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Resumo 

m dos problemas da extracção de conhecimento ainda sem solução é a descoberta de padrões 

em dados temporais. Uma das abordagens mais usadas para explorar este tipo de dados é a 

descoberta de padrões sequenciais, uma vez que os dados temporais podem ser encarados como 

sequências de eventos. No entanto, os algoritmos existentes apresentam algumas deficiências, 

nomeadamente a falta de foco nas expectativas do utilizador e o elevado número de padrões que 

descobrem. Para além disso, a utilização de restrições, geralmente aceite como solução para o 

problema, pode transformar o processo num simples teste de hipóteses, especialmente quando se 

usam restrições mais fortes, como é o caso das linguagens regulares. 

Nesta dissertação, argumenta-se que é possível usar algoritmos de descoberta de padrões 

sequenciais com restrições, para descobrir informação desconhecida, mantendo o processo de 

descoberta focado nas expectativas e conhecimento do utilizador. De forma a demonstrar a 

validade do argumento, é proposta uma nova metodologia para explorar sequências de eventos 

baseada na utilização de relaxamentos de restrições. Estes relaxamentos estabelecem condições 

mais fracas que as restrições impostas, tornando possível a descoberta de padrões que não são 

completamente aceites. Adicionalmente é proposta uma hierarquia de relaxamentos, indo desde 

relaxamentos conservativos até a relaxamentos aproximados e não aceites. 

De modo a facilitar a aplicação da nova metodologia, são propostas várias extensões aos 

algoritmos de descoberta de padrões sequenciais existentes, de modo a lidar de forma eficiente com 

as restrições-Ω, também propostas. 
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Abstract 

ne of the main unresolved problems that arises in the data mining process is treating data that 

contains temporal information. A complete understanding of this phenomenon requires that 

the data should be viewed as a sequence of events. Sequential pattern mining is the approach most 

commonly used to explore nominal sequences, enabling the discovery of frequent sequential 

patterns. The main drawback of algorithms for this task has been their lack of focus on user 

expectations and the high number of discovered patterns. However, in some cases, the solution 

most commonly adopted, based on the use of constraints, can transform the mining process into a 

hypothesis-testing task. This risk is even stronger when mining sequential data, where more 

restrictive constraints, like regular languages, have been used. 

In this dissertation, we argue that it is possible to use constrained sequential pattern mining 

algorithms, over nominal data, to discover unknown information, keeping the process centered on 

the user. In order to demonstrate the validity of this thesis, we propose a new methodology based 

on the use of Ω-constraint relaxations. A constraint relaxation establishes a weaker condition than 

the original constraint, making possible the discovery of patterns that are not completely accepted 

by the original constraint. We propose a new hierarchy of relaxations that ranges from conservative 

ones, to approximately accepted and non-accepted relaxations. 

Additionally, we propose several extensions to existing sequential pattern mining algorithms, 

in order to deal efficiently with constraints and, in particular with gap and Ω-constraints. 
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Chapter 1 

Introduction 

"As time passes, objects are created and destroyed, and 

people gain, and forget, information." [Hayes 1995] 

ime has been one of the most interesting phenomenon for men. Understanding its relation to 

the observed changes has been a target, for thousands of years, from complex philosophical 

questions to the study of human behavior. Temporal data appears naturally in almost everything in 

nature, from engineering to medicine and finance domains, and with the improvements on the 

digital storage capabilities in the last decades, the interest on the discovery of hidden information, 

by automatic means, has exploded. 

In general, we can consider two kinds of temporal data: real-valued and nominal data. The 

automatic analysis of real-valued data has deserved a considerable attention in the last decades, 

especially from the seventies until now. Examples of these are the analysis and prediction of 

continuous signals, like financial time series. This interest is probably due to the financial impact of 

such prediction and to the challenge of being able to predict a theoretically unpredictable behavior. 

However, for nominal data, traditional automatic data exploration/mining techniques usually 

treat temporal data as unordered collections of events, ignoring its temporal information. They 

usually center their attention on the analysis of the data that occurs at the same instant (intra-

transactional analysis), instead of analyzing the relations of data between different instants (inter-

transactional analysis). Examples of such techniques are mechanisms for data classification, data 

clustering and mining frequent patterns. 

As an answer to this problem, Temporal Data Mining has appeared in the last decade as an 

T 
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extension to traditional data mining techniques. It provides the ability to explore the dynamic 

aspects of entities, instead of only exploring its static characteristics, and simultaneously 

performing inter-transactional analysis. In this manner, the classification and clustering of 

temporal data, as well as the discovery of temporal patterns, is currently being addressed. 

1 – Problems in Pattern Mining over Temporal Data 

The most usual technique to discover temporal patterns in nominal data is known as Sequential 

Pattern Mining. It was first introduced in 1995 [Srikant 1995] as an extension of the frequent 

pattern mining task, and, since then, several algorithms have been proposed. Nevertheless the 

advances on the performance of those algorithms, the large number of discovered patterns (usually 

thousands or hundreds of thousand), has been the main drawback of these approaches. Note that the 

combinatorial nature of sequential patterns is even stronger than for patterns in general, and the 

simple optimization of the corresponding algorithms is not sufficient to reduce the number of 

patterns, considerably. 

Another issue on data mining techniques, in general, and in pattern mining in particular, is the 

lack of focus on user expectations and background knowledge. In fact, most of the time, the results 

are not sufficiently interesting and/or are too difficult to analyze. In order to minimize this problem, 

recent approaches use constraints to restrict the number and scope of the discovered patterns. 

Using constraints makes it possible to focus the mining process into areas or sub-spaces where 

useful information is likely to be gained. In the last years, several categories of constraints have 

been used, most of them related to the duration of sequences and the impact of the proximity 

among events (gap constraint), and more recently with the content of transactions (for example 

item constraints and regular languages). Despite the efforts to capture the semantics of the 

application domains, they have been applied seldom, in a non-integrated way. Indeed, it was only 

in the last few years, that the data mining community has understood the need for a theoretical 

framework for data mining that is able to deal with the presence of background knowledge, among 

other things [Mannila 2000b]. 

However, the existence of such ability to represent background knowledge and efficient 

algorithms to discover the hidden patterns does not solve the entire problem. As pointed by some 

authors [Hipp 2002], restricting the search too much approximates the mining process to a simple 

hypothesis-testing task, since the process will only find already known patterns. In fact, the use of 
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regular languages as constraints goes against the first goal of data mining – the discovery of 

unknown information. Nevertheless, it is undeniable the adequacy of these or other formal 

languages to represent the knowledge about sequential phenomena. 

In this dissertation, we argue that it is possible to use constrained sequential pattern mining 

algorithms, over nominal data, to discover unknown information, keeping the process centered on 

the user. 

2 – Main Contributions 

In order to demonstrate the validity of this thesis, we propose a new methodology to mine nominal 

event sequences, based on the use of constraint relaxations to guide the sequential pattern mining 

process. The methodology makes use of sequential pattern mining algorithms and two concepts: 

the Ω-constraint and constraint relaxations. 

The Ω-constraint aggregates a content, a temporal and an existential constraints in a unique 

object. The content constraint is composed of an item constraint, specifying the set of items 

relevant for the analysis, a taxonomy for allowing generalized patterns, and a formal language to 

specify the characteristics that the sequences of itemsets may have, in order to be interesting for the 

analysis. The temporal constraint is defined based on the concepts of time interval and other 

related concepts, defined in the "Reusable Time" ontology [Zhou 2002]. It specifies a restriction 

over the timestamps of transactions. It uses a time interval that includes the period of interest, a 

maximal allowed time gap to consider, and the time granularity of the data. Finally, the existential 

constraint is just the minimum support threshold, as is usual in sequential pattern mining 

algorithms. 

While this constraint serves as a way to capture the user background knowledge, the use of a 

constraint relaxation enables the discovery of unknown information. A constraint relaxation 

establishes a weaker condition than the original constraint, and in this manner, makes possible the 

discovery of patterns that are not completely accepted by the original constraint. Relaxations of Ω-

constraints include a relaxation both over the content and the temporal constraint. While the first 

one is based on the relaxation of the associated formal language, establishing weaker conditions to 

accept a sequence as valid, the last one is specified as the maximal time error accepted 
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In particular, we make the following contributions: 

• We propose the use of constraint relaxations to guide the pattern mining process, enabling 

the discovery of unknown information. 

• We propose a new type of constraints – the Ω-constraints, which provide a mean to represent 

background knowledge about nominal temporal data. In this manner, we contribute to the 

specification of a theoretical framework to deal with sequential and temporal data. 

• We propose a hierarchy of constraint relaxations, from conservative ones, that accept patterns 

that are subsequences of accepted sequences, to non-conservative ones: the Approx accepted, 

which accepts sequences that dist a pre-defined error to some accepted sequence, and the 

non-accepted relaxation, which enables the discovery of completely unknown and 

unexpected patterns. 

• We present the concretization of those relaxations when applied to Ω–constraints, in the 

particular case when the content constraint is based on a context-free language (represented 

as a pushdown automaton). In parallel, we extend pushdown automata to deal with sequences 

of itemsets. 

• We present an extension to the PrefixGrowth algorithm – GenPrefixGrowth to efficiently 

deal with Ω–constraints and constraint relaxations. 

• We propose an efficient algorithm – ε-acceptsCFL, for verifying if a sequence is 

approximately accepted by a specific pushdown automata. 

• We analyze and explain the sequential pattern mining problem and its two main approaches: 

apriori-based and pattern-growth methods, stating clearly the advantages and disadvantages 

of each approach. We propose two new algorithms: one resulting from the generalization of 

pattern-growth methods to use gap constraints – GenPrefixSpan, and the other – SPaRSe, 

which optimizes the apriori philosophy, by constraining the search space. In this manner, we 

demonstrate that apriori-based algorithms are able to compete with pattern-growth methods, 

and outperform them in dense datasets. 

• Finally, we show the results of the new methodology when applied to real-world problems. 

3 – Dissertation Outline 

The dissertation comprises eight chapters. The first chapter (Chapter 2) introduces the concepts and 

the process of knowledge discovery, paying a particular attention to the problem of temporal data 
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mining and its main areas. 

In Chapter 3 we present a detailed description of the sequential pattern mining problem, 

presenting an analysis of its complexity. Additionally, we survey the proposed constraints applied 

to sequential pattern mining, formally introducing the concepts of deterministic finite (DFA) and 

pushdown automata (PDA), used in the rest of the dissertation. After the description of the two 

main approaches and the corresponding adaptations to deal with regular languages as constraints, 

we present our thesis statement, explaining the meaning of each claim in detail. 

We begin Chapter 4 by presenting the generalization of PrefixSpan – GenPrefixSpan, 

generalizing the first algorithm in order to be able to deal with gap constraints. We finish the first 

section with a comparison between GSP and GenPrefixSpan, identifying the continuous reduction 

of the search space, used by pattern-growth methods, as the first cause for their differences on 

performance. In the second section, we present a new apriori-based algorithm – SPaRSe, which 

combines the simplicity of the candidate generation and test philosophy with the continuous 

reduction of the search space. With this new algorithm, we show that, with some specific 

improvements, apriori-based algorithms can compete with pattern-growth methods, showing 

similar performances on the generality of situations. Studies on performance and scalability in 

synthetic datasets are presented in the last section of this chapter. 

In Chapter 5, we present the Ω–constraint, describing its aggregated constraints in detail. A 

particular attention is given to the definition of the temporal constraint and the concept of time 

interval, as defined in the "Reusable Time" ontology. Additionally, in terms of the content 

constraint, we present the extension of pushdown automata to deal with sequences of itemsets. We 

finish the chapter with the adaptation of existent algorithms to use Ω–constraints, presenting the 

GenPrefixGrowth algorithm. We demonstrate that this algorithm in conjunction with Ω–constraints 

outperforms GenPrefixSpan in the generality of situations. 

The description of the new methodology for mining sequential / temporal patterns is made in 

Chapter 6, were a hierarchy of constraint relaxations is proposed. In particular, we propose a new 

algorithm – ε-acceptsCFL, to verify if a sequence is approximate accepted by a given context-free 

language, represented as a pushdown automaton. The chapter ends with a performance study of the 

usage of each constraint relaxation. 

Finally, Chapter 7 presents the results obtained by the application of the new methodology on 

three real-life datasets. The thesis concludes in Chapter 8, where a summary of the dissertation and 

achieved results is presented. Moreover, some guidelines for future research are suggested. 
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Chapter 2 

Temporal Data Mining: an introduction 

In this chapter, the field of data mining is introduced, by presenting its core concepts and an 

overview of the major steps of the mining process. Following this introduction, temporal data 

mining is addressed, by exploring its goals, applications, techniques and related problems. A 

particular attention is given to pre-processing, mining and post-processing operations over 

temporal data. 

he analysis of registered data was traditionally made by statisticians, who tried to give a 

precise portrait of populations. Data mining, as the natural successor of statistics, tries to go 

further, providing automatic means to classify and predict future behaviors. 

The term data mining has been overused, most of the times to mean the whole process of 

knowledge discovery in databases (usually called KDD). In this context, it has been defined as “the 

nontrivial extraction of implicit, previously unknown and potential useful information from data” 

[Frawley 1992]. In the last decade, data mining techniques have gained acceptance as a viable 

means for finding full information in data, and its use has expanded to commercial domains, like 

customer relationship management, market basket analysis or credit card fraud detection, to 

scientific and engineering applications. 

The analysis of temporal data has been used in a variety of domains, from engineering to 

scientific research, finance and medicine. In engineering matters, temporal data usually arises with 

either sensor-based monitoring, such as telecommunications control (e.g. [Das 1997], [Das 1998], 

[Grossman 1998]) or log-based systems monitoring (see, for instance [Mannila 1996] and 

[Mannila 2000a]). In scientific research it appears, for example, in spatial missions (e.g. 

[Keogh 1997] and [Oates 1999]). 

T 
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In finance, the prediction of time series is the paradigmatic example of temporal data mining. 

See, for instance, the work of [Fama 1970], [Faloutsos 1994], [Refenes 1995], [Berndt 1996], 

[Chan 1999], [Gavrilov 2000] or [Ge 2000]. Nevertheless, over the last years the analysis of 

product sales or inventory consumption has also been of great importance to business planning (see 

for instance [Agrawal 1995c], [Srikant 1996] and [Zaki 1998a]). 

In healthcare, temporal sequences are a reality for decades, with data originated by complex 

data acquisition systems like ECG’s (see, for instance [Grossman 1998], [Ge 2000], 

[Dajani 2001]), or even with simple ones like the ones that measure the patient temperature or the 

effectiveness of treatments [Shahar 1996], [Caraça-Valente 2000]. In the last years, with the 

development of medical information systems, the amount of data has increased considerably, and 

more than ever, the need to react in real-time to any change in the patient behavior is crucial 

[Coiera 1994], [Antunes 2001a]. 

1 – Data Mining: basic concepts 

In order to understand the data mining field, some basic concepts are needed, and in particular it is 

important to make the distinction between data and information. The definitions adopted here are 

the most commonly accepted by the data mining community [Kohavi 1998]. 

The term data is used to mean the recorded facts that describe the state or behavior of some 

entity, in accordance with a set of attributes, also known as fields or variables, each of which 

corresponds to a particular value. These values belong to specific sets – the attribute domains, 

which represent the values that can be taken by the attribute. In general attribute domains can 

belong to one of two types: 

- Real-valued or continuous, subsets of real numbers, where there is a measurable 

quantity in a given range. 

- Categorical, finite sets of discrete values. There are two types of categorical attributes: 

o Nominal, denote that there is no ordering between values, such as names and 

colors. These sets are usually called alphabets. 

o Ordinal, denote that there is an ordering among the values, such as in an 

attribute taking on the values low, medium, or high. 

Another term commonly used is feature, which corresponds to a particular instantiation of an 

attribute. However, the term feature is usually misused as attribute, like in "feature selection". 
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When a set of attributes describes some property, we are in the presence of a dimension. Examples 

of common dimensions are space and time. 

The terms instance and record denote a single object of the world. In general, they are 

represented by feature vectors, which correspond to the set of features that describes them at 

particular instants of time. 

Unfortunately, the definition of information is not so consensual. In general, it has been used to 

denote the set of patterns or expectations that underlie the data [Witten 2000], and from a 

mathematical point of view, the generation of information can be seen as data compression 

[Adriaans 1996], since information can be seen as a model to represent several instances. Another 

way to view information is as the next step in the road of knowledge, since it corresponds to an 

abstraction of the already known (recorded) data. 

When dealing with temporal data, additional terms are needed. 

The term transaction was inherited from the database community, and refers to the facts 

recorded in a single transaction (in the sense of the operations performed on databases). In this 

context, an item is one of the transacted values, and an itemset, a set of items transacted in the same 

instant and by the same entity, i.e. the items belonging to the same transaction. 

When dealing with transactions, two kinds of analysis can be performed: 

- Intra-transactional, where the analysis is performed among the data transacted at the 

same time. 

- Inter-transactional, where the analysis is performed among the data transacted at 

different time instants. 

Note that intra-transactional analysis is particularly interesting for describing the state of some 

instance and to inter-relate its static characteristics. The analysis of its behavior cannot be 

performed with an intra-transactional analysis, but an inter-transactional one is able to describe it. 

An event has been defined as a pair (e, t), where e is the event type and t a positive integer, 

called the timestamp [Bettini 1998]. In this context, the event type specifies the item transacted at 

the corresponding time instant. However, this notion can be extended, as proposed below. 

First, timestamps may be replaced by a set of time attributes, completely specifying the time 

dimension. Second, in order to deal efficiently with simultaneous transactions performed by a 

unique instance, the event type can be replaced by the set of transacted items – the itemset. In this 

manner, the representation of simultaneous or parallel events is compacted in a natural way, and 
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the temporal data corresponding to the behavior of some instance may be represented by a 

sequence of events, called an event sequence in the rest of this text. If registered items are real-

valued, the event sequence is usually called a time series, and, if they belong to a nominal domain, 

a nominal event sequence. 

Related to the concept of event sequence appears the notion of subsequence. A subsequence of 

an event sequence s is an event sequence that contains part of the events of s, preserving the 

original order among events. 

In the rest of this dissertation, we will adopt the extended version of the event notion. 

2 – Data Mining: process overview 

With the information discovery as a target, the knowledge discovery task receives data as input and 

returns information as the result. But several questions arise: 

- How to deal with data from several distinct sources?  

- How to represent different data types? 

- How to treat inconsistent data? 

- How to deal with noise, outliers and missing values? 

- How to learn the information, that is, how to extract the patterns that underlie the data? 

- How to deal with large amounts of data? 

- How to evaluate the relevancy of discovered information?  

- How to deal with user expectations? 

- How to use background knowledge? 

- How to avoid the discovery of already known information? 

In order to deal with all of these questions, knowledge discovery has been seen as a process 

composed by a iterative sequence of steps, as illustrated in Figure 2.1. 

These steps can be classified into three main categories: pre-processing, data mining and post-

processing tasks. 

In general, we can view the pre-processing stage as the preparation of data before the 

application of data mining tools, and the post-processing as the evaluation and presentation of the 

discovered information to the final user. 
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Figure 2.1 – The knowledge discovery process 

Nowadays, it is usual to perform the mining process directly over the data in some data 

warehouse, avoiding part of the pre-processing stage. A data warehouse is a "subject-oriented, 

integrated, time-variant, and non-volatile collection of data in support of management's decision 

making process" [Inmon 1996]. However, and since data warehouses are mostly constructed from 

the integration of multiple heterogeneous data sources, their construction involves some or all the 

efforts required to prepare the data for the mining process – the pre-processing operations, 

described next. 

2.1 – Pre-processing 

The pre-processing stage consists of a set of operations performed over data in order to improve its 

quality, and, consequently, the mining results. 

Recent statistics have shown that the pre-processing stage occupies about 75% of the overall 

time of the data mining process (In KDnuggets Past Polls: "Data preparation part in data mining 

projects", Sep 30 – Oct 12, 2003, reproduced in Appendix A). The time spent in this stage reveals 

the poor quality of the majority of the existent data, and the importance of these operations when 

dealing with large datasets. 

The generality of pre-processing operations can be categorized as belonging to three main 

types of techniques: data integration, data cleaning and data reduction [Han 2001a]. 

Data Integration 

Data integration operations are used to merge the data from multiple, possibly heterogeneous, data 

sources. The key difficulties are related to the different schema behind the different data sources 

and to the existence of duplicated records. 

The first issue is one of the major problems in data integration, since it requires the 
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identification of equivalencies between the entities existent in different data sources (usually 

known as the entity identification problem).  

The second challenge in data integration is the identification and removal of redundancies. This 

is not a trivial issue, but can be approached using correlation analysis between attributes. If the 

correlation between two attributes is zero, then the attributes are independent and there is no 

redundancy between the attributes. Otherwise, one attribute is correlated with the other, which 

means that we are in the presence of some redundancy. Another problem is the removal of 

duplicated records, which consists in identifying the existence of multiple records for the same data 

entry. 

Data Cleaning 

Once the integration of the distinct data sources is achieved, data cleaning operations aim to ensure 

the data quality. In general, they deal with three distinct situations: missing values, outliers or noise 

and data inconsistencies. 

Missing Values. A frequent problem is the existence of several instances with no recorded value 

for a large number of their features. As several authors have noted, the vital attributes for an 

organization are usually correctly filled, but other attributes, less fundamental for the core business, 

are usually blank or incorrectly filled. In the majority of cases, this problem reflects the poverty of 

the tools for gathering the data. 

There are several approaches to deal with this problem, which mainly consist on ignoring the 

records that contain missing values or on replacing the missing value with an accepted value. Since 

the first solution implies the exclusion of a large number of instances, it may reduce the richness of 

the data, impairing the results of the mining process. The replacement of missing values has been 

widely accepted as the solution for this problem. There are several strategies for choosing the new 

value, ranging from the use of a new value such as "unknown", to the use of the mean value of the 

attribute or the most probable value to fill in the missing value. 

Outliers or Noise. Outlier values correspond to unexpected values, and are usually referred to as 

noise. This problem is mostly related with continuous attributes, where there is an order relation 

between values. The goal is to identify the outliers and to smooth the data, by choosing the most 

adequate value to replace them. 

This identification can be done by grouping the values in clusters, and recognize as outliers the 
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values that are outside those clusters. Again, there are several strategies to choose the new value, 

and they mostly involve the analysis of the neighborhoods of the outlier, either by adopting the 

mean value between the precedent and subsequent values for the outlier (binning methods), by 

calculating the new value considering a function that better fits the data (regression methods) or by 

discretizing the values. 

Inconsistent data. Data inconsistencies mostly appear as a result of the data integration operations 

and are easily corrected when functional dependencies among attributes and data constraints are 

known. When this happens, automatic or semi-automatic tools can be used, but otherwise, mainly 

manual processing can be applied. 

Data Reduction 

In general, databases contain very large amounts of data, which can result from the large number of 

records, the large number of attributes per record or simply from the inherent complexity of data. 

Since those characteristics can increase the difficulty of the mining process, the data reduction is a 

real need. 

The simplest form of data reduction is the use of a data sample obtained from the original 

database. Given that this sample can be considerably smaller than the entire database, and that there 

is some danger of losing interesting data records, the sample has to be selected in order to be 

representative of the original data. 

Another popular technique is dimensionality reduction, which consists in removing the 

attributes that seem redundant and irrelevant. In this manner, each record is transformed into a 

smaller feature vector. By this reason, it is commonly known as feature selection. One of the most 

popular approaches is based on the use of Principal Components Analysis, but others use 

transformations like the Discrete Fourier and Wavelet Transforms to compress data, as will be 

described in section 3.1. 

More advanced techniques try to infer some parametric model to represent the data, for 

example by using linear regression to infer the line that best approximates the data points, or by 

using grammatical inference methods to infer some generative model able to generate existent data. 

Other Operations 

As described above, when there is a large number of attributes, it is possible to choose the most 

relevant ones for the task. However, sometimes, existent attributes are not able to reflect the 
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structure of the domain and the construction of new attributes can help to have a new insight in the 

inner nature of the problem. This construction is usually achieved by the combination of existent 

attributes, either by the Cartesian product of nominal attributes or by the conjunction of Boolean 

attributes. 

Additionally, there are two other important techniques usually used in order to improve the 

quality of data: data smoothing and the use of concept hierarchies. 

One of the most usual smoothing techniques is normalization. The normalization is made by 

scaling the possible values for some attribute, so that they fall within a specified interval, usually 

from 0.0 to 1.0. In this manner, similarities may be detected, ignoring scale differences. This kind 

of transformation is applied to continuous values, and there are several strategies to make the 

transformation. 

Concept hierarchies are also used to reduce the number of possible values for some attribute, 

by replacing low-level by higher-level concepts. When the attribute is continuous, this technique 

corresponds to the discretization of the original values, and concept hierarchies can be constructed 

automatically based on the analysis of the data distribution. When attributes are categorical, their 

values are already discrete, but can belong to a large set of distinct values. In this case, a concept 

hierarchy can be applied to abstract the values, loosing some detail but possibly improving the 

performance of data mining techniques. Concept hierarchies for categorical attributes are usually 

known as taxonomies. 

2.2 – Data Mining 

The term data mining also identifies the discovery step, itself, and it mainly makes use of machine 

learning algorithms to perform it. The great challenge of data mining is to adapt existent machine 

learning algorithms to use large amounts of "dirty" data in an efficient way, using all known 

information, to focus the discovery process in accordance with user expectations. 

Several other challenges can be enumerated, but, among them, the analysis of complex data 

types has deserved a particular attention in the last few years, in particular, the analysis of temporal 

data. 

The most relevant mining operations are classification/prediction, clustering and association 

analysis, succinctly described below. 
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Classification and Prediction 

The aim of classification methods is to learn a classifier for predicting the value of a specific 

attribute, known as the class or concept attribute. In general, a classifier c can be seen as a function 

from a set of instances ��to a set of class labels � (c: � � �). In order to discover such functions, 

classification methods use a set of already classified instances, called the training set. 

Formally, a class Ci is a subset of the domain S, consisting of all instances that satisfy the class 

description desci. The final goal is to discover these descriptions, which can be achieved by the 

discovery of the common properties among the set of training instances that belong to the same 

class. 

Whenever those descriptions are available, it is possible to define a classification rule for each 

class. Those rules state that all instances that satisfy the description of a particular class belong to 

that class. A rule is said to be correct with respect to a specific training set, if its description covers 

all the instances of a given class (positive instances) and none of the instances of other classes 

(negative instances). 

The distinction between classification and prediction is somehow diffuse. Most of the times the 

only difference is that the term classification is applied to categorical domains, while prediction is 

used on numerical domains. In this context, prediction methods try to discover the values for 

missing or unseen features, mostly by analyzing real-valued features and temporal data. While 

prediction methods are essentially based on the use of statistical techniques for regression, 

classification use several different models to discriminate existent concepts, such as decision trees, 

neural networks, support vector machines or Bayesian models, to name a few. Given that 

classification and prediction methods make use of classified instances, they are known as 

supervised methods. 

A detailed description of classification and prediction methods for the analysis of temporal data 

is presented in section 3.2. 

Clustering 

Unlike classification, clustering is used when no labeled data exists, which means that it is an 

unsupervised operation. Indeed, the first goal of clustering is to partition the data in natural classes, 

clusters, by analyzing the similarities and dissimilarities between instances. 

One of the main difficulties is to discover the number of classes. After this, it is necessary to 
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identify those classes, assign a new label to each one and discover their descriptions, like for 

classification methods. 

In this manner, clustering is able to identify regions with different characteristics, contributing 

to define the overall distribution of data. Correlations among attributes may also be found, which 

may help in the feature selection pre-processing task. 

Given that each instance should be similar to other instances in the same cluster, and dissimilar 

to the instances on other clusters, it is usual that clustering methods make use of a similarity 

measure, in order to identify the clusters. This similarity measure, also called a distance function, is 

essential to perform clustering, but can be quite hard to define, especially in the presence of 

complex data types. Section 3.2 describes clustering approaches to temporal sequences, and 

enumerates several similarity measures for this type of data, depending on the type of 

representation used. 

Association Analysis and Frequent Itemset Mining 

Association Analysis is another unsupervised task, which tries to capture existent dependencies 

among attributes and its values, described as association rules. An association rule is an 

implication of the form A�B, where A and B are propositions (sets of pairs attribute/value), and 

expresses that when A occurs, B also occurs with a certain probability. This probability is known as 

the rule confidence and is given by the conditional probability P(B|A). 

In basket analysis, one of the major applications of association analysis, A and B correspond to 

itemsets, and the rule A�B means that if A is transacted, then B will also be transacted at the same 

time, with a certain probability. 

This kind of discovery is usually applied to the transactions on a given database, performing an 

intra-transactional analysis, and, in its pure form, it is not able to perform inter-transactional 

analysis. 

The most well known approach to discover association rules is the apriori algorithm 

[Agrawal 1994]. It acts in two steps: first, it discovers the frequent itemsets (this task is usually 

known as frequent itemset mining) and then it generates the rules. The notion of the frequency of 

an itemset is defined using a minimum support threshold: an itemset is frequent if its support is 

greater or equal to the minimum support accepted. The support of an itemset A is given by the 

probability of its occurrence in the database P(A). 
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In order to discover frequent itemsets, apriori acts iteratively: first, it generates possible 

different itemsets (candidates) and then it chooses the frequent ones by scanning the database. It 

begins by trying the itemsets composed of one item, then of two items and so on, until there are no 

eligible candidates. The task of counting the support for each candidate is the most costly operation 

in apriori-based approaches, since it involves several database scans. 

In the last few years, several other algorithms for association analysis have been proposed. For 

an overview of such methods, see for example [Zaki 1999]. 

The main drawback of association analysis is the huge number of discovered associations. 

Indeed, most of the times they are uninteresting and useless to the final user, mostly due to the lack 

of focus and the general inability to represent background knowledge in the discovery process. 

2.3 – Post-processing 

The mining operations performed in the data mining stage develop models to explain or describe 

the data. Nevertheless, as seen above, most of the times there are several hypotheses to describe the 

data, and naturally, it is necessary to choose the "best ones" to present to the final users. 

The post-processing stage aims to perform the analysis of the achieved results, and to present 

the best ones to the final user. In this manner, there are two core tasks to perform: the evaluation of 

results and their presentation. Despite the fact that the presentation of the models is extremely 

important, the research on visualization has been almost exclusively concerned with data 

visualization [Fayyad 2002]. An exception to this general panorama is the system PEAR 

[Poças 2003], which permits the manipulation and analysis of the discovered association rules. 

On the contrary, the choice of the best results to present to the users has motivated a large 

number of researchers. In essence, the evaluation of models is concerned with four aspects: its 

simplicity, its certainty, its utility and its novelty. 

Simpler explanation models are usually preferred because they are easier to understand and 

because they are more suitable for generalizing beyond known instances. This simple principle is 

known as the Occam's razor. The difficult is on choosing between models with different 

certainties. The Minimum Description Length gives an answer to the challenge of choosing the best 

and simpler model, minimizing the sum of the description length of the explanation model and the 

description length of the data given the model [Mitchell 1997]. 

The certainty of a model can be stated as the measure of the trust that an user should put on the 
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model. In the case of classification models, this certainty is the accuracy or precision, which is the 

probability that the model correctly classifies unseen instances. For association rules, this certainty 

is given by its confidence, as described before. 

Utility measures determine the interestingness of models. In general, it is concerned with two 

aspects: the usefulness and the novelty of the models. Again, utility measures are different for 

classification and association models. 

While the support of an association rule (as previously defined – section 2.2) measures its 

usefulness, the coverage indicates the usefulness of a classification model. In particular, the 

coverage of a class description is the probability that an arbitrary instance, belonging to that class, 

is covered by that description. 

Novelty measures define the contribution of models to increase the knowledge about the 

domain. An example of such measures is the lift of an association rule, which reflects the strength 

of the effect, by measuring the ratio between the confidence of the rule and the support of the 

basket on the consequent of the rule. Several other interestingness measures exist, for both 

classification models and association rules. A survey of those measures can be found in 

[Hilderman 1999]. 

3 – Temporal Data Mining 

Since the great majority of phenomena occur over time, the analysis of temporal data has been one 

of the data mining goals, from its beginning. However, traditional data mining operations are not 

able to deal with their intrinsic dynamic nature, since they usually treat temporal data as unordered 

collections of events, ignoring temporal information. As seen before, they usually center their 

attention into the analysis of the data transactions (intra-transactional analisys), instead of 

analyzing the relations between different transactions (inter-transactional analisys). 

In the last decade, the exploration of temporal data, usually called temporal data mining, 

achieved a considerable attention in the data mining community. Its main goal is to provide the 

ability to explore the dynamic aspects of entities, instead of only exploring its static characteristics. 

In particular, with this kind of analysis, it is possible to infer some cause-effect relations, allowing 

for the understanding of the evolution of analyzed entities [Roddick 2002]. 

Given that, the analysis of temporal data has been a reality for centuries, any overview of the 
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techniques used is necessarily incomplete. The next sections do not aim to describe all these 

techniques, but simply to survey the approaches mostly used by members of the data mining 

community in the analysis of temporal data. It is clear that many other approaches have been used, 

for example, in the signal processing and pattern recognition areas, but almost all of them were not 

used in the knowledge discovery process, and are unknown for the majority of "data miners". Since 

those techniques were mostly applied in the analysis of continuous signals or images, and the goal 

of this dissertation is to deal with nominal data, we do not survey them. 

3.1 – Pre-processing of Temporal Data 

The pre-processing of event sequences can be roughly seen as the selection of the most adequate 

representation for data. This choice is especially important when dealing with time series, since 

direct manipulation of continuous, high-dimensional data in an efficient way is extremely difficult. 

The representation of event sequences, in general, can be addressed in several different ways. 

One first possibility is to use the data with only minimal transformations, either keeping it in its 

original form or using windowing and piecewise linear approximations to obtain manageable sub-

sequences. A second possibility is to use a reduction that maps the data to a more manageable 

space, either continuous or discrete. Another possibility is to use a generative model, either 

statistical or deterministic, inferred from the data. While the three first approaches deal directly 

with time series, parametric models have been mostly applied to nominal event sequences. 

One issue that is relevant for all the representation methods addressed is the ability to discover 

and represent the subsequences of a sequence. The method mostly used to find subsequences is to 

use a sliding window of size w and place it at every possible position of the sequence. Each such 

window defines a new subsequence, composed by the elements inside the window 

[Faloutsos 1994]. 

Measuring the Similarity between Temporal Sequences. After representing each sequence in a 

suitable form, it is, in general, necessary to define a similarity measure between sequences, in order 

to determine if they are closely related. 

An important issue in measuring similarity between two sequences is the ability to deal with 

outlying points, noise in the data, amplitude differences (scaling problems) and the existence of 

gaps and other time axis distortion problems (translation problems). As such, similarity measures 

need to be sufficiently flexible to be applied to sequences with different lengths, noise levels, and 

time scales. There are many proposals for similarity measures, but the model used to represent 
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sequences clearly has a great impact on the similarity measure adopted. In this manner, after the 

description of each category of representation models, we present the similarity measures usually 

used. 

Time Domain Continuous Representation 

The simplest approach to represent a time series consists in using it without any pre-processing 

[Agrawal 1995a] [Lin 1998]. Figure 2.2 illustrates this situation. 

time
 

Figure 2.2 – Time series representation in time domain 

However, as been said, mining operations do not deal efficiently with this kind of data. An 

alternative consists in finding a piecewise linear function able to approximately describe the entire 

sequence. 

In this way, the original sequence is partitioned in several segments and each segment is 

represented by a linear function. Despite the fact that sequence partition can be achieved using 

different approaches, all of them first have to define or discover the number of segments, and then 

partition the original data [Das 1997], [Guralnik 1999]. The objective is to obtain a representation 

that can be used to detect significant changes in the sequence. 

A proposal to discover the number of segments consists on segmenting a sequence by 

iteratively merging two similar segments. Choosing which segments are to be merged is done 

based on the squared error minimization criteria [Keogh 1997]. An extension to this model consists 

on associating a weight value to each segment, which represents the segment importance relatively 

to the entire sequence. In this manner, it is possible to compare sequences mainly by looking at 

their most important segments [Keogh 1998]. 

With this representation, a more effective similarity measure can be defined, and consequently, 

mining operations may be more easily applied. Figure 2.3 exemplifies a time series using linear 

segments, presenting the original with grey and the approximation with solid lines. 
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time
 

Figure 2.3 – Representing a time series using linear segments 

While this is a relatively straightforward representation, not much is gained in terms of the 

ability to manipulate the generated representations. One possible application of this type of 

representations is on change-point detection, where the goal is to identify the points where a 

significant change in behavior takes place. One significant advantage of these approaches is the 

ability to reduce the impact of noise. However, problems with amplitude differences (scaling 

problems) and the existence of gaps or other time axis distortion are not addressed easily. 

Similarity Measures. When no pre-processing is applied to the original sequence, a simple 

approach to measure the similarity between two sequences consists on comparing the ith element of 

each sequence. The similarity measure most used with time-domain continuous representations is 

the Euclidean distance, by viewing each sub-sequence with n points as a point in Rn. Figure 2.4 

illustrates the use of this method to compare two time series, where the illustration on the right 

assumes n=3. 
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Figure 2.4 – Comparing two time series with the Euclidean distance 

This simple method, however, is insufficient for many applications. In order to deal with noise, 

scaling and translation problems, a simple improvement consists on determining the pairs of 

portions of sequences that agree in both sequences after some linear transformation is applied. A 

concrete proposal [Agrawal 1995a] achieves this by finding one window of some fixed size from 

each sequence, normalizing the values in them to the [-1, 1] interval, and then comparing them to 

determine if they match, as illustrated in Figure 2.5. 
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Figure 2.5 – Comparing two time series using time windows 

After identifying these pairs of windows, several non-overlapping pairs can be joined, in order 

to find the longest match length. Normalizing the windows solves the scaling problem and 

searching for pairs of windows that match solves the translation problem. 

A more complex approach consists on determining if there is a linear function f, such that a 

long subsequence of one sequence can be approximately mapped into a long subsequence of the 

other [Das 1997]. Since, in this approach, the subsequences do not necessarily consist of 

consecutive original elements but only have to appear in the same order, this similarity measure 

allows for the existence of gaps and outlying points in the sequence. 

In order to surpass the high sensibility of the Euclidean distance to small distortions in the time 

axis, the Dynamic Time Warping (DWT) technique has been used [Berndt 1996]. This technique 

consists on aligning two sequences so that a predetermined distance measure is minimized. The 

goal is to create a new sequence, the warping path, whose elements are (i, j) points with i and j the 

indexes of original sequence elements that match. Algorithms for using dynamic time warping 

techniques have been proposed in [Keogh 1999] and [Yi 1998]. Figure 2.6 illustrates this method. 

 
Figure 2.6 – Comparing two time series using Dynamic Time Warping 

A different similarity measure consists on describing the distance between two sequences using 

a probabilistic model [Keogh 1997]. 

The general idea is that a sequence can be ‘deformed’, according to a prior probability 

distribution, to generate the other sequence. This is easily accomplished by composing a global 

shape sequence with local features, where each one is allowed some degree of deformation. In this 
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way, some elasticity is allowed in the global shape sequence, allowing for stretching in time and 

distortions in amplitude. The degree of deformation and elasticity are governed by the prior 

probability distributions. Figure 2.7 exemplifies the usage of this type of measure. 

 
Figure 2.7 – Comparing two time series using a probabilistic measure 

Compression Based Representations 

The main idea of Compression Based Representations is to transform the time series, from time to 

another domain, and then to use a point in this new domain to represent each original sequence. 

The simplest compression is to represent each sequence as a point in the n-dimensional space, 

with n being the sequence length. Another possibility is to map each subsequence to a point in a 

new space with coordinates that are the derivatives of each original sequence point (the derivative 

at each point is determined by the difference between the point and its preceding one 

[Gavrilov 2000]). 

However, with these methods almost no reduction is performed. The most usual reduction 

approach is to use the Discrete Fourier Transform (DFT) to transform a sequence from the time 

domain to a point in the frequency domain [Agrawal 1993]. Choosing the k first frequencies, and 

then representing each sequence as a point in the k-dimensional space, achieves this goal. The DFT 

has the attractive property that the amplitude of the Fourier coefficients is invariant under shifts, 

which allows for extending the method to the problem of finding similar sequences ignoring shifts. 

This technique is illustrated in Figure 2.8. 
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Figure 2.8 – Representing a time series using the Discrete Fourier Transform, with k=2 
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A more recent approach uses the Discrete Wavelet Transform (DWT) to translate each 

sequence from the time domain into the time/frequency domain [Chan 1999]. The DWT is a linear 

transformation, which decomposes the original sequence into different frequency components, 

without loosing the information about the instant of the occurrence of elements. Its features, 

expressed as the wavelet coefficients, represent the sequence. Again, only a few coefficients are 

needed to approximately represent the sequence. Figure 2.9 exemplifies the usage of wavelets for 

representing time series. 

 
Figure 2.9 – Representing a time series using Discrete Wavelet Transform, with k=3 

With these kinds of representations, time series became a more manageable object, leading to 

the definition of efficient similarity measures and an easier application of common data mining 

operations. However, these methods do not solve either amplitude differences or time distortions. 

Similarity Measures. When Compression Based Representations are used, a simple approach is to 

compare the points, in the new domain, which represent each sequence. For example, the similarity 

between two sequences may be reduced to the similarity between two points in the frequency 

domain, again measured using the Euclidean distance [Agrawal 1993], [Chan 1999], as Figure 2.10 

illustrates. 
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Figure 2.10 – Comparing two time series in frequency domain 

In order to allow for the existence of outlying points in the sequence, the discovery of 

sequences similar to a given query sequence is reduced to the selection of points in a neighborhood 

of the query point. However, this method may allow for false hits, and after choosing the neighbor 
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points in the new domain, the distance in the time domain is computed to validate the similarity 

between the chosen sequences (for instance, using the Euclidean distance as described in the 

previous section). 

Notice that this method implies that sequences have the same length. In order to be able to deal 

with different lengths, the method was improved to find relevant subsequences in the original data 

[Faloutsos 1994]. Another important issue is the fact that to compare different time series, the 

number of Fourier coefficients chosen to represent the sequences must be the same for all of them, 

which may not be the optimal one for each sequence. 

Representations Achieved by Discretization 

A third approach to deal with time series is the translation of the original sequence to a sequence 

composed of nominal symbols. There are two problems related with this translation: choosing the 

domain of the new symbols – alphabet, and making the translation from the real-valued elements 

to new symbols. 

The alphabet definition is sometimes simplified by assuming that digits or characters are used. 

However, this decision implies that the new sequence is an artificial transformation of the original 

one, potentially more difficult to analyze and understand. 

Automatic Conversion Methods. The simplest way to define the alphabet is to choose a set of 

nominal symbols (alphabet) without any special meaning, and then proceed with the translation 

itself. This kind of approach introduces some level of artificiality but is especially useful when 

there is no knowledge about the series domain. 

A simple method to discretize time series is to segment a sequence by computing the change 

ratio from one time point to the following one, and representing all consecutive points with equal 

change ratios by a unique segment. After this partition, each segment is represented by a symbol, 

and the sequence is represented as a string of symbols [Huang 1999]. A particular case occurs 

when change ratios are classified into one of two classes: large fluctuations (symbol 1) or small 

fluctuations (symbol 0). This way, each time series is converted into a binary sequence, which can 

then be manipulated in a natural way by genetic algorithms [Szeto 1996], for example. 

Clustering is another approach to convert a sequence into a discrete representation. First, the 

sequence originates a set of sub-sequences with length w, by sliding a window of width w. Then, 

the set of all sub-sequences is clustered, originating k clusters, and a different symbol is associated 



Chapter 2 – Temporal Data Mining: an introduction 

26 

with each cluster. The nominal version of the initial sequence is obtained by substituting each sub-

sequence by the symbol associated to the cluster that it belongs to [Oates 1999]. 

Figure 2.11 illustrates the translation of one sequence, if we associate the symbol a to 

ascending segments (solid lines), symbol b to descending segments (dotted lines) and symbol c to 

flat segments (grey lines). Its final representation would be <bcacbcacbcacbcacbca>. 

time
 

Figure 2.11 – Representing a time series using clustering as a discretization method 

Another method to convert time series into a sequence of symbols is based on the use of self-

organizing maps – SOM [Giles 2001], [Guimarães 2000]. This conversion consists on three steps: 

first, a new series composed by the differences between consecutive values of the original time 

series is derived; second d-sized windows over the series are given as input to the SOM, which 

finally outputs the node closer to the input. Each node is associated with a symbol, which means 

that the resulting sequence may be viewed as a sequence of nominal symbols. 

The advantage of these methods is that time series are partitioned in a natural way, depending 

on their values. These transformed time series are more amenable to manipulation and processing 

than the original time series, since the number of possible different values is reduced. However, the 

symbols of the alphabet are usually chosen externally, which means that most of the times users 

impose symbols in some artificial way. 

Alphabet Specification Languages. A way to define the alphabet without loosing the original 

meaning is to define a language able to describe all different entities relevant to the domain, and 

simultaneously, to provide some similarity measure between different sequences. 

One such language is the Shape Definition Language (SDL) proposed by Agrawal 

[Agrawal 1995b], which is able to describe shape queries to pose to a sequence database and is able 

to perform ‘blurry’ matching. A blurry match is one where the important thing is the overall shape, 

therefore ignoring the specific details of a particular sequence. The first step in the representation 

process is defining the alphabet of symbols and then translating the original sequence to a sequence 

of nominal symbols. The translation is done by considering transitions from an instant to the 
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following one, and then assigning a symbol of the alphabet to each transition. 

Figure 2.12 presents the new sequence (s’=< zero stable Up Up Up down stable Down down 

disappears >) corresponding to sequence s=< 0 0 0.5 2 4 6 5 4.5 1.5 0.5 0 >, using the alphabet 

Σ={zero, stable, Up, down, Down, disappears}. 

 
Figure 2.12 – Representing a time series using SDL 

Another language used to specify patterns is the Constraint-Based Pattern Specification 

Language (CAPSUL) [Chakravarty 2000], which like SDL describes patterns by considering some 

abstraction over the values at each time interval. The key difference between these two languages 

is that CAPSUL uses a set of expressive constraints upon temporal objects, which allows 

describing more complex patterns, for instance, periodic patterns. Finally, to perform each of those 

abstractions the system accesses an ontology, where relations among values are defined. 

Similarity Measures. When a sequence is represented as a sequence of nominal symbols, the 

similarity between two sequences is, in general, achieved by comparing each element of one 

sequence with the corresponding one in the other sequence, as proposed in the first similarity 

measure described above. However, if the categorical symbols are not ordered some provisions 

must be taken to allow for blurry matching. 

One possible approach is to use the Shape Definition Language, where a blurry match is 

automatically possible. This is possible because the language defines a set of operators, such as 

any, noless or nomore, which allows describing overall shapes, solving the existence of gaps in an 

elegant way [Agrawal 1995b].  

Figure 2.13 exemplifies two cases of similarity between two pairs of sequences. Both pairs are 

considered similar since they verify the query 
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Figure 2.13 – Comparing two time series using the blurry matching [Agrawal 1995b] 

Another possibility is to use well-known algorithms for approximate string matching 

[Navarro 2001] to define a distance over the space of strings of discrete symbols [Huang 1999], 

[Mannila 1997]. This distance, usually known as edit distance, reflects the amount of work needed 

to transform a sequence to another, and is able to deal with different sequence lengths and the 

existence of gaps. Insertion, deletion, replacement and transposition are the operations usually 

accepted to transform a string into another one. The edit distance will be formally defined in 

Chapter 6, section 3. 

Generative Models 

A significantly different approach consists on applying data reduction techniques in order to obtain 

a model that can be viewed as a generator for the sequences, as described in section 2.1. There are 

different types of models, to represent event sequences, in general, and nominal ones, in particular. 

These models can be classified into two main categories: graph-based models and formal 

languages. 

Graph Based Models. One possible approach is based on the use of acyclic graphs that define 

partial orders or constraints between basic events – episodes. In this context, an event is a pair (A, 

t), with A a symbol to describe the event type [Mannila 1995] [Guralnik 1998]. Note that with this 

kind of model, it is possible to represent events that occur either in sequence or in parallel. Further 

developments were proposed: one for dealing with events that occur during a set of different 

instants [Laxman 2002] and other for building a mixture model that generates, with high 

probability, sequences similar to the one that one wishes to model [Mannila 2000a]. 

A
B

C

A

 
Figure 2.14 – Example of an episode 



Chapter 2 – Temporal Data Mining: an introduction 

29 

Figure 2.14 shows an example of an episode, with four events: first A occurs, second B and C 

occur in parallel and then A occurs again. 

In order to deal with different time granularities (for example hours, days or weeks), TAGs 

were proposed [Bettini 1998]. A TAG (Timed Finite Automaton with Granularities) is essentially a 

standard finite automaton with a set of clocks, each of which as an associated granularity. Instead 

of each transition being conditioned only by the input symbol, it also depends on the values of the 

different clocks. In this manner, the transitions are constrained both by the content and by the 

temporal information contained in the sequence of events. 

These models can be viewed as graph-based models, since one or more graphs that describe the 

relationships between basic events are used to model the observed sequences. 

Formal Languages. An alternative approach to describe the relations between events is based on 

the use of a formal language. A formal language is a set of nominal sequences generated by some 

grammar. 

Grammars may belong to a variety of classes [Hopcroft 1979], ranging from regular 

[Lang 1998], [Juillé 1998], [Oliveira 2001], to context-free [Sakakibara 1997], [Sakakibara 2000], 

context-sensitive and natural grammars. Given that regular grammars are equivalent to finite 

automata, context-free grammars to non-deterministic push-down automata, context-sensitive to 

linear bounded automata, and grammars for natural languages to Turing machines, formal 

languages can also be seen as a kind of graph-based models. We choose to distinguish them, 

because they have been exhaustively studied and their properties are well known. 

Extensive research in grammatical inference methods has led to many interesting results 

[Miclet 1996], [Honavar 1998], [Oliveira 2000] but has not yet found its way into a significant 

number of real applications. Usually, grammatical inference methods are based on discrete search 

algorithms that are able to infer complex grammars. Neural net-based approaches have also been 

tried (see, for example [Moody 1992]) but have been much less successful when applied to 

complex problems [Horne 1995], [Giles 1992]. However, some recent results have shown that 

neural-network based inference of grammars can be used in realistic applications with some 

success [Giles 2001] and regular languages can be used to represent background knowledge in 

some mining operations [Garofalakis 1999], [Han 2001b]. 

When there are probabilities associated to the relations between the occurrences of events, we 

are in the presence of a probabilistic model. Either Stochastic Grammars [Carrasco 1994], 
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[Stolcke 1994], [Higuera 1998], [Smyth 1999] or Hidden Markov Models [Ge 2000], [Smyth 1997] 

are examples of such models. 

Similarity Measures. When a generative model is obtained from a dataset, the similarity measure 

between sequences can be obtained by verifying how close the sequence fits one of the available 

models. 

For deterministic models (graph-based models, regular grammars or context-free), verifying if 

a sequence matches a given model provides a yes or no answer, and, therefore, the distance 

measures are necessarily discrete, and, in many cases, only take one of two possible values. 

For stochastic generative models, it is possible to obtain a number that indicates the probability 

that a given sequence was generated by a given model. 

In both cases, this similarity measure can be used effectively in classification problems, 

without the need to resort to complex heuristic similarity measures between sequences. 

It is clear that formal languages obtained by induction from examples can be used for 

prediction and classification, since it is possible to verify if the model can generate a given 

sequence, and what is the most likely event after the observed ones.So far, however, these methods 

have not been extensively applied to actual problems in data mining, mainly due to the difficulties 

inherent to the inference process. 

3.2 – Mining Operations on Temporal Data 

As has been noted, temporal data mining methods perform inter-transactional analysis, discovering 

information related to dynamical behavior of target entities. In this context, prediction and 

association analysis have deserved more attention than classification and clustering. 

In particular, while prediction of event sequences allows for the identification of trends, 

association analysis is able to provide a set of relations among events, identifying the impact of 

some occurrences over others. 

In this section, it is presented a small overview of the several approaches to temporal mining 

operations. 

Classification and Prediction 

In the specific domain of prediction, care must be taken with the domain where prediction is to be 

applied. Well-known and generally accepted results on the inherent unpredictability of many 
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financial time series [Fama 1970], [Weigend 1994] imply that significant gains in prediction 

accuracy are not possible, no matter how sophisticated the techniques used. However, financial 

time series forecasting has been the focus of research on prediction on the last decades. As such, 

several authors have presented work that aims specifically to obtain algorithms that can be used to 

predict the evolution of time series using genetic algorithms [Cortez 2001], [Szeto 1996], recurrent 

neural networks, or available background knowledge on economics and finance [Levitt 1996], 

[Mannila 1999]. 

In the vast literature on computer-assisted prediction of time series, a large fraction is based on 

neural networks. In order to deal with this kind of data, two main types of neural networks are 

used: time delay neural networks (TDNN) and recurrent neural networks (RNN).  

A TDNN receives an entire input sequence as a single input, using delay units to hold the past 

values of the original sequence. On one hand, this kind of networks imposes that the length of the 

sequence cannot be variable and too long, because of its nature and the resulting unmanageable 

size of the TDNN, respectively. On the other hand, it only performs a static association mapping 

between the input and output patterns, since for each input sequence it retrieves the output pattern 

associated with the prototype of the most frequent input vector configuration [Berthold 1999]. A 

neural network is called recurrent (RNN) if cross, auto and backward connections are allowed. 

These networks have shown to be adequate to dynamic learning tasks and can be used to learn a 

mapping function from the space of input sequences to the space of output sequences. The main 

drawback of these networks resides on the complexity and computational costs of their training 

algorithms, mainly because of their complex topologies [Berthold 1999]. 

Applications of RN networks can be found in the financial and medical fields [Giles 2001], 

[Guimarães 2000]. A good example of such applications is the work by Giles et al., which 

combines discretization with grammar inference, and applies the resulting automaton to explicitly 

predict the evolution of financial time series, using recurrent neural networks. 

Classification is one of the most typical operations in supervised learning, but only recently has 

deserved some attention in temporal data mining. 

Since traditional classification algorithms are difficult to apply to sequences, mostly because 

there are a vast number of potentially useful features for describing each example, an interesting 

improvement consists on applying some data reduction technique to extract relevant features. One 

approach to implement this idea consists on discovering frequent sub-sequences, and then using 

them, as the relevant features to classify sequences with traditional methods, like Naive Bayes or 
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Winnow [Lesh 1999]. Another possibility is to use support vector machines (SVMs), with some 

improvements, that may include the incorporation of non-linear time alignments into the kernel 

function, extending the original method to the case of variable length sequences 

[Shimodaira 2001]. Applications on the analysis of electroencephalograms [Blankertz 2002] or on 

speech recognition [Shimodaira 2001] using SVMs have already been proposed. 

Another classification method that deals specifically with nominal event sequences is based on 

the merge operator [Keogh 1998]. This operator receives two sequences and returns a sequence 

whose shape is a compromise between the two original ones. The basic idea is to iteratively merge 

a typical example of a class with each positive example, building a more general model for the 

class. Using negative examples is also possible, but then is necessary to emphasize the shape 

differences. This is accomplished by using an influence factor to control the merge operator 

function: a positive influence factor implies the generalization of the input sequences, and a 

negative reinforces the differences between the positive and negative shapes. 

Classification and prediction are relatively straightforward if generative models are employed 

to model the data. Deterministic and probabilistic models can be applied in a straightforward way 

to perform classification [Lesh 1999] since they give a clear answer to the question of whether a 

sequence matches a given model, but have not been used widely. 

Clustering 

There are two central problems in clustering temporal data: choosing the number of clusters and 

initializing their parameters, and defining a similarity measure among event sequences. 

Considering that the number of clusters (say K) is known, and that a sequence is viewed as 

being generated according to some probabilistic model (for example, a Markov model), clustering 

may be viewed as modeling the data sequences as a finite group of K sequences in the form of a 

finite mixture model. Using the EM algorithm [Dempster 1997] their parameters could be 

estimated and each group would correspond to a cluster [Smyth 1999]. Learning the value of K, if 

it is unknown, may be accomplished by a Monte-Carlo cross validation approach as suggested by 

some authors [Smyth 1997]. 

A different approach proposes to use a hierarchical clustering method to cluster temporal 

sequences [Ketterlin 1997]. The clustering algorithm used has been the COBWEB [Fisher 1987] 

and it works on two steps: first, it groups the elements of the sequences, and then it groups the 

sequences themselves. Considering a simple time series, the first step is accomplished without 
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difficulties, but to group the sequences is necessary to define a generalization mechanism for 

sequences. Such mechanism has to be able to choose the most specific description for what is 

common to different sequences. 

Association Analysis 

One possible modification to the formulation of association rules, when dealing with temporal data, 

consists on extending the notion of a typical rule A�B to be a rule with a new meaning: A �TB 

(which states: if A occurs then B will occur within time interval T) [Das 1998]. Stating a rule in this 

new form allows for controlling the impact of the occurrence of an event in the probability of the 

occurrence of another event, within a specific time interval. An easy way to find temporal 

association rules is to adapt the algorithms for discovering sequential patterns, imposing some 

constraint (a gap constraint) on the notion of contained in when the support of each sequence is 

counted – this is usually called sequential pattern mining. 

There are several sequential pattern mining algorithms from which GSP [Srikant 1996] is the 

best-well known apriori-based algorithm. Like apriori, it acts iteratively: first it generates possible 

different sequences and then it chooses the large ones, by scanning the database, until there are no 

candidates. Given that the task of counting the support for each candidate is the most costly 

operation, another possibility is to avoid the candidate generation step. Two examples of such 

proposals are the PrefixSpan and SPADE algorithms. 

PrefixSpan (PREFIX projected Sequential PAtterN mining) [Pei 2001] acts recursively 

reducing the search space at each step, avoiding the generation of non-frequent sequences. SPADE 

(Sequential PAttern Discovery using Equivalence classes) [Zaki 1998a] scans the database only 

three times, by transforming the initial database into a vertical database, where each entry is an 

item id-list (a list of customer and transaction id pairs). This new layout allows for the restriction of 

the search-space like PrefixSpan. 

A more recent method to find sequential patterns is SPAM [Ayres 2002], a depth-first 

algorithm which maintains the entire database in memory, represented as a bitmap. SPAM uses a 

lexicographic sequence tree to generate candidate sequences and uses candidate pruning techniques 

like GSP, to reduce the number of candidates. The use of bitmaps simplifies the support counting 

procedure, which becomes a simple check of the bitmap values: if all bits for the specified 

sequence are set, then the candidate is supported by the current database sequence. However, 

SPAM assumes that the entire database and all used data structures completely fit into main 
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memory, and the use of any constraint was not introduced. 

As pointed before, one of the main problems of algorithms for mining patterns is the lack of 

focus or user control [Ng 1998]. An interesting family of algorithms, named SPIRIT (Sequential 

Pattern mining with Regular Expressions) [Garofalakis 1999] adapt apriori-based algorithms to use 

regular expressions (embedded in the algorithm as finite automata) to constrain the generation of 

candidates, which reduces the acceptable candidates for which support counting is needed. 

PrefixGrowth is a pattern-growth method that like SPIRIT uses regular languages to constrain the 

mining process [Pei 2002b], and cSPADE expands SPADE to use several constraints [Zaki 2000]. 

A similar task is the discovery of frequent episodes in a unique event sequence. The goal is 

essentially the same: to find all frequent episodes in the given event sequence, given a class of 

episodes (which can be seen as a constraint). A description of algorithms for this task can be found 

in [Mannila 1995], [Mannila 1996] and [Guralnik 1998]. 

When applied to temporal data, association analysis has two additional goals: to identify time 

periodicities among data (known as periodicities analysis) and to find valid time periods during 

which association rules hold [Chen 2000]. 

In order to discover periodicities or cyclic rules between temporal data, it is necessary to search 

for frequent patterns in a restricted portion of time, since they may occur repeatedly at specific 

regular time instants but on a little portion of the global time considered. A method to discover 

such rules is based on the application of an algorithm similar to apriori that, after having obtained 

the set of traditional rules, detects the cycles behind the rules. A more efficient approach to 

discover cyclic rules consists on inverting the process: first, it discovers the cyclic patterns and then 

generates the rules [Özden 1998]. A natural extension to this method consists on allowing the 

existence of different time units, such as days, weeks or months, and is achieved by defining 

calendar algebras to define and manipulate groups of time intervals. Rules discovered are 

designated calendric association rules [Ramaswamy 1998]. A similar idea was applied in the 

search of periodicities in time series [Han 1998]. The main idea is to look for the discovery of 

periodic segments, recognizing that only some segments have cyclic behavior. 

An approach to determine time periods during which association rules hold, is also apriori-

based and consists on partitioning the initial data in several time periods and then applying the 

pattern mining process to each partition [Lee 2001]. 
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3.3 – Post-processing for Temporal Information 

In general, the evaluation criteria for discovered temporal patterns apply to temporal data with a 

particular emphasis, given the complexity of this kind of data. Again, simpler models are preferred 

and the trade-off between accuracy and coverage remains unchanged. Furthermore, to our 

knowledge, there are no specific interestingness measures for discovered temporal patterns, except 

for the definition of support, as stated above. 

4 – Open Issues in Temporal Data Mining 

From the survey presented, it is clear that there are several approaches to explore temporal data. 

However, the number and the diversity of solutions reflect the small consensus among what the 

best solutions are, and shows that the key problems of dealing with real temporal data are not 

resolved yet. 

In particular, the analysis of nominal event sequences has deserved relatively little attention, 

when compared with the exploration of time series. Sequential Pattern Mining is one the few 

approaches specifically designed to deal with nominal sequences, but even state of the art 

sequential pattern mining algorithms are still likely to discover large amounts of patterns, many of 

them useless when applied in real problems. 

Summary 

In this chapter, we have introduced the data mining field, presenting its fundamental concepts 

and techniques, and motivating the need for special procedures when dealing with temporal 

data.  

We have presented an overview of the pre-processing, mining and post-processing techniques 

applied to this type of data. In terms of pre-processing, we have categorized and described 

the existent models to represent temporal data: time-domain continuous, and compression 

based representations, models achieved by discretization and generative models.  

For mining temporal data, we have succinctly explained the existent methods to perform the 

main tasks of data mining: classification, prediction, clustering and pattern mining. The 

existence of so many different approaches reflects the small consensus among them. 
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Chapter 3 

Related Work and Thesis Statement 

In this chapter, we review related work, presenting the sequential pattern mining problem 

and the approaches to deal with it. After identifying the open issues in sequential pattern 

mining and its application to temporal data, we make our thesis statement, posing the 

research questions that have driven this work, and giving an overview of how these questions 

are answered. 

he exploration of nominal sequences in general, and of nominal event sequences in particular, 

has deserved some attention only in the last decade. Among the few existent approaches to 

this problem, sequential pattern mining is the one that has been most explored. 

In general, we can see sequential pattern mining as an approach to perform inter-transactional 

analysis of nominal event sequences. Indeed, sequential pattern mining was motivated by the need 

to perform this kind of analysis, mostly in the retailing industry, but with applications in other areas 

like the medical domain. 

This dissertation focuses on the problem of pattern mining over nominal temporal data, 

presenting a new mining methodology based on the use of the sequential pattern mining approach. 

For this reason, a detailed review of the related work in this area is presented below. 

1 – Related Work: sequential pattern mining 

Sequential Pattern Mining algorithms address the problem of discovering the existent maximal 

frequent sequences in a given database. Algorithms for this problem are relevant when the data to 

T 
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be mined has some sequential nature, i.e., when each piece of data is an ordered set of elements, 

like event sequences in the case of temporal information, or nucleotides and amino-acid sequences 

for problems in bioinformatics. 

The problem was first introduced by Agrawal and Srikant, that established the basic concepts 

involved in pattern detection [Agrawal 1995c]. Some interesting issues were added in subsequent 

work [Srikant 1996], like the use of taxonomies and the introduction of time constraints. In the last 

years, several sequential pattern mining algorithms have been proposed, but not all of them assume 

the same conditions. Despite the fact that the use of constraints is somehow orthogonal to the 

general philosophy of pattern mining algorithms, the use of gap constraints (the simplest form of 

time constraints) has a great impact on their design and efficiency. 

In this section, we will introduce the problem of sequential pattern mining formally, describing 

its adaptations to deal with nominal temporal data. 

1.1 – Problem Statement and Analysis 

In order to introduce the problem formally, we will begin by giving the definitions of sequence and 

its related concepts. 

Definition 1 - An item is an element from a totally ordered set Σ, called the item 

collection. 

Items represent the objects under analysis, e.g., the objects manipulated in a given transaction. 

They correspond to the atomic entities in sequential pattern mining. 

An itemset, also called a basket, represents the set of items that occur together. If the data is 

time dependent, an itemset corresponds to the set of items transacted at a particular instant by a 

particular entity. Formally, 

Definition 2 - An itemset is an ordered set of non-repeated items. 

The itemset composed of items a and b is denoted by (a,b). The ith item of the itemset an is 

denoted by an
i.  

The assumption that the items in an itemset are in a specific order facilitates the design of 

sequential pattern mining algorithms, avoiding the repetition of some operations (such as the 

generation of repeated sequences). This assumption also enables the definition of two predicates 

over itemsets. 
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Definition 3 - Given two itemsets a=(a1,…,an) and b=(b1,…,bm), with n<m: a is a 

prefix-itemset of b iff for all 1�i�n ai is equal to bi. 

Definition 4 - Given two itemsets a=(a1,…,an) and b=(b1,…,bm), with n<m: a is a 

suffix-itemset of b iff for all 1�i�n ai is equal to bm-n+i. 

Moreover, we can define the notion of contained in for itemsets: 

Definition 5 - Given two itemsets a=(a1,…,an) and b=(b1,…,bm), a is contained in b 

(denoted by a⊆b) iff there exist integers 1�i1<i2<…<in�m such that a1= bi1, a2= bi2, 

…, an=bin. 

Finally, we are able to define the concept of sequence. 

Definition 6 - A sequence is an ordered set of itemsets. A sequence is maximal, with 

respect to a set of sequences, if it is not contained in any other sequence of the set. 

A sequence with k items is called a k-sequence. The number of elements (itemsets) in a 

sequence s is the length of the sequence and is denoted by |s|. The ith itemset in the sequence is 

represented by si and <> denotes the empty sequence. The result of the concatenation of two 

sequences x and y is a new sequence denoted by xy. 

The set of considered sequences is usually designated by database or dataset (DB), and the 

number of sequences by database size (|DB|). 

Definition 7 - A sequence a=<a1a2...an> is contained in another sequence 

b=<b1b2...bm>, or a is a subsequence of b, if there exist integers 1�i1<i2<…<in�m 

such that a1⊆bi1, a2⊆bi2, …, an⊆bin. 

If s' is a subsequence of s is, this relationship is denoted by s'⊆s, and by s'⊂s if s' is a proper 

subsequence of s, i.e. if s' is a subsequence of s but is not equal to s. 

Prefixes and suffixes are subsequences with specific meanings. 

Definition 8 - A sequence a=<a1a2...an> is a prefix of another sequence 

b=<b1b2...bm> if n�m and ai=bi for i<n and an is a prefix-itemset of bn. The prefix is 

said to be a proper maximal prefix if it is equal to the original sequence without the 

last item on the last itemset.   
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Definition 9 - A sequence a=<a1a2...an> is a suffix of another sequence b=<b1b2...bm> 

if n�m, and ai=bm-n+i for 2�i�n and a1 is a suffix-itemset of bm-n+1. The suffix is said 

to be a proper maximal suffix if it is equal to the original sequence without the first 

item of the first itemset. 

In order to define the sequential pattern mining problem, two other notions are needed: 

frequent sequences and sequential patterns. 

Definition 10 - Given a database D of sequences and some user-specified minimum 

support threshold σ, a sequence is frequent in the database D, if it is contained in at 

least σ sequences of D. A sequence is called a sequential pattern in a database D, if 

it is a maximal sequence with respect to the set of frequent sequences. 

Finally, the sequential pattern mining problem may be stated in its entirety. 

Definition 11 - Given a database D of sequences and some user-specified minimum 

support threshold, the sequential pattern mining process aims to discover the set of 

sequential patterns in D.  

Sequential Pattern Mining over Nominal Temporal Data 

When applied to nominal temporal data, the problem of sequential pattern mining can be restated, 

by redefining some of the previous definitions and introducing the formal definition of event, 

according to the notion introduced in Chapter 2 , section 1. 

Definition 12 - An event is a pair e=(a, t), where a is an itemset and t a positive 

integer, called the timestamp. 

As before, the itemset represents the set of items transacted at a particular instant, in this case 

at instant t. The itemset of an event e is denoted by e.set and the timestamp by e.time. Additionally, 

a sequence is now composed of events. 

Definition 13 - An event sequence, or just a sequence, s=<e1e2… en> is an ordered list 

of events, whose timestamps respect the following order:  

∀i∈ : 1 � i < n � e.timei < e.timei+1 

The rest of the definitions remain valid when applied to temporal data. 
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Problem Analysis 

What makes the problem of sequential pattern mining more challenging than frequent itemset 

mining? It is clear that frequent itemset mining is just a particular case of sequential pattern mining, 

since frequent itemsets are a particular case of sequential patterns – 1-sequential patterns. 

Sequential pattern mining requires, in addition to the discovery of frequent itemsets, the 

arrangement of those itemsets in sequences and the discovery of which of those are frequent. 

To understand why there exists a significant increase in the number of potential patterns, 

assume that there is a database to be mined with the minimum support threshold (the minimum 

number of sequences in the database that have to contain the pattern) set to σ and with n =|Σ| 

different items in the item collection Σ. The goal of frequent itemset mining is to find which 

itemsets are frequent from the | I�| different possible existent itemsets, where ��is the powerset of Σ 

(excluding the empty set), and its value is given by equation (1). 
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To understand the sequential pattern mining problem, let's begin by considering that the 

database has sequences with at most m itemsets and each itemset has at most one item. In these 

conditions, there would be nm possible different sequences with m itemsets and 
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different arbitrary length sequences. 

Similarly, if each itemset has an arbitrary number of items, there would be Sm possible frequent 

sequences with m itemsets, with the value of Sm given by equation (3). 
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The number of different items and the average length of frequent sequences are tightly 

connected: a large number of items in a short sequence may imply a reduced number of frequent 

patterns, since the probability of the generality of items has to be small. In this way, algorithms will 

run efficiently. The opposite situation is a large sequence with a reduced number of items, where 

the probability of each element to occur in a large number of sequences is high. This leads to the 
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existence of many patterns, and consequently a large amount of processing time. The concept of 

database density, proposed here, quantifies this relationship. 

Definition 14 - (Density) The database density (�) is the ratio between the number of 

existing frequent sequences (F) and the number of possible sequences (S). 
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The database density depends on the support considered, since the number of frequent 

sequences (F) depends on the minimum support threshold accepted. The density is higher when the 

minimum support thresholds are low, since a larger number of frequent sequences exist. 

One parameter that has impact on the density is the number of different items existent in the 

database (n). On one side, a large number of items allows for a potentially large number of 

different sequences. Since with many distinct sequences, their probability to be frequent is low, 

there will exist (all other conditions being equal) a smaller number of patterns and the database 

density will be low. On the other side, more reduced number of items generates a smaller number 

of potential sequences, which will be more frequent in the database, increasing the number of 

patterns and consequently the density of the database. 

Despite the potentially large number of sequences (given by expression (4)), only a small 

fraction will be, in general, supported by the database. In particular, at most there only exist |DB|/σ 

sequences of length m that are frequent. 

Given the discrepancy between the number of different sequences and frequent ones, the 

difficulty of the data mining process resides in figuring out what sequences to try and then 

efficiently finding out which of those are frequent [Srikant 1996]. 

Like in frequent itemset mining, one of the most common techniques used to minimize the 

number of sequences that should be tried is the exploration of the anti-monotonicity 

property [Ng 1998]. 

Definition 15 - (Anti-Monotonicity) Given any set S, a constraint C is anti-monotone if 

and only if 

∀S': (S'⊆S ∧ S satisfies C � S' satisfies C). 

In particular, the frequency of a sequence is an anti-monotone constraint, which means that a 

sequence cannot be frequent unless all its subsequences are frequent. The generality of sequential 
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pattern algorithms use this property to avoid testing the majority of possible sequences, minimizing 

their processing times. In general, they discover the 1-frequent patterns, then the 2-sequence 

patterns and so on, until there are no k-sequence patterns. 

Interestingness Measures for Sequential Patterns 

As noted before, to our knowledge and to date, no interestingness measure was proposed 

specifically for event sequences, except the notion of support, which can be stated by equation (6). 

 |DB|
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Other interestingness measures used in pattern mining are applied to association rules and not 

to the patterns themselves. In this manner, in order to use them in sequential pattern mining, a 

definition of a sequential rule is needed. 

Definition 16 - A sequential rule is an association rule S�T, where S and T are 

sequences. 

In this manner, a sequential rule is similar to an association rule, and the adaptation of the 

existent interestingness measures is possible. The confidence of the sequential rule S�T can be 

defined as the conditional probability of the sequence T given S as in equation (7). 
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Similarly, the lift can be defined by equation (8). 
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As happens with association rules, the discovery of sequential rules can be achieved by 

discovering the sequential patterns and generating all possible sequential rules for each sequential 

pattern. For example, from the sequential pattern S1S2S3S4 it is possible to generate the sequential 

rules S1S2S3�S4, S1S2�S3S4 and S1�S2S3S4. 

1.2 – Constraints for Sequential Pattern Mining 

Despite the reasonable efficiency of pattern mining algorithms, the lack of focus and user control 

have been factors that have impaired their generalized use, since the usually large number of 
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discovered patterns makes the analysis of novel information a difficult task. 

In order to solve this problem, several authors proposed the use of constraints [Pei 2002a]. 

Definition 17 - A constraint is a predicate on the set of finite sequences. 

In this manner, 

Definition 18 - Given a database D of sequences, and some user-specified minimum 

support threshold σ and constraint C, a sequence is frequent if it is contained in at 

least σ sequences in the database and satisfies the constraint C. 

This approach has been widely accepted by the data mining community, since it gives the user 

the possibility to control the mining process, either by introducing his background knowledge 

deeply into the process or by narrowing the scope of the discovered patterns. The use of constraints 

also reduces the search space, which contributes significantly to achieve better performance and 

scalability levels [Srikant 1997], [Pei 2002a], [Garofalakis 1999]. 

The simplest constraint is to impose that only some items are of interest – item constraints, 

permitting the reduction of the discovered patterns. Examples of such constraints are Boolean 

expressions over the presence or absence of items [Srikant 1997] and the naïve relaxation 

[Garofalakis 1999], as explained in section 1.4. 

Another constraint involves the specification of the maximum distance between consecutive 

elements – gap constraints, either in temporal or non-temporal data. It consists on imposing a limit 

in the maximum distance between two consecutive elements in the sequence. This simple 

constraint is very useful to reflect the impact of some itemset on another one, in particular, when 

each transaction occurs at a particular instant of time. In this manner, it is possible to specify that 

an event has greater impact on near events than on distant ones. When using gap constraints, the 

notion of contained in has to be adapted. 

Definition 19 - A sequence a=<a1a2...an> is a δ-distance subsequence of 

b=<b1b2...bm> if there exist integers 1�i1<i2<… <in�m such that a1⊆bi1, a2⊆bi2, … , 

an⊆bin and ik–ik-1�δ. The sequence a is a contiguous subsequence of b if a is a 1-

distance subsequence of b, i.e., the items of a can be mapped to a contiguous 

segment of b. 
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Note that a contiguous subsequence is a particular case of δ-distance subsequence and is the 

most restrictive notion of subsequence. A δ-distance subsequence s' of s is denoted by s' ⊆ δ s. 

Using δ=1 eliminates the possibility of having gaps between consecutive items. In the rest of this 

text this is designated by gap=0. When applied to event sequences, the gap may reflect the time 

interval allowed between consecutive events 

More recently, regular languages have been proposed [Garofalakis 1999] and used to constrain 

the mining process [Zaki 2000], [Pei 2002b], reducing the number of discovered patterns. 

Next, the concepts related to regular and context-free languages are introduced. 

Regular Languages 

In order to define the term regular language we make use of the notion of finite automaton, among 

others. 

Definition 20 - A Finite Automaton is a tuple �=(�, �, δ, q0, �), where: � is a finite 

set of states; � is a finite set of symbols, called the alphabet; q0∈�, designates the 

initial state; ��⊆�, the set of accepting or final states; and δ is the transition 

function mapping �x� to �. 

An automaton can be viewed as composed by a set of states and a set of transitions from state 

to state that occur on symbols chosen from an alphabet [Hopcroft 1979]. Finite automata are 

usually represented as directed graphs, where the vertices correspond to states and arcs to 

transitions, as illustrated in Figure 3.1. 

q4q1

a

q2 q3b c d

b

d  
Figure 3.1 – A deterministic finite automaton 

We can consider two kinds of finite automata: Deterministic Finite Automata (DFA), where 

there is one and only one transition for each pair (state, symbol), and Nondeterministic Finite 

Automata (NDFA), where it is possible to exist none, one or more than one transition for each pair 

(state, symbol). Any language accepted by any NDFA can also be accepted by an equivalent DFA. 

A language is a set of finite sequences of symbols from some alphabet; those sequences are 
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usually called strings. A language is accepted by an automaton if it corresponds to the set of strings 

accepted by the automaton. A string is accepted by an automaton if its symbols define a path in the 

graph that represents the automaton, beginning in the initial state and reaching an accepting state. 

Examples of strings accepted by the DFA represented in Figure 3.1 are bb (beginning on state q1 

and going to state q2 with the first b and then achieving state q4 with the second b), abb, add and 

aaabcd; a, aa and abca are examples of non-accepted strings. 

Definition 21 - A language is regular if it is accepted by a DFA. 

When applied to sequential pattern mining, strings are replaced by sequences (as defined in the 

previous section), and symbols are replaced by itemsets. In this new context, the transition function 

maps Qx��(�) to Q, with ��(�) representing the powerset of �. 

Context-Free Languages 

Despite the fact that regular languages provide a simple and natural way to model sequential 

patterns, there are interesting patterns that these languages are not powerful enough to describe. 

Consider, for example, the following problem: a company wants to find out typical billing and 

payment patterns of its customers, but wants to restrict the search to customers, who have paid all 

their bills. This is equivalent to the requirement that an equal number of invoices and payments are 

registered. Additionally, it is known that an invoice always precedes a payment. In a semi-formal 

way, if an invoice is represented by an a and a payment by a b, the model has to be able to describe 

sequences that have the same number of a's and b's, and the number of b’s that have occurred at a 

given instant never exceeds the number of a’s that have occurred until that moment. Therefore, it 

has to be able to accept sequences like abab as well as aabbab, and reject strings like aabbb or 

baab.  

Note that no finite automata can be used to model this constraint, because they have finite 

memory. Since regular languages are not expressive enough to describe some interesting 

constraints the simplest approach to this problem is to climb one-step up on the Chomsky hierarchy 

[Chomsky 1956]. 

Context-free languages (CFLs) are at the next level in this hierarchy, and are strictly more 

powerful than regular languages. This type of languages represents a formalism of great 

importance, since it is powerful enough to describe the structure of many interesting problems 

while remaining simple enough to allow for the construction of efficient parsers [Allen 1995]. 
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CFLs have been widely used to represent programming languages and, more recently, to model 

biological sequences [Searls 1992] [Searls 1995]. 

In this thesis, we propose the use of context-free languages instead of regular languages for 

constraining the mining process, and for this reason, they are introduced next. 

Unlike regular languages, context-free languages are not equivalent to the languages generated 

by deterministic finite automata. However, DFAs can be extended with a stack memory in order to 

recognize these new languages. These automata are known as Pushdown Automata (PDA). 

Definition 22 - A pushdown automaton is a tuple ��=(�, Σ, Γ, δ, q0, Z0, �), where: � 

is a finite set of states; Σ is an alphabet called the input alphabet; Γ is an alphabet 

called the stack alphabet; δ is a mapping from �×Σ∪{ε}×Γ to finite subsets of 

�×Γ*; q0∈� is the initial state; Z0∈Γ is a particular stack symbol called the start 

symbol, and ��⊆� is the set of final states [Hopcroft 1979]. 

The language accepted by a pushdown automaton is the set of all inputs for which some 

sequence of moves causes the pushdown automaton to empty its stack and achieve a final state. 

As an example, the following PDA accepts the language exemplified above: 

M = ({q1, q2}, {a, b}, {S, X}, δ, q1, S, {q2}) 

δ(q1, a, S) = {(q2, XS)}, δ(q2, a, S) = {(q2, XS)}, 

δ(q2, a, X) = {(q2, XX)}, δ(q2, b, X) = {(q2, ε)} and δ(q2, �, S) = {(q2, ε)} 

This automaton is represented in Figure 3.2.  

q2q1 (a, S)�push X

(a, S)�push X
(a, X)�push X

(b, X)�pop

(ε, S)�pop

 
Figure 3.2 – A pushdown automaton 

As an example, the “(a, S)�push X” transition label is used to indicate that when the input 

symbol is a and the top stack symbol is S, then X is pushed into the stack. When applied to 

sequences instead of strings, pushdown automata have to be redefined. In Chapter 5, section 3.1 
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these adaptations are described in detail. 

Generalized Patterns 

A complementary proposal to the use of constraints was based on the idea of generalized patterns. 

This proposal makes use of taxonomies, which capture the existent is-a relation between items, as 

introduced in Chapter 2, section 2.1. Like constraints, taxonomies facilitate the introduction of 

background knowledge into the mining process, by representing known relations between items 

(for example, the knowledge that two items belong to the same category). 

Generalized patterns include items across different levels of the taxonomy, and their goal is to 

find rules about infrequent items at low abstraction levels, but that are frequent at higher-levels. 

Since algorithms that find generalized patterns discover more patterns, their final step involves 

filtering redundant patterns. This is achieved by pruning all the patterns deemed non-interesting 

using an interestingness measure, which considers a pattern as redundant if it does not convey any 

more information that another pattern, and is less general than the second pattern. A detailed 

description of an algorithm to discover generalized patterns can be found in [Srikant 1995]. 

1.3 – Unconstrained Algorithms 

There are two main approaches to the sequential pattern mining problem: apriori-based and 

pattern-growth methods. We are going to study these two different philosophies by analyzing their 

best-known implementations, GSP [Srikant 1996] and PrefixSpan [Pei 2001], respectively. There 

are several implementations of apriori-based methods. However, most of them assume some 

specific conditions (for example that the entire dataset fits in memory), allowing for significant 

improvements. Although GSP considers time constraints and uses taxonomies, if no taxonomy is 

provided, and time constraints are not set (min-gap assumes 0, max-gap assumes ∞ and the sliding 

window size is 0) both algorithms have similar goals: to discover sequential patterns, without 

considering any constraints and without any database restrictions. 

Apriori-based Methods 

Like the original approach to sequential pattern mining (AprioriAll [Agrawal 1995c]), GSP follows 

the candidate generation and test philosophy, used by the apriori algorithm (as described in 

Chapter 2 , section 2.2). It begins with the discovery of frequent 1-sequences (k=1), and then 

generates the set of potentially frequent (k+1)-sequences from the set of frequent k-sequences, as 
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presented in Algorithm 1. Potentially frequent sequences are usually called candidates. 

The generation of potentially frequent k-sequences (k-candidates) uses the frequent (k-1)-

sequences discovered in the previous step, which may reduce significantly the number of 

sequences to consider at each moment, as shown in candidateGeneration pseudocode. 

 
Algorithm 1 – GSP pseudocode (without taxonomies and only with max_gap=δδδδ) 

In this procedure, any two frequent (k-1)-sequences, such that the proper maximal prefix of one 

is equal to the proper maximal suffix of the other, are combined to create a k-candidate by joining 

the last item of the second sequence to the first sequence, in accordance to the procedure join 

(Algorithm 2). In this pseudocode, the following notation was used: an represents the nth itemset of 

the sequence a and ai
n represents the nth item of ai; the symbol “\” denotes the difference operation 

among sets. 

 
Algorithm 2 – Pseudocode for the join procedure  

In order to illustrate the joining procedure consider three sequences: x=(a,b)cd, y=bc(d,e) and 

z=c(d,e,f). Joining x and y will create the sequence (a,b)c(d,e), and joining y and z will generate 
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c(d,e,f). Note that x and z cannot be joined. 

Note that to decide if one sequence s is frequent or not, it is necessary to scan the entire 

database, verifying if s is contained in each sequence in the database. This check is performed by 

the procedure supportPruning. 

In order to reduce the time needed to scan the database and count the support for each 

candidate, GSP adopts a particular scheme: it maintains all candidates in a hash-tree and for each 

sequence s in the database, it increments the counter of the candidates contained in s. In this 

manner, GSP only scans the database once per step. 

Knowing that the frequency of a sequence is an anti-monotone property, GSP adopts two other 

optimizations. The first is that it only creates a new k-candidate when there are two frequent (k-1)-

sequences with the prefix of one equal to the suffix of the other (join procedure). The second one 

is that, before counting their support, it eliminates all candidates that have some non-frequent 

maximal subsequence (candidatePruning procedure), in accordance with the anti-monotonicity 

property (verified by isPossibleFrequent procedure). By using these strategies to reduce the 

number of candidates, GSP reduces the time spent in scanning the database, increasing its general 

performance. 

In general, apriori-based methods can be seen as breath-first traversal algorithms, since they 

construct all k-patterns simultaneously. Consider a database that is composed of sequences with 

items belonging to the set Σ={a, b}. If all possible arrangements of these two elements are 

frequent, GSP works as illustrated in Figure 3.3. 

ba

aa ab(ab) ba bb

aaa aaba(ab) (ab)a (ab)b aba abb baa babb(ab) bba bbb

1st step

2nd step

3rd step
 

Figure 3.3 – Illustration of GSP behavior 

At the end of the first iteration, GSP would have found a and b as frequent 1-sequences. At the 

end of the second step, it would have found {aa, (ab), ab, ba, bb}. Finally, at the end of the third 

iteration, GSP would have found all arrangements of 2 items taken 3 at a time, including the basket 
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(ab): {aaa, a(ab), aab, (ab)a, (ab)b, aba, abb, baa, b(ab), bab, bba, bbb}. 

Note that, at each step GSP only maintains in memory the already discovered patterns and the 

k-candidates. 

Pattern-growth Methods 

Pattern-growth methods are a more recent approach to deal with the sequential pattern mining 

problem. The key idea is to avoid the candidate generation step altogether, and to focus the search 

on a restricted portion of the initial database.  

PrefixSpan [Pei 2001] is the most representative of the pattern-growth methods and is based on 

the recursive construction of the patterns, while simultaneously restricting the search space to 

projected databases, as shown in Algorithm 3. 

 
Algorithm 3 – PrefixSpan pseudocode 

Its main loop consists on recursively constructing each sequential pattern by joining another 

frequent item to the already known frequent prefixes, as shown in procedure run (the 

discoverFList procedure finds the items that frequently appear after α). 

An α-projected database is the set of subsequences in the database, which are suffixes of the 

sequences that have prefix α. Each α–projected database is constructed by registering which 

sequences on the database contain α (createProjDB procedure). At each step, the algorithm 

looks for the frequent sequences with prefix α, in the corresponding projected database. In this 

way, the search space is reduced at each step, allowing for better performance in the presence of 

small support thresholds, since the support counting operation is performed in specific portions of 

the original database. 

In general, pattern-growth methods can be seen as depth-first traversal algorithms, since they 

construct each pattern separately, in a recursive way. If we consider the same database as 

previously, PrefixSpan would work as illustrated in Figure 3.4. 
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ba

aa ab(ab)

aaa aaba(ab)
 

Figure 3.4 – Illustration of PrefixSpan behavior 

At the first recursion step, PrefixSpan, like GSP, would have found a and b as frequent 1-

sequences. Before encountering the first frequent sequences with three items, it would have only 

found {aa, (ab), ab} as frequent 2-sequences, since it expands only one branch at a time. Then, 

PrefixSpan would find {aaa, a(ab), aab}. Only after it has discovered the maximal patterns with aa 

as prefix, would it expand the (ab) branch in order to discover the patterns with (ab) as prefix. In 

this manner, PrefixSpan is able to deal efficiently with projected databases, since at each step it has 

only a few projected databases in memory. 

PrefixSpan outperforms GSP in the generality of situations, with much better performances in 

the presence of very low minimum support thresholds. The reasons for this difference are not well 

understood and will be studied in Chapter 4. 

1.4 – Algorithms for Sequential Pattern Mining with Constraints 

From the constraints used in sequential pattern mining, the use of regular languages to restrict the 

discovery process is the one that has deserved more attention among the community. Again, there 

are essentially two approaches to this problem: an apriori-based – SPIRIT, and a pattern-growth 

method – PrefixGrowth. 

SPIRIT 

SPIRIT [Garofalakis 1999] is a family of apriori-based algorithms that uses a regular language 

(expressed as a finite automaton) and a gap constraint to restrict the mining process. Given that 

most of the interesting regular languages do not represent anti-monotone constraints, the algorithm 

uses constraint relaxations (weaker constraints) to manage the candidate generation and pruning 

procedures, as described in Algorithm 4. 
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Algorithm 4 – SPIRIT pseudocode 

In this manner, the great differences between SPIRIT and GSP reside on the generation of 

candidates that have to be accepted by the constraint relaxation (candidateGeneration 

procedure) and on the candidate pruning step, which only accepts sequences that have all maximal 

accepted subsequences frequent (isPossibleFrequent procedure). (The join procedure 

remains identical to the one presented on Algorithm 2). 

There are two other differences: the terminating condition on the main loop 

(holdTerminatingCond) and the use of the set of all frequent sequences (L) instead of the set of 

frequent (k-1)-sequences (Lk-1) as parameters to the candidate generation. Both differences are due 

to the fact that even the proposed constraint relaxations may not be anti-monotone, and different 

relaxations impose different terminating conditions and candidate generation procedures. 

Four relaxations, representing a natural progression on imposing stronger relaxations in the 

mining process and the corresponding SPIRIT implementations, have been proposed: naïve – 

SPIRIT(N); legal – SPIRIT(L); valid – SPIRIT(V); and the regular language itself – SPIRIT(R). 

Naïve relaxation only prunes candidate sequences having elements that do not belong to the 

constraint alphabet (the alphabet of the finite automaton), which simply corresponds to an item 

constraint. Since naïve relaxation is anti-monotonic, the terminating condition and the candidate 

generation procedures are equal to the corresponding ones in GSP. The process ends when there is 

no frequent (k-1)-sequence and the candidate generation procedure uses Lk-1 elements to generate 

the k-candidates (Ck). 
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The legal relaxation requires that every pattern is legal with respect to some state of the 

automaton. A sequence is said to be legal with respect to q (with q being a state of the automaton) 

if there is a path in the automaton, which begins in state q and is composed by the sequence 

elements. The process ends when there are no legal k-sequences with respect to the initial state, and 

the candidate generation step remains similar to the corresponding one in GSP. 

The valid relaxation only accepts sequences that are valid with respect to any state of the 

automaton. A sequence is said to be valid with respect to q if it is legal with respect to q and 

reaches an accepting state. Given that this relaxation does not impose an anti-monotone constraint, 

the candidate generation step has to be different: each frequent k-sequence is extended (at the 

beginning) with a frequent element (an element that belongs to L1). The terminating condition 

remains equal to the corresponding one in GSP. Note that the term valid was somewhat misused, 

since the relaxation considers suffixes of accepted sequences. In the rest of this dissertation, this 

relaxation is called valid-suffix. 

Finally, the regular language itself imposes the most different terminating condition and 

candidate generation procedure. Consider, for example, the automaton in Figure 3.1. Despite the 

fact that a, ab and abc are not accepted, abcd is accepted. This show that it is possible to have 

accepted sequences whose prefixes are not accepted. In order to deal with this situation, the process 

only ends when it achieves the nth iteration (where n is the number of states in the automaton) and 

there is no frequent sequence (all Lk are empty). Additionally, at each step, the candidate 

generation procedure creates each candidate by enumerating all possible k-sequences accepted by 

the automaton. 

PrefixGrowth 

Like SPIRIT, PrefixGrowth [Pei 2002b] uses regular languages, expressed as finite automata, to 

constrain the mining process. 

 
Algorithm 5 – PrefixGrowth pseudocode 
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It is a pattern-growth method, similar to PrefixSpan, but it only generates sequences that 

potentially satisfy the constraint, this is, it only extends sequences that are prefixes of accepted 

sequences. Algorithm 5 presents the pseudocode for PrefixGrowth. Another difference to 

PrefixSpan is that the discoverFList procedure in PrefixGrowth also removes the sequences 

that do not contain any accepted subsequence from the database. 

Note that PrefixGrowth deals with non-monotonic constraints in an easier way than SPIRIT. 

Indeed, it only requires that relaxed constraints are prefix-monotone. A constraint is prefix-

monotone if it is either prefix anti-monotonic or prefix-monotonic. 

Definition 23 - (Prefix anti-monotonicity) A constraint is prefix anti-monotonic if for 

each sequence α satisfying the constraint, so does every prefix of α�[Pei 2002b]. 

C is prefix anti-monotonic ���∀β:� β �is prefix of α ∧ α satisfies C � β satisfies C) 

Definition 24 - (Prefix monotonicity) A constraint is prefix monotonic if for each 

sequence α satisfying the constraint, so does every sequence having α as a prefix 

[Pei 2002b]. 

C is prefix-monotonic � (∀α: α satisfies C � (∀β: α is prefix of β � β satisfies C)) 

An interesting issue is to note that neither PrefixSpan nor PrefixGrowth are able to deal with 

gap constraints without some adaptations. Moreover, the differences on the performance of 

PrefixSpan and GSP may be explained by this difference on goals. In order to clarify this issue, in 

the next chapter we will propose a new pattern-growth method able to deal with gap constraints 

(GenPrefixSpan), and we will compare the performance of this new algorithm with the 

performance of GSP. 

1.5 – Review of Related Work 

The recent interest in performing inter-transactional analysis has lead to the definition of the 

sequential pattern mining problem and the development of new algorithms to address it. However, 

like for pattern mining, those algorithms "produce" a large number of patterns, most of them 

useless and uninteresting for the final user. 

In order to focus the discovery on user expectations, some authors have proposed the use of 

constraints. On one hand, they introduce some difficulties in the mining process, and, as been 

shown, it is necessary to use some constraint relaxations (with specific properties) to maintain the 

efficiency of the algorithms. On the other hand, constraints have rarely been applied and have not 
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been able to represent the user background knowledge, in an integrated form. 

Another important issue related with the use of constraints is the inability to discover unknown 

information. Some authors have pointed out that when used incautiously, constrained pattern 

mining may reduce the data mining process to a hypothesis-testing task. Note that, when blindly 

applied on the first step of the process, it prevents the discovery of unknown and unexpected 

patterns, which is the first and foremost goal of data mining [Hipp 2002]. 

2 – Thesis Statement 

We may formulate the central statement of the present thesis as: 

It is possible to efficiently use constrained sequential pattern mining 

algorithms over nominal temporal data to discover unknown 

information, keeping the process centered on the user. 

An analysis of the thesis statement leads to six questions that need further discussion: 

• What does "unknown information" mean? Information is used as a synonymous of pattern 

and the term unknown designates both the novel information in the reference frame of the 

information system or of the user himself [Frawley 1992]. 

• What does "to center the process in the user" mean? Centering the process in the user has 

essentially two aspects: the management of user expectations and the use of user background 

knowledge in the mining process [Brachman 1996]. By expectation management, we mean 

that the results of the process have to be in accordance with user expectations. This 

management is done by constraining the discovery process using his background knowledge. 

• How is the discovery performed? The discovery is performed by sequential pattern mining 

algorithms (described in detail in Chapter 4 and Chapter 5). 

• Which constraints may be used? As described in the above section, the problem of pattern 

mining implicitly uses an existential constraint – the minimum support threshold, to identify 

which are the frequent patterns. Additionally, other kinds of constraints have been used to 

focus the discovery process, such as temporal constraints, taxonomies [Srikant 1995] and 

formal grammars [Garofalakis 1999]. Despite the more recent efforts to study these 

constraints, they have been used in a non-integrated way. This thesis proposes a new set of 

constraints – Ω-constraints, which combine the most interesting currently existent constraints 



Chapter 3 – Related Work and Thesis Statement 

57 

with new ones, in an integrated way. These constraints are defined in Chapter 5, in detail. 

• How is the discovery of unknown patterns possible? The use of constraints helps on focusing 

the search in accordance with user expectations, but prevents the discovery of unknown 

patterns. In this thesis, we propose the use of constraint relaxations, instead of constraints by 

themselves, for guiding the mining process. This approach will be proposed in Chapter 6, 

where several relaxations are defined. 

• What does efficiently mean? Sequential pattern mining algorithms show an acceptable 

performance exploring large sparse datasets. However, in the presence of dense datasets or 

very low support thresholds, their performance suffers a considerable degradation. In this 

work, we argue that the use of constraints and constraint relaxations improve the performance 

of those processes. In this manner, efficiently means that in the majority of situations, 

constrained sequential pattern mining can be performed in less time than unconstrained 

sequential pattern mining. 

The validation of this thesis will be performed by comparing the number and interest of 

discovered patterns, using unconstrained and constrained sequential pattern mining, with 

constraints and with constraint relaxations. These evaluations will be conducted using synthetic 

data (presented at the end of each chapter) and two real-life datasets, presented in Chapter 7. 

Summary 

In this chapter, we have presented a detailed description of sequential pattern mining and the 

proposed solutions to it. Additionally, we have presented our thesis statement, which 

corresponds to a new data mining methodology. This methodology relies on the notion of 

constraint relaxation, and aims to keep the focus on user expectations allowing for the 

expression of existing background knowledge. This is done without compromising the main 

goal of data mining: the discovery of unknown information. With the conjunction of a new 

mining process and the use of constraint relaxations, the user is able to choose the level of 

knowledge that he wishes to incorporate on the process. 
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Chapter 4 

Sequential Pattern Mining: new algorithms 

In this chapter, PrefixSpan is generalized in order to deal with gap constraints – 

GenPrefixSpan. A comparison between GSP and GenPrefixSpan is performed and the results 

presented. Section 3 presents a new apriori-based algorithm – SPaRSe, which combines the 

simplicity of apriori-based algorithms with the efficiency of pattern-growth methods. With 

this new algorithm, we show that with some specific improvements, apriori-based algorithms 

can compete with pattern-growth methods. Studies on performance, scalability and memory 

requirements in synthetic datasets are presented in the last section of this chapter. 

he rapid growth of the amount of stored digital data and the recent developments in data 

mining techniques, have lead to an increased interest in methods for the exploration of data, 

creating a set of new data mining problems and solutions. Frequent Structured Mining is one of 

these problems, whose target is to discover hidden structured patterns in large databases. Sequences 

are the simplest form of structured patterns, while trees and graphs are other examples of structured 

patterns. 

The main approaches to sequential pattern mining, namely apriori-based and pattern-growth 

methods, are being used as the basis for other structured pattern mining algorithms. However, and 

despite the fact that pattern-growth algorithms have shown better performance in the generality of 

situations, its advantages over apriori-based methods are not sufficiently understood. 

In this chapter, we present a comprehensive comparison of these approaches to sequential 

pattern mining, in order to explain the main reasons why pattern-growth methods outperform 

apriori-based approaches. However, a fair evaluation of the methods requires that they have exactly 

the same goals, which is not true for the best-known algorithms, GSP and PrefixSpan. In order to 

T 
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accomplish our goal, we present a generalization of PrefixSpan (GenPrefixSpan) that deals with 

gap constraints, and maintains the pattern-growth philosophy. Finally, we analyze the conditions 

under which apriori-based methods become as efficient as pattern-growth methods, presenting a 

new apriori-based algorithm – SPaRSe (Sequential PAttern mining with Restricted SEarch). 

1 – Pattern-Growth Methods with Gap Constraints 

In Chapter 3 , section 1, we have described the two well-known algorithms for sequential pattern 

mining. In this section, we will study the effectiveness of these algorithms when dealing with gap 

constraints. 

As referred, GSP is a generalization of AprioriAll that deals with gap constraints. However 

when gap constraints are used, the PrefixSpan algorithm (and also PrefixGrowth) cannot be applied 

directly. To illustrate this limitation, consider for example the data in Table 1 and a minimum 

support threshold of 40%, which means, in this case, that a pattern has to occur at least twice in the 

database. Additionally, assume that the gap constraint is set to zero, which means that only 

contiguous sequences are allowed. 

Table 1 – Database example 

Database 
pumpu acjcde ababa achcde nozrs 

PrefixSpan finds a, c, d and e as frequent items, which constitute the f_list. Then, it recursively 

calls the main procedure (run) with α=a and an α-projected database equal to {cjcde, baba, 

chcde}. Next it recursively proceeds with α=ac and an α-projected database equal to {jcde, hcde}, 

and it finishes this branch. Similarly for element c: run is called with α=c and an α-projected 

database equal to {jcde, hcde}. Since there is no frequent element at distance 1, the search stops 

and cde is not discovered. This happens because the α-projected database only maintains the suffix 

after the first occurrence of α (procedure createProjDB in Algorithm 3). 

1.1 – GenPrefixSpan 

The generalization we propose for PrefixSpan (GenPrefixSpan) is based on the redefinition of the 

method used to construct projected databases. Instead of looking only for the first occurrence of α, 

every occurrence is considered. For instance, again using the example in Table 1, the creation of 

the c-projected database would give as result {jcde, de, hcde, de} instead of {jcde, hcde} as before. 
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It is important to note that, including all suffixes after the occurrence of an element may 

change the number of times that each pattern appears, thus modifying the database size. In order to 

be able to properly compute the support for each pattern, an id is associated with each original 

sequence. In this manner, the support counting procedure ensures that each original sequence 

counts at most once for each pattern support. For instance, for the same example the a-projected 

database would be {1-cjcde, 2-baba, 2-ba, 3-chcde}, but the support for ab would remain one, 

since baba and ba correspond to the same original sequence. 

Given that this new method requires that the α-projected database considers all the occurrences 

of α, the database considered at each step may be considerably larger than the previous one. This 

means that the search space is no longer smaller at each step, as in the PrefixSpan 

algorithm [Pei 2001]. 

 
Algorithm 6 – GenPrefixSpan pseudocode 

Fortunately, the projected database creation can be improved for the subsequent steps. In fact, 

for the remaining steps, in order to create αb-projected databases (with b a frequent item after α) it 

is only necessary to look for the occurrences of b, whose distance to α is less than the maximum 

distance allowed (δ+1), ensuring that αb is frequent in accordance with the established gap 

constraint (as shown in the new createProjDB procedure in Algorithm 6). Therefore, the design 

of GenPrefixSpan remains similar to the original PrefixSpan, as shown in Algorithm 6, and the 

generation of the projected databases can be done with any of the proposed methods. All the 

presented results on the final section use the pseudo-projection to generate the projected databases. 
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The difference between the use of createProjDB in the first and remaining steps resides in 

the firstStep flag, which ensures that in the first step all occurrences of α are considered and 

that, for the remaining steps, only the occurrences of α at a legal distance are considered. Note that 

when there is no gap constraint, the creation of projected databases (createProjDB(b,∞,DB,true)) 

is similar to the corresponding procedure defined in original PrefixSpan, since it only generates the 

projection relative to the first occurrence of α. In this manner, the performance of GenPrefixSpan 

and PrefixSpan are similar in the absence of gap constraints. 

Another interesting issue is that when only contiguous patterns are allowed, the procedure 

createProjDB only looks for the first itemset after α, which increases its performance. 

2 – Comparison between GSP and GenPrefixSpan 

In order to understand and identify what are the most time consuming operations of each algorithm, 

we have performed a profiling study, recording the total time spent by the main steps of each 

algorithm. Both GSP and GenPrefixSpan were executed in a set of synthetic datasets (described in 

detail in section 4) with several different values for minimum support threshold. 

As other pattern-growth methods, GenPrefixSpan generally outperforms GSP, and shows much 

better results for low minimum support threshold values. In order to understand why this happens, 

let us analyze the time spent in each step of GSP when using low minimum support values.  

We have considered the two main steps of GSP: candidate generation and candidate test. 

Candidate generation includes generateL1, which corresponds to the initial step, where frequent 

1-sequences are discovered; candidateGeneration – the procedure that defines the sequences 

potentially frequent and candidatePruning – the procedure that eliminates some of the 

candidates, in accordance to the anti-monotonicity property. 

The step of candidate testing corresponds to supportPruning, the procedure that counts the 

support for each potentially frequent sequence, by performing the database scan. 

Table 2 shows that the support-based pruning procedure consumes almost the totality of 

processing time. For GenPrefixSpan, the relative results are quite different: the processing time 

spent in scanning the database is approximately 50% (Table 2), and uses much less time than GSP 

for low minimum support values. 
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Since both methods spend a large percentage of time scanning the database, what makes 

GenPrefixSpan much faster than GSP? The answer lies in the reduction of the search space. In fact, 

at each recursion step, GenPrefixSpan usually scans a smaller database, since the α-projected 

database has more sequences than the αb-projected database. 

Table 2 – Processing Times for GSP and GenPrefixSpan 

 GSP GenPrefixSpan 
sup CandidateGeneration Candidate Test Total Find Elements Create Proj DB Total 

50% 0,01s 0% 3,19s 100% 3,19s 0,88s 50% 0,89s 50% 1,78s
40% 0,01s 0% 4,90s 100% 4,91s 1,33s 53% 1,16s 47% 2,49s
33% 0,02s 0% 9,08s 100% 9,10s 2,01s 55% 1,67s 45% 3,68s
25% 0,02s 0% 17,32s 100% 17,34s 3,40s 55% 2,74s 45% 6,15s
10% 1,26s 1% 157,63s 99% 158,89s 18,71s 58% 13,41s 42% 32,13s

3 – SPaRSe – Sequential Pattern Mining with Restricted Search 

The results of this analysis lead us to analyze the possibility of applying a search restriction to 

apriori-based methods. In this section, we present a new algorithm, which combines the candidate 

generation and test philosophy with the restriction of the search space obtained from the use of 

projected databases. 

SPaRSe (Sequential Pattern mining with Restricted Search) is a new algorithm obtained by 

adapting GSP to use restricted databases. It acts iteratively like apriori-based algorithms, in that 

after discovering the frequent elements, it looks for patterns with growing length at each step. It 

finishes when there are no more potential frequent patterns to search. The key idea is to maintain a 

list of supporting sequences for each candidate, and to verify the existence of quorum only in the 

subset of sequences that support both generating candidates. 

Algorithm 7 describes the main procedure of SPaRSe. Note that its main procedure is identical 

to the main procedure of GSP, since the patternDiscovery procedure aggregates the 

functionalities of candidateGeneration, candidatePruning and supportPruning in GSP. 

The difference to GSP is the fact that SPaRSe generates and tests each candidate separately. 

Procedure satisfies counts the support for one candidate and returns true if it is frequent and 

false otherwise. This behavior is similar to the behavior of supportPruning in GSP. (The 

join procedure remains identical to the one presented on Algorithm 2). 
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Algorithm 7 – SPaRSe pseudocode 

3.1 – Support-Based Pruning 

However, what makes SPaRSe more than a variant of GSP, is the restriction of the search space in 

a way similar to PrefixSpan: it associates each frequent discovered pattern with the set of 

sequences where it appears. This set is called the support database. In this manner, it is possible to 

count the support of a new candidate, only in the intersection of the support databases of its 

parents. Note that the anti-monotonicity property implies that if a sequence does not support a 

pattern, then it could not support any of its super-patterns. When the support of a candidate is 

counted, only the potential support sequences are scanned. 

In SPaRSe a pattern is not only a sequence in itself, but it contains the information that lists the 

sequences where it occurs, which correspond to its support database. This simple modification 

justifies the new procedure for generating candidates – createNewCandidate. This simple 

inclusion allows for constraining the search considerably, improving the global average 

performance. However, maintaining support databases for each discovered pattern, and for every 

candidate of length k, may be prohibitive in terms of memory. 

A simple contribution to minimize this problem is to use an array of bits to represent the 

support database. Note that, in GenPrefixSpan an α-projected database uses more memory (since it 

also keeps the sequence identification and the index of the α occurrence). However, 
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GenPrefixSpan is a depth-first traversal algorithm, which avoids having all projected databases in 

memory at the same time. 

In the case of breath-first traversal algorithms, as SPaRSe, the solution may be to redesign the 

candidate generation and test procedure: instead of generating all candidates at once and then 

testing them, it is possible to generate and test each one alone, minimizing the memory 

requirements, which explains the design of the patternDiscovery procedure. 

Note that with this change, it does not make sense to use sophisticated data structures, as hash-

trees, to count the support for each candidate. Usually, apriori-based algorithms use hash-trees to 

store all candidates, and scan the database once to count the support for all candidates. Generating 

and testing each candidate alone invalidates this strategy. 

However, for very low support thresholds SPaRSe does not work better than GenPrefixSpan, 

spending long times in the candidate generation and pruning steps (as shown in Figure 4.1). 

SPaRSe profiling

27%29%

44%

sPruning gCandidates cPruning
 

Figure 4.1 – SPaRSe profiling for very low support thresholds 

3.2 – Candidate Generation 

Remember that apriori-based methods generate k-sequence candidates by joining two (k-1)-

patterns, when the prefix of one is equal to the suffix of the other (join procedure). This operation 

may consume a considerable amount of time when there are many frequent patterns. This happens, 

since for every pattern it is necessary to verify which patterns have a prefix equal to its suffix. 

To improve the generation of k-candidates, SPaRSe stores all (k-1)-patterns in a hash-tree. 

Figure 4.2 exemplifies this data structure when storing the different combinations of two elements. 

When the number of items is large and the database is sparse it is useful to use the same leave 

to store sequences with different prefixes, justifying the use of a hash-tree instead of a suffix-tree. 
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Figure 4.2 – Hash-tree used in candidate generation 

In order to generate a new candidate with length k, SPaRSe does not need to look for every 

other candidate. The algorithm takes the suffix of the candidate and follows its path in the hash-

tree. The reached sub-tree contains the sequences that may match with s to generate a new 

candidate. Now it is only necessary to verify if they really match with s, and then generate new 

candidates. 

Consider for example the sequence a(ab): following the path of its suffix (ab) in the hash-tree, 

we discover the sequences that may match with it – abb, (ab)b, aba and (ab)a. Note that only (ab)b 

and (ab)a are really appropriate to join with it and generate two new candidates: a(ab)b and a(ab)a. 

Figure 4.2 shows the followed path with a doted line, and possible matching sequences in a 

shadowed box. 

By avoiding testing if any two patterns match, SPaRSe improves its performance by about 

50%, for low support thresholds. 

3.3 – Candidate Pruning 

We have also considered another improvement, the use of a hash-tree to implement candidate 

pruning. 

The key idea of candidate pruning is to eliminate candidates that cannot be frequent, as stated 

before. However, verifying if every maximal subsequence is frequent for every candidate may be 

prohibitive, especially when low support thresholds are used. 

Like candidate generation, this procedure may use a hash-tree to identify the potential frequent 

patterns. Consider the hash-tree in Figure 4.3 and the candidate (ab)aa. It has three maximal 

subsequences aaa, baa and (ab)a. Although the first and second ones are frequent patterns 

(presented in shadowed boxes), the third one is not, since it is not stored in the hash-tree. Looking 

for the path of each subsequence in the hash-tree reduces significantly the time needed to make this 

discovery. 
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Figure 4.3 – Candidate pruning example 

In summary, SPaRSe is an apriori-based algorithm, which follows the candidate generation and 

test philosophy. It has three fundamental differences to GSP:  

- it generates and tests one candidate at a time; 

- it uses support databases to count the support for each candidate;  

- it uses a hash-tree to store frequent patterns. 

These improvements directly contribute to accelerate the candidate generation and pruning 

procedures. In the next section, it is shown how SPaRSe and GenPrefixSpan algorithms deal better 

with datasets of different characteristics, and that either one of them may represent the best choice 

for a particular application. 

4 – Experimental Results 

The comparison of sequential pattern mining algorithms over a large range of data characteristics, 

such as different support thresholds, dataset sizes and sequence lengths, has been done by several 

authors (see for instance [Agrawal 1995c], [Srikant 1996], [Zaki 1998a], [Pei 2001] or 

[Ayres 2002]). However, as stated in Chapter 3, section 1.1, the results depend on the dataset 

density, and to our best knowledge, there has been no study about the performance of sequential 

pattern mining algorithms in dense datasets. 

Our goal in this section is to understand the impact of those characteristics in the performance 

of the algorithms. In order to do that, we compare the performance of GenPrefixSpan, SPaRSe, and 

GSP, over several distinct synthetic datasets, considering all of the enumerated characteristics. The 

performance of GSP only serves as a reference line to the performance of the other two algorithms, 

since the execution times are generally much larger. Neither PrefixSpan nor SPAM [Ayres 2002] 

could be used, since they do not deal with gap constraints. 

The basic methods used by the different algorithms were the same (basic operations on 
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sequences, support verification, etc) which means that the comparisons are meaningful and 

repeatable. The GSP algorithm follows the original description [Srikant 1996], and GenPrefixSpan 

and SPaRSe the descriptions in this chapter. The datasets were maintained in main memory during 

the processing, avoiding hard disk accesses. 

To perform the study over a large range of different characteristics, we used the standard 

synthetic data set generator from IBM Almaden (described in Appendix B). The datasets used in 

these experiments were generated maintaining all, except one, of the parameters fixed, and 

exploring different values for the remaining parameter. In general, the datasets contain 10.000 

sequences (Parameter D of the generator set to 10), with 10 transactions each on the average 

(C=10). Each transaction has on the average 2 items (T=2). The average length of maximal patterns 

is set to 4 (S=4) and maximal frequent transactions set to 2 (I=2). These values were chosen in 

order to follow closely the parameters usually chosen in other studies. The values for different 

sequential patterns (Ns) and transactional patterns (Ni) were also chosen similarly, set to 5.000 and 

10.000, respectively. 

The next subsections present the performance results achieved using datasets with different 

densities, followed by the studies on different support thresholds and different gap values. The 

section finishes with the scalability studies. 

Performance with different densities 

The behavior of both algorithms is somehow different for different levels of density. As can be 

observed in Figure 4.4, GenPrefixSpan achieves better results for sparse datasets, but shows 

performances similar to the ones shown by SPaRSe for dense datasets. 
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Figure 4.4 – Performance with different dataset densities (support set to 10%) 

The main reason for this difference is that SPaRSe does not waste so much time generating 
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infrequent candidates for dense datasets. Since there are more patterns, both algorithms have to 

generate a similar number of sequences, reducing the difference between their processing times. 

The different values for density were achieved by varying the number of different items in the 

dataset from ten to one thousand (N∈{10, 20, 30, 40, 50, 100, 500 and 1.000}). 

We have also studied the memory requirements. As stated before, GenPrefixSpan requires 

more memory than SPaRSe, since it has to maintain multiple indexes for the same sequence and 

the corresponding pattern position for each occurrence. 
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Figure 4.5 – Memory requirements in the presence of different dataset densities 

Figure 4.5 shows that both algorithms require more memory when processing dense datasets, 

since the number of patterns is higher. 

Performance with different support thresholds 

For different minimum support thresholds, the results are consistent. SPaRSe is comparable to 

GenPrefixSpan in dense situations (Figure 4.6), 
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Figure 4.6 – Performance with different support thresholds in dense datasets 
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and shows worst results for sparse datasets (Figure 4.7). 
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Figure 4.7 – Performance with different support thresholds for sparse datasets 

It is interesting to note that the execution times in sparse datasets are about ten times faster than 

in dense datasets, for all the algorithms. 

These results show that a great part of the efficiency of GenPrefixSpan is due to its memory 

usage. In several other experiments, conducted in machines with less available memory, the results 

were slightly different, with GenPrefixSpan showing worst results than SPaRSe for dense datasets. 

However, in the presence of machines with less memory (say 250Mb) the results are again worst 

for SPaRSe. In fact, since GenPrefixSpan works in a depth-first manner, it is able to manage hard-

disks access in a more efficient way. 

Performance with different gap constraints 

When comparing the algorithms for different gap constraints, the results are considerably different 

(Figure 4.8). GenPrefixSpan is considerably worst than SPaRSe for less restrictive gaps. 
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Figure 4.8 – Performance with different gap constraints (support set to 10%) 

In fact, while SPaRSe must scan the entire sequences for finding a pattern (even if it is not 
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present in the sequence), GenPrefixSpan only has to look for the itemsets in the positions near the 

already discovered pattern prefix. When gap is set to zero, GenPrefixSpan only has to look at the 

next position, reducing the amount of time needed in scanning the dataset. Furthermore, for longer 

gaps, the number of sequences in the projected database increases, which also contributes to reduce 

its performance. 

Scalability 

Since the most time consuming operation is scanning the database, the results achieved by 

algorithms for bigger datasets are not surprising. All algorithms present worst behaviors for large 

datasets, but with slightly different patterns of growth (Figure 4.9). 
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Figure 4.9 – Performance with different dataset sizes (support set to 10%) 

The results show that SPaRSe and GenPrefixSpan present a considerably better performance 

for very large databases (larger than 10 thousands of sequences) than GSP. 

It is interesting to see that GenPrefixSpan requires much more memory than apriori-based 

algorithms (see Figure 4.10). 
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Figure 4.10 – Memory requirements in the presence of different dataset sizes 

This difference in memory requirements is due to the creation of projected large databases, 
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since GenPrefixSpan has to maintain multiple indexes for the same sequence and needs to store the 

pattern position for each occurrence (see section 1.1 for details), wasting more memory than 

SPaRSe. This is clearly most notorious for larger datasets. 

Scale-up for different average sequence length 

Another important factor in the performance of sequential pattern mining algorithms is the average 

length of sequences. In order to evaluate different situations, the generated datasets include 

sequences with different numbers of transactions. Indeed, the sequence length influences the time 

spent when looking for each frequent candidate. 
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Figure 4.11 – Performance with different average sequence length (support set to 33%) 

For long sequences (more than 25 itemsets), the probability of supporting every element is very 

high. In this manner, SPaRSe is not able to reduce the search space (since the support databases 

approximately maintain the original size) and its candidate pruning does not eliminate a significant 

number of candidates. On the other side, GenPrefixSpan only has to look for the next position, 

efficiently dealing with long sequences (Figure 4.11). 

In summary, the synthetic experiments reveal essentially four aspects: 

- GenPrefixSpan clearly outperforms GSP, maintaining the characteristics of pattern-

growth methods; 

- SPaRSe and GenPrefixSpan show similar performances on dense datasets; 

- GenPrefixSpan outperforms SPaRSe in sparse datasets, mainly due to the time spent on 

candidate generation by SPaRSe; 

- GenPrefixSpan requires much memory than SPaRSe and GSP. 
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Summary 

In this chapter, we have presented and compared two new algorithms: GenPrefixSpan and 

SPaRSe. 

GenPrefixSpan is a generalization of the PrefixSpan algorithm to deal with gap constraints. 

In order to achieve that goal, we have proposed a new method to generate projected 

databases that store the subsequences of all occurrences of each frequent prefix. It is shown 

that this new method keeps its performance advantages relatively to apriori-based algorithms 

in the more difficult situation of low support thresholds. 

The SPaRSe algorithm is another contribution of this thesis. In general, it can be viewed as 

an apriori-based algorithm that matches the execution times of GenPrefixSpan, in most 

situations. This algorithm conjugates the simplicity of candidate generation and test 

philosophy, with the benefits that come from the restriction of the search space, used by 

pattern-growth methods. Like apriori-based algorithms, SPaRSe deals naturally with 

constraints, in particularly with gap constraints.  

This chapter also presents a detailed discussion of advantages and disadvantages of both 

approaches (apriori-based and pattern-growth methods) by comparing the performance and 

memory requirements of SPaRSe and GenPrefixSpan in a diversity of situations. Identifying 

the situations where each algorithm presents better results. 
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Chapter 5 

Constraints for Mining Event Sequences 

In this chapter, we propose a new theoretical framework for finding patterns over nominal 

event sequences. This is achieved by the definition of a set of new constraints, which permits 

the introduction of user background knowledge into the mining process. The chapter finishes 

with a description of the extensions applied to sequential pattern mining algorithms to deal 

with those constraints and some experimental results. 

ata mining algorithms are usually unable to produce optimal results with respect to all the 

trade-offs that they account for: usefulness versus certainty, concise and understandable 

models versus highly accurate black boxes, sample size versus error rate, or simply model 

expressiveness versus computation time. As pointed by Bayardo [Bayardo 2002], constraints play a 

critical role in solving those problems by focusing "the algorithm on regions of the trade-off curves 

(or space) known (or believed) to be most promising". By using constraints, the user assumes the 

responsibility of choosing which of those aspects are most important for the current task. 

When considering the discovery of patterns among nominal event sequences, the trade-offs 

remain challenging and are mostly related to the inverse relation between the amount of discovered 

patterns and the human ability to deal with those quantities. In order to deal with this problem 

several categories of constraints have been proposed: existential, item, length, model-based, 

aggregate, regular expression, and duration and gap constraints (as described previously in Chapter 

3, section 1.2). 

D 
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1 – ΩΩΩΩ-constraints 

Despite the efforts to capture application semantics using constraints, they have been used in a non-

integrated way, being seldom applied to the sequential pattern mining process. An exception is the 

existential constraint, which is inherent to the pattern mining process, since it defines the notion of 

frequency for each task. 

Definition 25 - An existential constraint specifies the minimum threshold support 

allowed in the mining process. 

Although existential constraints play a fundamental role on pattern mining, they only capture 

the knowledge about the number of entities that are significant for the specific business. As such, 

they are not able to represent any other knowledge about the business domain. 

However, the existence of this background knowledge is a reality. For example, taxonomies 

defined over the items are often available, since they represent part of the business domain – 

usually an accepted categorization of the items relevant to it. Another usually known issue is 

related to the lifespan of items or just to the time interval that is interesting to the analysis. 

The other constraints used in pattern mining, can be generally classified into two categories: 

constraints over content and constraints over temporal aspects. Indeed, item, aggregate, model-

based constraints and regular expressions are concerned with content, since they specify which 

entities are of interest to the mining task, just by enumerating which ones may be considered or by 

enumerating interesting relations between different entities. Examples of constraints concerned 

with temporal issues are duration, length and gap constraints, since they establish temporal 

relations between the elements of the sequences. 

The inexistence of a framework able to register these types of knowledge has hampered the 

expansion of the use of pattern mining in general, and of pattern mining over nominal temporal 

data in particular. In order to provide this integrated framework, we propose a new class of 

constraints – the Ω-constraint. 

Definition 26 - An Ω-constraint is a triple Ω = (ϕ, θ, σ), where ϕ is a content 

constraint, θ is a temporal constraint and σ is an existential constraint. 

The goal of this class of constraints is to allow an easier representation of background 

knowledge, including content and temporal knowledge. This is achieved by the aggregation of 
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three categories of constraints: existential constraints that are the core of pattern mining algorithms; 

content and temporal constraints that are able to represent the existing knowledge about the 

business domain structure and rules. 

Constraint

Content
Constraint

Temporal
Constraint Ω −Constraint

Existential
Constraint

 
Figure 5.1 – Constraint's hierarchy 

Figure 5.1 illustrates the relations between the four classes of constraints. The diagram is 

represented in UML [Alhir 1998], where � represents the inheritance and � represents the 

aggregation. Content and temporal constraints are defined next. 

2 – Temporal Constraints 

In general, temporal issues have been discarded from the sequential pattern mining process. For 

example the interesting approaches to explore existent temporal relations, as the ones used by 

Özden and Ramaswamy for discovering cyclic [Özden 1998] and calendric rules 

[Ramaswamy 1998], did not have often been applied to sequential pattern mining. Actually, most 

sequential pattern mining algorithms do not use any temporal constraint (see for instance 

[Agrawal 1995c], [Zaki 1998a], [Pei 2001] and [Ayres 2002]). The easy matching of the position 

of each sequence itemset with a time instant has lead to a simplification of the problem. Nominal 

event sequences are usually represented without the timestamp of each event. In this manner, 

algorithms do not have to concern themselves with temporal relations beside the sequential nature 

of the data. 

Like items, timestamps are used in accordance with the business domain. However, while 

items are specific for each domain, the possible values for timestamps usually belong to a pre-

defined set of time-concepts. Since these concepts are common to most business domains and can 

be represented in a similar way in the generality of applications, several representations have been 

proposed. 
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As described in Chapter 2, section 3.2, the most usual representation for time concepts is based 

on the use of calendars that are formally defined as structured collections of time intervals. 

However, calendars make use of a set of time concepts that have to be defined precisely, in order to 

make possible the clear definition of time constraints. 

Fortunately, the recent developments in the area of knowledge representation make possible 

the creation, reuse and sharing of ontologies. An ontology is an explicit specification of a 

conceptualization [Gruber 1998], which means that it is a specification of an abstract, simplified 

view of the domain. 

Since the representation of time is fundamental to any knowledge base that includes 

representations of change and action, in the last years some Time Ontologies have been proposed 

(Simple Time and Reusable Time [Zhou 2002], DAML-Time [Hobbs 2003], etc.). Like any other 

ontology, those present a description of the concepts and relationships that can exist in a given 

domain. In the case of Time Ontologies, several approaches can be followed, but a large number of 

them follow the definitions proposed in [Allen 1983], where time points and time intervals are the 

central concepts. 

2.1 – Reusable Time Ontology 

In concrete, the Reusable Time Ontology [Zhou 2002] is based on the notion of a time line, with 

time being continuous and linear. 

Time Interval
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Time
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EndingPoint
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Figure 5.2 – Reusable Time Ontology 
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The core concepts are TimePoint and TimeInterval, but include the concepts of 

TimeQuantity, TimeUnit and TimeGranularity, as shown in Figure 5.2, again represented in 

UML, and with the relations labeled with their names. 

A TimePoint represents a specific time position on the timeline, which can be viewed as a 

particular moment. A TimeInterval corresponds to a time-period that occurs between two time 

points (the StartingPoint and the EndingPoint). Another way to see time intervals is to 

consider them as approximations to time points [Hayes 1995], accepting some uncertainty on their 

value. This means that a time interval may represent partial information about the location of a time 

point. Time intervals are the most central concept for temporal pattern mining, since they can 

represent both the lifespan of items and periods of interest. A TimeQuantity is an amount of time 

that is represented by a real number and a TimeUnit. Time units correspond to the granularities of 

time, such as year, month, day, hour, and so on. 

This ontology defines two classes of time intervals, convex and non-convex ones. The first 

class corresponds to connected intervals in the time line and the second is a disjoint and complete 

decomposition of time intervals, which correspond to non-connected time intervals, i.e. with 

"holes" in them. A special kind of non-convex time interval is the 

RegularNonConvexTimeInterval, which is composed of several convex time intervals for 

representing regularly recurring events. 

As can be seen on Figure 5.2, the granularity is an attribute of a time point, which means that it 

occurs anywhere in a certain time interval, with some uncertainty. The ontology also provides a set 

of predefined ConvexTimeIntervals, for different days, weekdays and months – 

CalendarDay, CalendarWeekday and CalendarMonth, respectively. 

The Reusable Time Ontology also distinguishes between open and closed time intervals. 

However, those concepts are not needed to define temporal constraints, and consequently are not 

addressed in this text. 

2.2 – The Hierarchy of Temporal Constraints 

Using the concepts defined in the Reusable Time Ontology, the definition of temporal constraints is 

considerably easier. 

 



Chapter 5 – Constraints for Mining Event Sequences 

80 

Definition 27 - A temporal constraint is a triple θ = (∆, δ, γ), which specifies some 

restriction over the timestamps of transactions. It is composed of: 

i) a time interval (∆); 

ii) a time quantity to represent the allowed time gap (δ); 

iii) a time granularity (γ). 
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Figure 5.3 – Temporal Constraints: regular and convex constraints 

As in time intervals, we can distinguish two classes of temporal constraints: Convex Temporal 

Constraints and Cyclic Constraints (Figure 5.3). 

Definition 28 - A convex constraint is a temporal constraint, whose time interval is a 

convex time interval. 

These constraints are adequate to specify contiguous amounts of time, like the lifespan of some 

item, as defined in Chapter 3, section 1.2. When using a convex time interval to verify if a time 

instant belongs to the interval, it is only necessary to compare the corresponding time point with 

the starting and ending points of the time interval. 

Definition 29 - A cyclic constraint is a temporal constraint, whose time interval is a 

regular non-convex time interval. 
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Cyclic constraints are ideal to deal with cyclic patterns, since they permit the definition of non-

contiguous time intervals, but impose a determined periodicity. The verification of the satisfiability 

of these constraints is more complex than for convex constraints, but still feasible: a time instant 

belongs to a regular non-convex time interval, if and only if it belongs to any of the convex 

intervals of the main interval. 

The other two attributes of temporal constraints complement the role of ∆ (the time interval), 

since γ (the time granularity) specifies the granularity of interest, and δ specifies the time gap 

allowed between consecutive events. 

3 – Content Constraints 

Content has been the main focus of pattern mining and the use of constraints concerning content 

has been widely studied by the data mining community, probably due to its generality. Examples of 

this kind of constraints are item constraints and regular languages, as described in Chapter 3, 

section 1.2. 

Content constraints provide an integrated framework to represent the knowledge about the 

items relevant in the business domain and registered along time. In order to answer these 

challenges, we propose a new content constraint. 

Definition 30 - A content constraint is a tuple ϕ=(Σ, τ, λ, π), which is defined over the 

set of items, specifying the characteristics that sequences of itemsets may have. It 

consists of: 

i) the alphabet or set of items (Σ) to consider; 

ii) a taxonomy (τ) defined over the set of items and the abstraction level (λ) to be 

used in the mining process; 

iii) a formal language (π) defined over the alphabet, for specifying the accepted path. 

The alphabet corresponds to a general item constraint, specifying which are the items to be 

considered relevant; the taxonomy (as defined in Chapter 2, section 2.1) is used to represent the 

background knowledge about the items and existent is-a relations among them. The first difference 

to existing approaches is the use of a specific abstraction level (λ). As noted in Chapter 3, section 

1.2, the discovery of generalized patterns introduces the need to measure the interestingness of 
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each discovered pattern, increasing the complexity of algorithms. In order to conjugate the benefits 

of being able to represent background knowledge and the reduction of the number of discovered 

rules, we propose the specification of the abstraction level that would be used in the pattern mining 

process. In this manner, the discovered patterns would be as general as desired by the final user, 

according to his expectations and knowledge domain. Simultaneously, it is possible to reduce the 

number of patterns, agglomerating several possible sequences on more abstract ones, avoiding the 

assessment of the interest of patterns. 

Finally, the formal language specifies which sequential patterns are accepted as interesting to 

the user. As pointed out in Chapter 2, section 3.1, there are several kinds of formal languages. In 

this work, we propose the use of context-free languages to define the parameter π of the content 

constraint. The next section explains how context-free languages can be applied to constrain the 

sequential pattern mining process. 

3.1 – Content Constraints with Context-free Languages 

As pointed before (in Chapter 3), regular languages are unable to represent some of the most 

interesting patterns. Since context-free languages are more general than regular ones and are able to 

deal with part of those patterns, it is natural that we try to use them to guide the mining process. 

The first problem that should be faced is related with the use of context-free languages with 

itemsets. In fact, a language is a set of finite sequences of symbols, but sequential pattern mining 

deals with sequences of itemsets. Considering that an itemset is not a symbol, the use of any formal 

language to constrain the mining process is not directly possible. However, as shown in related 

work (Chapter 3, section 1.4) the use of languages can be very useful. 

A simple way to deal with this problem is to consider that each itemset corresponds to a 

different symbol in a new alphabet that corresponds to the powerset of items in the original 

alphabet (excluding the empty set). 

For example, if there are three different items x, y and z, the new alphabet would be composed 

of a, b, c, d, e, f and g, with the symbols a, b and c corresponding to the items x, y and z, 

respectively, and the symbols d, e, f and g corresponding to the itemsets (x,y), (x,z), (y,z) and 

(x,y,z), respectively. 

The second problem that should be solved is the use of pushdown automata instead of finite 

automata, since context-free languages are generated by (non)deterministic pushdown automata, 

while regular languages are generated by deterministic finite automata. In general, the use of this 
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class of languages in sequential pattern mining introduces two new challenges: 

- to manipulate the pushdown stack effectively; 

- and to deal with the non-determinism. 

In fact, the non-determinism of some of the pushdown automata has influence on the efficiency 

of mining algorithms, since the verification of the acceptability of each sequence can be much 

slower. 

However, the manipulation of the stack introduces additional difficulties when in the presence 

of sequences of itemsets, instead of sequences of items (strings). A similar difficulty was also noted 

by SPIRIT authors, which had to define some intermediate predicates in order to deal with 

itemsets. 

Context-free Languages with Itemsets 

However, in order to solve these difficulties, the syntax and semantics of pushdown automata have 

to be extended. 

The problem is related to the fact that sequential pattern mining algorithms manipulate one 

item per iteration, instead of an entire itemset. In this manner, we need to perform partial 

transitions, corresponding to the item involved at the specific step iteration. To illustrate this 

situation consider the pushdown automaton represented in the Figure 5.4. 

q2q1

[(a,b),X]�pop

[ε, S]�pop

[(a,b), S]�push X

[(c), X]�no op

[(a,b), X]�push X

 
Figure 5.4 – Pushdown automaton with itemsets 

The automaton generates sequences with the same number of baskets (a,b) on the left and right 

side of c, which means that it generates sequences like (a,b)c(a,b) or (a,b)(a,b)c(a,b)(a,b). 

Consider for example that algorithm PrefixGrowth is applied to find patterns that satisfy this 

restriction, and it finds a, b and c as frequent. Then it has to proceed to discover which items are 

frequent after a. At this point, there is already one problem: given that it has found a, which 

operation should it perform over the stack? If it applies the push X, then c will be accepted after a. 

However, if the push operation is applied after finding b, then it will accept as "potentially 
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accepted" sequences like aaa, aaaaa and so on, since S remains on the top of the stack. 

In order to deal efficiently with itemsets, we have to extend the notion of PDA. 

Definition 31 - An extended pushdown automaton (ePDA) is a tuple 	=(�, Σ, Γ, δ, q0, 

w0, �), with �, Σ, Γ, q0 and � defined as for pushdown automata; w0=Z0$ with Z0 

the start symbol as in pushdown automata, and δ defined as a mapping function 

from �×� (Σ)∪{ε}×Φ to finite subsets of �×Φ*, with � (Σ) representing the 

powerset of Σ and Φ defined as follows 

Φ = {w ∈ Γ ∪ {$}: w = x*$ ∧ x ∈ Γ} 

The difference to pushdown automata is the transition function, which manipulates itemsets 

and strings of stack elements instead of items and stack elements, respectively. Figure 5.5 

illustrates an extension to the PDA illustrated in Figure 5.4. 

q2q1

[(a,b),XY]�pop

[ε, S]�pop

[(a,b), S]�push XY

[(c), XY]�no op

[(a,b), XY]�push XY

 
Figure 5.5 – Extended pushdown automaton equivalent to the PDA in Figure 5.4 

Note that the pop operation removes the top of the stack, which means that it removes the 

entire queue XY. 

Implementation Issues 

With the proposed extension, it is now possible to represent more interesting constraints over 

sequences of itemsets than with finite automata. 

However, in order to explore sequential data with existing sequential pattern mining 

algorithms, it is necessary to adapt those algorithms to use ePDAs instead of DFAs. In particular, 

given that algorithms manipulate one item at each step (instead of entire itemsets), the 

implementations of the algorithms have to be able to manipulate the stack elements in a partial 

form. In this manner, at the implementation level, we need two new operations: a partial push – 

addAtLast, which introduces a new symbol on the element on the top of the stack, and a partial 
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pop – removeFirstOnLast, which removes the first element on the top of the stack. 

q2q1

[ε, S]�pop

[(a,b,c), S]�push XYZ

[(a,b,c), XYZ]�push XYZ

[(d,e),XYZ]�pop

[(d,e),XYZ]�pop

q2q1

[ε, S]�pop

[(a,b), S]�push XY

[(a,b), XY]�push XY

[(c,d,e),XY]�pop

[(c,d,e),XY]�pop

 
Figure 5.6 – Two other extended pushdown automata 

Now consider the automata in Figure 5.6. The number of items in both baskets is not equal, but 

pop operations can be performed in different manners. When there are more elements in the top of 

the stack than the items on the basket (exemplified on the automaton on the left), the pop operation 

is performed by several removeFirstOnLast operations, one per each step: it removes the first 

element on the top of the stack, until it has found the last item, then it removes the top of the stack. 

In the presence of the other situation (illustrated by the automaton on the right), the pop operation 

will remove X when it finds c, removes Y when it finds d and removes the top of the stack when it 

finds e. The choice of each kind of pop operation can be determined by comparing the basket size 

with the number of elements in the top of the stack. 

Next, we will discuss how sequential pattern mining algorithms can be modified to use 

efficiently temporal pattern mining constraints. 

4 – Algorithms for ΩΩΩΩ–constraints 

As shown before, the use of constraints may have a great impact on the design of sequential pattern 

mining algorithms. Fortunately, the use of Context-Free Languages, instead of Regular languages, 

does not imply any adaptation to existent algorithms, but only to the implementation of pushdown 

automata (as explained in the last section). Moreover, those algorithms can be extended to use gap 

constraints as well without any additional change. 

In order to provide an algorithm that deals with Ω–constraints, we propose an extension of 

GenPrefixSpan – GenPrefixGrowth, which follows the proposals of PrefixGrowth closely. In 

general, the structure of this new algorithm remains the same, as shown in Algorithm 8. 
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Algorithm 8 – Pseudocode for the main procedures of GenPrefixGrowth algorithm 

The great difference to GenPrefixSpan resides on the verification that α is a valid prefix in 

accordance to the Ω–constraint, as used by PrefixGrowth, and the inexistence of a specific 

procedure to generate the projected databases. 

In fact, the introduction of several constraints simultaneously, implies the verification of each 

potential pattern by several different filters (content, temporal and existential ones). In order to deal 

efficiently with this aggregation of constraints, the algorithm should avoid the multiple test of each 

potential pattern.  

For example, the first step of both algorithms consists on the discovery of frequent elements in 

the database (call it discoverL1). In particular, discoverL1 in GenPrefixGrowth also has to 

identify the sequences that have events belonging to the specified time interval. In this manner, the 

first time that discoverL1 is called, it determines the minimum number of times that a sequence 

has to occur, to be considered frequent, as illustrated in Algorithm 9. 

 
Algorithm 9 – Pseudocode for the discoverL1 procedure in GenPrefixGrowth 

In the following steps, the difference is the same: GenPrefixGrowth has to verify the 
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acceptability of α in accordance to the imposed constraint. The new discoverFList procedure 

performs this task, creating the projected databases simultaneously (Algorithm 10). Like in 

GenPrefixSpan, the procedure has to discover the parallel and serial valid events, a task performed 

by findParallelEvents and findSerialEvents, respectively. 

 
Algorithm 10 – Pseudocode for the discoverFList procedure in GenPrefixGrowth 

The great difference between the versions of discoverFList, is the simulation of α in the 

automaton responsible for generating the formal language used in the content constraint 

(Ω.simulate(α)). When the automaton is deterministic (either a finite or a pushdown automaton), 

the simulation of α can improve the overall performance. The goal is to avoid the multiple 

verification of the acceptability of α. After this simulation, the discovery of the items accepted 

after α, is reduced to the verification that the item in consideration can be appended to α. 

The easiest way to integrate this new constraint in the algorithm is to represent the constraint as 

an object, able to perform each test. In this manner, the algorithm just has to receive it as an 

argument, and let the constraint discover which sequences are accepted and frequent. This object-

based approach is very useful, since it allows the substitution of the constraint with any other that is 

able to perform the same task. In this manner, there is no difference in algorithms that deal with 

regular (DFA) or context-free languages (PDA). 

Since the constraint encapsulates the methods to decide which elements are accepted, we are 

no more in the presence of a simple algorithm able to deal with a specific constraint, but in the 

presence of an algorithm able to deal with a class of constraints. As stated by other authors, these 

constraints only have to be anti-monotonic or prefix-monotonic, if used by apriori-based or pattern-

growth methods, respectively. 

In the next chapter, we will use the same algorithm with constraint relaxations, without adding 

any change. In order to discover relaxed constrained patterns, it is only needed to define and 

implement constraint relaxations, with accepts, acceptsPrefix, findParallelEvents, 
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findSerialEvents and simulate methods. 

5 – Experimental Results 

The use of constraints has been one of the main issues in sequential pattern mining. On one hand, 

the discovered patterns correspond to the expected ones and on the other hand, processing times are 

considerably smaller for constrained processes. 

In this section we will show that these claims remain true when applying Ω-constraints, and 

using GenPrefixGrowth to incorporate them into the mining process. 

In order to support our claim we will show that: 

- GenPrefixGrowth outperforms GenPrefixSpan whenever the Ω-constraint filters a 

considerable number of patterns; 

- the incorporation of Ω–constraints during the mining process is more efficient then 

filtering the patterns in a post-processing step;  

- the use of Context-Free Languages, as opposed to regular languages, does not invalidate 

previous claims; 

Section 5.1 will support the first two points; section 5.2 will support the third point. 

5.1 – Constrained versus Unconstrained Mining 

As pointed by several authors, the use of constraints inside the mining process, instead of filtering 

the discovered patterns in accordance with the constraint, reduces the processing time needed to 

discover all patterns. In this section, we will show that this claim remains valid when comparing 

the use of Ω–constraints in both situations, whenever the constraint is significantly restrictive. 

To illustrate the use of constraints, we have used a synthetic dataset, generated by the dataset 

generator from IBM Almaden. The dataset contains 10.000 sequences, with 10 transactions each on 

the average; each transaction has on the average 2 items; the average length of maximal patterns is 

set to 4 and maximal frequent transactions is set to 2 (dataset D10C10T2S4I2). The values for 

different sequential patterns (Ns) and transactional patterns (Ni) were also chosen similarly, set to 

5.000 and 10.000, respectively. However, the number of different items was set to 10 in order to 

increase the number of discovered patterns.  

Usually, in real problems (eg. the ones addressed in Chapter 7), exists background knowledge 
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that can be used to constraint the mining process. Since in synthetic datasets, there is no 

background knowledge about its data, in order to define a Ω–constraint we have proceeded as 

proposed in [Antunes 2002b]: first, the unconstrained patterns were discovered, then we have 

manually defined a regular language able to represent part of the patterns, and finally this 

constraint was applied to find accepted patterns. The constraint does not impose any temporal 

restriction beside the gap constraint (also used by GenPrefixSpan) equal to zero (0). Table 3 

presents the unconstrained patterns discovered using 50% as the minimum support threshold 

Table 3 – Patterns discovered with a 50% support threshold and an unconstrained process 

Unconstrained Patterns 
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and Figure 5.7 shows an automaton defined over those patterns, which accepts about 20% of the 

unconstrained patterns and accepts about 30% as valid prefixes. 

q2q1

2

q32 5

2

6

 
Figure 5.7 – DFA representing the content constraint for the dataset D10C10T2S4I2 

The results achieved are clear, and show that the initial claim is true. In fact, the performance 

of constrained mining (with an Ω–constaint based on that DFA) can be extremely better than the 

performance of unconstrained processes. 
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Figure 5.8 – Comparison of processing times spent by unconstrained and constrained mining 
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Figure 5.8 shows that for very low support thresholds constrained mining can be ten times 

faster than unconstrained mining. With this difference, it is clear that whenever the constraint is 

significantly restrictive, the use of constrained pattern mining is much more efficient than any 

filtering approach after unconstrained mining. 

The level of restriction imposed by the constraint can be measured by the ratio between the 

number of discovered patterns by constrained and unconstrained mining. As shown in Figure 5.9, 

the constraint used accepts only 1% of the unconstrained patterns for 5% of support. 
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Figure 5.9 – Comparison of number of discovered patterns by unconstrained and constrained mining 

Despite these results, it is undeniable that the use of constraints increases the complexity of 

sequential pattern mining. Indeed, the time spent to verify the acceptability of each pattern is not 

negligeble. 
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Figure 5.10 – Comparison of the average times spent per pattern by unconstrained and constrained mining 

For example, when using the constraint specified above (using a regular language), the time 

spent for each discovered pattern is five times higher than for unconstrained mining (Figure 5.10). 
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5.2 – Regular versus Context-Free Languages 

In order to evaluate the use of context-free languages, consider another two Ω-constraints similar to 

the previous one, but based on the pushdown automata represented in Figure 5.11. 

q2q1

[(2),X]�pop[(2), S]�push X

[(5), X]�no op

[(6), X]�no op

[(2), X]�push X

   

q2q1

[(2),X]�pop[(2), S]�push X
[(2), X]�push X

[(2),X]�pop

 
Figure 5.11 – Deterministic (left) and non-deterministic ePDAs (right) defined over unconstrained patterns 

These automata impose more restrictive constraints than the DFA defined above; they only 

accept sequences with the same number of the item 2 before and after the item 5 and 6 (the 

deterministic) and sequences with an arbitrary number of the item 2 (the non-deterministic one). 
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Figure 5.12 – Comparison of processing times spent by different formal languages 

Figure 5.12 shows the processing times spent by unconstrained and constrained processes, 

when in the presence of context-free languages. 
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It is interesting to note, that when compared with the use of the DFA, the performance of the 

algorithm using ePDAs is not impaired and is even better than the previous one. This is due to the 

effective reduction on the number of discovered patterns, which contributes to keep the focus on 

user expectations (Figure 5.13). 

It is interesting to note that the use of context-free languages implies a considerable increase on 

the time spent for each pattern. 
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Figure 5.14 – Comparison of the average times spent per pattern by different formal languages 

In fact, the time spent for each pattern may be twenty times slower than for unconstrained 

mining, and four times slower than for constrained mining with regular languages (see Figure 

5.14). The time spent for each pattern decrease with the number of discovered patterns, which is 

due to the decrease of the percentage of discarded sequences, the sequences that are not frequent 

and accepted by the constraint.  

Summary 

In this chapter, we have proposed a new class of constraints – the Ω-constraints, which 

aggregates content, temporal and existential constraints, in an unique object. The existential 

constraint is the minimum support threshold, as is usual in sequential pattern mining 

algorithms. A temporal constraint specifies some restriction over the timestamp of 

transactions, and uses a time interval, a maximal allowed time gap and the time granularity 

of the data in the database. Finally, a content constraint is defined over the set of items, 

specifying the characteristics that sequences of itemsets may have. It uses an alphabet, a 

taxonomy and a context-free language to specify those characteristics. 

We have extended existent sequential pattern mining algorithms to deal with this new class of 

constraints creating an algorithm able to deal with any prefix-monotone Ω-constraint 
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instance – GenPrefixGrowth. 

Experimental results show that the additional expressive power of context-free languages can 

be used without incurring in any additional difficulties, and that post-processing methods are 

outperformed by constrained pattern mining. 
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Chapter 6 

Constraint Relaxations 

In this chapter, we propose the use of constraint relaxations to guide the mining process, 

avoiding the exclusive discovery of already known patterns caused by the use of constraints. 

Additionally, several relaxations over Ω-constraints are defined, and an evaluation of the 

proposed relaxations is presented at the end of this chapter. 

he use of constraints in the pattern mining process represents a first answer to the challenge 

of exploring the existence of user expectations and background knowledge. However, its use 

may transform the mining process into a simple hypothesis-testing task [Hipp 2002]. In order to 

avoid this, without moving the user away from the center of the process, we propose a new general 

data mining methodology: the use of constraint relaxations, instead of constraints by themselves, 

to guide the mining process. 

The notion of constraint relaxations has been widely used when real-life problems are 

addressed. In sequential pattern mining they were first introduced in [Garofalakis 1999], where a 

regular expression was used to constrain the mining process, and some relaxations were used to 

improve the performance of the algorithm. 

A constraint relaxation can be seen as an approximation to the constraint, and when used 

instead of the constraint, it enables the discovery of unknown information, that will approximately 

match user expectations. If these relaxations are used to mine new patterns, instead of simply used 

to filter the patterns that satisfy the imposed constraint, the discovery of unknown information is 

possible. Given that the user may choose the level of relaxation allowed, it is possible to keep the 

focus and the interactivity of the process, while still allowing for the discovery of new and 

T



Chapter 6 – Constraint Relaxations 

96 

unknown information. 

In this manner, the objective of data mining will be achieved, while still addressing some 

unsolved challenges of pattern mining, namely: how to use constraints to specify background 

knowledge and user expectations; how to reduce the number of discovered patterns by constraining 

the search space, and how to reduce the amount of processing time. 

When applied over Ω-constraints, relaxations are applied to both temporal and content aspects. 

Definition 32 - A constraint relaxation specifies a weaker condition than the 

constraint itself. Ω-constraint relaxations have two components: 

- an instance of a content constraint relaxation; 

- the maximum time error allowed (�), specified as a TimeQuantity. 

The maximum time error allowed serves to verify if the time instant belongs to the specified 

time interval. It is assumed that this error has the same time granularity as the data. 

In order to achieve those results, we propose four main classes of relaxations over Ω-

constraints, as illustrated in Figure 6.1. The differences between them result from the redefinition 

of the acceptability notion for the formal language that defines the content constraint. 

Constraint
Relaxation

Legal Valid-
suffix

Approximate
Constraint

Non-
Accepted

Conservative
Relaxation

Valid-
prefix

Approx
-Legal

Approx
-Suffix

Approx
-Prefix

Non-
Legal

Non-
Suffix

Non-
Prefix

Naive
Relaxation

Approx
-Naive

Non-
Approx  

Figure 6.1 – Hierarchy of relaxations 

The first class of relaxations is the Naïve relaxation, which corresponds to a simple item 

constraint. However, in the context of constraints expressed as formal languages, it can be seen as a 

relaxation that only accepts patterns containing the items that belong to the language alphabet. 

Conservative relaxations group the other already known relaxations, used by SPIRIT 

[Garofalakis 1999], and a third one – Valid-Prefix, similar to Valid-suffix. 

It is important to note that conservative relaxations are not able to discover unknown patterns, 

just sub-patterns of expected ones. Approximate matching at a lexical level has been considered an 
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extremely important tool to assist in the discovery of new facts, but ignored in most of the 

approaches to pattern mining. It considers two sequences similar if they are at an edit distance 

below a given threshold. An exception to this generalized frame is the AproxMAP [Kum 2003], 

which uses this distance to count the support for each potential pattern. However, to our 

knowledge, edit distance has not been applied to constrain the pattern mining process. 

To address the need to identify approximate matching we propose a new class of relaxations – 

the Approx relaxation, which accept the patterns that are at an acceptable edit distance from some 

sequence accepted by the constraint. 

Another important issue is related with the discovery of low frequency behaviors that are still 

very significant to the domain. Fraud detection is the paradigm of such task. Note that the 

difficulties in fraud detection are related with the explosion of discovered information when the 

minimum support threshold decreases. 

To address the problem of discovering low frequency behaviors, we propose an additional class 

of relaxations – the Non-accepted relaxation. If � is the language used to constrain the mining 

process, Non-accepted relaxations will only accept sequences that belong to the language that is the 

complement of �. 

Additionally, each of these relaxations can be combined, creating compositions of relaxations, 

imposing particular filters. Examples of such compositions are approx-legal or non-approx. 

Next, we will present each class of constraint relaxations. To illustrate the concepts, consider 

the extended pushdown automaton in Figure 6.2: 

q2q1

[(a,b),XY]�pop

[ε, S]�pop

[(a,b), S]�push XY

[(c), XY]�no op

[(a,b), XY]�push XY

 
Figure 6.2 – An extended pushdown automaton 
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1 – Naïve Relaxation 

As stated, the Naïve relaxation only prunes candidate sequences containing elements that do not 

belong to the alphabet of the language, For example, if we consider the automaton defined in 

Figure 6.2, only sequences with a’ s, b’ s and c's are accepted by the Naïve relaxation. 

In this manner, a sequence is accepted by the naive criterion in exactly the same conditions 

than for regular languages. However, this relaxation prunes a small number of candidate sequences, 

which implies a limited focus on the desired patterns. 

Since Naïve relaxation is anti-monotonic, no change in sequential pattern mining algorithms is 

needed. 

2 – Conservative Relaxations 

Conservative relaxations impose a weaker condition than the original constraint, accepting patterns 

that are subsequences of accepted sequences. Among these constraint relaxations are Legal, Valid-

Suffix and Valid-Prefix, which are similar to the ones used by SPIRIT algorithms.  

When used in conjunction with context-free languages, those relaxations remain identical, but 

we have to redefine the related notions. 

First of all consider the partial relation ψ, which maps from �×
×Γ* to �×Λ* representing the 

achieved state q∈� and top of the stack λ∈Λ* (with Λ equal to Γ* as defined in Chapter 5), when 

in the presence of a particular sequence s∈
 in a particular state q∈� and a string of stack symbols 

w∈Γ*. Also, consider that λ.top is the operation that returns the first element on λ. 

Definition 33 - ψ(qi, s=<s1… sn>, w) is defined as follows: 

i) (qi, λ), if |s|=0 ∧ ∃ λ∈Λ*: λ=w 

ii) (qj, λ), if |s|=1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj, λ) 

iii) ψ(qj, <s2… sn>, λ.top), if |s|>1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj,λ) 

Additionally, consider that the elements on each itemset are ordered lexicographically (as 

assumed by sequential pattern mining algorithms).  
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2.1 – Legal 

The Legal relaxation requires that every sequence is legal with respect to some state of the 

automaton, which specifies the constraint language. The extension of the legal relaxation to 

context-free languages is non-trivial, since the presence of a stack (on the automaton) makes the 

identification of legal sequences more difficult. However, it is possible to extend the notion of 

legality of a sequence with respect to any state of an extended pushdown automaton. 

Definition 34 - A sequence s=<s1… sn> is legal with respect to state qi with the top of 

the stack w, if and only if 

i) |s|=1 ∧ ∃ � sk∈Σ∗; qj∈�; λ∈Λ*: δ(qi,sk,w)⊃(qj,λ) ∧ s1⊆sk 

ii) |s|=2 ∧ ∃ � sk,sk'∈Σ∗; λ,λ'∈Λ*; qj,qj'∈�: δ(qi,sk,w)⊃(qj',λ)∧ s1 suffixOf sk

 ∧ δ(qj',sk',λ.top)⊃(qj,λ')∧ s2 prefixOf sk' 

iii) |s|>2 ∧ ∃ � sk,sk'∈Σ∗;λ,λ',λ''∈Λ*; qj,qj',qj''∈�: δ(qi,sk,w)⊃(qj',λ) ∧ s1 suffixOf sk

 ∧ ψ(qj',s2… sn-1,λ.top) = (qj'',λ')�

 ∧ δ(qj'',sk',λ'.top)⊃(qj'',λ''') ∧ sn prefixOf sk' 

This means that any sequence with one itemset is legal with respect to an extended pushdown 

automaton state, if there is a transition from it, defined over a superset of the itemset (i). When the 

sequence is composed of two itemsets, it is legal with respect to a state, if the first itemset is a 

suffix of a legal transition from the current state, and the second itemset is a prefix of a legal 

transition from the achieved state (ii). Otherwise, the sequence is legal if the first itemset is a suffix 

of a legal transition from the state, and the last one is a prefix of a legal transition from the state 

reached with s2… sn-1. 

Examples of legal sequences with respect to the initial state of the automaton represented in 

Figure 6.2 are: a, b and c (by rule i), bc and (a,b)c (by rule ii) and bca and (a,b)ca (by rule iii). 

Examples of non-legal sequences are ac (by ignoring rule ii) or acb (by ignoring rule iii). 

Note that ψ is only defined for non-empty stacks. Indeed, in order to verify the legality of some 

sequence s, it is necessary to find a sequence of itemsets t that can be concatenated to s, creating a 

sequence ts accepted by the automata. 

2.2 – Valid-suffix 

The Valid-Suffix relaxation only accepts sequences that are valid suffixes with respect to some state 
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of the automaton. Like for the legal relaxation, some adaptations are needed when dealing with 

context-free languages. 

Definition 35 - A sequence s=<s1… sn> is said to be a valid-suffix with respect to state 

qi with the top of the stack w, if and only if 

i) |s|=1 ∧ ∃ � sk∈Σ∗; λ∈Λ*; qj∈�: δ(qi,sk,w) ⊃ (qj,λ) ∧ s1suffixOf sk∧ λ.top=ε 

ii) |s|>1 ∧ ∃ � sk',sk''∈Σ∗; λ',λ''∈Λ*;qj,qj',qj''∈�: δ(qi,sk,w) ⊃ (qj',λ)∧s1 suffixOf sk 

 ∧ ψ(qj',s2… sn,λ.top)=(qj,λ') ∧ λ'.top=ε 

This means that a sequence is a valid-suffix with respect to a state if it is legal with respect to 

that state, achieves a final state and the resulting stack is empty. In particular, if the sequence only 

has one itemset, it has to be a suffix of a legal transition to an accepting state.  

As before, consider the extended pushdown automaton defined in Figure 6.2. Examples of such 

sequences are b, (a,b), c(a,b) and bc(a,b). Negative examples are, for instance, bca or bcb. Note 

that, in order to generate valid-suffix sequences with respect to any state, it is easier to begin from 

the final states. However, this kind of generating process is one of the more difficult when dealing 

with pushdown automata, since it requires a reverse simulation of their stacks. 

In order to avoid this difficulty, make use of prefix instead of suffix validity could represent a 

more useful relaxation, when dealing with context-free languages. Note that valid-suffixes are not 

prefix-monotone, and could not be easily used by pattern-growth methods [Han 2001b]. 

2.3 – Valid-prefix 

The valid-prefix relaxation is the counterpart of valid-suffix, and requires that every sequence is 

legal with respect to the initial state. 

Definition 36 - A sequence s=<s1… sn> is said to be prefix-valid if and only if: 

i) |s|=1� ∧� ∃ � sk∈Σ*; λ∈Λ*: δ(q0,sk,Z0) ⊃ (qj,λ) ∧ s1 prefixOf sk 

ii) |s|>1� ∧� ∃ � sk∈Σ*; λ,λ'∈Λ*;qj,qj'∈Q: ψ(q0,s1… sn-1,Z0)=(qj',λ') 

 ∧ δ(qj',sk,λ'.top) ⊃ (qj,λ) ∧ sn prefixOf sk 

This means that a sequence is prefix-valid if it is legal with respect to the initial state and the 

first itemset is a prefix of a transition from the initial state. An example of valid-prefixes according 

to the ePDA represented in Figure 6.2 is (a,b)c, while (a)c or bc are examples of non-valid 

prefixes. 
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Sequences with valid prefixes are not difficult to generate, since the simulation of the stack 

begins with the initial stack: the stack containing only the stack start symbol. The benefits from 

using the suffix-validity and prefix-validity are similar. When using the prefix-validity to generate 

the prefix-valid sequences with k elements, the frequent (k-1)-sequences are extended with the 

frequent 1-sequences, in accordance with the constraint. 

Note that the legal relaxation accepts all the patterns accepted by valid-suffix and valid-prefix 

relaxations. In this manner, it is a less restrictive relaxation than the other two. Although these 

relaxations have a considerable restrictive power, which improves significantly the focus on user 

expectations, they do not allow for the existence of errors. This represents a strong limitation in 

real datasets, since little deviations may exclude many instances from the discovered patterns. 

3 – Approx Relaxations 

In order to solve this problem we propose a class of relaxations that accepts sequences that have a 

limited number of errors. If it is possible to correct those errors with a limited cost, then the 

sequence will be accepted. 

A new class of relaxations, called approx relaxations, tries to accomplish this goal: they only 

accept sequences that are at a given edit distance for an accepted sequence. This edit distance is a 

similarity measure that reflects the cost of operations that have to be applied to a given sequence, 

so it would be accepted as a positive example of a given formal language. This cost of operations 

will be called the generation cost. 

Definition 37 - Given a Ω-constraint C, and a real number ε which represents the 

maximum error allowed, a sequence s=<s1… sn> is said to be approx-accepted by C, 

if its generation cost �(s, C) is less than or equal to ε. 

The generation cost is defined as follows: 

Definition 38 - Given a Ω-constraint C, and a sequence s=<s1… sn>, the generation 

cost � (s, C) is defined as the sum of costs of the cheapest sequence of edit 

operations O=<o1… ok> transforming the sequence s into some sequence t accepted 

by the language C. 

The edit operations considered are the traditional in approximate string matching 
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[Levenshtein 1965]: 

- Insertion – Ins(x,i): adds the item x to the sequence at position i; 

- Deletion – Del(x,i): deletes the item x from the sequence at position i; 

- Replacement – Rep(x,y,i): substitutes the item x, that occurs at position i, by item y. 

For example, considering the extended pushdown automaton defined above (Figure 6.2), 

ac(a,b) and (a,b)(a,b) are approx-accepted sequences with one error, which result from inserting a 

b on the first itemset, on the first example, and a c on the second position, on the second example, 

respectively. c(a,b) and b(a,b) are non-approximate accepted with one error, since two edit 

operations are needed to accept them. 

The other four classes of approx relaxations are defined by replacing the acceptability by 

legality and validity notions. In this manner, an Approx-Legal relaxation accepts sequences that are 

approximately legal with respect to some state. Approx-Suffix and Approx-Prefix relaxations are 

defined in a similar way. Finally, Approx-Naïve accepts sequences that have ε items (with ε the 

maximum error allowed) that do not belong to the alphabet. 

It is interesting to note that the ability of approx-relaxations to reduce the number of discovered 

patterns depends on the size of the alphabet; in particular, it depends on the number of frequent 

items. Suppose that there are m frequent items in a given database, and the alphabet of the formal 

language used as constraint has n items, all frequent (with n<m). For each pattern with one item 

accepted by the constraint (for example, a), if we are concerned with approximate patterns with one 

error, the relaxation may find 3×m patterns with two items (for example (ab), ab and ba). 

A solution to this proliferation is to associate an item constraint with the approx relaxation. 

This conjunction allows for focusing the mining process on a smaller set of the approximate 

accepted patterns, reducing the number of discovered patterns.  

3.1 – Algorithm εεεε-accepts 

Unfortunately, the better-known algorithms for edit distance are performed on two strings, and 

cannot be applied to one string and a formal language. Agrep [Wu 1992] is an exception to this 

general scenario, and it verifies if there exists a sequence in a given regular language (expressed as 

an automaton) at a specific edit distance from the given sequence. 

However, as pointed by its authors, agrep does not deal well with very large alphabets, and 

sequential pattern mining algorithms usually deal with alphabets with thousands of symbols. 



Chapter 6 – Constraint Relaxations 

103 

In order to deal with this situation and use context-free languages, we assume that useful 

automata are small in general, and we propose �–acceptsCFL, a new algorithm to verify if a 

sequence was approximately generated by a given extended pushdown automaton (ePDA). This 

algorithm is illustrated in Algorithm 11. 

 
Algorithm 11 – Pseudocode for �–acceptsCFL algorithm 

The main idea behind �–acceptsCFL, is to avoid the generation of potential sequences, given 

that this operation consumes a considerable amount of time in sequential pattern mining 

algorithms. Since we consider that automata are usually small, the simulation of transitions is not 

an expensive operation. (As several authors have noted, experts usually make use of a few simple 

and small rules to express their background knowledge, so the combination of those rules usually 

do not result in complex automata). 

boolean ε-acceptsCFL(Sequence s, int ε, ePDA �=(�,�, Γ�δ,q0,Z0,�)){ 
 return aproxAcc(s,0,�.q0,new Stack(Z0),0,ε,�) 
} 

boolean aproxAcc(Sequence s, int i, � qj, Stack λ, int acε, int ε, ePDA �){ 
 // Exceeds maximal error 
 if (acε >ε) return False 
 // Proceeds with next element 
 if (i<|s|) return accTrans(s,si,i,qj,λ,acε,ε,�) 
 // Test the achievement of empty stack 
 else if (λ.isEmpty()) return True 
 // Try to achieve a final state 
 else return accTrans(s,(),i,qj,λ,acε,ε,�) 
} 

boolean accTrans(Sequence s,Itemset si,int i,��qj,Stack λ,int acε,int ε, ePDA �){ 
 // Looks for the perfect transition 
 for each q∈� { 
  if (∃ tr: tr∈{qj.getApplicableTrans(q,λ,si)}) 
   return aproxAcc(s,i+1,q,copy(λ).apply(tr),acε,ε,�) 
 } 
 for each δ(q,a)∈�.δ(qj){ 
  dif�max(|si|,|a|)-|a ∩ si| 
  //Try a mixture of edit operations (replacement+deletion+insertion) 
  if (acε+dif�ε) 
   ok�aproxAcc(s,i+1,q,copy(λ).apply(δ(q,a)),acε+dif,ε,�) 
  if (ok) return True 
  // If the itemset is not valid => try to ignore it (deletion) 
  ok�aproxAcc(s,i+1,qj,λ,acε+|si|,ε,�) 
  if (ok) return True 
  // If deletion fails, try an insertion 
  ok�aproxAcc(s,i,q,copy(λ).apply(δ(q,a)),acε+|a|,ε,�) 
  if (ok) return True 
 } 
 return False 
} 
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Instead of generating the possible sequences, considering possible errors, we verify if each 

itemset performs a valid transition in the automaton, beginning on the initial state and with the 

stack containing only the initial stack symbol. Whenever an itemset does not correspond to a valid 

transition, the algorithm tries to replace it (which corresponds to the application of a Replacement 

or a combination of Deletions and Insertions). If this fails, it tries to ignore it (which corresponds to 

a Deletion) and finally it tries to introduce a valid transition (which corresponds to an Insertion). 

Given that insertions and replacements only try valid transitions, instead of trying every possible 

itemset, the performance of ε–acceptsCFL does not depend on the number of different items in 

the database, but only on the number of states and alphabet used by the ePDA. 

In general, approx relaxations can be seen as less restrictive than conservative ones. However, 

this relation is only valid with respect to comparable relaxations, for example: approx-legal is less 

restrictive than legal. 

4 – Non-accepted Relaxations 

Another important issue is the possibility to discover information that does not satisfy the 

constraint imposed by the language. 

Suppose that there is a model (expressed as a context-free language) able to describe the 

frequent patterns existent on a large database (say for example that the minimum support allowed is 

10%). If there are 3% of clients with a fraudulent behavior, it is possible that they are not 

discovered either by using the unconstrained mining process, or by using any of the proposed 

relaxations. 

However, the model of non-fraudulent clients may be used to discover the fraudulent ones: the 

fraudulent clients are known to not satisfy the model of non-fraudulent clients. 

Definition 39 - A sequence s=<s1… sn> is said to be non-accepted by the language if it 

is not generated by that language. 

In fact, this is not really a relaxation, but another constraint (in particular the constraint that 

only accepts sequences that belong to the language that is the complement of the initial constraint). 

However, since they are defined based on the initial constraint, we choose to designate them as 

relaxations. 
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The benefits from using the non-accepted relaxation are mostly related to the possibility of not 

rediscovering already known information, which may contribute significantly to improve the 

performance of sequential pattern mining algorithms. Moreover, since context-free languages are 

not closed under complementation [Hopcroft 1979] (which means that the complement of a 

context-free language is not necessarily a context-free language), the use of the complement 

instead of the non-accepted relaxation could be prohibitive. 

Note that using this new approach, it is possible to reduce the search space, and consequently 

to reduce the minimum support allowed. The non-accepted relaxation will find all the patterns 

discovered by the rest of the introduced relaxations, representing a small improvement in the focus 

on user expectations. In fact, it finds all the patterns discovered by unconstrained patterns minus 

the ones that are accepted by the constraint. Like for approx relaxations, an interesting 

improvement is to associate a subset of the alphabet in conjunction with non-accepted relaxation. 

This conjunction focus the mining process over a smaller part of the data, reducing the number of 

discovered sequences, and contributing to achieve our goal. 

As before, the sub-classes of Non-Accepted relaxations result by combining the non-

acceptability philosophy with each one of the other relaxations. While non-accepted relaxation 

filters only a few patterns, when the constraint is very restrictive, the non-legal relaxation filters all 

the patterns that are non-legal with respect to the constraint. With this relaxation is possible to 

discover behaviors that completely deviate from the accepted ones, helping to discover the 

fraudulent behaviors. 

Non-accepted relaxations are particularly interesting when the constraint is not very restrictive. 

5 – Discussion 

The discussion about the concept of novel or unknown information is one of the most difficult in 

pattern mining. While the concept is clear in the reference frame of a knowledge acquisition 

system, the same is not true in the reference frame of the final user. Indeed, several interestingness 

measures have been proposed for the evaluation of the discovered patterns [Hilderman 1999]. 

Moreover, this issue is more critical with the introduction of constraints in the mining process. 

In fact, in the presence of constraints the concept of novel patterns becomes unclear even in the 

reference frame of information systems, since they are then able to deal with that knowledge, 
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represented as the constraint. 

In order to bring some light into the discussion, consider that,  

Definition 40 - Given a model C as constraint, a pattern A is more novel than a pattern 

B, if the generation cost of A in order to C is larger than the generation cost of B in 

order to C (with the generation cost defined as above).  

With this concept, it is now possible to understand the reason why non-accepted patterns can 

be more novel than the patterns discovered by conservative relaxations. It is now clear that, despite 

the differences between relaxations, all of them allow for the discovery of novel information. 

Indeed, the conservative relaxations are able to discover failure situations, this is, situations when 

for, some reason, the given model is not completely satisfied (Valid- Prefix and Valid-Suffix 

identify failures in the begin and end of the model, respectively, and Legal identifies problems in 

the middle of the model). 

However, the great challenge of pattern mining is to discover novel information in accordance 

to user expectations. It is clear from the definition of the novel relation, that an unexpected pattern 

is more novel than an expected one. In fact, the challenge resides in the balance between the 

discovery of novel but expected patterns, and the proposed relaxations cover a wide range of this 

balance, giving to the user the option of which is the most relevant issue for the problem in hands: 

the novelty of the information or to satisfy the expectations. 

6 – Simple Example 

In this section, we will illustrate the use of relaxations over Ω–constraints with a simple example. 

Our goal is to validate our claim that they facilitate the discovery of unknown information, keeping 

the mining process centered on the user. 

Consider again the problem of identifying typical behaviors of some company customers. 

Suppose that the company considers that a well-behaved customer is a customer, who always 

makes at least one payment after receiving one or two consecutive invoices, and has made, at the 

end of the period, all its payments. This constraint may be modeled by the pushdown automaton 

presented in Figure 6.3, where a corresponds to an invoice, b to a payment, c to a second copy of 

the invoice, d to a cancellation, e to an information request and r to an answer to those requests. 
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q4q3 (b, X)�pop

(a, S)�push X
(a, X)�push X

(b, X)�pop

q2 (a, X)�push Xq1 (a, S)�push X

(b, X)�pop

(ε, S)�pop

 
Figure 6.3 – Pushdown automaton for well-behaved customers 

Suppose that the company has the dataset represented in Table 4. 

Table 4 – Dataset used to exemplify the mining process 

Dataset 
eababraabb aababbaerb aaacbabab aebraaaccd aebaraacbe 
aabbaberab ababaabbab aebaraaacb abaaaccder abaeraacbb 

Table 5 presents the patterns discovered by unconstrained and constrained algorithms, and the 

patterns discovered when constraint relaxations are used. 

Table 5 – Comparison of the results achieved with and without constraints 

Frequent Accepted Legal Prefix Approx.(�=1) Approx.(�=2) 
Non-Acc (w/ 
Σ={a,c,d,e,r} 

be 
baa 
era 
braa 
baba 
baer 
araa 
abab 
abaa 
raacb 
raaac 
aaacb 
aabbab 
aaaccd 
aebaraa 

abab 
aabbab 

baba 
abab 
abaa 
aabbab

abab 
abaa 
aabbab

abab 
aabbab 
ar�R(r,b,2) 
aeb�D(e,2) 
abaa�R(a,b,4) 
aacb�R(c,b,3) 
 

abab 
aabbab 
abaa�R(a,b,4) 
abbab�D(b,2) 
be�R(b,a,1) R(e,b,2) 
br�R(b,a,1) R(r,b,2) 
cd�R(b,a,1) R(r,b,2) 
aer�R(e,b,2) D(r,3) 
bae�D(b,1) R(e,b,3) 
aacc�R(c,b,2) R(c,b,3) 
aaacb�D(a,3) R(c,b,4) 
aebar�D(e,2) R(r,b,5) 
araa�R(r,b,2) R(a,b,4) 
baba�D(b,1) I(b,5) 
raacb�D(r,1) R(c,b,4) 

aer 
era 
raac 
araa 
raaac 
aaaccd 

In order to permit an easy comparison, only maximal patterns are shown. In this manner, some 

patterns appear only in some columns. In the column relative to the approx relaxation, are shown 

the edit operations needed to transform each pattern to a pattern belonging to the context-free 

language. As expected, by using the constraint itself we only discover two patterns, which satisfy 

the context-free language. Therefore, these results are not enough to invalidate Hipp's arguments 

about constraints. Nevertheless, with Legal and Valid-prefixes, it is possible to discover some other 

intermediate patterns, which are potentially accepted by the complete constraint. 

Finally, with approx and non-accepted relaxations, it is possible to discover unexpected 
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patterns. Indeed, the approx relaxation shows the most interesting behavior, since it is possible to 

discover that it is usual that after sending the second invoice, customers pay their old bills (aacb). 

With non-accepted relaxation, it is also possible to discover interesting patterns. In this case, it is 

common that after three invoices without any payment, and the emission of two second invoices, 

the customer account is canceled (aaaccd). 

7 – Experimental Results 

As shown in the previous chapter, the use of constraints can improve either the performance or the 

focus on user expectations of sequential pattern mining. However, in some cases, the use of 

constraints may block the discovery of novel information. In this section, we will show that the 

initial claims remain true when applying constraint relaxations, and that their use also permits the 

discovery of unknown information, keeping the process centered on user expectations. 

In order to support our claims we will show that whenever the Ω-constraint filters a 

considerable number of patterns: 

• the use of constraint relaxations can be more efficient then unconstrained mining; 

• the use of constraint relaxations reduces the number of discovered patterns. 

The two Ω-constraints used in our experiments are the same that have been used before (in 

Chapter 5, section 5): they do not impose any temporal restriction beside the gap constraint (also 

used by GenPrefixSpan) equal to zero, and the content constraint is defined by a formal language. 

q2q1

2

q32 5

2

6

 
Figure 6.4 – DFA defined over unconstrained patterns 

The content constraints only specify restrictions on the accepted sequence of itemsets, in 

accordance with the DFA represented in Figure 6.4 and with the ePDA in Figure 6.5. 

q2q1

[(2),X]�pop[(2), S]�push X

[(5), X]�no op

[(6), X]�no op

 
Figure 6.5 – ePDA defined over unconstrained patterns 
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As expected, by using the constraint itself we only discover a few patterns, which constitute 

already known information, since they satisfy the imposed language. However, the situation is 

different for the relaxations. For example, Legal-Relaxation begins by accepting 50% of the 

discovered patterns using a threshold support equal to 50%, and only accepts about 1% of the 

patterns for a support threshold equal to 5% (see Table 6 and Table 7). 

Table 6 – Discovered patterns with several relaxations using DFA in Figure 6.4 

sup Unconstrained Accepted Prefix Legal Approx Non-Acc 
0,50 28 5 18% 8 29% 14 50% 28 100% 23 82%
0,45 41 8 20% 13 32% 20 49% 39 95% 33 80%
0,40 53 8 15% 13 25% 20 38% 47 89% 45 85%
0,35 87 11 13% 17 20% 26 30% 72 83% 76 87%
0,30 127 14 11% 21 17% 34 27% 96 76% 113 89%
0,25 228 19 8% 30 13% 49 21% 156 68% 209 92%
0,20 422 27 6% 42 10% 67 16% 248 59% 395 94%
0,15 967 38 4% 62 6% 100 10% 449 46% 929 96%
0,10 3142 82 3% 132 4% 210 7% 1044 33% 3060 97%
0,05 24937 203 1% 334 1% 565 2% 3788 15% 24734 99%

Table 7 – Discovered patterns with several relaxations using ePDA in Figure 6.5 

sup Unconstrained Accepted Prefix Legal Approx Non-Acc 
0,50 28 1 4% 8 29% 14 50% 8 29% 27 96% 
0,45 41 2 5% 12 29% 20 49% 12 29% 39 95% 
0,40 53 2 4% 12 23% 20 38% 13 25% 51 96% 
0,35 87 2 2% 15 17% 25 29% 20 23% 85 98% 
0,30 127 3 2% 18 14% 30 24% 27 21% 124 98% 
0,25 228 4 2% 22 10% 37 16% 48 21% 224 98% 
0,20 422 4 1% 27 6% 47 11% 70 17% 418 99% 
0,15 967 5 1% 33 3% 56 6% 131 14% 962 99% 
0,10 3142 6 0% 44 1% 76 2% 278 9% 3136 100% 
0,05 24937 8 0% 63 0% 110 0% 605 2% 24929 100% 

A similar behavior is shown by Prefix-Valid and Approx-Accepted relaxations, both by the 

regular or the context-free languages, as shown in Figure 6.6 and Figure 6.7. 
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Figure 6.6 – Number of discovered patterns using the DFA in Figure 6.4 
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In this manner, the claim that the use of constraint relaxations can reduce the search space is 

validated. 
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Figure 6.7 – Number of discovered patterns using the ePDA in Figure 6.5 

Another interesting result is related to the processing times spent by different approaches (see 

Figure 6.8 and Figure 6.9), in particular in the presence of very low support thresholds. 

Constrained mining is the most efficient, spending about 5% of the time spent by the 

unconstrained approaches. Conservative relaxations present a similar performance, justified by the 

low number of discovered patterns and by the similarity between its processing and the processing 

of the constraint itself. 
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Figure 6.8 – Processing time using the DFA in Figure 6.4 

The most time consuming relaxation is the Non-Accepted, mostly due to the high number of 

discovered patterns, identical to the number of unconstrained patterns. 

The Approx relaxation also consumes a considerable amount of time, higher then the 

unconstrained mining in the case of the context-free language (Figure 6.9). However, unlike non-
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accepted relaxation those processing times are mostly due to the verification of the acceptability of 

patterns. 
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Figure 6.9 – Processing time using the ePDA in Figure 6.5 

In general, relaxations spend a portion of time proportional to the number of discovered 

patterns. When comparing the average time spent by each relaxation per discovered pattern, the 

most expensive is the constrained process, followed by conservative relaxations, in the case of 

regular languages, and by the Approx relaxation, in the case of context-free languages. This 

difference is again due to the verification of the acceptability of patterns (see Figure 6.11). 
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Figure 6.10 – Average time spent by pattern, using the DFA in Figure 6.4 

It is important to note that, in general, the average time spent for each discovered pattern 

decreases when the number of patterns increases. This reduction is due to the decrease of the 

percentage of discarded sequences, sequences that are not frequent and are accepted by the 

relaxation. 
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Figure 6.11 – Average time spent by pattern, using the ePDA in Figure 6.5 

The exception to this general rule is the Approx relaxation based on a context-free language. 

This difference of behavior is again explained by the verification of the acceptability of patterns. 

Figure 6.11 shows that the time spent in that verification overwhelms the decrease of the 

percentage of discarded sequences. 

7.1 – Constraint Relaxations combined with Item Constraints 

The poor performance achieved by the Approx and Non-accepted relaxations, can be improved, if 

item constraints are used in conjunction with non-conservative relaxations, as proposed above.  

In order to validate this idea, we have imposed an item constraint, restricting the relaxations to 

just accepted sequences with items belonging to the formal language alphabet. 
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Figure 6.12 – Comparison of processing times of Approx Relaxation combined with item constraints with DFA in 
Figure 6.4 (on the left) and with the ePDA in Figure 6.5 (on the right) 

Figure 6.12 shows that in conjunction with item constraints (imposing a more restricted 

alphabet) Approx relaxations are able to outperform unconstrained mining, both with regular and 

context-free languages. These results are naturally achieved by reducing the number of discovered 

patterns, as shown in Figure 6.13. In these figures, FullApprox refers to the Approx relaxation alone 

and Approx refers to the use of the relaxation with the item constraint described above. 
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Figure 6.13 – Comparison of number of discovered patterns by Approx Relaxation combined with item 

constraints, with the DFA in Figure 6.4 (on the left) and with the ePDA in Figure 6.5 (on the right) 

A comparison of the number of discovered patterns, when using variants of non-accepted 

relaxations, also validates our claim (see Figure 6.14). 
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Figure 6.14 – Comparison of processing times of Non-Accepted variants with the DFA in Figure 6.4 (on the left) 
and with the ePDA in Figure 6.5 (on the right) 

On one hand, the use of an item constraint in conjunction with non-accepted relaxations 

considerably diminishes the number of discovered patterns (between 50% and 60% in the 

conducted experiments – see Figure 6.15). 
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Figure 6.15 – Comparison of number of discovered patterns by Non-Accepted variants with the DFA in Figure 
6.4 (on the left) and with the ePDA in Figure 6.5 (on the right) 

On the other hand, Non-Accepted relaxations discover few patterns when the constraint is less 

restrictive. When using more restrictive constraints, the Non-Legal relaxation seems to be more 

interesting than the Non-Accepted one. The results also demonstrate that Non-Accepted relaxations 

are only useful when the constraint is not sufficiently restrictive. 
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In summary, the use of relaxations helps focusing the process on user expectations, discovering 

patterns that are closely related to existent background knowledge. Associated with the reduction 

of discovered patterns, is the reduction of processing times, more evident for conservative 

relaxations, but also possible for non-conservative ones, depending on the restrictive power of the 

constraint. 

Summary 

In this chapter, we have proposed a new pattern mining methodology, based on the use of 

constraint relaxations. A constraint relaxation imposes a weaker restriction, relaxing the 

constraint chosen to represent user background knowledge. We propose a relaxation for Ω-

constraints, which includes a maximal time error on the verification of the temporal 

constraint and a relaxation over the content constraint. The last one is based on the 

relaxation of its associated formal language, establishing weaker conditions to accept a 

sequence as valid. Experimental results show that the use of relaxations reduces the number 

of discovered patterns when compared to unconstrained processes, but allows for the 

discovery of unexpected patterns, when compared to constrained processes. The results also 

show that the processing times spent in the mining process can be reduced if constraint 

relaxations are used. 
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Chapter 7 

Case Studies 

In this chapter, we present the results achieved by applying the algorithms and methodologies 

proposed in this dissertation, to real-life datasets. After reviewing the thesis statement, we 

show that these results validate our claims. 

n this thesis we claim that it is possible to discover unknown information, using sequential 

pattern mining with constraint relaxations, without loosing the focus on user expectations, as 

exposed in Chapter 3. In order to validate these claims, we present the results achieved by applying 

this methodology to three real-life datasets: one resulting from the records of an online retail 

company – PmeLink.PT, and the other two resulting from the data collected from IST student's 

performance – AMs1982-2001 and LEIC1989-2001. 

In this manner, we evaluate our methodology by comparing: 

- the performance of each mining process; 

- the number of discovered patterns; 

- the ability to answer some relevant questions. 

1 – Applications 

1.1 – PmeLink.PT 

PmeLink.PT is the first Online Business Center in Portugal, supporting Portuguese small and 

medium enterprises (SMEs) in all of their business needs. 

I 
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PmeLink.PT sells a large array of products, from furniture to small appliances, computer 

equipment and accessories. In order to test the applicability of the proposed approach in a real-

world situation, we deployed a prototype integrated with the PmeLink.PT data warehouse. The 

prototype has as first goal to identify the frequent sequences of purchases, providing an insight on 

client's behavior and an aconselling mechanism, based on the past purchases of each client. 

In this manner, it was possible to measure the performance and scalability of the approach on a 

real-life data (dataset PmeLink.PT). The experiments and data are described above. 

Data Statistics 

The dataset explored in this work is composed of 5383 sequences, corresponding to the purchases 

done by each PmeLink.PT client, in a period of two years. 
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Figure 7.1 – Distribution of the length of sequences on the PmeLink.PT dataset 

Unfortunately, a great portion of those sequences are very short (30% have two itemsets). 

Despite this, 89% of sequences have between 2 and 10 itemsets, with an average length of 5.39 

itemsets, as illustrated in Figure 7.1. 
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Figure 7.2 – Distribution of the size of the baskets in PmeLink.PTdataset 
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The average itemset has 4.45 items, with 24% of them with one item and 92% with between 1 

and 10 items. There are 281 different categories of products, used as the alphabet in our 

exploration. 

Finding purchase patterns 

When explored with unconstrained sequential pattern mining, for low support thresholds, the data 

exploration discovers 1335 patterns with support above 5% and 219113 with support above 1%. 

These numbers hide any discovered information (see Table 8). 

Table 8 – Number of discovered patterns with unconstrained mining 

sup |Lk| 
45% 2
40% 2
35% 7
30% 12
25% 18
20% 31
15% 64
10% 203
5% 1.335
1% 219.113

However, the patterns discovered with larger support thresholds do not give any relevant 

information. For example, for 15% of support, 28 of the 64 discovered patterns have just one 

itemset, and the rest of patterns involve the purchase of Paper A4, which is the product most sold 

(present in 84% of the sequences). In this manner, the analysis of this data is very hard to perform 

if one doesn't use any background knowledge. 

In order to gain an insight on the business of PmeLink.PT, consider the non-deterministic PDA 

illustrated in Figure 7.3. 

q2q1

[(X), X]�pop
[(X), X]�noop

[(X), S]�push X

 
Figure 7.3 – nPDA for specifying constraints over the dataset PmeLink 

This automaton accepts sequences composed of consecutive purchases of the same product. In 

fact, each transition on the nPDA represents several transitions, one per product. For example, the 

transition from q1, represents one transition for each product, like the transitions 

[(staples),S]�push(staples) and [(clips),S]�push(clips), among others. We choose to use a 

pushdown instead of a deterministic finite automaton, since the last one must have one additional 

state per product, which would be somehow difficult to define and understand. 
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With this automaton, and constraining our exploration to Stock products, we are able to find 12 

products that are consecutively purchased by at least 5% of clients, and 18 purchased by at least 

1% of clients, as shown in Table 9. 

Table 9 – Purchase patterns of Stock products 
 

<(staples),(staples)> 
<(clips),(clips)> 
<(message-pads),(message-pads)> 
<(dividers),(dividers)> 
<(arch-lever files),(arch-lever files),(arch-lever files)> 
<(correction-fluid),(correction-fluid)> 
<(plastic covers),(plastic covers)> 
<(ballpoint pens),(ballpoint pens)> 
<(goods for original HP printers),(goods for original HP printers),(goods for original HP printers)> 
<(disks and zips),(disks and zips)> 
<(arch-lever files with box),(arch-lever files with box)> 
<(goods for original Epson printers),(goods for original Epson printers)> 

As can be seen, besides discovering which products are consecutively purchased, it is possible 

to discover the number of times that they are purchased. 
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Figure 7.4 – Number of patterns discovered in the dataset PmeLink.PT 

When using constraint relaxations, it is possible to go one-step further and discover other 

patterns of interest. Figure 7.4 shows that the use of constraint relaxations keeps the number of 

discovered patterns well below from the number of unconstrained patterns. 

Unfortunately, this data is not rich enough to enable the discovery of more interesting patterns. 

Several other experiments were done, without any interesting result. Among those, experiments on 

analyzing different time periods (for example constraining the search to the end of the year, 

according to existing domain knowledge) were tried, without any other result. 
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1.2 – Analysis of Enforced Precedence between Subjects 

The analysis of the curriculum of undergraduate programs and the corresponding student's 

performance is a non-trivial task. For example, the garanty that some subject is placed in the right 

semester is difficult to achieve. The difficulties are mainly related to the curriculum structure, 

which consists of a sequence of sets of simultaneous subjects, and to the number of possible 

curricula instantiations. Definitely, less than 50% of the students follow the established curriculum, 

choosing a different sequence of subjects. 

In the last years, the undergraduate programs at Instituto Superior Técnico (IST) have 

introduced the existence of enforced precedences between subjects. An immediate consequence of 

this approach is the avoidance of that variety of curricula, making that a student can only attend to 

a subject after have concluded another preceding one. 

However, despite the theoretical benefits of this approach, it disables that students create their 

own curriculum, in accordance to their preferences and capabilities. Indeed, a detailed analysis of 

the different instantiations of the same curriculum model, demonstrates that there are several 

different ways to achieve the same results within the same time period. 

Analysis Goals 

In this section, we aim to analyze the effects of the imposition of precedences among the subjects 

on Mathematical Analysis (AM) at IST, made in the academic year of 1994/1995. 

In this manner, we will try: 

- To identify the frequent sequence of results achieved in the subjects on Mathematical 

Analysis, before and after the academic year of 1994/1995. 

- To identify the sequence of results achieved by students who conclude all those subjects 

between four and six semesters. 

Data statistics 

The dataset used to analyze these questions consists on the set of sequences corresponding to the 

sequence of results on Mathematical Analysis subjects achieved by each IST student, between 1982 

and 2001, excluding the students that do not enrolled on those subjects at least for four semesters. 

The dataset (AMs1982-2001) contains 17933 sequences, corresponding to 17933 students 

from the different undergraduate programs at IST. Since there are four required subjects on 
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Mathematical Analysis, the alphabet is composed by 8 symbols (one for each successful enrollment 

– X, and one for each failure – ~X). Most of the students (69%) have between 4 and 6 enrollments 

(they had attended classes from those subjects between 4 and 6 semesters), which leads to an 

average sequence length equal to 6.29 semesters (see Figure 7.5). 
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Figure 7.5 – Distribution of the length of sequences on dataset AMs1982-2001 

Figure 7.6 shows that the great majority of students attended one mathematical analysis subject 

per semester. In this manner, the average size of itemsets is equal to 1.14. 
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Figure 7.6 – Distribution of the number of enrollments per semester in AMs1982-2001 (size of itemsets) 

Unfortunately, the data is non-equally distributed by the time intervals of interest: 66% of 

students attended classes before 1994/95 and only 34% after that year (Figure 7.7). 
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Figure 7.7 – Distribution of students per time interval 
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Finding Frequent Patterns of Results 

A first analysis, using unconstrained sequential pattern mining, leads to the discovery of several 

patterns (corresponding to sub-patterns of the entire sequence of mathematical subjects), like the 

ones shown in Table 10. 

Table 10 – Patterns discovered on dataset AMs1982-2001, for 10% of support 
Discovered Patterns for 10% of support 

<(AM1),(AM2),(AM3),(AM4)> <(AM1),(AM2),(~AM3)> <(AM1),(~AM2),(~AM3)> 
<(AM3),(~AM4)> <(~AM2),(AM2)> <(~AM2),(AM3)> 
<(~AM2),(~AM2)> <(~AM2),(~AM3),(~AM4)> <(~AM3),(AM2)> 
<(~AM3),(AM3)> <(~AM3),(AM4)> <(~AM3),(~AM2)> 
<(~AM3),(~AM3)> <(~AM3),(~AM4),(AM3)> <(~AM3),(~AM4),(~AM3)> 
<(~AM1),(AM1)> <(~AM1),(~AM2),(AM1)> <(~AM1),(~AM2),(~AM1),(~AM2)> 
<(~AM1),(~AM1)> <(~AM4),(AM4)>  

From these results, we are only able to say that there are several different patterns of failure, 

and that the patterns involving successful results are only frequent when considering very low 

support thresholds. Note that for lower minimum support thresholds, this technique will discover 

several rules (for 1% it will discover 221 patterns). 

In order to discover how students conclude the four subjects on Mathematical Analysis, we 

propose the use of two different DFAs that represent the flow of results that students achieve in 

four semesters. Since we want to compare the results before and after the introduction of 

precedences, we are going two use two different automata. 

51 2 3AM1 AM2 AM3 4 AM4  
Figure 7.8 – DFA for representing the results on Mathematical Analysis subjects in 4 semesters, after 1994 

Figure 7.8 shows that in the presence of precedences, there is only one way to conclude all 

subjects in four semesters, which correspond to not failing any subject. In this manner, the DFA 

only accepts the sequence <(AM1)(AM2)(AM3)(AM4)>. 
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Figure 7.9 – DFA for representing the results on Mathematical Analysis subjects in 4 semesters, before 1994 

Without precedences, and knowing that AM1 and AM3 function on the Fall semester and AM2 

and AM4 on the Spring semester, there are four ways to conclude all subjects in four semesters: 
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<(AM1)(AM2)(AM3)(AM4)>, <(~AM1)(AM2)(AM1,AM3)(AM4)>, <(AM1)(~AM2)(AM3)(AM2,AM4)> and 

<(~AM1)(~AM2)(AM1,AM3)(AM2,AM4)>, as shown in Figure 7.9. 

Using a small value for the support (say 0.01%) and two Ω–constraints, defined over the two 

automata above and with an adequate temporal constraint, we discover that: 

- Before 1994/1995, 27.5% of students were able to conclude all subjects without failing, 

and 5.5% of students were also able to conclude all subjects in 4 semesters. This results 

in 33% of students concluding all subjects on 4 semesters. 

- After 1994/1995, 32% of students are able to conclude all subjects without failing. 
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Figure 7.10 – DFA for representing results on Mathematical Analysis subjects in 6 semesters, before 1994 

If we perform an identical analysis for 6 semesters (using the constraints defined over the DFA 

shown in Figure 7.10 and Figure 7.11) we conclude that: 

- Additionally, before 1994/1995, 5% of students were able to recover and conclude all 

subjects in 5 semesters, and 6% in 6 semesters, which result on 44% of students 

concluding all subjects on at least 6 semesters. 

- After 1994/1995, 13.5% of students are able to conclude all subjects in 5 semesters and 

10% in 6 semesters, which result on 55.5% of students concluding all subjects on at 

least 6 semesters. 



Chapter 7 – Case Studies 

123 

51 2AM1 AM2 3 AM3 4 AM4

~AM1

9

AM4

10

~AM4

AM4

~AM4

11

~AM3

12

~AM3

AM3

AM3

7

~AM2

14

~AM2

8

15

AM2

AM2

~AM3
AM3

AM3

6

13

~AM1

AM1

AM1

 
Figure 7.11 – DFA for representing the results on Mathematical Analysis subjects in 6 semesters, after 1994 

These results show that, in fact, the imposition of precedences among the subjects on 

Mathematical Analysis introduces some alterations on students' behavior. On one side, the 

percentage of students that conclude all subjects in 6 semesters increase about 10%, but on the 

other side, the number of students that conclude on 4 semesters decreases 1%. 1% is a little 

difference, but students curricula do not show some frequent behaviors, like 

<(AM1)(~AM2)(AM3)(AM2,AM4)>, <(AM1)(AM2)(~AM3)(AM4)(AM3)> or <(~AM1)(AM2)(AM1,AM3)(AM4)>. 

It is important to note that there is no trivial way to perform an identical analysis. Usually, the 

results are stored in separate records, difficulting the sequential analysis with simple queries. 

Remember that those queries require several natural joins, one for each constraint on the required 

sequence of results. In fact, the queries must define the entire automata with those operations, 

which is not a simple task. No other kind of queries will be able to address this problem, because 

without the sequence information, we are just able to discover how many students have approved 

or failed in each subject. 

In this manner, constrained sequential pattern mining is a natural way to perform this kind of 

analysis, only requiring that "experts"design the possible curricula, which is trivial, since they are 

publicly known. 
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1.3 – Analysis of LEIC Students’ Behaviours 

Licenciatura em Engenharia Informática e de Computadores (LEIC) is an undergraduate program 

on information technology and computer science at Instituto Superior Técnico, created in the 

academic year of 1989/90. 

The LEIC curriculum has a duration of five years (10 semesters) with 36 required subjects, a 

final thesis and 4 optional subjects in the last year. Since 1989, the curriculum model of LEIC has 

suffered two main reorganizations. Until 2003, LEIC has offered four specialty areas: PSI – 

Programming and Information Systems; SCO – Computer Systems; IAR – Artificial Intelligence 

and IIN – Information Systems for Factory Automation. In the first curriculum model, LEIC had 20 

common subjects, 18 on the first three semesters and the other 2 on the following two semesters. 

The enrollment on a specialty area was made on the fourth semester. 

The distribution of common subjects per scientific area is shown on Table 11. 

Table 11 – List of common subjects, distributed by scientific area 

Common subjects 
AL – Linear Algebra 

AM1 – Mathematical Analysis 1 

AM2 – Mathematical Analysis 2 

AM3 – Mathematical Analysis 3 

PE – Probability and Statistics 

Mathematics 

AN – Numerical Analysis 

FEX – Experimental Physics 

F1 – Physics 1  Physics 

F2 – Physics 2 

Computer Science TC – Theory of Computation 

IP – Programming Introduction 

AED – Algorithms and Data Structures 

PLF – Logical and Functional Programming 
Programming 
Methodologies 

POO – Object Oriented Programming 

SD – Digital Systems 

AC – Computer Architecture 
Architecture and 
Operative Systems 

SO – Operative Systems 

Artificial Intelligence IA – Artificial Intelligence 

Information Systems SIBD – Information Systems and 
Databases 

Computer Graphics CG – Computer Graphics 

There are 47 other subjects, distributed by each specialty area. The deterministic finite 

automaton on Figure 7.12 shows the model curriculum for each specialty area. 
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Figure 7.12 – DFA for specifying the model curriculum for LEIC specialty areas 

The existence of two different transitions per semester for SCO students, are due to a minor 

reorganization of the SCO curriculum on 1995/1996. 

Analysis Goals 

The analysis of the data referring to LEIC students' performance has essentially two main reasons: 

to explain the low levels of success and to identify the most common profiles of LEIC students. 

In this manner, we will try to answer two questions: 

- 'What are the most common patterns on each scientific area, and what is the impact of 

some subjects on others?' 

- 'What are the common curricula instantiations for each specialty area, including optional 

subjects?' 

Data statistics 

The dataset used to analyze those questions consists on the set of sequences corresponding to the 

curriculum followed by each LEIC student, with his first enrollment made between 1989 and 1997. 

From these, the students that do not enrolled in LEIC subjects more than seven semesters were 

excluded (this removes 260 students out of 1706), since most of them have cancelled their 

registration. Additionally, it is important to note that students that enrolled in 1997 have not 

concluded their graduation until 2001, but have been registered for at least eight semesters, and 

therefore may have concluded the 4th curricular year. 

In this manner, the dataset (LEIC1989-2001) is composed of 1440 sequences, with an 

average sequence length equal to 11.58 semesters. Most of the students (72%) have between 8 and 
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12 enrollments (they had attended classes between 8 and 12 semesters) – see Figure 7.13. 
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Figure 7.13 – Distribution of the length of sequences on dataset LEIC1989-2001 

Naturally, the number of students with an odd sequence length is reduced, since this situation 

corresponds to students that have registered in only one semester on that year. 

In terms of the number of enrollments per semester, its mean is 4.82 enrollments on subjects 

per semester, with most students (75%) enrolling on between 4 and 6 units (see Figure 7.14). 
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Figure 7.14 – Distribution of the number of enrollments per semester in LEIC1989-2001 (size of itemsets) 

Another interesting issue is the distribution of students per specialty area, shown in Figure 

7.15. 
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Figure 7.15 – Students per specialty area 
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This distribution conditions the number of enrollments per subject. For example, subjects 

exclusive to Artificial Intelligence and IIN have at most 13% of support (Figure 7.16, Figure 7.17). 
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Figure 7.16 – Support for approvals and failures (subjects in the first 6 semesters of the model curriculum) 

It is interesting to note that only 823 students (57%) have concluded the final work (TFC1 and 

TFC2). Since it is usual that students only took optional subjects in parallel or after finishing the 

final work, the support for optional subjects is at most 57%. Since the options are chosen from a 

large set of choices (130 subjects), their individual support is considerably lower. Indeed the 

subject on Management (G) is the optional subject with more students, about 40%. 
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Figure 7.17 – Support for approvals and failures (subjects in the last 4 semesters of the model curriculum) 

Finding frequent curricula on scientific areas 

The discovery of the most common patterns on each scientific area is easily achieved if we look for 

students, who conclude the sequence of subjects in the same scientific area in at most four 
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semesters. This constraint can be specified by the pushdown automaton represented on Figure 7.18. 

In this figure, each transition represents four transitions, one per scientific area. For example, 

[(~X2),sa(X2)]�push(sa(X2)) represents [(~F1),F]�push(F), [(~AM2),AM]�push(AM) 

[(~AED),MTP]�push(MTP), [(~AC),ASO]�push(ASO). 

2 3[(X2), sa(X2)]�noop [(X3), sa(X3)]�pop 41 [(X1), S]�push(sa(X1))

5

[(~X1), S]�push(sa(X1))

6[(X2), sa(X2)]�push(sa(X2))

7

[(~X2), sa(X2)]�push(sa(X2))
[(X1,X3), sa(X1X3)]�pop

8

[(X2), sa(X2)]�pop
[(X1,X3), sa(X1X3)]�pop[(~X2), sa(X2)]�push(sa(X2))

9 [(X3), sa(X3)]�pop

 
Figure 7.18 – PDA for specifying the curricula on each scientific area, where students conclude three subjects in 

a determined scientific area at most on 4 semesters 

Also, consider that X1, X2 and X3 are the first, second and third subjects on some of the 

following scientific areas: MTP, ASO, Physics and Mathematical Analysis. Also, consider 

that sa is a function from the set of subjects to their scientific area, for example sa(IP)=MTP. 

The first thing that we are able to discover, using an Ω–constraint defined over the PDA on 

Figure 7.18, with a gap equal to zero and without any other temporal constraint, is that the majority 

of students are able to conclude the sequence of MTP (61%) and ASO (57%) subjects without any 

failure. Additionally, 6% of students are also able to conclude all but one of those subjects in four 

semesters (see shadowed patterns in Table 12). 

Table 12 – Patterns in Scientific Areas, discovered with an ΩΩΩΩ–constraint  
Patterns Sup 

<(IP),(AED),(PLF)> 61% 
<(IP),(~AED),(PLF),(AED)> 6% 
<(SD),(AC),(SO)> 57% 
<(SD),(~AC),(SO),(AC)> 6% 
<(FEX),(F1),(F2)> 35% 
<(FEX),(~F1),(F2),(F1)> 5% 
<(AM1),(AM2),(AM3)> 31% 

When applying an Approx relaxation, we are able to discover part of the patterns followed by 

students that are not able to conclude all subjects in four semesters, as specified in the previous 

automaton. For example, one of the causes of failure on the sequence of ASO subjects is failing on 

the subject of Operative Systems (SO). Since this subject is the third one in the sequence and it is 

only offered in the Fall semester, students in that situation are not able to conclude the three 
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subjects in four semesters. Similarly, students that fail on the subjects of Physics 2 (F2), 

Mathematical Analysis 3 (AM3) and Functional and Logic Programming (PLF) are not able to 

conclude the corresponding sequences on 4 semesters, as shown in Table 13. 

Table 13 – Patterns in a single scientific area discovered with the Approx relaxation 
Patterns Sup 

<(AM1),(~AM2),(~AM3),(AM2)> 6%
<(AM1),(~AM2),(AM2)> 6%
<(AM1),(AM2),(~AM3,AM3)> 6% 
<(FEX),(F1),(~F2)> 22% 
<(FEX),(~F1),(~F2),(F1)> 8%
<(FEX),(~F1),(F2),(F1)> 5%
<(~F2),(F1),(F2)> 6%
<(IP),(AED),(~PLF)> 12% 
<(IP),(~AED),(PLF),(POO)> 6%
<(~IP),(~AED),(IP),(AED)> 5%
<(SD),(AC),(~SO)> 13%
<(~SD),(~AC),(SD),(AC)> 6%

Another interesting pattern found is that 6% of students fail in the first opportunity to conclude 

Mathematical Analysis 3 (AM3), but seize the second opportunity, concluding that subject in the 

first enrollment (shadowed line in Table 13). 

Additionally, the use of the approx relaxation also contributes to analyze the impact of some 

subjects on others. For example, an approx relaxation with one error discovers that 49% of the 

students that conclude MTP subjects in 3 semesters fail on AM3 and 40% on F2. Similarly, 45% of 

students that conclude ASO subjects in 3 semesters fail on AM3 and 39% on F2 (shadowed 

patterns in Table 14). 

Table 14 – Patterns in scientific areas with one error 

Patterns Sup Patterns Sup 
<(IP,SD),(AED),(PLF)> 57%<(IP,~SD),(AED),(PLF)> 8%
<(IP),(AED),(PLF,SO)> 53%<(IP),(AED),(PLF,~SO)> 10%
<(IP),(AED,AC),(PLF)> 53%<(IP),(AED,~AC),(PLF)> 8%
<(SD),(AC),(PLF,SO)> 51%<(SD),(AC),(~PLF,SO)> 8%
<(IP,AM1),(AED),(PLF)> 50%<(IP,~AM1),(AED),(PLF)> 15%
<(SD,AM1),(AC),(SO)> 47%<(SD,~AM1),(AC),(SO)> 15%
<(IP),(AED,AM2),(PLF)> 45%<(IP),(AED,~AM2),(PLF)> 16%
<(IP),(AED,F1),(PLF)> 45%<(IP),(AED,~F1),(PLF)> 16%
<(SD),(AC,F1),(SO)> 41%<(SD),(AC,~F1),(SO)> 16%
<(SD),(AC,AM2),(SO)> 41%<(SD),(AC,~AM2),(SO)> 16%
<(IP),(AED),(PLF,F2)> 36%<(IP),(AED),(PLF,~F2)> 24%
<(SD),(AC),(SO,F2)> 34%<(SD),(AC),(SO,~F2)> 23%
<(FEX,AM1),(F1),(F2)> 31%<(~AM1,FEX),(F1),(F2)> 6%
<(FEX),(F1),(SO,F2)> 31%<(FEX),(F1),(~SO,F2)> 5%
<(IP),(AED),(PLF,AM3)> 29%<(IP),(AED),(PLF,~AM3)> 30%
<(FEX),(F1,AM2),(F2)> 28%<(FEX),(F1,~AM2),(F2)> 7%
<(SD),(AC),(SO,AM3)> 27%<(SD),(AC),(SO,~AM3)> 26%
<(AM1),(AM2),(F2,AM3)> 23%<(AM1),(AM2),(~F2,AM3)> 8%
<(FEX),(F1),(F2,AM3)> 21%<(FEX),(F1),(F2,~AM3)> 14%

Finding Common Curricula Instantiations with Optional Subjects 

The challenge on finding which students choose what optional subjects is a non-trivial task, 

especially because all non-common subjects can be chosen as optional by some student. A simple 
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count of each subject support does not give the expected answer, since most of the subjects are 

required to some percentage of students. 

The other usual approach would be to query the database to count the support of each subject, 

knowing that students have followed some given curriculum. However, this approach is also unable 

to answer the question, since a considerable number of students (more than 50%) have failed one or 

more subjects, following a slightly different curriculum. 

In order to discover the optional subjects frequently chosen by students, we have used the 

methodology previously proposed – the use of constraint relaxations, defining an Ω–constraint 

based on the deterministic finite automaton shown in Figure 7.19. 

This automaton accepts sequences that represent the curricula on the fourth curricular year for 

each specialty area (the first for PSI students, the second one for SCO, the third for IAR and the 

fourth for IIN). In practice, an Ω–constraint defined over this DFA filters all patterns that do not 

respect the model curriculum for the last two curricular years. 
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Figure 7.19 – DFA for finding optional subjects 

The use of constrained sequential pattern mining (with the specified constraint) would not 

contribute significantly to answer the initial question, since it would only achieve results similar to 

the ones obtained by the query explained above. 

However, the use of the Approx-Accepted relaxation allows for the discovery of several 

patterns. If the relaxation accepts at most two errors (ε=2) chosen from a restricted alphabet, 

composed by every non-common subject, we are able to found the frequent curricula instantiations 

with optional subjects. In general, students mostly attend Computer Graphics (PAC–Computed 

Assisted Project; IHM–Human Machine Interfaces) and Management subjects (Economy–E; 

Economical Theory 1–TE1; Financial Management–GF; Management–G; Management 
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Introduction–IG), as shown in Table 15. 

Table 15 – Patterns with optional subjects attended by LEIC students 
Specialty 

Area Curricula Instantiations LEIC 
support 

Specialty 
Support 

<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, PAC) (TFC2, GF)>:22 1.5% 5% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, Econ) (TFC2, GF)>:33  2.5% 8% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, Econ) (TFC2, IG)>:28  2% 7% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1) (TFC2, GF, IG)>:33 2.5% 8% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G, PAC) (TFC2)>:22 1.5% 5% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, GF)>:32  2% 8% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, GCP)>:19  1% 5% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, GEC)>:23  1.5% 5% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G) (TFC2, ARGE)>:18  1% 4% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, G, TE1) (TFC2)>:29  2% 7% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, TE1, Econ) (TFC2)>:21 1.5% 5% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, TE1) (TFC2, GF)>:44  3% 10% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TFC1, TE1) (TFC2, IG)>:27  1,5% 6% 
<(M, AD, IHM, PC) (AA, SoD, EP, TP3) (TE1) (GEC)>:15 1% 4% 

PSI 

<(M, AD, IHM, PC) (AA, SoD, EP) (TFC1) (TFC2, TE2)>:15 1% 4% 
<(M, AD, PAC, Rob) (EP, SDAI, SFF) (TFC1) (TFC2, IG)>:15 1% 8% 
<(M, AD, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, IHM) (TFC2, GF)>:18  1% 10% 
<(M, AD, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, Econ) (TFC2, GF)>:18 1% 10% 
<(M, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, G) (TFC2)>:17 1% 10% 

IIN 

<(M, PAC, Rob) (EP, FAC, SDAI, SFF) (TFC1, TE1) (TFC2)>:18 1% 10% 
<(IHM, Rac, LN) (SP, V, PA, SR) (TFC1, TE1) (TFC2)>:15 1% 10% IAR 
<(IHM, A, Rac, LN) (SP, V, PA, SR) (TFC1) (TFC2, GF)>:17 1% 10% 
<(C) (VLSI, RC2, RDBL, AD) (AA, CDPSD, ARGE, SoD) (TFC1, G) (TFC2)>:23 1.5% 8% 
<(Elect) (VLSI, RC2, RDBL, AD) (AA, CDPSD, ARGE, SoD) (TFC1, G) (TFC2)>:27 1.5% 10% SCO 
<(RC1) (VLSI, RC2, RDBL, AD) (AA, CDPSD, ARGE, SoD) (TFC1, G) (TFC2)>:19 1% 7% 

It is interesting to note that whenever IIN students have failed on some subject on the 4th year, 

they choose an optional subject in Economy (TE1 or IG). The same happens for PSI and IAR 

students (behavior identified by shadowed rules). Note that in order to discover these rules, we 

have to be able to admit some errors on the sequence of subjects per specialty area, which is not 

easily done by specifying some query to a database. 

Another interesting issue is the inexistence of frequent optional subjects among IAR and SCO 

students. Indeed, for the last ones there is only one frequent optional subject (Management – G). 

Finding Artificial Intelligence curricula 

As can be seen in previous analysis, the subjects exclusive to AI students have very low supports 

(about 13%). Naturally, the sequences of consecutive subjects have supports even lower. Indeed, 

the discovery of Artificial Intelligence (IAR) frequent curricula, like for IIN, is non-trivial, since 

the number of students in these specialty areas is reduced. 

Given that the application of unconstrained sequential pattern mining algorithms found 5866 

patterns in this dataset (for 20% of support, since we were not able to try lower supports due the 

memory requirements), and we want to found the sequence of subjects followed by IAR students, 

the use of constrained or unconstrained sequential pattern mining does not help to answer this 

second question. 
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However, if we use the proposed methodology, we have two alternatives: using a DFA 

specifying the IAR model curriculum and an Approx-Accepted relaxation as above, or using a DFA 

specifying PSI and SCO curricula models and a Non-Accepted relaxation with a restricted alphabet. 

Table 16 – Artificial Intelligence frequent curricula 

Patterns on Artificial Intelligence 
<(AD,FL,P)(RC,TP)(IHM,Apr,Rac,LN)(SP,PA)> <(FA,TAI)(AD,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,SR)> 

<(FA,TAI)(FL,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> <(FA,TAI)(AD,P)(RC,LP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> 

<(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,Rac,LN)(SP,V,SR)> <(FA)(AD,FL,P)(RC,TP)(IHM,Apr,Rac,LN)(SP)> 

<(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(V,PA,SR)> <(FA)(AD,FL,P)(RC)(IHM,Apr,Rac,LN)(SP,PA)> 

<(FA,TAI)(AD,FL,P)(RC,LP)(IHM,Rac,LN)(SP,V,PA,SR)> <(TAI)(AD,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> 

<(FA,TAI)(AD,FL,P)(RC,LP)(IHM,Apr,Rac,LN)(SP,V,SR)> <(TAI)(AD,FL,P)(RC,LP,TP)(IHM,Rac,LN)(SP,V,PA)> 

<(FA,TAI)(AD,FL)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> <(TAI)(AD,FL,P)(RC,LP,TP)(IHM,Apr,Rac,LN)(SP,V,SR)> 

<(FA,TAI)(AD,P)(RC,LP,TP)(IHM,Rac,LN)(SP,V,PA,SR)> <(TAI)(AD,FL,P)(RC,LP)(IHM,Apr,Rac,LN)(SP,V,PA,SR)> 

The patterns discovered by the second alternative (using a minimum support threshold equal to 

2.5%) answer the question. (Table 16 shows the discovered patterns, excluding 8 patterns that are 

shared by PSI students). 

Note that we were not able to find the entire model curriculum for Artificial Intelligence, 

because of the reduced number of students that have concluded each subject on the first enrollment. 

This fact, explains the number of discovered patterns (24). However, it is smaller than the number 

of patterns discovered with an unconstrained approach, confirming our claim about constraint 

relaxations. 

The Non-Accepted relaxation was defined using a constraint similar to the previous one with 

the DFA represented in Figure 7.20, which corresponds to a DFA equal to the one presented in 

Figure 7.12, without the model curriculum for IAR and IIN. 
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Figure 7.20 – DFA for discovering IAR frequent curricula 

Additionally, the relaxation alphabet was composed of all the common subjects and the 

advanced subjects specific to the Artificial Intelligence specialty area (38 subjects). 
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2 – Efficiency Evaluation 

As pointed in [Zheng 2001], real-world datasets can be drastically different from synthetic datasets. 

In this section, the real-world datasets PmeLink.PT and LEIC1989-2001 are used to validate the 

efficiency studies performed in previous chapters. 

First, we will compare the performance of GenPrefixSpan and SPaRSe, verifying if they show 

similar behaviors in dense datasets. Then, we will compare the efficiency of constrained and 

unconstrained sequential pattern mining. Finally, we assess the efficiency of the usage of constraint 

relaxations. 

2.1 – Comparison between GenPrefixSpan and SPaRSe 

As seen in Chapter 4, SPaRSe and GenPrefixSpan show a similar performance in the presence of 

dense datasets (remember Figure 4.4). The experiments on real-life datasets, previously described, 

confirm those results and emphasize the differences in favor of SPaRSe, as shown in Figure 7.21. 
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Figure 7.21 – Performance w/ variable support in dataset PmeLink.PT (left) and LEIC1989-2001 (right) 

In fact, LEIC1989-2001 is more dense (ρ=5.73 for sup=25%) than PmeLink.PT (ρ=4.48 for 

sup=10%), and both more dense than the most dense synthetic dataset (ρ=3.07 for sup=10%). It 

was not possible to determine the density of LEIC1989-2001 for lower supports due to memory 

limitations, but it is obvious that its density would increase. 

In this manner, we can conclude that apriori-based algorithms can achieve the performance of 

pattern-growth methods in general, and outperform them on dense datasets. 

2.2 – Comparison between Constrained and Unconstrained Mining 

To compare the efficiency of constrained and unconstrained sequential pattern mining, we will 

proceed as in Chapter 5. We will compare the time spent by constrained and unconstrained mining, 

using the pushdown automata in Figure 7.3 and Figure 7.18 for mining the datasets LEIC1989-

2001 and PmeLink.PT, respectively. Simultaneously, we will evaluate the differences on the 
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performance when using deterministic finite automata and deterministic and non-deterministic 

pushdown automata. 

PmeLink.PT 

Consider the deterministic pushdown automaton in Figure 7.22. It accepts the same number of 

patterns that the non-deterministic one in Figure 7.3. 

q2q1

[(X), X]�pop

[(X), S]�push X

 
Figure 7.22 – PDA for specifying constraints over the dataset PmeLink 

As argued in Chapter 5, the use of non-deterministic pushdown automata essentially presents 

the same behavior that deterministic ones, with a small decrease on performance. Additionally, it is 

clear that their use improves the efficiency of sequential pattern mining, both by reducing the 

number of discovered patterns, and by reducing the processing time (as shown in Figure 7.23 – 

left). 
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Figure 7.23 – Performance (on the left) and average time spent for each pattern (on the right), using different 

types of content constraints in dataset PmeLink 

Like in synthetic datasets, the average time spent for each discovered pattern decreases when 

that number increases (Figure 7.23 – right). 

LEIC1989-2001 

In the LEIC1989-2001 dataset, the results are identical (see Figure 7.24). Since the number of 

discovered patterns is not the same for the DFA, PDA and nPDA, the charts present some 

fluctuations, but maintain similar the performances with any of the used automaton. 
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Figure 7.24 – Performance (on the left) and average time spent for each pattern (on the right), using different 

types of content constraints in dataset LEIC1989-2001 

The DFA used in this comparison accepts the curricula on MTP and ASO scientific areas, of 

students that have failed at most once per subject Figure 7.25. 
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Figure 7.25 – DFA for specifying constraints over dataset LEIC1989-2001 

The nPDA used is illustrated in Figure 7.26. It accepts sequences in each scientific area, that 

mimic the sequence of subjects attended by students, including the possibility of failure in the first 

two subjects of each scientific area. (SD)(AC)(SO), (~SD)(AC)(SD,SO) and (SD)(~AC)(SO) are 

examples of accepted sequences. 
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[(~IP),S]�pushMTP
[(IP),S]�pushMTP
[(PLF),MTP]�pushMTP
[(IP,PLF),MTP]�pushMTP
[(~SD),S]�pushASO
[(SD),S]�pushASO
[(SO),ASO]�pushASO
[(SD,SO),ASO]�pushASO
[(~AM1),S]�pushAM
[(AM1),S]�pushAM
[(AM3),AM]�pushAM
[(AM1,AM3),AM]�pushAM
[(~FEX),S]�pushF
[(FEX),S]�pushF
[(FEX,F2),F]�pushF
[(F2),F]�pushF

[(AED),MTP]�noop
[(~AED),MTP]�push(MTP)
[(AC),ASO]�noop
[(~AC),ASO]�push(ASO)
[(AM2),AM]�noop
[(~AM2),AM]�push(AM)
[(F1),F]�noop
[(~F1),F]�push(F)

[(AED,POO),MTP]�pop
[(POO),MTP]�pop
[(AC),ASO]�pop
[(AM2),AM]�pop
[(F1),F]�pop  

Figure 7.26 – nPDA for specifying constraints over dataset LEIC1989-2001 

Figure 7.27 shows that the number of discovered patterns, using the above constraints, is not 

equal but is similar, which makes the comparison of their performance meaningful. These automata 

were chosen for this reason. 
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Figure 7.27 – Number of discovered patterns using different content constraints 

2.3 – Evaluation of Constraint Relaxations 

Finally, the performance achieved with the use of constraint relaxations is also similar to the ones 

achieved in synthetic datasets. 
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Figure 7.28 – Performance (on the left) and average time spent for each pattern (on the right), using different 
constraint relaxations in dataset PmeLink.PT 

In general, mining with conservative relaxations is as efficient as mining with the entire 

constraint. However, the average time spent per discovered pattern is lower (Figure 7.28) 
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Figure 7.29 – Performance (on the left) and average time spent for each pattern (on the right), using different 
constraint relaxations in dataset LEIC1989-2001 

Naturally, Non-Accepted and Approx relaxations spent much more time than the other 

relaxations, but this difference is mostly due to the number of patterns that they discover. 

As in synthetic datasets, mining with Non-accepted and Approx relaxations can be less 

efficient than unconstrained mining. This happens when the number of patterns discovered by these 

relaxations is similar to the number of discovered unconstrained patterns, as is usual for Non-

accepted relaxations with a very restrictive constraint (as the ones used in this chapter). 

As Figure 7.29 – right shows Approx relaxations are the most expensive per discovered pattern. 

In fact, even when the number of discovered patterns is considerably lower than the number of 

unconstrained patterns, it is possible that Approx relaxations spent more time than unconstrained 

mining. 

It is important to note that Approx relaxation shows a poor performance in PmeLink.PT dataset, 

because it discovers a considerable number of patterns (about 250) and the constraint is specified 

with a non-deterministic pushdown automata. 
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Approx Variants 

When applied with a restricted alphabet Approx relaxations may present better performances, even 

when non-deterministic pushdown automata are used. 

Figure 7.30 shows that Approx with a restricted alphabet is able to spend so much time as 

unconstrained mining, with the advantage that it finds about 20% of the patterns. 

PerformancevsSupport

0

20

40

60

80

100

120

140

160

45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e 
(s

)

Unconstrained Full Approx Stock  

Average Time Spent for Each Pattern

0

200

400

600

800

1000

1200

1400

45% 40% 35% 30% 25% 20% 15% 10% 5%
support

Ti
m

e 
(s

)

Unconstrained Full Approx Stock   
Figure 7.30 – Performance (on the left) and average time spent for each pattern (on the right), using approx 

variants in dataset PmeLink.PT 

Fortunately, with deterministic pushdown automata the results achieved by Approx relaxations 

are much better, outperforming unconstrained mining in the generality of situations. Combining it 

with an item constraint (restricting its alphabet), the results are even better, as shown in Figure 

7.31. 
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Figure 7.31 – Performance (on the left) and average time spent for each pattern (on the right), using approx 
variants in dataset LEIC1989-2001 

Non-Accepted Variants 

The results achieved with non-accepted relaxations are similar. When combined with an item 

constraint, it can reduce the number of patterns that it discovers. For example, due to the memory 

requirements of the large number of discovered patterns, it was not possible to discover 

unconstrained and non-accepted patterns for supports below 25%, on the LEIC1989-2001 dataset. 
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Figure 7.32 – Number of discovered patterns with Non-accepted variants on LEIC1989-2001 

However, with items restricted to the subjects exclusive to Artificial Intelligence (as in section 

Finding Artificial Intelligence curricula) it is possible to discover part of the non-accepted patterns, 

in an acceptable time. Figure 7.32 shows the number of discovered patterns and Figure 7.33 the 

corresponding performance. 
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Figure 7.33 – Performance (on the left) and average time spent for each pattern (on the right), using Non-

accepted variants in dataset LEIC1989-2001 

The results are similar, if an item constraint was applied with the Non-Accepted relaxation on 

the PmeLink.PT dataset, as shown in Figure 7.34. 
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Figure 7.34 – Performance (on the left) and average time spent for each pattern (on the right), using Non-

accepted variants in dataset PmeLink.PT 
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3 – Effectiveness Evaluation 

In the last section, we have shown that the new methodology improves the efficiency of the mining 

process, mostly by reducing the number of patterns that are discovered. However, we did not 

discuss the quality of the discovered patterns when compared with the patterns discovered by an 

unconstrained mining process. 

The main reason for the lack of this discussion until this point is the inexistence of a precise 

quality assessment of the discovered patterns. The only way to make such an assessement is to 

compare the discovered patterns with the existing background knowledge, which has to be good 

enough to distinguish between relevant and irrelevant patterns. 

Analysis Goals 

In order to perform such effectiveness evaluation, we considered a smaller problem whose results 

can be easily analised. The selected problem is to find the reasons why students abandon LEIC 

before concluding the 42 subjects required. 

Data Statistics 

The dataset used to analyze this question consists on the set of sequences corresponding to the 

curriculum followed by each LEIC student, with his first enrollment made between 1989 and 1997. 

From these, we have only considered the students that did not conclude 42 subjects and did not 

have any enrollment on the last year. In this manner, the dataset includes all the students that 

abandoned LEIC (at least temporarily). The dataset (LEICabandons) contains 489 sequences, 

with an average sequence length equal to 4 semesters. 

Finding Abandon Reasons 

This problem was chosen because it is easy to enumerate some resons for abandon in LEIC. By 

applying common sense, we can suggest two different reasons: the inability to conclude the first 

computer science specific subjects (‘Programming Introduction’ -[IP], ‘Digital Systems’ -[SD], 

‘Algorithms and Data Structures’ -[AED] and ‘Computer Architecture’ -[AC]), and the inability to 

conclude the generic engineering subjects (‘Linear Algebra’ -[AL] and ‘Mathematical Analysis 1 

and 2’ -[AM1, AM2]). This knowledge can be represented by the automaton in Figure 7.35. 
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Figure 7.35 – DFA for specifying the anticipated abandon reasons 

The great difficulty in determining the effectiveness of our mining process is to determine 

which ones are the relevant or interesting patterns. In order to choose those patterns, we applied the 

pattern discovery algorithms on both the LEICabandons and LEIC1989-2001 datasets, and 

identified as relevant the sequences that are frequent in the first dataset but are not frequent in the 

second one. With a support of 50%, 91 sequences have been discovered. From these, 79 are 

relevant by this criterion (as shown in Table 17). 

Table 17 – Set of relevant sequences for abandons 

Relevant Sequences 
<(~AC,~AED)> <(~AL)(~AED,~F1,~TC)> <(~AM1)(~AC,~AED)> <(~IP)(~AED,~TC)> 

<(~AC,~AED,~F1)> <(~AL)(~AED,~TC)> <(~AM1)(~AC,~AED,~F1)> <(~IP)(~TC)> 

<(~AC,~AED,~F1,~TC)> <(~AL)(~F1,~TC)> <(~AM1)(~AC,~AED,~F1,~TC)> <(~IP)> 

<(~AC,~AED,~TC)> <(~AL)(~TC)> <(~AM1)(~AC,~AED,~TC)> <(~SD)(~AC)> 

<(~AC,~F1)> <(~AL,~AM1)(~AC)> <(~AM1)(~AC,~F1)> <(~SD)(~AC,~AED)> 

<(~AC,~F1,~TC)> <(~AL,~AM1)(~AC,~AED)> <(~AM1)(~AC,~F1,~TC)> <(~SD)(~AC,~AED,~F1)> 

<(~AC,~TC)> <(~AL,~AM1)(~AC,~AED,~TC)> <(~AM1)(~AC,~TC)> <(~SD)(~AC,~AED,~F1,~TC)> 

<(~AED,~F1)> <(~AL,~AM1)(~AC,~F1)> <(~AM1)(~AED)> <(~SD)(~AC,~AED,~TC)> 

<(~AED,~F1,~TC)> <(~AL,~AM1)(~AC,~TC)> <(~AM1)(~AED,~F1)> <(~SD)(~AC,~F1)> 

<(~AED,~TC)> <(~AL,~AM1)(~AED)> <(~AM1)(~AED,~F1,~TC)> <(~SD)(~AC,~F1,~TC)> 

<(~AL)(~AC)> <(~AL,~AM1)(~AED,~F1)> <(~AM1)(~AED,~TC)> <(~SD)(~AC,~TC)> 

<(~AL)(~AC,~AED)> <(~AL,~AM1)(~AED,~F1,~TC)> <(~AM1)(~F1)> <(~SD)(~AED)> 

<(~AL)(~AC,~AED,~F1)> <(~AL,~AM1)(~AED,~TC)> <(~AM1)(~F1,~TC)> <(~SD)(~AED,~F1)> 

<(~AL)(~AC,~AED,~F1,~TC)> <(~AL,~AM1)(~F1)> <(~AM1)(~TC)> <(~SD)(~AED,~F1,~TC)> 

<(~AL)(~AC,~AED,~TC)> <(~AL,~AM1)(~F1,~TC)> <(~F1,~TC)> <(~SD)(~AED,~TC)> 

<(~AL)(~AC,~F1)> <(~AL,~AM1)(~TC)> <(~IP)(~AC)> <(~SD)(~F1)> 

<(~AL)(~AC,~F1,~TC)> <(~AL,~AM1)> <(~IP)(~AC,~AED)> <(~SD)(~F1,~TC)> 

<(~AL)(~AC,~TC)> <(~AL,~SD)(~AC)> <(~IP)(~AC,~AED,~TC)> <(~SD)(~TC)> 

<(~AL)(~AED)> <(~AL,~SD)> <(~IP)(~AC,~TC)> <(~SD)> 

<(~AL)(~AED,~F1)> <(~AM1)(~AC)> <(~IP)(~AED)>  

 

A simple analysis of these sequences shows that most students that cancel their registration are 

not able to conclude more than two subjects in the second semester. Additionaly, this analysis 

shows that the cancellation reasons anticipated and represented in the automaton in Figure 7.35 are 

close to the real reasons. 

Assuming these sequences are relevant for this task, it is now possible to evaluate the 

effectiveness of the new methodology by comparing its results with the results reached with 

constraints, by counting the number of relevant sequences discovered with each relaxation. Table 
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18 shows the number of sequences discovered and the number of relevant ones per relaxation. 

Table 18 – Precision and Recall 

  Unconst. Accepted Legal Approx 
(�=1) 

Approx 
(�=2) 

Approx 
(�=3) Non-Acc 

Nr Total Retrieved 91 2 15 20 71 90 89 

Nr Retrieved and Relevant 79 2 10 18 63 78 77 

Recall 100% 3% 13% 23% 80% 99% 97% 

Precision 87% 100% 67% 90% 89% 87% 87% 

Considering the notions of precision and recall usually used for evaluating the effectiveness of 

information retrieval algorithms, it is possible to compare the use of constraints with the use of 

relaxations as proposed in this work. 

When applied to the mining process, precision corresponds to the the ratio of relevant patterns 

retrieved by the process to all patterns retrieved by the process, and recall corresponds to the ratio 

of relevant patterns retrieved by the process to all relevant patterns in the dataset. 

Applying those measures it is clear that there are significant differences among the relaxations, 

as shown in Figure 7.36. 

Precision and Recall

0%

20%

40%

60%

80%

100%

Accepted Approx (�=1) Approx (�=2) Approx (�=3) Unconst.

Constraint RelaxationsRecall Precision  
Figure 7.36 – Precision and Recall chart 

Since there are only two retrieved sequences when the constraint is used, it is clear that the 

existing background knowledge is not complete, but is correct. In this manner, the recall of the 

constrained process is usually very low. The existence of more accurate background knowledge 

would increase the recall. On the other side, all the accepted sequences are relevant, which makes 

the precision of the process 100%. 

The relaxation that shows a better balance between those measures and the efficiency of the 

process is the approx relaxation, because it is possible to adjust the number of patterns discovered 

without compromising the precision. By increasing or decreasing the number of errors allowed, it 

is possible to compensate the excessive selectivness of the background knowledge. Note that the 
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recall increases considerably when the number of allowed errors increase, but the decrease of the 

precision is less accentuated. 

From this analysis and the other experiments presented in this work, it is clear that the great 

challenge of pattern mining, in general, and of sequential pattern mining, in particular, is to reach 

the balance between the number of discovered patterns and the user’ s ability to analyze those 

patterns with the ability to discover unknown and useful information. The use of constraint 

relaxations, proposed in this work, represents a first step in this direction. 

Summary 

In this chapter, we validate our claims by exploring real-life datasets. The experiments 

confirm the results achieved in synthetic datasets, both in the analysis of apriori-based 

algorithms and pattern-growth methods, and in the evaluation of the use of constraint 

relaxations. 

In particular, we confirmed that apriori-based methods can present performances similar and 

even better than pattern-growth methods. Also confirmed, is the claim that constraint 

relaxations make the discovery of unknown information possible, maintaining acceptable 

performances and the focus on user expectations 

We also studied how the use of approximate relaxations can be used to move in the 

precision/recall tradeoff curve, enabling the user to control the number of generated rules. 
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Chapter 8 

Conclusions and Future Work 

This chapter resumes the contributions made in this dissertation, presenting a final analysis 

of the results and some conclusions. At the end of the chapter, we point out some open 

problems and discuss possible approaches to solve them. 

n this dissertation, we have proposed a new methodology to perform pattern mining over 

nominal event sequences, keeping the focus on the user expectations, without loosing the ability 

to discover unknown information. 

1 – Conclusions 

The new methodology is based on the use of the algorithms for sequential pattern mining and two 

new concepts: Ω–constraints and constraint relaxations. 

The Ω–constraint is a new class of constraints that can be used to introduce existing 

background knowledge into the mining process. It aggregates the different issues related to 

nominal event sequences, namely their content and temporal aspects. While Ω–constraints provide 

a framework for representing knowledge about this type of data, constraint relaxations enable the 

discovery of unknown information. 

We have shown that the use of constraint relaxations turns the mining process more efficient 

than unconstrained mining, making it spend much less time, but discovering patterns that are 

unknown, yet related to existing background knowledge. 

I 
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The increase in the performance of the mining process is due to the reduction of the number of 

discovered patterns, which directly contributes to keep the focus on user expectations. With respect 

to performance concerns, we have also clarified the challenges in sequential pattern mining and 

revealed the advantages and disadvantages of each approach to this problem. In particular, we have 

shown that apriori-based methods can be as efficient as pattern-growth methods, and even better 

for dense datasets if some optimizations are performed. The experiments on real-life datasets, 

presented in the last chapter, show that advantage clearly. 

Another important result of this dissertation is the definition of the Ω–constraints, which 

contributes to the definition of a theoretical framework for data mining, providing an integrated 

way to represent all the aspects related to the knowledge about sequential and nominal temporal 

data. This class of constraints combines the concepts precisely defined on a Time Ontology and the 

elegance of formal languages. In particular, we have shown that the use of more expressive 

languages, like context-free ones, does not impair the performance of the process. In order to deal 

with sequences of itemsets, we have extended the automata used to generate context-free languages 

(pushdown automata). 

Additionally, we have defined a set of constraint relaxations, based on the relaxation of the 

formal language associated with the Ω–constraint. In this manner, their use provides a tool to keep 

the focus on user expectations, since they essentially discover patterns that, in some way, are 

related to the background knowledge introduced into the process. While conservative relaxations 

find patterns that are subsequences of patterns accepted by the constraint, non-conservative ones 

enable the discovery of other patterns, by accepting any sequences with a specific alphabet (Naïve), 

by allowing some errors (Approx) or just by considering only the sequences that are not accepted 

by the constraint (Non-Accepted). 

The experiments with real-life datasets, in particular the ones performed over LEIC curricula, 

prove our claims. Those experiments were particularly interesting due to the existence of an 

accurate knowledge about the models behind the data. In fact, the success of the use of Non-

Accepted relaxation is conditioned by the existence of this knowledge, since it represents the only 

way to find some specific but interesting patterns. 

Those experiments have also shown that the ability to deal with errors is a real advantage, 

which makes possible the discovery of unknown patterns that are similar to accepted ones (with 

respect to some constraint), giving the user the ability to choose the level of similarity, by defining 

the number of errors accepted. 
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Unfortunately, the results with the PmeLink.PT data were not so promising, mainly due to the 

inexistence of such accurate knowledge about the PmeLink.PT business. In this manner, we were 

unabled to perform a such deep data analysis. Another important factor in these results is the nature 

of the products commonly transacted – most of the products are bought regularly: for example 

there is a clear correlation between 'paper A4' and 'goods for printers', which is easily found by 

association analysis. Moreover, these and most of the other products frequently transacted are just 

bougth everytime there an order is placed, which consequently implies the discovery of a large 

number of patterns. 

These contributions are described in detail and validated in the main body of the dissertation. 

Some of them have also been published at international conferences and workhsops 

([Antunes 2001b], [Antunes 2002a], [Antunes 2002b], [Antunes 2003], [Antunes 2004a], 

[Antunes 2004b] and [Antunes 2004c]). 

2 – Future Work 

This dissertation work opens several venues for future work, both with a narrow focus on temporal 

pattern mining and a larger focus on the design of constraints and constraint relaxations for 

traditional and other structured patterns. 

Relaxing Temporal Constraints 

Constraint relaxations are mainly based on the relaxation of content issues, and they only enable 

the definition of a time error. However, some recent work on ontologies has been defining fuzzy 

relations over time intervals [Visser 2003]. These new relations can be used in addition to the ones 

adopted in this work in order to relax temporal constraints. 

Mining Periodicities 

In terms of temporal pattern mining, over nominal data, the next step is to employ Ω–constraints to 

find patterns involving the temporal information, this is, the timestamp of events. Indeed, existing 

algorithms to find temporal patterns, for example periodicity patterns, are based on the extension of 

traditional apriori-based algorithms. 

One of the unexplored possibilities is the extension of existing sequential pattern mining 

algorithms, constrained or unconstrained, to discover such periodicities. 
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Algorithms for Structured Pattern Mining 

From the complete understanding of the exploration of sequential pattern mining and 

corresponding algorithms, it will be possible to face the challenge of developing new algorithms 

for other structured pattern mining, in a clearer context. 

One of the ways to reach that understanding is to study the complexity of the existing 

algorithms. However, and despite the recent studies on the complexity of pattern mining algorithms 

(like [Koster 2003], [de Graaf 2002] and [Zaki 1998b]), no work has been done on the complexity 

of sequential pattern mining algorithms. 

Another important task is to develop more efficient algorithms than GenPrefixGrowth, to deal 

with Ω–constraints. In fact, in order to avoid multiple databases scans to test each of the constraints 

(existential, temporal and content), it requires much larger amounts of memory than PrefixGrowth. 

Integrated Constraints for Mining Association Rules 

Another interesting open issue is the definition of new constraints, similar to the Ω–constraints, 

able to represent background knowledge for the traditional intra-transactional patterns. Such 

constraints could be similar to Ω–constraints, just aggregating existential, temporal and content 

issues. However, while the first two aspects could be the same, content constraints could not be so 

rich, since there is no structure behind parallel events. Beside these constraints, it could be 

interesting to incorporate interestingness measures into the new constraint. 

Additionally, the definition of the corresponding relaxations would contribute to guide the 

traditional pattern mining processes, which may contribute to reduce the number of discovered 

patterns, and, consequently, to focus the process on user expectations. 

Applications 

Although those experiments were performed with success in the analysis of common curricula, we 

expect them to be applicable to many other types of sequential data, as for example, in the analysis 

of process logs. If their supporting models are known in advance, it will be possible to discover 

failing situations, either by using legal or non-accepted relaxations. 

A similar task can be performed in web-logs, as for example, in the discovery of design errors 

of web sites. Based on the paths commonly followed by visitors, it is possible to understand the 

reason why visitors give up going further on the site or buying some product or service. 
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Conservative relaxations can be of great help to understand those deadlocks. 

Another application of sequential pattern mining and our methodology is on fraud detection, as 

suggested previously. With the model of well-behavied customers and a non-accepted relaxation, it 

is possible to discover the behaviours of fraudulent clients, since they do not follow that model. 

The data collected in telecommunications companies is one of the possible applications in this area. 

3 – Closing Remarks 

In summary, we have presented a new methodology, which is able to solve one of the main 

drawbacks of sequential pattern mining processes: the lack of focus on user expectations. This 

methodology makes use of an integrated constraint able to represent existing background 

knowledge, sequential pattern mining algorithms to discover unknown patterns and constraint 

relaxations that enable the discovery of unknown information. 

The experiments on real-life datasets, presented in this dissertation, demonstrate how this 

methodology can be applied, and which constraint relaxations are adequate to answer each 

question. 
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Appendix A 

KDNuggets Polls (October 2003) 

 

Dnuggets News is a newletter for the Data Mining and Knowledge Discovery community, 

that among other things annunciates data mining jobs, software, courses, conferences and 

news. A usually issue is the "Polls page" where data miners are invited to postpone their opinion. 

The next figure reproduces the contents of a poll on data preparation. 

 

The results show that the majority of voters (39%) consider that data cleaning and preparation 

requires between 60 and 80% of the total time. 

 

K 
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Appendix B 

Experimental Setup 

 

he experiments conducted in this work were based in three real-life datasets and some 

synthetic ones generated by the QUEST generator. 

The QUEST synthetic data generator from the Intelligent Information Systems research center 

at IBM Almaden, is a standard on the generation of synthetic sequential data, and has been used in 

most studies on sequential pattern mining (see [Agrawal 1995c], [Srikant 1996], [Zaki 1998a], 

[Pei 2001] and [Ayres 2002]). 

This data generator creates datasets that try to mimic real-world transactions, where customers 

tend to make a sequence of transactions involving a set of items. Sequence and transaction sizes are 

clustered around a mean and some of them may have larger sizes. Note that a sequence may have 

repeated transactions, but a transaction cannot have repeated items. The data generator accepts a set 

of parameters to specify the dataset characteristics. Those parameters are shown and explained on 

Table 19. 

Table 19 – Parameters for synthetic data generation 

Parameter Meaning 
| D | Number of sequences or dataset size 
| C | Average number of itemsets per sequence 
| T | Average number of items per itemset 
| S | Average length of maximal potentially frequent sequences 

| I | Average size of itemsets in maximal potentially frequent 
sequences 

NS Number of maximal potentially frequent sequences 
NI Number of maximal potentially frequent itemsets  
N Number of items 

More details about the generator can be found in [Agrawal 1995c], and it can be downloaded 

T 
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from http://www.almaden.ibm.com/software/quest/Resources/index.shtml. 

The computer used to run all the experiments was a Pentium M 1GHz with 768MB of RAM. 

To make the time measurements more reliable, no other application was running on the machine 

while the experiments were running. The operating system used was Windows XP and the 

algorithms were implemented using the Java programming language (Java Virtual Machine version 

1.4.2_01). The datasets were maintained in main memory during the algorithms processing, 

avoiding hard disk accesses. 


