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Abstract

The Neocognitron and its related hierarchical models have been shown to
be competitive in recognizing handwritten digits and objects. However, the
tolerance of these models to several types of noise can be low. We will start
by briefly overviewing some previous results regarding the tolerance of these
models. Afterwards, we report the higher noise tolerance of the winner-take-
all response in a hierarchical model over related models. We provide an
analysis and interpretation of this tolerance under Bayesian decision theory.
Finally, we report on how to further improve recognition for extremely noisy
patterns.

Keywords: Neocognitron, hierarchical model, winner-take-all, noise
tolerance, lateral competition, selectivity.

1. Introduction

A version of a Neocognitron that greatly increases the robustness of the
model against several types of background noise has recently been proposed
in (Fukushima, 2011). A related model with winner-take-all responses has
been proposed in (Cardoso & Wichert, 2010) with the purpose of achieving
the working principles of the Neocognitron in a simplified way. The main
difference between this and related hierarchical models is how simple cells
respond. Among all simple cells with the same receptive field, only the cell
whose preferred stimulus is most similar to the presented stimulus is active
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while the others are silent. The model has been shown to be competitive in
handwritten digit recognition (Cardoso & Wichert, 2013).

In this manuscript, we show that the winner-take-all (WTA) response
is noise tolerant. We show that this response is the optimal decision in a
discrimination task for additive white Gaussian noise using Bayesian decision
theory. Simulations show that the WTA response has significantly more
noise tolerance than related models (Fukushima, 2003, 2011; Riesenhuber &
Poggio, 1999; Serre et al., 2007; Mutch & Lowe, 2008).

2. A hierarchical model with a WTA response

In this section, we briefly describe a hierarchical model that was previ-
ously proposed in (Cardoso & Wichert, 2010) and that is closely related to
the Neocognitron (Fukushima, 1980, 2003, 2010). The model is composed
of two types of cells arranged hierarchically. Simple cells provide selectivity
by reacting to a particular stimulus (e.g., oriented lines). Complex cells add
invariance to the position of the stimulus, pooling from nearby simple cells
reacting to a particular stimulus. The two types of cells are arranged in
layers of the same cell type.

All simple and complex layers are unsupervised, and their purpose is to
represent the input patterns in a feature space, where patterns that repre-
sent similar things are similarly represented. In the context of a classification
problem, a supervised classifier then learns a mapping between this unsuper-
vised feature space and the labels.

2.1. Simple cell layer

Simple cells react to a particular preferred stimulus in a particular lo-
cation. For a particular preferred stimulus, there is a set of cells with the
same replicated preference across different locations. Among all cells with
the same receptive field, only the cell whose preferred stimulus is most simi-
lar (according to the Euclidean distance) to the current one is active (i.e., its
response is 1), while other cells that have different preferences in the same
location are silent (i.e., their response is 0). This sparse, simple cell response
relates to lateral inhibition in biological vision.

To learn the preferred stimulus, all input patterns are tiled with a squared
mask. Each position of the mask, representing a receptive field in a given
input pattern, results in a sub-pattern. All of the sub-patterns are the inputs
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to a clustering algorithm (in this case, K-means) that yields a set of preferred
stimuli (or classes), often referred to as a dictionary.

2.2. Complex cell layer

Complex cells perform a pooling operation over simple cells with the same
stimulus preference across a region. These cells are active if any of their
afferent simple cells are active. All of the afferents to a complex cell react to
the same preferred stimulus across nearby positions. If any of the afferents
are active, the complex cell is also active. This is equivalent to a maximum
operation. Therefore, the complex layer operation is predetermined and is
not the result of learning.

2.3. Additional Layers

The training of the network is performed sequentially, i.e., the training
of each layer is finished before the next layer is trained, starting from the
layer closest to the input. If the network has more than one simple layer,
then the output of the first complex layer is used to train the second simple
layer analogously. Each cell in the second and following simple layers has
afferent connections from complex cells with a different preferred stimulus
(e.g., different orientations).

The response of the last layer can be viewed as a feature space to represent
an image; images represented in this space can then be used as inputs to a
classifier for recognition tasks.

3. Experimental

In this section, we evaluate the noise tolerance of a hierarchical model
with a WTA response (Cardoso & Wichert, 2010) in the task of recognizing
handwritten digits. We start by evaluating the noise tolerance when the
model is not exposed to noise during the learning phase. Afterwards, we
evaluate how the performance degrades for extremely high levels of noise and
empirically analyze how the noise tolerance relates to the Euclidean distance
between patterns and to the correlation between clean and noisy patterns.
Finally, we empirically show that exposing the classifier to the responses of
the last layer (C2 ) for noisy patterns can improve the recognition for high
levels of noise, as one might expect. A similar result has been reported for a
related deep network (Tang & Eliasmith, 2010).
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The model has the following parameters: receptive field size – the num-
ber of afferents a cell has; shift – the distance between adjacent receptive
fields; frame – the number of afferents with a fixed response; and classes –
the number of different preferred stimuli in the simple layers. The frame de-
termines the extra area without activity that is added to the input patterns.
The frame parameter can be interpreted as a type of preprocessing step that
enlarges the original input image by adding background. In the first simple
layer, the frame would be equivalent to preprocessing the image to include
a border with a background around it. For the following layers, it means
that there are additional retinotopic locations where all cells are silent. The
rationale for the frame parameter is to allow some receptive fields near the
borders of the input to have less actual connections than in the Neocogni-
tron. The frame is not an important property of the model; in fact, the
parameterization used for the MNIST dataset not does use it (see Table 3).
The parameters are illustrated in Figure 1.

size 

shift 

frame 

Figure 1: Model parameter illustration. The smaller squares represent two different posi-
tions of the mask (or two different receptive fields). The size refers to the size of the mask,
and the shift refers to the distance between different positions of the mask. The frame
represented by the gray area determines the extra area (or set of retinotopic locations)
without activity that is added to the pattern. Additionally, for simple layers, the number
of classes k (or preferred stimuli) must also be chosen.
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3.1. Noise tolerance

3.1.1. ETL1

We use the ETL1 dataset 1, which contains 14450 handwritten digits. The
images are gray scale, and their size is 64×63. An additional column is added
to the bottom of the patterns to make them square (64 × 64) by repeating
the last one. We linearly rescale all images to [0,1]. In all experiments, we
add noise only to the digits used to measure the recognition performance
and not to the ones used for learning. The preferred stimulus for all layers is
learned with K-means (Euclidean distance). Because the ETL1 dataset is not
contrast normalized, learning the first simple layer preferences is challenging.
To illustrate this process, we show the results of learning preferences for the
first simple layer from both gray and binary patches on ETL1 in Figure
2. We can see that, for the gray patches, several preferences are simply
different shades of gray. This observation is due to the existence of patterns
with significantly different levels of contrast. Making the patterns binary is
a simple way to normalize them for contrast. Alternatively, we could use a
more complex image processing method to perform contrast normalization,
use predetermined preferences for oriented lines as in (Fukushima, 2011) or
filter the DC component using on-off cells in a more biologically motivated
form of contrast normalization.

Figure 2: A set of 16 preferences learned using K-means on ETL1 for 100000 patches of
size 8×8. On the left, the preferences using binary versions of the patterns. On the right,
the preferences using grayscale versions. We can see that the grayscale versions of the
patterns produce low-contrast preferences. Several of the preferences are simply different
shades of gray.

1ETL1 database, http://www.etl.go.jp/ etlcdb/index.htm.
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The network parameters (see Figure 1) were set as follows. The number
of preferred stimuli in S1 (the first simple layer) is 16, and the number in S2
(the second simple layer) is 100. We fix the shift in simple layers (S1,S2) to
1 and in complex layers (C1,C2) to 2, as in (Fukushima, 2003), representing
a 2:1 ratio (i.e., thinning out) of simple cells to complex cells. The receptive
field size and frame parameters were obtained using a greedy search and are
shown in Table 3. For the greedy search, we used 100 samples (50 for training
and 50 for validation) from the entire dataset. We selected the parameters
that maximized the recognition rate on the validation sample using a nearest
neighbor classifier.

ETL1 no noise faint digit lines white Gaussian
this work 1.33± 0.18% 1.71± 0.24% 2.62± 0.18% 6.07± 0.47%

Orig. Neoc. a 1.40± 0.20% 37%b 26%b 32%b

Imp. Neoc. a 1.43± 0.21% 14%b 7%b 11%b

a(Fukushima, 2011)
b(Fukushima, 2011) – Figure 16

Table 1: ETL1 results: average recognition error and standard deviation with 3000 training
and 3000 test patterns over five runs for different types of noise. For the faint digit and
line noise, the intensity is noise (p-p) / signal (p-p) = 0.4, and for the white noise, the
intensity is the noise (r.m.s) / signal (p-p) = 0.4. The intensity for the several types of
noise is clearly illustrated. For the white noise, the gray intensity is linearly rescaled for
display. The lowest and highest values are represented by black and white.

The recognition error without noise using 3000 training patterns and 3000
test patterns over 5 runs is 1.33±0.18%. We start by evaluating the tolerance
of the model for the same types of noise (see Table 1) as in (Fukushima, 2011)
for this dataset. Two different types of noise are added to the background:
the faint image of a different digit and random line segments 2. The noise
intensity for both types of noise is defined as noise (peak-to-peak) divided
by signal (peak-to-peak). We also consider superimposed white noise. The
white noise intensity is defined as the root-mean-square of the noise divided

2For each pattern, four line segments are added, each starting and ending in random
positions in each of the patterns. The thickness of all lines is two pixels.
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by the signal (peak-to-peak). The white noise is sampled from a zero-mean
Gaussian with a standard deviation equivalent to the root-mean-square of
the noise signal.

The recognition error for the different types of noise using a linear classi-
fier is shown in Table 1. The model shows a high tolerance to all of the types
of noise considered. The recognition performance is almost unaltered for the
faint digit and line noises, while it slightly increases for the white noise. As
observed from Table 1, the error produced using this method is lower than
for related models.

3.1.2. MNIST

We use the MNIST dataset 3. The images are linearly rescaled to [0,1].
As in the previous section, we add noise only to the test set. The network
parameters (see Figure 1) were set as follows. The number of preferred
stimuli in S1 (the first simple layer) is 16, and the number in S2 (the second
simple layer) is 100. The receptive field size, shift and frame parameters were
obtained using a greedy search and are shown in Table 3. The white noise
is sampled from a zero-mean Gaussian with a standard deviation of 0.1. For
the salt & pepper noise, we randomly set 10% of the pixels to either black
or white.

The recognition error for the different types of noise using a linear clas-
sifier is shown in Table 2. The recognition error for HMAX (Serre et al.,
2007) and modified version of HMAX (Mutch & Lowe, 2008) is also shown in
Table 2 according to results presented elsewhere for both models (Hamidi &
Borji, 2010). The model shows a high tolerance to both types of noise con-
sidered. The error is lower than for related models, namely HMAX (Serre
et al., 2007) and a modified version of HMAX (Mutch & Lowe, 2008), which,
among other differences, adds inhibition to suppress weaker responses. As
in the case of the WTA response, inhibition in this model might also be
related to an improved noise tolerance. We should note that the HMAX
model was not parameterized specifically for handwritten digits; it is also
worth noting that whereas HMAX performs similar to the WTA response
for noiseless conditions, it performs considerably worse for noisy inputs. As
we argue in detail later in this manuscript, this performance difference may
be due to the computation performed in simple cells. The responses are

3http://yann.lecun.com/exdb/mnist/
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MNIST no noise white salt & pepper
this work 0.71%a 1.17% 1.98%
HMAX b 2.9%c 50%c 55%c

Modified C2 feat. b 1.27% 38%c 37%c

a(Cardoso & Wichert, 2013)
b(Hamidi & Borji, 2010)
c(Hamidi & Borji, 2010) – Figures 5, 9 and 11

Table 2: MNIST results: average recognition error on the entire dataset with 60000 train-
ing and 10000 test patterns for different types of noise. For white noise, we add noise
sampled from a zero-mean Gaussian with a standard deviation of 0.1. For the salt &
pepper noise, we randomly set 10% of the pixels to either white or black. The intensity
for the several types of noise is clearly illustrated. For white noise, the gray intensity is
linearly rescaled for display, in which the lowest and highest values are represented by
black and white, respectively. The results for HMAX (Serre et al., 2007) and Modified
C2. Feat. (Mutch & Lowe, 2008) were both obtained from (Hamidi & Borji, 2010). The
noiseless results for this work were obtained from (Cardoso & Wichert, 2013)

.

independent for the standard HMAX model (Serre et al., 2007), but in the
modified version (Mutch & Lowe, 2008), some are suppressed according to
a parameter that controls the inhibition level. The results of the modified
version of HMAX were obtained using the same parameter for inhibition as
for a noiseless dataset. While one could, in principle, tune this parameter to
improve the performance for higher levels of noise, this would result in de-
graded performance for noiseless conditions. This would also contradict the
experimental setup used for the Neocognitron (Fukushima, 2011) in which
the parameters are tuned in noiseless conditions.

3.2. Extreme noise

We have observed that the noise tolerance is relatively high for moderate
levels of noise and have shown how it compares to related models. We will
now focus on how this tolerance degrades for extreme levels of noise and how
this might offer some insight into the noise tolerance of the C2 responses.

We now consider higher levels of Gaussian and salt & pepper noise, as
illustrated in Figure 3. The ETL1 dataset, unlike most handwritten digit
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datasets, contains a significant amount of noise originating from the scan-
ning process. We opt for making the patterns binary so that we can have
noiseless patterns as a starting point. This enables a clearer analysis of the
distortion on the C2 responses caused by adding noise to the input. We con-
vert the patterns to binary using the thrno software by Taiichi Saito, which
implements the discriminant criterion (Otsu, 1979). We focus on these two
types of noise because they are particularly relevant in engineering and na-
ture. We note that for the higher levels of noise considered, it becomes
difficult for humans to recognize the digits. As before, the Gaussian noise
intensity is defined by noise (r.m.s) / signal (p-p), which is equivalent the
standard deviation in this case. The salt & pepper noise intensity is defined
by the percentage of pixels that are randomly set to either black or white.

(a) 0 (b) 0.4 (c) 0.8 (d) 1.2 (e) 1.6 (f) 2

(g) 0 (h) 0.16 (i) 0.32 (j) 0.48 (k) 0.64 (l) 0.8

Figure 3: Digits corrupted with noise. Gaussian noise (a-f) and salt & pepper noise (g-
i) of varying intensities defined by noise (r.m.s) / signal (p-p) and noise (percentage),
respectively. For the white noise, the gray intensity is linearly rescaled for display. The
lowest and highest values are represented by black and white, respectively.

We argue that the noise tolerance is closely related to the ability of the
model to have similar C2 responses to patterns with and without noise con-
tamination. We show the correlation of the C2 responses under different
levels of noise to the noiseless C2 responses in Figure 4. We can see that the
correlation in the responses decreases with the noise intensity and that this
agrees with the increase in the recognition error (see Figure 6). However,
the level of distortion in the responses due to noise is not the only factor;
another key aspect, which is also important in the noiseless condition, is that
the responses for patterns of different classes should initially be far apart in
the Euclidean space.
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Figure 4: Correlation of C2 responses to original patterns (no noise) with responses to con-
taminated patterns, averaged over all patterns. Bars represent the average and standard
deviation over 5 runs for Gaussian and salt & pepper noise.

We use a classical statistical method to normalize the Euclidean distances
between the C2 responses of each pattern: the Z-score (also known as the
standard score). The Z-score measures the distance of a given sample from
the average in number of standard deviations. The Z-score is useful because
it provides a relative comparison between each value and all others. The
actual distance values would be much more difficult to interpret because we
have no a priori notion of what is a small or large distance between the
responses. The Z-score is positive for values above the average and negative
for values below the average. The formula that calculates the Z-score from
a raw score x is as follows:

z(x) =
x− µ
σ

(1)

where µ is the population mean and σ is the population standard deviation.
Henceforth, we will use the Z-score to quantify the distance between the
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C2 responses of a pair of patterns and as a measure of their similarity. Ideally,
we expect to find that the Z-score of the distance between C2 responses is low
(negative) for patterns from the same class and high (positive) for patterns
of a different class, meaning that the C2 responses for same class patterns
are close in Euclidean space (i.e., similar) and that the responses for patterns
of different classes are far apart (i.e., dissimilar). Therefore, we calculate the
Z-score of the Euclidean distance of the C2 responses between each all pairs
of training and test patterns, i.e. the population is defined as the Euclidean
distances between the C2 responses of all training data and test data pairs.
We take µ and σ as the average and standard deviation of this population,
to then calculate the Z-score z(x) from the raw score x. Then by definition,
z(x) represents the number of standard deviations below (negative) or above
(positive) the average, regarding the population.

Considering a nearest neighbor classifier, the ideal conditions would be
such that patterns from the same class, now represented by C2 responses,
are close in the Euclidean space and patterns from different classes are far
apart. Otherwise, it would be easier for a distortion in the responses, due
to noise in the input, to make the classifier select a sample from the wrong
class as its nearest neighbor. With this in mind, we now consider how the
average distance between each of the C2 test responses and its closest C2 train
response for noiseless conditions is affected by noise, i.e. for each of the test
samples we pick the train sample whose Euclidean distance between the C2
responses is smallest without noise. Then we use the Z-score calculated using
Euclidean distances between the C2 responses of all training data and test
data pairs as previously explained for each particular level of noise, evaluating
how the distance of each of the test patterns to the closest pattern of the same
class in training (for noiseless conditions) is affected by noise (see Figure 5).

The Z-score of the distance of the C2 responses of a test pattern to the
closest pattern of the same class in training is approximately minus four
standard deviations for noiseless conditions (see Figure 5). This result implies
that for each test pattern, there is a training pattern of the same class that
is very close in Euclidean space relative to the average distance, which is
consistent with a low recognition error. The average distance between the
C2 response of a test pattern and its closest response in the training set
from the same class is closely related to the performance of a classifier. We
can see in Figure 5 that the Z-score increases with the noise intensity. This
means that the test patterns move further from their closest reference training
sample (in noiseless conditions) and, as the noise intensity increases, their
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distance moves closer to the average (i.e., the Z-score moves closer to 0). This
metric is only slightly affected for a moderate level of noise as in the previous
experiment (Gaussian=0.4, salt & pepper =0.16); however, it is progressively
more affected for higher levels of noise, which is in close agreement with
the recognition error of the linear classifier (see Figure 6). The model has
a significant noise tolerance until an already high level of noise (Gaussian
0.8, salt & pepper 0.32), but then the performance decreases sharply. The
recognition error increases significantly from 0.8 for Gaussian and from 0.32
for salt & pepper noise. For salt & pepper noise, the error is approximately
at the chance level when the intensity is 0.64, whereas for Gaussian noise,
when the intensity is 2, it still performs slightly below the chance level (see
Figure 6).
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Figure 5: Average Z-score of the Euclidean distance between the C2 responses of each
test pattern to the closest pattern of the same class in training (without noise). Z-score
calculated relatively to the Euclidean distances between the C2 responses of all train and
test data pairs for a given level of noise. The bars represent the average and standard
deviation over 5 runs for Gaussian and salt & pepper noise.
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Finally, we seek to further improve the noise tolerance by exposing the
classifier to the training patterns contaminated with different noise intensi-
ties. The rationale is that by including multiple versions of each pattern with
different levels of noise, the classifier has prior knowledge of the effects the
noise distribution has on the C2 responses. It is not surprising that the ex-
posure to noisy patterns during training improves the noise tolerance. Still,
from an application perspective it is relevant how much can the tolerance be
improved. The exposure to noise during training has also been reported to
improve noise tolerance in a related deep network (Tang & Eliasmith, 2010).

The unsupervised learning in the hierarchical layers is still performed
with 3000 training patterns without noise as before. After the unsupervised
learning is finished, we now generate multiple versions of the same pattern
contaminated with different intensities of the same type of noise. We then
use the C2 responses of the original and noisy versions of the train patterns
to learn the mapping between the network responses and the class labels as
before. The noise is independently sampled for each pixel, pattern, noise
level and set. Therefore, for each run, after the training of the hierarchical
layers is finished, we expand the C2 responses used to train the classifier by
contaminating the original 3000 training patterns with different intensities of
either Gaussian noise (0.4, 0.8, 1.2, 1.6 and 2) or salt & pepper noise (0.16,
0.32, 0.48, 0.64 and 0.8), resulting in 18000 C2 responses in each case (five
additional for each of the original training patterns) that are then used to
train a classifier. We finally evaluate the recognition error as before on a test
set contaminated with same type of noise used to expand the training set,
but independently sampled.

The recognition error is significantly reduced for high levels of noise by
expanding the training set with contaminated versions of the patterns for
both Gaussian and salt & pepper noise, as shown in Figure 6. The addition
of contaminated versions of the training patterns (indicated by gray lines)
significantly reduces the recognition error for higher levels of noise; more
notably, it reduces the error from approximately 65% for both Gaussian
noise (1.2 intensity) and salt & pepper noise (0.48 intensity) to just 25%.
For levels of noise where the performance was either close to or at the chance
level (90% error) the recognition is also significantly improved.
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Figure 6: Results from the training set expanded with noisy versions of patterns. The
bars represent the average recognition error and standard deviation with 3000 training
and 1000 test patterns over five runs for Gaussian and salt & pepper noise. The black
lines are the error when training only with clean patterns. The gray lines are the error
when extending the training set with a version of each pattern for each level of noise, i.e.,
adding five additional versions of each pattern to the training set. The noise intensity is
clearly illustrated in Figure 3.

4. WTA noise tolerance

The most fundamental difference between the model discussed in this
manuscript and related hierarchical models is that the response of simple cells
depends on the response of other simple cells. The WTA response described
here, in which a single cell responds with a constant value and all others
are silent, can be interpreted as an extreme case of divisive normalization
(Carandini & Heeger, 2012), i.e., the response of a simple cell is divided
by the sum of the responses of other cells after each of the responses has
been increased to a sufficiently large power. The WTA response is obviously
oversimplified from a neurophysiology perspective, but it appears to capture
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the important functional property of noise tolerance. We briefly discuss an
example that motivates the difficulty of achieving noise tolerance without
depending on the response of other cells with the same receptive field. We
will use a simple cell computation that is similar to the one used in the
Neocognitron, but the argument for this simplification is more general as
detailed below.

0 90
0

0.2

0.4

0.6

0.8

1

orientation
-90

Figure 7: The response of a set of cells whose preferences are oriented lines of different
orientations (shown on top) to a vertical line (same as the preference at 0). The hori-
zontal axis measures the orientation distance from the vertical stimulus in degrees. The
vertical axis show the average response and standard deviation (over 100 trials) of the
cells calculated as the inner product between their preferences and the vertical line stim-
ulus corrupted with additive white Gaussian noise of different intensities defined by noise
(r.m.s) / signal (p-p) in the range 0, 0.4, 0.8, . . . , 2. The noiseless condition is represented
by black lines, and the strongest noise is represented by the lightest gray lines.

Consider a set of preferred stimuli µj∈c where µj is the preference of cell
wj and c is a set of cells with the same receptive field. The response of each
cell wj to a stimulus x is simply given by the inner product of µj and x;
to simplify, we will assume that both x and µj will always have the unit
norm. We now consider that each µj represents an oriented line split apart
by c/180°and pick a stimulus x as another oriented line with some randomly
chosen orientation represented in wj∈c. The response will be maximal for the
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wj cell that has the same orientation, and the response will be progressively
smaller according to the angle distance between the oriented lines of each of
the corresponding µj. However, if we now contaminate x with additive white
Gaussian noise, the responses will tend to decrease for the optimally oriented
cell, becoming more similar to the responses for non-optimally oriented cells
as shown in Figure 7.

In a version of the Neocognitron with increased noise tolerance (Fukushima,
2011), subtractive inhibition suppresses responses below a given threshold.
A possible guiding principle for setting this threshold is to choose a value
that suppresses spurious responses from non-optimally tuned cells while still
allowing optimally tuned cells to continue to respond. Another alternative
is to simply find the value that yields optimal performance using some form
of optimization. Either way, we are faced with a difficult problem: the de-
pendence between the optimal threshold and the noise intensity. If we set
the threshold to low, then we have spurious responses; if we set it too high
for some levels of noise, then all cells will become silent. For example, con-
sidering the responses shown in Figure 7, if we set the threshold to 0.3, then
it would not suppress any responses in the noiseless case, whereas it would
unacceptably suppress all responses for higher levels of noise. If we want the
model to operate for different levels of noise while suppressing spurious re-
sponses, we are faced with a complex problem. Other Neocognitron versions
use divisional inhibition and the problem is analogous. Neocognitron divi-
sional inhibition only depends on the cell inputs and not on other simple cell
responses. Therefore, it should not be confused with divisive normalization.

We argue that a desirable property to have in a hierarchical model (so
that it is tolerant to noise in the input) is that each of the cells responses
are individually noise tolerant, i.e., their responses should not be affected by
noise. For this property to occur, we argue that the cells response should
depend on one another as in divisive normalization (Carandini & Heeger,
2012). The WTA response, by having a maximal and constant response for
the optimally tuned cell until the noise perturbation is sufficiently strong to
change it, is a reasonable method to achieve this property.

4.1. Bayesian interpretation

We now review a problem under a Bayesian perspective that motivates
the noise tolerance of the WTA response, particularly for additive white
Gaussian noise. Consider a set of preferred stimuli wj∈c; we generate a new
stimulus x by adding white noise to one arbitrarily chosen element wj with
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equal probability. Afterwards, without the knowledge of which wj we used
to generate the stimulus x, we want to predict wj while minimizing the error
rate. We can relate this problem to a set of simple cells that share a receptive
field; however, each of these cells has a different preferred stimulus. If we
consider that the first simple layer is in the extracting orientation, this set
of cells has to encode the information of which orientation is present in their
common receptive field.

The zero-one loss function, which assigns a cost of 0 to correct answers
and a cost of 1 to wrong answers, results in a classifier that minimizes the
error rate. The Bayesian risk corresponding to this loss function is (Duda
et al., 2001):

R(αi|x) =
∑
j 6=i

P (wj|x) = 1− P (wi|x) (2)

where P (wi|x) is the posterior. Finding the decision αi that minimizes Equa-
tion 2 is equivalent to finding the (Duda et al., 2001)

arg max
i∈c

P (wi|x), (3)

or alternatively, using the posterior definition and the logarithmic version

arg max
i∈c

P (x|wi)P (wi) = arg max
i∈c

[logP (x|wi) + logP (wi)] . (4)

If we now consider the case where P (x|wi) is a multivariate Gaussian density
function (Duda et al., 2001)

P (x|wi) =
1

(2π)
d
2 |Σ|

1
2

exp

[
−1

2
(x− µi)

t Σ−1(x− µi)

]
, (5)

where µi is the mean of class wi, (x− µi)
t is the transpose of x − µi and

Σ is the covariance matrix common to all classes (in this case representing
noise). |Σ| is the determinant and Σ−1 is the inverse. If we consider that the
noise is independent of class wi and is defined by an n-dimensional vector
of zero-mean Gaussian random variables with σ2 variance, then substituting
P (x|wi) in Equation 4 using Equation 5 and considering that in this case
Σ−1 = I/σ2 (Duda et al., 2001), we obtain

arg max
i∈c

[
2σ2 logP (wi)− (x− µi)

t(x− µi)
]
, (6)
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or alternatively

arg min
i∈c

[
−2σ2 logP (wi) + ‖x− µi‖2

]
, (7)

where ‖x − µi‖ is the Euclidean distance between x and µi. Finally, if we
now consider that all wi have equal probability, we simply obtain

arg min
i∈c
‖x− µi‖, (8)

which is the WTA operation in simple cells. Therefore, if we would train
a classifier on the WTA responses for a single receptive field, we would be
using this decision function.

While we related this problem to a set of simple cells with a shared recep-
tive field, we have made a shared set of assumptions in this relation. While
additive white Gaussian noise is a general type of noise, other types of distor-
tion can occur. We considered the problem of discriminating which stimulus
was present, while we could have considered the problem of estimating the
orientation of a stimulus, at least for the first layer. We also considered that
all preferences have equal probability, which might not always be the case.
Moreover, we are only focusing on which stimulus is present in a receptive
field, while the actual problem we would like to solve is what class is present
in an entire pattern.

5. Discussion

We have shown the intrinsic high tolerance of a hierarchical network with
a WTA response to several types of noise (Cardoso & Wichert, 2010), which
is greater than in related models (Fukushima, 2011; Serre et al., 2007; Mutch
& Lowe, 2008). We empirically explored the reasons for this tolerance, which
can be explained by two factors: the ability of the model to have similar
responses for patterns contaminated with different intensities of noise and
the resilience to noise of the low similarity of the responses for patterns of
different classes. We reported that further noise tolerance can be achieved
by training the classifier with additional network responses for the same
patterns contaminated with different levels of noise. Finally, we discussed
the relation between the WTA response and Bayesian discrimination under
the condition of additive white Gaussian noise. We will most likely require
a different computation for when the stimuli are not closely related to the

18



preferences or for other types of noise. We argue that divisive normalization,
of which the WTA response is a particular and extreme case, is an important
computation for noise tolerance in hierarchical models.

Layer Param. ETL1 MNIST
S1 size 8 4

shift 1 1
frame 4 0
classes 16 16

C1 size 4 3
shift 2 1
frame 3 0

S2 size 5 5
shift 1 1
frame 2 0
classes 100 100

C2 size 12 6
shift 2 1
frame 0 0

Table 3: Parameters used in the experiments for each of the datasets.
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