commonly transacted – most of the products are bought regularly: for example

there is a clear correlation between 'paper A4' and 'goods for printers', which is easily found by

association analysis. Moreover, these and most of the other products frequently transacted are just

bougth everytime there an order is placed, which consequently implies the discovery of a large

number of patterns.

These contributions are described in detail and validated in the main body of the dissertation.

Some of them have also been published at international conferences and workhsops

([Antunes 2001b], [Antunes 2002a], [Antunes 2002b], [Antunes 2003], [Antunes 2004a],

[Antunes 2004b] and [Antunes 2004c]).

2 – Future Work

This dissertation work opens several venues for future work, both with a narrow focus on temporal

pattern mining and a larger focus on the design of constraints and constraint relaxations for

traditional and other structured patterns.

Relaxing Temporal Constraints

Constraint relaxations are mainly based on the relaxation of content issues, and they only enable

the definition of a time error. However, some recent work on ontologies has been defining fuzzy

relations over time intervals [Visser 2003]. These new relations can be used in addition to the ones

adopted in this work in order to relax temporal constraints.

Mining Periodicities

In terms of temporal pattern mining, over nominal data, the next step is to employ Ω–constraints to

find patterns involving the temporal information, this is, the timestamp of events. Indeed, existing

algorithms to find temporal patterns, for example periodicity patterns, are based on the extension of

traditional apriori-based algorithms.

One of the unexplored possibilities is the extension of existing sequential pattern mining

algorithms, constrained or unconstrained, to discover such periodicities.

Chapter 8 – Conclusions and Future Work

148

Algorithms for Structured Pattern Mining

From the complete understanding of the exploration of sequential pattern mining and

corresponding algorithms, it will be possible to face the challenge of developing new algorithms

for other structured pattern mining, in a clearer context.

One of the ways to reach that understanding is to study the complexity of the existing

algorithms. However, and despite the recent studies on the complexity of pattern mining algorithms

(like [Koster 2003], [de Graaf 2002] and [Zaki 1998b]), no work has been done on the complexity

of sequential pattern mining algorithms.

Another important task is to develop more efficient algorithms than GenPrefixGrowth, to deal

with Ω–constraints. In fact, in order to avoid multiple databases scans to test each of the constraints

(existential, temporal and content), it requires much larger amounts of memory than PrefixGrowth.

Integrated Constraints for Mining Association Rules

Another interesting open issue is the definition of new constraints, similar to the Ω–constraints,

able to represent background knowledge for the traditional intra-transactional patterns. Such

constraints could be similar to Ω–constraints, just aggregating existential, temporal and content

issues. However, while the first two aspects could be the same, content constraints could not be so

rich, since there is no structure behind parallel events. Beside these constraints, it could be

interesting to incorporate interestingness measures into the new constraint.

Additionally, the definition of the corresponding relaxations would contribute to guide the

traditional pattern mining processes, which may contribute to reduce the number of discovered

patterns, and, consequently, to focus the process on user expectations.

Applications

Although those experiments were performed with success in the analysis of common curricula, we

expect them to be applicable to many other types of sequential data, as for example, in the analysis

of process logs. If their supporting models are known in advance, it will be possible to discover

failing situations, either by using legal or non-accepted relaxations.

A similar task can be performed in web-logs, as for example, in the discovery of design errors

of web sites. Based on the paths commonly followed by visitors, it is possible to understand the

reason why visitors give up going further on the site or buying some product or service.

Chapter 8 – Conclusions and Future Work

149

Conservative relaxations can be of great help to understand those deadlocks.

Another application of sequential pattern mining and our methodology is on fraud detection, as

suggested previously. With the model of well-behavied customers and a non-accepted relaxation, it

is possible to discover the behaviours of fraudulent clients, since they do not follow that model.

The data collected in telecommunications companies is one of the possible applications in this area.

3 – Closing Remarks

In summary, we have presented a new methodology, which is able to solve one of the main

drawbacks of sequential pattern mining processes: the lack of focus on user expectations. This

methodology makes use of an integrated constraint able to represent existing background

knowledge, sequential pattern mining algorithms to discover unknown patterns and constraint

relaxations that enable the discovery of unknown information.

The experiments on real-life datasets, presented in this dissertation, demonstrate how this

methodology can be applied, and which constraint relaxations are adequate to answer each

question.

Chapter 8 – Conclusions and Future Work

150

151

References

[Adriaans 1996] P. Adriaans and D. Zantinge. Data Mining. Addison-Wesley. 1996.

[Agrawal 1993] R. Agrawal, C. Faloutsos, A. Swami, “Efficient similarity search in sequence

databases”, in Proc. 4th Int’l Conf. Foundations of Data Organization and Algorithms

(FODO 93), pp. 69-84. Springer. 1993.

[Agrawal 1994] R. Agrawal, R. Srikant, “Fast Algoritms for Mining Association Rules”, in Proc.

20th Int’l Conf. Very Large Data Bases (VLDB 94), pp. 487-499. Morgan Kaufmann. 1994.

[Agrawal 1995a] R. Agrawal et al., “Fast Similarity Search in the Presence of Noise, Scaling, and

Translation in Time-Series Databases”, in Proc. 21st Int’l Conf. Very Large Data Bases

(VLDB 95), pp. 490-501. Morgan Kaufmann. 1995.

[Agrawal 1995b] R. Agrawal et al., “Querying Shapes of Histories”, in Proc. 21st Int’l Conf. Very

Large Data Bases (VLDB 95), pp. 502-514. Morgan Kaufmann. 1995.

[Agrawal 1995c] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, in Proc. 11th Int'l.

Conf. Data Engineering (ICDE 95), pp. 3-14. IEEE Press. 1995.

[Alhir 1998] S. Alhir, UML in a Nutshell, O'Reilly & Associates, USA. 1998.

[Allen 1983] J.F. Allen, "Maintaining Knowledge about Temporal Intervals", in Communications

of the ACM, vol. 26, nr. 11, pp. 832-843. ACM. 1983.

[Allen 1995] J. Allen, Natural Languages Understanding, 2nd edition. The Benjamin/Cummings

Publishing Company, Redwood City. 1995.

[Antunes 2001a] C. Antunes, Knowledge Acquisition System to Support Low Vision Consultation,

Master’ s thesis, Instituto Superior Técnico, Technical University of Lisbon. 2001.

[Antunes 2001b] C. Antunes and A. L. Oliveira. “Temporal Data Mining: an overview”, in Proc.

References

152

1st Workshop on Temporal Data Mining – Int'l Conf. Knowledge Discovery and Data Mining

(KDD 01). 2001.

[Antunes 2002a] C. Antunes and A. L. Oliveira. "Using Context-Free Grammars to Constrain

Apriori-based Algorithms for Mining Temporal Association Rules", in Proc. 2nd Workshop

on Temporal Data Mining – Int'l Conf. Knowledge Discovery and Data Mining (KDD 02),

pp. 11-24. 2002

[Antunes 2002b] C. Antunes and A. L. Oliveira. “ Inference of Sequential Association Rules

Guided by Context-Free Grammars” , in Proc. 6th Int'l Conf. Grammatical Inference (ICGI

2002), pp. 1-13. Springer. 2002.

[Antunes 2003] C. Antunes and A. L. Oliveira, "Generalization of Pattern-Growth Methods for

Sequential Pattern Mining with Gap Constraints", in Proc Int'l Conf on Machine Learning

and Data Mining, pp. 239-251. Springer. 2003.

[Antunes 2004a] C. Antunes and A. L. Oliveira, "Sequential Pattern Mining with Approximated

Constraints", in Proc. of IADIS Int'l Conf on Applied Computing, pp. 131-138. IADIS Press.

2004.

[Antunes 2004b] C. Antunes and A. L. Oliveira. "Mining Patterns Using Relaxations of User

Defined Constraints", in Proc. of 3rd Int’ l Workshop on Knowledge Discovery in Inductive

Databases (KDID 2004) – Int’ l Conf. Principles and Practice of Knowledge Discovery in

Databases (PKDD 04).

[Antunes 2004c] C. Antunes and A. L. Oliveira "Sequential Pattern Mining Algorithms: Trade-offs

between Speed and Memory", in Proc. of 2nd Int’ l Workshop on Mining Graphs, Trees and

Sequences (MGTS 2004), – Int’ l Conf. Principles and Practice of Knowledge Discovery in

Databases (PKDD 04).

[Ayres 2002] J. Ayres, J. Gehrke, T. Yu and J. Flannick, "Sequential PAttern Mining using a

Bitmap Representation", in Proc 8th Int'l Conf Knowledge Discovery and Data Mining,(KDD

2002), pp. 429-435. ACM Press. 2002.

[Bayardo 2002] R.J. Bayardo, The Many Roles of Constraints in Data Mining, in SIGKDD

Explorations, vol. 4, nr. 1 pp. i-ii. ACM Press. 2002

[Berndt 1996] D. Berndt and J. Clifford, “ Finding Patterns in Time Series: a Dynamic

Programming Approach” , in U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and

R. Uthurusamy (eds.), Advances in Knowledge Discovery and Data Mining, pp. 229-248.

References

153

AAAI Press. 1996.

[Berthold 1999] M. Berthold and D.J. Hand, Intelligent Data Analysis: an introduction. Springer.

1999.

[Bettini 1998] C. Bettini et al., “ Discovering Frequent Event Patterns with Multiple Granularities in

Time Sequences” , IEEE Transactions on Knowledge and Data Engineering, vol. 10, no. 2

pp. 222-237. IEEE Press. 1998.

[Blankertz 2002] B. Blankertz, G. Curio, K.R. Muller, “ Classifying Single Trial EEG: Towards

Brain Computer Interface” , in T.G. Dietterich, S. Becker, Z. Ghahramani (eds), Advances in

Neural Information Processing Systems, vol. 14. MIT Press. 2002.

[Brachman 1996] R.J. Brachman and T. Anand, "The Process of Knowledge Discovery in

Databases : A human centered approach", in U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth

and R. Uthurusamy (eds.), Advances in Knowledge Discovery and Data Mining, chapter 2,

pp. 37-57, AAAI/MIT Press, 1996.

[Caraça-Valente 2000] J. Caraça-Valente and I. Chavarrías, “ Discovering Similar Patterns in Time

Series” , in Proc. 6th Int. Conf. Knowledge Discovery and Data Mining (KDD 2000), pp. 497-

505. ACM Press. 2000.

[Carrasco 1994] R. Carrasco and J. Oncina, “ Learning Stochastic Regular Grammars by means of a

State Merging Method” , in Proc. 2nd Int’ l Conf. Grammatical Inference (ICGI 94), pp. 139-

152. Springer. 1994.

[Chakravarty 2000] S. Chakravarty and Y. Shahar, “ CAPSUL: A constraint-based specification of

repeating patterns in time-oriented data” , in Annals of Mathematics and Artificial

Intelligence, vol. 30, pp. 3-22. Kluwer Academic Publishers. 2000.

[Chan 1999] K. Chan and W. Fu, “ Efficient Time Series Matching by Wavelets” , in Proc. 15th Int'l

Conf. Data Engineering (ICDE 99), pp. 126-133. IEEE Press. 1999.

[Chen 2000] X. Chen, I. Petrounias, “ Discovering Temporal Association Rules: Algorithms,

Language and System” , in Proc. 16th Int'l Conf. Data Engineering (ICDE 2000), pp. 306.

IEEE Press. 2000.

[Chomsky 1956] N. Chomsky, "Three Models for the Description of Language", in IRE Trans.

Information Theory 2:3, pp. 113-124. IEEE Press. 1956.

[Coiera 1994] E. Coiera, “ The Role of Knowledge Based Systems in Clinical Practice” , in

References

154

Knowledge and Decisions in Health Telematics – The Next Decada, pp. 199-203. IOS Press.

1994.

[Cortez 2001] P. Cortez, M. Rocha, J. Neves, “ A Meta-Genetic Algorithm for Time Series

Forecasting” , in Workshop Artificial Intelligence for Financial Time Series Analysis

(AIFTSA 01), pp. 21-30. 2001.

[Dajani 2001] R. Dajani et al., “ Modeling of Ventricular Repolarisation Time Series by Multi-layer

Perceptrons” , in Proc. 8th Conference on Artificial Intelligence in Medicine in Europe (AIME

01), pp. 152-155. Springer. 2001.

[Das 1997] G. Das, D. Gonopulos, H. Mannila, “ Finding Similar Time Series” , in Proc. 1st

European Conference on Principles and Practice of Knowledge Discovery in Databases

(PKDD 97), pp. 88-100. Springer. 1997.

[Das 1998] G. Das, H. Mannila, P. Smyth, “ Rule Discovery from Time Series” , in Proc. 4th Int'l

Conf. Knowledge Discovery and Data Mining (KDD 98), pp. 16-22. ACM Press. 1998.

[Dempster 1997] A.P.Dempster, N.M.Laird, D.B.Rubin: "Maximum Likelihood from Incomplete

Data via the EM Algorithm" in Journal of the Royal Statistical Society Series, vol. 39, pp. 1-

38, Blackwell Publishing. 1997.

[Denis 2002] F. Denis, A. Lemay and A. Terlutte, "Some classes of Regular Languages Identifiable

in the Limit from Positive Data", in P. Adrians, H. Fernau and M. van Zaanen (eds.),

Grammatical Inference: algorithms and applications, pp. 63-76. Springer. 2002.

[Faloutsos 1994] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, “ Fast Subsequence Matching in

Time-Series Databases” , in Proc. Int'l Conf. on Management of Data, pp. 419-429. ACM

Press. 1994.

[Fama 1970] E. Fama, “ Efficient Capital Markets: a review of theory and empirical work” , in

Journal of Finance, pp. 383-417. Blackwell Publishing. 1970.

[Fayyad 2002] U. Fayyad, G.G. Grinstein and A. Wierse (eds), Information Visualization in Data

Mining and Knowledge Discovery. Morgan Kaufmann. 2002.

[Fisher 1987] D. Fisher, “ Knowledge Acquisition via Incremental Conceptual Clustering” ,

Machine Learning, vol. 2 pp. 139-172. Kluwer. 1987.

[Frawley 1992] W. Frawley, G. Piatetsky-Shapiro, C. Matheus, “ Knowledge discovery in

databases: an overview” , in AI Magazine, vol. 13, no. 3, pp. 57-70. AAAI Press. 1992.

References

155

[Garofalakis 1999] M. Garofalakis, R. Rastogi, K. Shim, “ SPIRIT: Sequential Pattern Mining with

Regular Expression Constraint” , in Proc. Int’ l Conf. Very Large Databases (VLDB 1999),

pp. 223-234. Morgan Kaufmann. 1999.

[Garofalakis 2002] M. Garofalakis, R. Rastogi, K. Shim, “ Mining Sequential Patterns with Regular

Expression Constraints” , in IEEE Transactions on Knowledge and Data Engineering,

pp. 530-552, vol. 14, nr. 3. IEEE Press. 2002.

[Gavrilov 2000] M. Gavrilov et al., “ Mining the Stock Market: Which Measure Is Best?” , in Proc.

6th Int. Conf. Knowledge Discovery and Data Mining (KDD 2000), pp. 487-496. ACM Press.

2000.

[Ge 2000] X. Ge and P. Smyth, “ Deformable Markov Model Templates for Time Series Pattern

Matching” , in Proc. 6th Int. Conf. Knowledge Discovery and Data Mining (KDD 2000),

pp. 81-90. ACM Press. 2000.

[Giles 1992] C. Giles et al., “ Extracting and Learning an Unknown Grammar with Recurrent

Neural Networks” , in J. Moody, S. Hanson, R. Lippmann (eds), Advances in Neural

Information Processing Systems, vol. 4, pp. 317-324. Morgan Kaufmann. 1992.

[Giles 2001] C. Giles, S. Lawrence, A.C. Tsoi, “ Noisy Time Series Prediction using Recurrent

Neural Networks and Grammatical Inference” , in Machine Learning, vol. 44, pp. 161-184.

Kluwer. 2001.

[de Graaf 2002] J. de Graaf, W.A. Kosters, W. Pijls and V. Popova, “ A Theoretical and Pratical

Comparison of Depth First and FP-growth Implementaions of Apriori” , in Proc. of 14th

Belgian-Dutch Conference on Artificial Intelligence (BNAIC 2002), pp. 115-122. 2002.

[Grossman 1998] R. Grossman et al., Data Mining for Scientific and Engineering Applications.

Kluwer Academic, 1998.

[Gruber 1998] T.R. Gruber, "A Translation Approach to Portable Ontology Specifications", in

Knowledge Acquisition, 5(2):21-66. Academic Press. 1998.

[Guimarães 2000] G. Guimarães, “ The Induction of Temporal Grammatical Rules from

Multivariate Time Series” , in Proc. 5th Int’ l Colloquium Grammatical Inference (ICGI 2000)

127-140. Springer. 2000.

[Gunopulos 2001] D. Gunopulos and G. Das, “ Time Series Similarity Measures and Time Series

Indexing” , in Proc. ACM SIGMOD Conference, pp. 624. ACM Press. 2001.

References

156

[Guralnik 1998] V. Guralnik, D. Wijesakera, J. Srivastava, “ Pattern Directed Mining of Sequence

Data” , in Proc. 4th Int'l Conf. Knowledge Discovery and Data Mining (KDD 98), pp. 51-57.

ACM Press. 1998.

[Guralnik 1999] V. Guralnik and J. Srivastava, “ Event Detection from Time Series Data” , in Proc.

5th Int'l Conf. Knowledge Discovery and Data Mining (KDD 99), pp. 33-42. ACM Press.

1999.

[Han 1998] J. Han, W. Gong and Y. Yin, "Mining Segment-Wise Periodic Patterns in Time-

Related Databases", in Proc. Knowledge Discovery and Data Mining (KDD 98), pp. 214-

218. ACM Press. 1998.

[Han 1999] J. Han, G. Dong and Y. Yin, "Efficient Mining of Partial Periodic Patterns in Time

Series Database", in Proc. Int'l Conf. Data Engineering (ICDE 99), pp. 106-115. IEEE Press.

1999.

[Han 2000a] J. Han, J. Pei, Y. Yin, “ Mining Frequent Patterns without Candidate Generation” , in

Proc. Int'l Conf. on Management of Data, pp. 1-12. ACM Press. 2000.

[Han 2000b] J. Han et al., “ FreeSpan: Frequent Pattern-projected Sequential Pattern Mining” , in

Proc. 6th Int'l Conf. Knowledge Discovery and Data Mining (KDD 2000), pp. 355-359. ACM

Press. 2000.

[Han 2001a] J. Han and M. Kamber, Data Mining: concepts and techniques. Morgan Kaufmann

Publishers. 2001.

[Han 2001b] J. Han and J. Pei, "Pattern-growth Methods for Sequential Pattern Mining: Principles

and Extensions ", in Proc Workshop on Temporal Data Mining – Int'l Conf. Knowledge

Discovery and Data Mining (KDD 2000). 2001.

[Hayes 1995] P. Hayes, A Catalog of Temporal Theories, Technical report UIUC-BI-AI-96-01,

University of Illinois. 1995.

[Higuera 1998] C. Higuera, “ Learning Stochastic Finite Automata from Experts” , in Proc. 4th Int’ l

Conf. Grammatical Inference (ICGI 98), pp. 79-89. Springer. 1998.

[Hilderman 1999] R. Hilderman and H. Hamilton, " Knowledge discovery and interestingness

measures: a survey", Technical Report CS 99-04, Department of Computer Science,

University of Regina. 1999.

[Hipp 2002] J. Hipp, and U. Güntzer, "Is pushing constraints deeply into the mining algorithms

References

157

really what we want?", in SIGKDD Explorations, vol. 4, nr. 1, pp. 50-55. ACM Press. 2002.

[Hobbs 2003] J.R. Hobbs and J. Pustejovsky, "Annotating and Reasoning about Time and Events'',

in Proc. AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning,

pp. 74-82. AAAI Press. 2003.

[Honavar 1998] V. Honavar and G. Slutzki, Grammatical Inference. Berlin: Springer. 1998.

[Hopcroft 1979] J. Hopcroft and J. Ullman Introduction to Automata Theory, Languages and

Computation. Addison Wesley. 1979.

[Horne 1995] B. Horne and C. Giles, “ An Experimental Comparison of Recurrent Neural

Networks” , in G. Tesauro, D. Touretzky, T. Leen (eds), Advances in Neural Information

Processing Systems, vol. 7, pp. 697-704. Cambridge: MIT Press. 1995.

[Huang 1999] Y. Huang and P. Yu, “ Adaptive Query Processing for Time Series Data” , in Proc.

5th Int'l Conf. Knowledge Discovery and Data Mining (KDD 99), pp. 282-286. ACM Press.

1999.

[Inmon 1996] W.H. Inmon, Building the Data Warehouse. New York: John Wiley & Sons. 1996.

[Juillé 1998] H. Juillé and J. Pollack, “ A Stochastic Search Approach to Grammar Induction” , in

Proc. 4th Int’ l Conf. Grammatical Inference (ICGI 98), pp. 79-89. Springer. 1998.

[Keogh 1997] E. Keogh and P. Smyth, “ A probabilistic Approach to Fast Pattern Matching in Time

Series Databases” , in Proc. 3rd Int'l Conf. Knowledge Discovery and Data Mining (KDD 97),

pp. 24-30. ACM Press. 1997.

[Keogh 1998] E. Keogh and M. Pazzani, “ An enhanced representation of time series which allows

fast and accurate classification, clustering and relevance feedback” , in Proc. 4th Int'l Conf.

Knowledge Discovery and Data Mining (KDD 98), pp. 239-241. ACM Press. 1998.

[Keogh 1999] E. Keogh and M. Pazzani, “ Scaling up Dynamic Time Warping to Massive

Datasets” , in Proc. European Conf. Principles and Practice of Knowledge Discovery in

Databases (PKDD 99), pp. 1-11. Springer. 1999.

[Ketterlin 1997] A. Ketterlin, “ Clustering Sequences of Complex Objects” , in Proc. 3rd Int'l Conf.

Knowledge Discovery and Data Mining (KDD 97), pp. 215-218. ACM Press. 1997.

[Kohavi 1998] R. Kohavi and F. Provost, "Glossary of Terms", in Spec. Issue on Apps of Machine

Learning and the KDD Process, Machine Learning Journal, 30, pp. 271-274. Kluwer. 1998.

[Koster 2003] W.A. Kosters, W. Pijls and V. Popova, “ Complexity Analysis of Depth First and FP-

References

158

growth Implementations of Apriori” , in Proc Int'l Conf on Machine Learning and Data

Mining, pp. 284-292. Springer. 2003.

[Kum 2003] H.-C. Kum, J. Pei, J., W. Wang and D. Duncan, "ApproxMAP: Approximate Mining

of Consensus Sequential Patterns", in Proc Int'l Conf on Data Mining (SIAM 2003),

pp. .311-315. ACM Press. 2003.

[Lang 1998] K. Lang, B. Pearlmutter, R. Price, “ Results of the Abbadingo One DFA Learning

Competition and a new Evidence-Driven State Merging Algorithm” , in Proc. 4th Int’ l Conf.

Grammatical Inference (ICGI 98), pp. 79-89. Springer. 1998.

[Laxman 2002] S. Laxman, K.P. Unnikrishnan and P.S. Sastry, "Generalized Frequent Episodes in

Event Sequences", in Proc. 2nd Workshop on Temporal Data Mining – Int'l Conf. Knowledge

Discovery and Data Mining (KDD 2002), pp. 46-52. ACM Press. 2002.

[Lee 2001] H. Lee, C.R. Lin, M.S. Chen, “ On Mining General Temporal Association Rules in a

Publication Database” , in Proc. Int’ l Conf. Data Mining (ICDM 01), pp. 337-344. IEEE

Press. 2001.

[Lesh 1999] N. Lesh, M. Zaki, M. Ogihara, “ Mining Features for Sequence Classification” , in

Proc. 5th Int'l Conf. Knowledge Discovery and Data Mining (KDD 99), pp. 342-346. ACM

Press. 1999.

[Levitt 1996] M.E. Levitt, “ Market-Time and Short-term Forescasting of Foreign Exchange Rates” ,

in A.S. Weigend, Y. Abu-Mostafa and A.P. Refenes (eds.), Decision Technologies for

Financial Engineering, pp. 111-122. London: World Scientific Press. 1996.

[Levenshtein 1965] V. Levenshtein, “ Binary Codes capable of correcting spurious insertions and

deletions of ones” in Problems of Information Transmission, 1:8-17. Kluwer Academic

Publishers. 1965.

[Lin 1998] L. Lin and T. Risch, “ Querying Continuous Time Sequences” , in Proc. 24th Int’ l Conf.

Very Large Data Bases (VLDB 98), pp. 170-181. Morgan Kaufmann. 1998.

[Mannila 1995] H. Mannila, H. Toivonen, I. Verkamo, “ Discovering Frequent Episodes in

Sequences” , in Proc. 1st Int'l Conf. Knowledge Discovery and Data Mining (KDD 95),

pp. 210-215. ACM Press. 1995.

[Mannila 1996] H. Mannila, H. Toivonen, “ Discovering Generalized Episodes using Minimal

Occurrences” , in Proc. 2nd Int'l Conf. Knowledge Discovery and Data Mining (KDD 96),

References

159

pp. 146-151. ACM Press. 1996.

[Mannila 1997] H. Mannila and P. Ronkainen, “ Similarity of Event Sequences” , in Proc. 4th Int'l

Workshop Temporal Representation and Reasoning (TIME 97), pp. 136-139. 1997.

[Mannila 1999] H. Mannila, D. Pavlov, P. Smyth, “ Prediction with Local Patterns using Cross-

Entropy” , in Proc. 5th Int. Conf. Knowledge Discovery and Data Mining (KDD 99), pp. 357-

361. ACM Press. 1999.

[Mannila 2000a] H. Mannila and C. Meek, “ Global Partial Orders from Sequential Data” , in Proc.

6th Int'l Conf. Knowledge Discovery and Data Mining (KDD 2000), pp. 161-168. ACM

Press. 2000.

[Mannila 2000b] H. Mannila, "Theoretical Frameworks for Data Mining", in SIGKDD

Explorations, vol. 1, nr. 2, pp. 30-32. ACM Press. 2000.

[Miclet 1996] L. Miclet and C. Higuera, Grammatical Inference: Learning Syntax from Sentences,

Berlin: Springer. 1996.

[Mitchell 1997] T. Mitchell, Machine Learning. McGrawHill. 1997.

[Moody 1992] J. Moody, S. Hanson, R. Lippmann, Advances in Neural Information Processing

Systems, vol. 4. Morgan Kaufmann. 1992.

[Navarro 2001] G. Navarro, "A guided tour to approximate string matching", in ACM Computing

Surveys, vol. 33, nr. 1, pp. 31-88. ACM Press. 2001

[Ng 1998] R. Ng, L. Lakshmanan, J. Han, “ Exploratory Mining and Pruning Optimizations of

Constrained Association Rules” , in Proc. Int’ l Conf. on Management of Data (CIKM 1998),

pp. 13-24. ACM Press. 1998.

[Oates 1999] T. Oates, “ Identifying Distinctive Subsequences in Multivariate Time Series by

Clustering” , in Proc. 5th Int'l Conf. Knowledge Discovery and Data Mining (KDD 99),

pp. 322-326. ACM Press. 1999.

[Oliveira 2000] A. Oliveira, Grammatical Inference: Algorithms and Applications. Berlin:

Springer. 2000.

[Oliveira 2001] A. Oliveira and J.P. Silva, “ Efficient Algorithms for the Inference of Minimum

Size DFAs” , in Machine Learning, vol. 44, pp. 93-119. Kluwer. 2001.

[Özden 1998] B. Özden, S. Ramaswamy, A. Silberschatz, “ Cyclic association rules” , in Proc. 14th

Int'l Conf. Data Engineering (ICDE 98), pp. 412-421. IEEE Press. 1998.

References

160

[Pei 2001] J. Pei et al., “ PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected

Pattern Growth” , in Proc. 17th Int’ l Conf. Data Engineering (ICDE 2001), pp. 215-226. IEEE

Press. 2001.

[Pei 2002a] J. Pei, and J. Han, "Constrained frequent pattern mining: a pattern-growth view", in

SIGKDD Explorations, vol. 4, nr. 1, pp. 31-39. ACM Press. 2002.

[Pei 2002b] J. Pei, J. Han and W. Wang, "Mining Sequential Patterns with Constraints in Large

Databases", in Proc. Conf. Information and Knowledge Management (CIKM), pp. 18-25.

ACM Press. 2002.

[Poças 2003] J. Poças, Um ambiente de pós-processamento para regras de associação. MSc.

Thesis, University of Oporto. 2003.

[Ramaswamy 1998] S. Ramaswamy, S. Mahajan, A. Silberschatz, “ On the Discovery of Interesting

Patterns in Association Rules” , in Proc. 24th Int’ l Conf. Very Large Data Bases (VLDB 98),

pp. 368-379. Morgan Kaufmann. 1998.

[Refenes 1995] A. Refenes, Neural Networks in the Capital Markets. New York: John Wiley and

Sons. 1995.

[Roddick 2002] J. Roddick and M. Spiliopoulou, “ A Survey of Temporal Knowledge Discovery

Paradigms and Methods” , in IEEE Transactions of Knowledge and Data Engineering,

vol. 14, no. 3, pp. 750-767. IEEE Press. 2002.

[Shahar 1996] Y. Shahar and M.A. Musen, “ Knowledge-Based Temporal Abstractions in Clinical

Domains” , in Artificial Intelligence in Medicine, vol. 8, pp. 267-298. Springer. 1996.

[Sakakibara 1997] Y. Sakakibara, “ Recent Advances of Grammatical Inference” , in Theoretical

Computer Science, vol. 185, pp. 15-45. Elsevier Science. 1997.

[Sakakibara 2000] Y. Sakakibara and H. Muramatsu, “ Learning Context Free Grammars from

Partially Structured Examples” , in Proc. 5th Int’ l Conf. Grammatical Inference (ICGI 2000),

pp. 229-240. Springer. 2000.

[Searls 1992] D.B. Searls, "The Linguistics of DNA" in American Scientist, 80, pp. 579-591.

Sigma Xi, The Scientific Research Society. 1992.

[Searls 1994] D.B. Searls, "Genome Informatics" (invited column), in IEEE Computers in

Medicine and Biology 12, pp. 124. IEEE Press. 1994.

[Searls 1995] D.B. Searls, "String Variable Grammar: A Logic Grammar Formalism for the

References

161

Biological Language of DNA", in Journal of Logic Programming 24, pp. 73-102. Springer.

1995.

[Sempere 2002] J.M. Sempere and P. García, "Learning Locally Testable Even Linear Languages

from Positive Data", in P. Adriaans, H. Fernau and M. van Zaanen (eds.), Grammatical

Inference: algorithms and applications, pp. 225-236. Berlin: Springer. 2002.

[Shimodaira 2001] H. Shimodaira et al., “ Support Vector Machine with Dynamic Time-Alignment

Kernel for Speech Recognition” , in Proc. 7th European Conf. Speech Communication and

Technology (Eurospeech 01). 2001.

[Shimodaira 2002] H. Shimodaira et al., “ Dynamic Time-Alignment Kernel in Support Vector

Machine” , in T.G. Dietterich, S. Becker and Z. Ghahramani (eds), Advances in Neural

Information Processing Systems, vol. 14. Cambridge: MIT Press, 2002.

[Smyth 1997] P. Smyth, “ Clustering Sequences with Hidden Markov Models” , in G. Tesauro, D.

Touretzky, T. Leen (eds), Advances in Neural Information Processing Systems, vol. 9,

pp. 648-654. MIT Press. 1997.

[Smyth 1999] P. Smyth, “ Probabilistic Model-Based Clustering of Multivariate and Sequential

Data” , in Proc. 7th Int’ l Workshop Artificial Intelligence and Statistics, pp. 299-304. 1999.

[Srikant 1995] R. Srikant and R Agrawal, "Mining Generalized Association Rules", in Proc. Int’ l

Conf. Very Large Databases (VLDB 1995), pp. 407-419. Morgan Kaufmann. 1995.

[Srikant 1996] R. Srikant and R. Agrawal, “ Mining Sequential Patterns: Generalizations and

Performance Improvements” , in Proc. 5th Int'l Conf. Extending Database Technology

(EDBT 96), pp. 3-17. Berlin: Springer. 1996.

[Srikant 1997] R. Srikant and R. Agrawal, "Mining association rules with item constraints", in

Proc. Int'l Conf Knowledge Discovery and Data Mining (KDD 1997), pp. 67-73. ACM Press.

1997.

[Stolcke 1994] A. Stolcke and S. Omohundro, “ Inducing Probabilistic Grammars by Bayesian

Model Merging” , in Proc. 2nd Int’ l Conf. Grammatical Inference (ICGI 94), pp. 106-118.

Springer. 1994.

[Szeto 1996] K.Y. Szeto and K.H. Cheung, “ Application of Genetic Algorithms in Stock Market

Prediction” , in A.S. Weigend, Y. Abu-Mostafa and A.P. Refenes (eds), Decision

Technologies for Financial Engineering, pp. 95-103. London: World Scientific Press. 1996.

References

162

[Visser 2003] U. Visser and S. Hübner, Temporal Representation and Reasoning for the Semantic

Web, Technical Report TZI-Bericht Br. 24-2003. Bremen: TZI, Center for Computing

Technologies. 2003

[Weigend 1994] A. Weigend and N. Gershenfeld, Time Series Prediction: Forecasting the Future

and Understanding the Past. Addison-Wesley. 1994.

[Witten 2000] I.H. Witten and E. Frank, Data Mining Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann. 2000.

[Wu 1992] S. Wu and U. Manber, "Fast Text Searching Allowing Errors", in Communications of

ACM, vol. 35, pp. 3-91. ACM Press. 1992

[Yi 1998] B. Yi, H. Jagadish, C. Faloutsos, “ Efficient Retrieval of Similar Time Sequences Under

Time Warping” , in Proc. 14th Int'l Conf. Data Engineering (ICDE 98), pp. 201-208. IEEE

Press. 1998.

[Zaki 1998a] M. Zaki, “ Efficient Enumeration of Frequent Sequences” , in Proc. Int’ l Conf.

Information and Knowledge Management (CIKM 98), pp. 68-75. ACM Press. 1998.

[Zaki 1998b] M. Zaki and M. Ogihara, “ Theoretical Foundations of Association Rules” , in Proc.

Of 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge

Discovery. 1998

[Zaki 1999] M. Zaki, "Parallel and Distributed Association Mining: a survey", IEEE Concurrency,

vol. 7, nr. 4, pp. 14-25. IEEE Press. 1999.

[Zaki 2000] M. Zaki, “ Sequence Mining in Categorical Domains: Incorporating Constraints” , in

Proc. Int’ l Conf. Information and Knowledge Management (CIKM 00), pp. 422-429. ACM

Press. 2000.

[Zheng 2001] Z. Zheng, R. Kohavi, and L. Mason, "Real World Performance of Association Rule

Algorithms", in Proc Int'l Conf. Knowledge Discovery and Data Mining (KDD 2001),

pp. 401-406. ACM Press. 2001.

[Zhou 2002] Q. Zhou and R. Fikes, "A Reusable Time Ontology", in Semantic Web Workshop at

AAAI'02. AAAI Press. 2002.

163

Appendix A

KDNuggets Polls (October 2003)

Dnuggets News is a newletter for the Data Mining and Knowledge Discovery community,

that among other things annunciates data mining jobs, software, courses, conferences and

news. A usually issue is the "Polls page" where data miners are invited to postpone their opinion.

The next figure reproduces the contents of a poll on data preparation.

The results show that the majority of voters (39%) consider that data cleaning and preparation

requires between 60 and 80% of the total time.

K

165

Appendix B

Experimental Setup

he experiments conducted in this work were based in three real-life datasets and some

synthetic ones generated by the QUEST generator.

The QUEST synthetic data generator from the Intelligent Information Systems research center

at IBM Almaden, is a standard on the generation of synthetic sequential data, and has been used in

most studies on sequential pattern mining (see [Agrawal 1995c], [Srikant 1996], [Zaki 1998a],

[Pei 2001] and [Ayres 2002]).

This data generator creates datasets that try to mimic real-world transactions, where customers

tend to make a sequence of transactions involving a set of items. Sequence and transaction sizes are

clustered around a mean and some of them may have larger sizes. Note that a sequence may have

repeated transactions, but a transaction cannot have repeated items. The data generator accepts a set

of parameters to specify the dataset characteristics. Those parameters are shown and explained on

Table 19.

Table 19 – Parameters for synthetic data generation

Parameter Meaning
| D | Number of sequences or dataset size
| C | Average number of itemsets per sequence
| T | Average number of items per itemset
| S | Average length of maximal potentially frequent sequences

| I | Average size of itemsets in maximal potentially frequent
sequences

NS Number of maximal potentially frequent sequences
NI Number of maximal potentially frequent itemsets
N Number of items

More details about the generator can be found in [Agrawal 1995c], and it can be downloaded

T

Appendix B

166

from http://www.almaden.ibm.com/software/quest/Resources/index.shtml.

The computer used to run all the experiments was a Pentium M 1GHz with 768MB of RAM.

To make the time measurements more reliable, no other application was running on the machine

while the experiments were running. The operating system used was Windows XP and the

algorithms were implemented using the Java programming language (Java Virtual Machine version

1.4.2_01). The datasets were maintained in main memory during the algorithms processing,

avoiding hard disk accesses.

