
1

Using Context-Free Grammars to Constrain Apriori-based Algorithms
for Mining Temporal Association Rules

Cláudia M. Antunes1 and Arlindo L. Oliveira2

1 Instituto Superior Técnico, Dep. Engenharia Informática, Av. Rovisco Pais 1,

1049-001 Lisboa, Portugal

claudia.antunes@dei.ist.utl.pt
2 IST / INESC-ID, Dep. Engenharia Informática, Av. Rovisco Pais 1,

1049-001 Lisboa, Portugal

aml@inesc.pt

Abstract. Algorithms for the inference of association with sequential information have been proposed
and used but are ineffective, in some cases, because too many candidate rules are extracted. Filtering
the relevant ones is usually difficult and inefficient. In this work, we present an algorithm for the
inference of temporal association rules that uses context-free grammars to restrict the search process,
in order to filter, in an efficient and effective way, the associations discovered by the algorithm.
Moreover, we present experimental results that empirically evaluate its performance using synthetic
data.

1 Introduction

With the rapid increase of stored data, the interest in the discovery of hidden information has
exploded in the last decade. One important problem that arises during the discovery process is
treating data with temporal dependencies, and, in particular, the discovery of temporal
association rules.

When considering data with temporal information, the complexity of the mining process
increases considerably, since the data related to each entity has to be viewed as a sequence of
events. The ultimate goal of the process is to find behavior patterns among those sequences.

Association rules are a classical mechanism to model sequential patterns in general and
temporal patterns in particular. Some of the main approaches to discover these patterns are
based on the well-known apriori algorithm [2], and they essentially differ on the data portions
considered to generate pattern candidates [3], [12], [10]. However, the number of discovered
rules is usually high, and the interest of most of them doesn’t fulfill user expectations.
Filtering them after the fact, i.e., after the generation phase, is inefficient and in some cases
prohibitive.

In order to minimize this problem, an apriori-based algorithm, termed SPIRIT (Sequential
Pattern mIning with Regular expressIons consTraints) [7] constrains the candidate generation
with regular expressions. In this way, it is possible to focus the discovery process in
accordance with the user expectations, and at the same time, to reduce the time needed to

2

conclude the process. However, regular expressions are somehow limited, and cannot
describe a number of interesting patterns. The aim of this paper is to present a generalization
of this type of algorithms to use context-free grammars as constraints, in order to be able to
represent those patterns. Such algorithm may be part of a broader process, able to identify and
model sequential patterns, as described in [4].

The paper is organized as follows: section 2 presents a summary of the principal apriori-
based approaches to discover sequential patterns. Section 3 presents the essential concepts
related with context-free grammars and in section 4 an example of an interesting problem,
which can’t be described by any regular expression, is presented. Finally, section 5 presents
the conclusions and points some possible directions for future research.

2 Temporal Data Mining

The ultimate goal of temporal data mining is to discover hidden and frequent patterns on
sequences and sub-sequences of events. In this manner, it is possible to find patterns that
model the behavior of an entity. For instance, using a database with transactions performed by
customers at any instant, it is possible to predict what would be the customer’s next
transaction, based on his past transactions.

In the last two decades, the prediction of financial time series was one of the principal goals
of temporal data mining [6]. However, with the increase of stored data in other domains and
with the advances in the data mining area, the range of temporal data mining applications has
been extended significantly. Today, in engineering problems and scientific research temporal
data results, for example, from monitoring sensor networks or spatial missions (see, for
instances [8]). In healthcare, despite temporal data being a reality for decades (for example in
data originated by complex data acquisition systems like ECG), more than ever medical staff
is interested in systems able to help on medical research and on patients monitoring [14].
Finally in finance, applications on the analysis of product sales, client behaviors or inventory
consumptions are essential for today’s business planning [3].

2.1 Mining Temporal Association Rules

Temporal association rules are rules of the form X � T Y which states that if X occurs then Y
will occur within time T [5], where X and Y are events and T an amount of time. Stating a
rule in this new form, allows for controlling the impact of the occurrence of an event to the
other event occurrence, within a specific time interval.

In general, the process of mining temporal association rules is composed mainly by the
discovery of frequent patterns. Note that these patterns may be viewed as temporal association
rules by themselves, since a sequence imposes an order on its elements. One of the most
common approaches to mining frequent patterns is the apriori method [2], which requires
some adaptations for the case of sequential data.

3

The first thing to decide is the value of T, this is, the maximum gap between consecutive
elements. The second issue is to define a new notion of support: an entity supports a
sequence/pattern if the pattern is contained in the sequence that represents the entity, and
there are no more than T elements between two consecutive elements. Stated in this form, an
entity could only contribute once to increment the support of each pattern [3].

Like apriori, the algorithm AprioriAll [3] (and also its improvement GSP [15]) acts
iteratively, generating the potential frequent k-sequences and verifying their support, until
there are no candidates. In step k+1 the new candidates are generated by combining each two
frequent k-patterns. This could be done because a sequence with length k isn’ t frequent unless
all of its k-1 subsequences are frequent. This property is known as anti-monotonicity [11], and
allows for reducing significantly the number of candidates, for which the support counting is
done.

However, like apriori, the algorithm suffers from one main drawback: the lack of user-
controlled focus.

SPIRIT Algorithms. SPIRIT is a family of apriori-based algorithms that uses a regular
expression to constrain the mining process. The regular expression describes user
expectations about data and preferences about the type of rules the user is interested on. In
this way, it is used to constrain the candidates’ generation. Given a database of sequences D, a
user-specified minimum support threshold sup and a user-specified regular expression
constraint R, the goal is to find all frequent and valid sequential patterns in D, in accordance
with sup and R respectively [7].

The main algorithm is similar to AprioriAll, and consists essentially on three steps:
candidate generation, candidate pruning and support pruning.

The candidate generation step, like in AprioriAll, is responsible for the construction of
sequences with length k+1. However, the construction method depends on the chosen
constraint. Since most of the interesting regular expressions aren’ t anti-monotone, the
construction consists in extending or combining k-sequences (that are frequent but not
necessarily accepted by the regular expression) ensuring that all candidates satisfy the
imposed constraint.

On the candidate pruning step, candidates which have some maximal k-subsequence valid
and not frequent, are removed, reducing the number of sequences passed to the next step and
consequently, reducing the global processing time. Finally, on the support pruning step, the
algorithm counts the support for each candidate and selects the frequent ones.

With the introduction of constraints in the mining process, the algorithm restrains the
search of frequent patterns in accordance to user expectations, and simultaneously it reduces
the time needed to finish the mining process.

Despite the fact that regular expressions provide a simple and natural way to specify
sequential patterns, there are interesting patterns that these expressions are not powerful
enough to describe.

4

Consider for example the following problem: a company wants to find out typical billing
and payment patterns of its customers. Note that, in the real world a payment transaction is
always preceded by an invoice and not the other way around. In order to do so, the
specification language should be powerful enough to describe this constraint and exploit the
fact that for well-behaved customers there are as many invoices as payments in any given
order. If an invoice is represented by an a and a payment by a b, the language has to accept
sequences like abab as well as aabbab, but rejects aabbb or baab.

Note that no regular expression can be used to describe this problem [9], since DFA’s are
not able to record the number of occurrences for each element.

3 Context-Free Grammars

A context-free grammar (CFG) is a finite set of variables each of which represents a
language. These languages are described recursively in terms of each other and primitive
symbols called terminals. The rules relating the variables are called productions [9]. The term
context-free comes from the feature that all productions must have a single symbol on its left-
hand side, which means that the symbol could always be replaced by the right-hand side of
the rule, no matter in what context it occurs.

This formalism is of great importance since it is powerful enough to describe most of the
structure in computer languages and simple enough to allow the construction of efficient
parsers to analyze sentences [1]. CFGs have been widely used to represent programming
languages and more recently, to modeling RNA sequences [13].

Context-free grammars are strictly more powerful than regular expressions, since any
language that can be generated using regular expressions can also be generated by a context-
free grammar. On the other hand, there are languages that can be generated by context-free
grammars that cannot be generated by any regular expression.

As an example, the grammar S→aSbS | ε is able to model the problem stated above, since
the first expression imposes that if an invoice occurs, then a payment would also occurs in the
future.

3.1 Context-Free Grammars as Constraints

The SPIRIT algorithm exploits the equivalence of regular expressions to deterministic finite
automata (DFA) to push the constraint deep inside the mining process. However, DFA aren’ t
equivalent to context-free grammars, but with a simple memory an automaton could
recognize languages generated by context-free grammars. Pushdown automata (PDA) are the
counterpart machine for this type of grammars and are composed by an input tape, a finite
control and a stack [9]. However, only non-deterministic pushdown automata are equivalent
to context-free grammars.

5

The language accepted by a pushdown automaton is the set of all inputs for which some
sequence of moves causes the pushdown automaton to empty its stack.

A pushdown automaton is defined by a tuple (Q,
�

, Γ, δ, q0, Z0, F) where Q is a finite set of
states,

�
 is an alphabet called the input alphabet, Γ is an alphabet called the stack alphabet, δ

is a mapping from Q×(
�

∪{ ε})×Γ to finite subsets of Q×Γ* , q0∈Q is the initial state, Z0∈Γ is
a particular stack symbol called the start symbol and F⊆Q is the set of final states [9].

The PDA equivalent to the grammar presented above would be

M = ({ q1, q2} , { a, b} , {S, X} , δ, q1, S, { q2})

with δ defined as follows:

δ(q1, a, S) = { (q2, push X)} , δ(q2, a, S) = { (q2, push X)} , δ(q2, a, X) = { (q2, push X)} ,

δ(q2, b, X) = { (q2, pop)} and δ(q2, ε, S) = { (q2, pop)} .

This automaton is represented in figure 1,

q2q1
(a, S) � push X

(a, S) � push X
(a, X) � push X

(b, X) � pop

(ε, S) � pop

Figure 1 Pushdown automaton equivalent to the grammar S→aSb|ε.

where, for example, “(a, S)→push X” is used to indicate that when the input symbol is a and
the top stack symbol is S, then X is pushed into the stack.

3.2 Using CFGs to Constrain the Search

Since a super-sequence of a given sequence s may belong to the CFG, even if s does not
belong to the CFG, the anti-monotonicity property is not present. Therefore, using the PDA to
restrict the candidate generation process is not straightforward. Four distinct relaxations to the
original expression have been used with DFAs, namely:

� Naïve: an anti-monotonic relaxation of the constraint, which only prunes candidate
sequences containing elements that do not belong to the language alphabet. For
example, if we consider the automaton defined in figure 1, only sequences with a’s and
b’s are accepted by the Naïve constraint.

� Legal: the initial constraint is relaxed requiring that every candidate sequence is legal
with respect to some state of the automaton equivalent to the constraint. A sequence is

6

said to be legal with respect to q (with q a state of the automaton) if there is a path in
the automaton, which begins in state q and is composed by the sequence elements. For
example, if we consider the automaton like before, a, ab, aab or b are accepted as legal.

� Valid suffix: a constraint relaxation that only accepts candidate sequences valid with
respect to any state of the automaton. A sequence is said to be a valid suffix with respect
to q if it is legal with respect to q and achieves a terminal state. With the same
automaton, a or aa aren’ t valid suffixes, but b or ab are.

� Complete: the constraint itself that imposes that every candidate sequence is accepted
by the automaton. For example, ab or aabb are accepted.

A fifth possibility may be added to the above ones:
� Valid prefix: a reverse “valid suffix” relaxation, which requires that every candidate

sequence is legal with respect to the initial state. Reversely, a or ab are valid prefixes
but b is not.

The application of the naïve and complete alternatives with context-free grammars is
straightforward. A sequence is accepted by the naive criterion in exactly the same conditions
than before, and is accepted by the complete criterion if the sequence could be generated by
the grammar that represents the constraint.

However, these two criteria are ineffective in many cases, for two different reasons. The
naïve criterion prunes a small number of candidate sequences, which implies a limited focus
on the desired patterns. The complete, can generate a very large number of candidates since
the only way to apply it involves generating all strings s of a given length that belong to the
language. The other two alternatives are, in many cases, significantly more effective in
pruning the candidate list.

The extension of the legal and valid alternatives to context-free grammars is non trivial,
since the presence of a stack makes it more difficult to identify when a given sequence is
either legal or valid. However, it is possible to extend the notion of legality and validity of a
sequence with respect to any state of the push-down automaton. In the following definitions,
consider that push, pop, top and empty? are the traditional operations to manipulate stacks.

Definition 3.1 A sequence s=<s1…sn> is legal with respect to state qi with stack λ, if and
only if

|s|=1 ∧ ∃X∈Γ: λ.top=X ∧ δ(qi,s1,X)⊃(qj, op) with op∈{ push, pop, no op} .
|s|=1 ∧ λ.empty? ∧ ∃X∈Γ: δ(qi,s1,X)⊃(qj, op) with op∈{ push, pop, no op} .
∃X∈Γ: λ.top=X ∧ δ(qi,s1,X)⊃(qj, op) ∧<s2…sn> is legal with respect to state qj with stack

λ.op.
λ.empty? ∧ ∃X∈Γ: δ(qi,s1,X)⊃(qj, pop) ∧<s2…sn> is legal with respect to state qj with

stack λ.

This means that any sequence with one element is legal with respect to a state, if it has a
transition defined over the first sequence’s element. On the other cases, a sequence is legal
with respect to a state, if it has a transition defined over the first element of the sequence, and
if the residual subsequence is legal with respect to the resulting state.

7

Consider again the automaton defined in figure 1:
� a is legal with respect to q1 and the stack with S (rule i), since there is a transition from q1

that could be applied [δ(q1,a,S)⊃(q2,pushX)].
� a is also legal with respect to q2 and the empty stack (rule ii) since there is also a

transition from q2 [δ(q2,a,S)⊃(q2,pushX)].
� b is legal with respect to state q2 and the empty stack since it has length-1 and there is a

transition from q2 with symbol b [δ(q2,b,X)⊃(q2,pop)].
� ab, is naturally legal with respect to q1 and the stack with S (rule iii), since from q1 with a,

q2 is achieved and X is pushed into the stack. Then second symbol b, with X on the top of
the stack the automaton performs another transition and a pop. Similarly aba, abab, abab
and aaba are also legal with respect to q1.

� ba is legal with respect to q2 and the empty stack (rule iv). Since, with b, the automaton
remains on q2 and the stack empty, and with input a, X is pushed into the stack. Note that
ba is a subsequence of abab, and consequently a sequence legal with respect to some
state. Similarly, bab, baab and even bbb are legal with respect to q2. Note that bbb is a
subsequence of aaabbb, for example.

Note that pop is allowed on an empty stack, because it is possible that the sequence’s first
element doesn’t correspond to a transition from the initial state, or it may correspond to an
element for which there are only transitions with pop operations, like the element b in the
automaton in figure 1. If pop on the empty stack wasn’t allowed, a simulation of every
possible stack resulting from the initial to the current state would be necessary, in order to
verify if the operation may be applied. This simulation could be prohibitive in terms of
efficiency and would require a considerable effort.

Definition 3.2 A sequence s=<s1…sn> is said to be a suffix-valid with respect to state qi with
stackλ, if and only if:

i) |s|=1 ∧ ∃X∈Γ: λ.top=X ∧ δ(qi,s1,X)⊃(qj, pop) ∧ qj is a final state ∧ (λ.pop).empty?.
ii) |s|=1 ∧ λ.empty? ∧ ∃X∈Γ: δ(qi,s1,X)⊃(qj, op) with op∈{ pop, no op} ∧ qj is a final state.
iii) ∃X∈Γ ∧ λ.top=X: δ(qi, s1, X)⊃(qj, op) with op∈{ pop, no op} ∧<s2…sn> is suffix-valid

with respect to qj, with stack λ.op.
iv) λ.empty? ∧ ∃X∈Γ: δ(qi,s1,X)⊃(qj, pop) ∧<s2…sn> is suffix-valid with respect to qj with

stack λ.

This means that a sequence is suffix-valid with respect to a state if it is legal with respect to
that state, achieves a final state and the resulting stack is empty.

Like before, consider the automaton defined in figure 1:
� b is a suffix-valid with respect to state q2, since it is legal with respect to q2, achieves a

terminal state and the final stack is empty.
� a is not a suffix-valid, since any transition with a results on pushing an X into the stack,

which implies a non empty stack.

8

Note that, in order to generate valid sequences with respect to any state, it is easier to begin
from the final states. However, this kind of generating process is one of the more difficult
when dealing with pushdown automata, since it is needed a simulation of their stacks.

In order to avoid this difficulty, using prefix validity instead of suffix validity could be an
important improvement.

Definition 3.3 A sequence s=<s1…sn> is said to be prefix-valid if it is legal with respect to
the initial state.

Sequences with valid prefixes are not difficult to generate, since the simulation of the stack
begins with the initial stack: the stack containing only the stack start symbol.

Using the automaton defined in figure 1 again:
� a is a prefix-valid, since there is a transition with a from the initial state and the initial

stack.
� b is not a prefix-valid, since there isn’ t any transition from the initial state with b.

The benefits from using the suffix-validity and prefix-validity are similar. Note that, like
when using the suffix-validity, to generate the prefix-valid sequences with k elements, the
frequent k-1-sequences are extended with the frequent 1-sequences, in accordance to the
constraint.

Using these notions and an implementation of pushdown automata, it is possible to use
context-free grammars as constraints to the mining process.

4 Experimental Results

In this section, we present a simple constraint to exemplify the results of using a context-free
language as constraint and some experimental results when applying the described approaches
on synthetic data sets.

The main goal of this study is showing that the performance and scalability of the
algorithms when using context-free languages as constraints is not affected.

4.1 Simple Example

Consider again the problem of identifying billing patterns of some company customers.
Suppose that the company considers that a well-behaved customer is a customer, who always
makes at least one payment after receiving one or two consecutive invoices, and has made, at
the end of the period, all its payments. This constraint may be modeled by the grammar
S→ASB | SCS | ε with A→aab, B→b and C→ab. The pushdown automaton presented in
figure 2 could be used to push it inside the algorithm.

9

q4q3
(b, X) � pop

(a, S) � push X
(a, X) � push X

(b, X) � pop

q2
(a, X) � push X

q1
(a, S) � push X

(b, X) � pop

(ε, S) � pop

Figure 2 Pushdown automaton equivalent to the grammar S→ASB | SCS | ε with A→aab, B→b and C→ab.

Suppose that the company has the dataset represented in table 1, and it runs the different
algorithms over the data set.

Table 1 Data set used to exemplify the mining process

Data set
<ababab> <aabbab> <aababb> <babaab> <abaabb>

Table 2 presents the candidates generated by GSP and those generated by the algorithm
adapted to use the complete context-free grammar constraint (SpiCFLComplete).

Note that the number of candidates generated by the new algorithm is significantly less than
with GSP. This enormous difference is achieved because, the constraint imposes that
sequences are only accepted, if they have an even number of elements. Note however, that
when k=6 the GSP algorithm finishes, but the algorithm using the complete constraint
continues counting the support for generated candidates.

Table 2 Comparison of the results achieved with GSP and the complete constraint

 GSP SpiCFLComplete
K Ck Fk Ck Fk
1 <a> <a> - -
2 <aa>

<ab>
<ba>
<bb>

<aa>
<ab>

<ba>
<bb>

<ab> <ab>

3 <aaa>
<aab>
<aba>
<abb>

<baa>
<bab>
<bba>
<bbb>

<aab>
<aba>
<abb>

<baa>
<bab> _ _

4 <aaba>
<aabb>
<abaa>
<abab>

<baab>
<baba>
<babb>

<aabb>
<abaa>
<abab>

<baab>
<baba>

<aabb>
<abab>

<aabb>
<abab>

5 <abaab>
<ababa>
<baabb>

<babaa>
<babab>

<abaab> _ _

Note that with the legal constraint (SpiCFLLegal – which only accepts sequences legal
with respect to some state) the difference between the numbers of generated candidates is less
notorious. For example, C4 would only have seven elements versus the eight elements
generated by GSP.

10

Table 3 Comparison of the results achieved with the constraints “ legal“ and “prefix-valid“

 Legal PrefixValid
K Ck Fk Ck Fk
1 <a> <a> <a> <a>
2 <aa>

<ab>
<ba>
<bb>

<aa>
<ab>

<ba>
<bb>

<aa>
<ab>

<aa>
<ab>

3
<aab>
<aba>
<abb>

<baa>
<bab>
<bba>
<bbb>

<aab>
<aba>
<abb>

<baa>
<bab>

<aab>
<aba>
<abb>

<aab>
<aba>
<abb>

4 <aaba>
<aabb>
<abaa>
<abab>

<baab>
<baba>
<babb>

<aabb>
<abaa>
<abab>

<baab>
<baba>

<aaba>
<aabb>
<abaa>
<abab>

<aabb>
<abaa>
<abab>

5
<abaab>
<ababa>

<baabb>
<babaa>
<babab>

<abaab>
<abaab>
<ababa>

<abaab>

However, using the valid-prefix constraint (SpiCFLPrefixValid) reduces the number of
candidates significantly, focusing the discovered rules according to the company expectations.

4.2 Performance and Scalability analysis

To perform this study, we used a synthetic data set generator similar to others used on similar
studies [7]. As parameters, this data generator receives the number of sequences, the average
length of each sequence, the number of distinct items (or sequence elements) and a Zipf
parameter to govern the probability of each item occurrence in the data set. The length of each
sequence is chosen from a Poisson distribution with mean equal to the input parameter
correspondent to the average length of each sequence.

All experiments were performed on a Pentium III with 731MHz and 384MB of RAM. The
sequences were generated and maintained in main memory during the algorithms processing.
This fact doesn’t allow for tests with datasets with more than 100000 sequences.

All algorithms were implemented using an object-oriented approach and some basic
methods are shared between several algorithms. For example, SPIRIT(N) and SpiCFLNaive
are identical. The alphabet of each automaton was chosen to contain the most frequent
elements in the dataset.

Relative Performance In order to compare the performance of the use and non-use of
context-free languages, two experiments were done:

� Use of constraints – the performance of the proposed algorithms using context-free
languages as constraints (SpiCFL) was compared to GSP. The context-free language
used is represented as a push-down automata on figure 3, and is equivalent to the
grammar S→→→→aSb | bSa | a | b | εεεε. These experiments were performed with data sets with
25000 sequences, 5 different items, an average length size equal to 10 and the Zipf

11

parameter equal to 0.9. A maximum gap of 1 element is allowed for frequent sequences
identification.

q2q1

(a, A) � pop
(b, B) � pop

(b, S) � push B
(b, A) � push B
(b, B) � push B

(ε, S) � pop

(a, S) � push A
(a, A) � push A
(a, B)� push A

(a,S) � noop
(a,A) � pop

(a,B) � noop

(b,S) � noop
(b,A) � noop
(b,B) � pop

(ε, S) � pop

Figure 3 Pushdown automaton equivalent to the grammar aSb | bSa | a | b | ε.

Figure 4a) shows the execution time used for GSP and each variation of Spi CFL, when the
minimum support decreases. Similarly, figure 4b) shows the evolution of the number of
candidates for which the support is counted when the minimum support threshold decreases.

0

5

10

15

20

25

30

0,75 0,50 0,40 0,33 0,25
Support

Ti
m

e(
s)

GSP SpiCFLNaive
SpiCFLLegal SpiCFLComplete

0

20
40

60
80

100
120

140
160

180

0,75 0,50 0,40 0,33 0,25
Support

N
r.

 o
f

C
an

d
id

a
te

s

GSP SpiCFLNaive
SpiCFLLegal SpiCFLComplete

Figure 4 Comparison of GSP and Spi CFL: a) Execution Time vs. Minimum Support.
b) Number of Generated Candidates vs. Minimum Support.

As expected the execution time used by each algorithm is directly proportional to the
number of candidates to which the support is counted. Like in SPI RI T the use of the complete
constraint increases the performance significantly.

The most unexpected result is the similarity between the Naï ve and Legal approach, which
is justified by the weak restrictive power of the chosen language. Note that any sequence of
a’s and b’ s is legal with respect to q1. For example, the language presented in the previous
section has a stronger restrictive power than this one.

� Use of particular cases of context-free languages – one of the open questions is
concerned with the way the performance is affected by the added complexity of push-
down automata when compared to deterministic finite automata.

q4q1

1

q2 q3
2 3 4

2

4

Figure 5 Deterministic finite automaton equivalent to regular expression 1* (22 | 234 | 44)

12

In order to clarify this question, we used a push-down automaton (represented in figure6)
equivalent to a DFA (represented in figure5).

q4 (ε, S) � popq1

(1 , S) � noop

q2 q3
(2 , S) � noop

(3 , S) � noop (4 , S) � noop

(2 , S) � noop

(4 , S) � noop

Figure 6 Push-down automaton equivalent to regular expression 1* (22 | 234 | 44):

Figure 7 shows that the execution time used by each pair of algorithms is identical and the
number of candidates for which the support is counted is exactly the same for both
algorithms.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

0,75 0,50 0,40 0,33 0,25 0,10
Support

T
im

e
(s

)

SpiCFL-N SpiCFL-L SpiCFL-C
Spirit-N Spirit-L Spirit-R

0

50

100

150

200

250

0,75 0,50 0,40 0,33 0,25 0,10
Support

N
r.

 o
f

C
an

d
id

at
es

SpiCFL-N SpiCFL-L SpiCFL-C
Spirit-N Spirit-L Spirit-R

Figure 7 Comparison of Spi CFL and SPI RI T: a) Execution Time vs. Minimum Support.
b) Number of Generated Candidates vs. Minimum Support.

Scalability At last, the analysis of the performance of algorithms that filter the candidates
using context-free languages shows that the execution time grows slower on these algorithms
than on GSP (see figure8). This is explained by the fact that the number of candidates for
which the support is counted, doesn’t grow significantly, and consequently the execution time
doesn’t explode.

0

10

20

30

40

50

25000 33000 40000 50000 75000 100000
DB size

T
im

e
(s

)

GSP SpiCFLNaive SpiCFLLegal SpiCFLComplete

Figure 8 Comparison of GSP and Spi CFL: Execution Time vs. Dataset Size.

13

Since the support counting operation is one of the most time-consuming in the complete
process of mining sequential patterns, decreasing the number of candidates also decreases the
execution time, more than compensating by the increased processing.

5 Conclusions

We presented a methodology and an algorithm that uses context-free grammars to specify
restrictions to the process of mining temporal association rules using an Apriori-like
algorithm.

Context-free grammars can model situations of interest to the data miner practitioner, and
restrict significantly the number of rules generated. However, its application is not
straightforward, since the restrictions imposed do not satisfy the anti-monotonicity property.
We defined and proposed to use several different alternative restrictions that are a
generalization of what has been proposed by other authors when regular grammars are used.

The results show that the additional expressive power of context free grammars can be used
without incurring in any additional difficulties, when compared to the use of regular
grammars, if the appropriate algorithms are used to restrict the search.

We have implemented these algorithms and tested them in small synthetic data sets with
positive results. In the near future, we plan to use this approach in real data sets to empirically
validate the efficacy and efficiency of the approach.

References

1. Allen, J.: Natural Languages Understanding. 2nd edn. The Benjamin/Cummings Publishing Company,
Redwood City (1995)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In Proceedings of the International
Conference on Very Large Databases (1994) 487-499

3. Agrawal, R., Srikant, R.: Mining sequential patterns. In Proceedings of the International Conference on Data
Engineering (1995) 3-14

4. Antunes, C.M., Oliveira, A.L.: Inference of Sequential Association Rules Guided by Context-Free
Grammars. To appear in Proceedings of the International Conference on Grammatical Inference (2002).

5. Das, G., Mannila, H., Smyth, P.: Rule Discovery from Time Series. In Proceedings of Knowledge Discovery
in Databases (1998) 16-22

6. Fama, E.. Efficient Capital Markets: a review of theory and empirical work. Journal of Finance (1970) 383-
417

7. Garofalakis, M., Rastogi, R., Shim, K.: SPIRIT: Sequential Pattern Mining with Regular Expression
Constraint. In Proceedings of the International Conference on Very Large Databases (1999). 223-234

8. Grossman, R., Kamath, C., Kegelmeyer, P., Kumar, V., Namburu, R.: Data Mining for Scientific and
Engineering Applications. Kluwer Academic Publishers (1998)

14

9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison Wesley
(1979).

10. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In Proceedings of the International
Conference on Data Engineering (1998) 412-421

11. Ng, R., Lakshmanan, L., Han, J.: Exploratory Mining and Pruning Optimizations of Constrained Association
Rules. In Proceedings of the International Conference on Management of Data (1998) 13-24

12. Ramaswamy, S., Mahajan, S., Silberschatz, A.: On the Discovery of Interesting Patterns in Association
Rules. In Proceedings of the International Conference on Very Large Databases (1998) 368-379

13. Searls, D.B.: The Linguistics of DNA. American Scientist, 80 (1992) 579-591

14. Shahar, Y., Musen, MA.: Knowledge-Based Temporal Abstraction in Clinical Domains. Artificial
Intelligence in Medicine 8, (1996) 267-298

15. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In
Proceedings of the International Conference on Extending Database Technology (1996) 3-17

