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Abstract

Based on our observations of the working principles of the archetypical hier-
archical neural network, Neocognitron, we propose a simplified model which
we call the Map Transformation Cascade. The least complex Map Trans-
formation Cascade can be understood as a sequence of filters, which maps
and transforms the input pattern into a space where patterns in the same
class are close. The output of the filters is then passed to a simple classifier,
which yields a classification for the input pattern. Instead of a specifically
crafted learning algorithm, the Map Transformation Cascade separates two
different learning needs: Information reduction, where a clustering algorithm
is more suitable (e.g., K-Means) and classification, where a supervised clas-
sifier is more suitable (e.g., nearest neighbor method). The performance of
the proposed model is analyzed in handwriting recognition. The Map Trans-
formation Cascade achieved performance similar to that of Neocognitron.

Keywords: Clustering, Hierarchical Neural Networks, Neocognitron,
Invariant Pattern Recognition

1. Introduction

One approach to pattern classification with artificial neural networks is to
use a hand-designed feature extractor to gather relevant information (LeCun
and Bengio, 1998). A feature-extractor reduces the amount of information
needed to describe a pattern while trying not to compromise the accuracy of
the description. The gathered information is then fed into a trainable clas-
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sifier, often a fully-connected multilayer neural network. The bottleneck in
this approach is how to construct the feature extractor. Another approach
is to feed the raw input and rely on the learning algorithm to produce the
first layers, the feature extractor. This approach has had some success, but
when the input has a topology (e.g., temporal, spatial), it ignores this infor-
mation, thus partially compromising its results, i.e., the order of the input
variables could be switched to any other fixed arbitrary order and the results
would be the same. This approach has no built-in invariance under shifts
and distortions of the inputs. To overcome this problem, it is necessary to
preprocess the inputs, by normalizing their sizes and centering them. But
preprocessing does not solve the problem completely, and a huge number of
training patterns are necessary for the network to exhibit stronger invariance
properties. To classify even a small image, a fully-connected network has a
huge number of connections, which makes it susceptible to overfitting and
computationally expensive (LeCun and Bengio, 1998).

Hubel and Wiesel’s discoveries have inspired several models for pattern
recognition (Hubel, 1988). In these models, the neural units have a local view
unlike the common fully-connected networks. Neocognitron (Fukushima,
1980) was the first of these models. It has local receptive fields, which means
that there is a local view in the network elements. It gradually reduces the
information from the input layer through the output layer. This is done by
integrating local features into more global features in sequential transforma-
tions. Its purpose is to classify topological data by gradually reducing the
information from the input layer through the output layer. Each of these
transformations is composed of two different steps. The first one reduces the
information by representing it with previously learned templates represented
by S-cells (resembling simple cells). The second step blurs the information
with C-cells (resembling complex cells), in order to allow positional shifts,
giving the model some invariance under shifts and distortions. However,
Neocognitron has been called ”complex in structure and parametrization”
(Lovell et al., 1993). It is one of the most complicated neural networks.

We propose a new less complex description of the pattern recognition
capabilities of the Neocognitron through a new model, the Map Transforma-
tion Cascade. By this simplified model we try to understand the nature of
the preformed classification and to answer the following question: What is a
good choice of parameters?

The Map Transformation Cascade is a hierarchical neural network. The
information is processed sequentially. Each layer only processes information
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after the previous layer is finished. The input is tiled with a squared mask,
where each sub-pattern is replaced by a number indicating a correspond-
ing class. By doing so, we get a representation of the pattern in the class
space. The mask has the same behavior in all different positions, resembling
the weight-sharing mechanism in Neocognitron and Convolutional Neural
Networks. In the following step, the class representation of the pattern is
transformed by losing the exact positional information. The corresponding
representation of the pattern in the class space is tiled with a squared mask,
eliminating the positional information of each class inside the mask. The
layers of a Map Transformation Cascade can be seen as filters, since they
have a clear and interpretable output, which is a modification of the input
information. Several filters transform and map the input pattern into a space
where patterns of the same class are close. The output of the filters is then
passed to a simple classifier, which produces a classification for the input
pattern. This classification is performed by a supervised classifier, which is
in our case the k-Nearest Neighbor algorithm.

The performance of the proposed model is analyzed in handwritten char-
acter recognition on the ETL1 database 1. Handwritten character recogni-
tion consists of determining the character represented by a given input image.
Although the problem of printed character recognition is considered solved,
handwritten character recognition is still an unresolved problem. Neural net-
works deliver state-of-the-art performance in this task (Sinha, 1999; Simard
et al., 2003). Because of the wide scope of applications for handwritten text
recognition, any slight improvement has significant economic impact, which
makes this field very active.

Besides comparing networks with different characteristics, our main pur-
pose is to understand the validity of the model in terms of performance, i.e.,
how well can the model perform with the right parameters on this data set,
and how well that performance compares to Neocognitron’s. To find the right
choice of parameters to describe our architecture, we used a simple random
search optimization algorithm. The Map Transformation Cascade and the
Neocognitron achieved similar performance.

1ETL1 database, http://www.etl.go.jp/ etlcdb/index.htm.
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2. Related work

In each layer of most artificial neural networks every unit receives input
from all the units in the previous layer. This results in a global view in each
of the units. Hierarchical networks work differently: Each unit only receives
input from a localized subset of units from the previous layer, making its view
local. Each unit only deals with a smaller localized part of the information.
The global view is constructed as we ascend in the layers toward the output
layer. This approach has two major benefits (Hecht-Nielsen, 1989): The units
in each layer have simpler problems to consider (only part of the input), and
these networks can work with many fewer units. The two most popular hier-
archical neural networks are the Neocognitron and the Convolutional neural
networks. Both networks share three key principles: Local receptive fields,
shared weights and subsampling. Local receptive fields and shared weights
reduce computational costs by decreasing the number of connections, neural
units and parameters. Shared weights also improve generalization abilities by
reducing the machine capacity (LeCun and Bengio, 1998). Subsampling im-
proves shift and distortion invariance capabilities (LeCun and Bengio, 1998).

2.1. Neocognitron

Neocognitron (Fukushima, 1980, 1988) is a neural model mainly used for
vision, which can perform unsupervised learning. It is an evolution of a
previously proposed model, the Cognitron (Fukushima, 1975). Neocognitron
has good generalization capabilities, as it is able to learn a pattern from
only a few typical examples. For successful learning, it is not necessary
to present all the deformed versions of patterns that might appear in the
future (Fukushima, 1998). The Neocognitron has been successfully applied
to handwritten text recognition (Fukushima, 2003).

The Neocognitron has two main types of cells: S-cells, which resemble
simple cells, and C-cells, which resemble complex cells. A stage is a sequence
of two layers of different types, where the first is an S-cell layer and the latter
is a C-cell layer. Networks can have one or more stages, e.g., the network
on Figure 1 has three stages. Cells in higher stages (closer to the output)
tend to have larger receptive fields and to be less sensitive to the position of
the stimulus. In a recent version of Neocognitron (Fukushima, 2003), there
is also a contrast extraction layer between the input layer and the first S-cell
Layer.
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Figure 1: Neocognitron architecture (Fukushima, 1998)

The network outline can be seen in Figure 1. Each square represents a
matrix of cells, called a cell-plane. The connections entering each of the cells
in a cell-plane are homogeneous and topographically ordered (Fukushima,
1998). The number of stages depends on the data to be classified. If the
data has high complexity, the number of stages has to be larger (Fukushima
and Wake, 1991). The number of cell-planes in each stage also has to increase
as the number of classes to classify increases(Fukushima and Wake, 1991).
Other parameters that depend heavily on the data are the size and overlap of
the receptive fields. The choice of all these parameters has a strong influence
on the results achieved, and at this point we have only a few hints on how
best to choose them (Barnard and Casasent, 1990).

For more information about the Neocognitron, consult the appendix.

2.2. Convolutional Neural Networks

Convolutional neural networks (CNNs), like the Neocognitron, are in-
spired by the classical hypothesis of Hubel and Wiesel, and have some built-in
shift and distortion invariance.

The weights of several units are synchronized, so they all represent the
same feature (e.g., a vertical line) in different positions of the layer, so that
each feature can be detected anywhere in the layer. By making several units
represent the same feature at different positions, the output set of units can
be seen as a feature map. The feature map can be sequentially implemented
by scanning the input image with a template, identifying the positions in
which the feature is present. The weight sharing improves the generalization
ability by reducing the number of free parameters (LeCun and Bengio, 1998).
The idea is that the features can be detected independently of their position.
Shifting the input will not change the detected features, only their positions

5



would be shifted as in the input.
Each convolutional layer is followed by another layer that performs a lo-

cal averaging and subsampling. The local averaging and subsampling layer
reduces the resolution of the feature map of the previous layer. These layers
are responsible for reducing the importance of the position of the features,
allowing some degree of shift and distortion. This idea is also present in
the Neocognitron, and is inspired by the classical hypothesis. The convo-
lutional layer resembles a layer of simple cells, and the local averaging and
subsampling layer resembles a layer of complex cells. The number of fea-
ture maps increases from the input layer towards the output layer as the
meaning of each feature becomes more complex. CNNs with a fixed size
that share weights along a single temporal dimension are called time-delay
neural networks (TDNNs). CNNs for composite object recognition, such as
patterns representing words (the number of letters varies), are called space
displacement neural networks (SDNNs) and consist of replicated CNNs.

The key difference between the Neocognitron and CNNs is the learning
method. The Neocognitron is trained with a crafted algorithm, which is clas-
sified under the competitive learning paradigm. CNNs are trained with the
backpropagation algorithm, which is a form of gradient descent. This train-
ing algorithm is susceptible to local minimal problems. However, in CNNs
this problem is slightly less prominent than in fully-connected networks, since
the number of free parameters is reduced by weight sharing.

3. Map Transformation Cascade

The Map Transformation Cascade model is also composed of two types
of cells, simple and complex. A layer is a set of cells of the same type. A
stage is a sequence of two layers of different types, where the first is an S-
Layer and the latter is a C-Layer. The S-Layer corresponds to a layer of
simple cells in the visual cortex. It maps the input into the class space. The
input is tiled with a squared mask, where each sub-pattern is replaced by
a number indicating a corresponding class. The masks that tile the pattern
may overlap, see Figure 2.

The S-Layer learning is performed by a clustering algorithm. We used
K-Means, but it is possible to use other algorithms like self organizing maps
(SOM) for this task (Wichert, 1993; Kemke and Wichert, 1993).

The C-Layer, which corresponds to a layer of complex cells in the visual
cortex, transforms the input it receives from the S-Layer. Its purpose is
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Figure 2: The pattern is tiled with a squared mask. The masks that tile the pattern may
overlap. A mask is defined by the mask size. The tiling is defined by the pattern size,
the mask size and the overlap. Shift describes how much a mask is shifted in abscissa
direction or ordinate direction, with no overlap shift is equal to the mask size.

to allow positional shifts, thus giving the model shift invariance. The class
representation of a pattern is tiled with a squared mask, eliminating the
positional information of each class inside the mask. The transformation
performed by the C-Layer is determined from the start, and is not a result
of any learning.

The two layers of a stage are highly related, since the output of the
C-Layer is fuzzy version of the S-Layer output. There are two different cate-
gories of stages, the input stage and hidden stage, which differ in their input
type. In the input stage, the input is a binary pattern; in the hidden stage,
it is the representation of the pattern in the class space. The stages of a
Map Transformation Cascade can be seen as filters, since they have clear
and interpretable output that is a transformation of the input information.
Several filters map and transform the input pattern into a space where pat-
terns of the same class are close. The output of the filters is then passed to a
simple classifier, which produces a classification for the input pattern. This
classification is performed by a supervised classifier, which in our case is the
k-Nearest Neighbor. The operation of this network during classification is
graphically represented in Figure 3.
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Figure 3: Network operation during classification for four input patterns with one stage.

3.1. Input Stage

The classification of our model begins with the binary input pattern of the
S-Layer of the first stage, the input stage. Figure 4 shows an example of such
a binary input pattern. The binary input pattern is tiled with a squared mask

Figure 4: Example of a binary input pattern from the ETL1 data set. The pattern is
represented by a vector in which each component has a value of 0 (“zero”) or 255 (“one”).

M of size j×j in which a corresponding class is determined, see Figure 2. The
class is determined through the use of the elements in each squared mask.
Each of the corresponding n sub-patterns x⃗h, with h ∈ {1, 2, ..., n}, is mapped
into a corresponding class represented by a number. Each sub-pattern in each
mask corresponds to a (j× j)-dimensional vector. The corresponding classes
are learned by K-Means clustering.

3.1.1. Learning phase

During the learning phase of the S-Layer, binary input training patterns
are presented to the input stage. They are tiled with a squared maskM of size
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j×j. In each position, a training sub-pattern is determined. All sub-patterns
representing background, in which all components are zero, are filtered out.
As a result, we obtain a training set of n sub-patterns represented by vectors
x⃗h, with h ∈ {1, 2, ..., n}, of dimension j × j. We group the n sub-patterns
into clusters represented by the cluster centers cv. After the clustering, we
have cluster centers c⃗1, c⃗2, c⃗3, ..., c⃗k of the clusters C1, C2, C3, ..., Ck, with

Cv = {x⃗h|d(x⃗h, c⃗v) = min
i
d(x⃗h, c⃗i)}, (1)

cv =
1

|Cv|
∑

x⃗h∈Cv

x⃗h. (2)

The clustering algorithm uses random initialization with numbers from the
interval 0 to 255 for each component. The number of clusters is determined
experimentally. In Figure 5, we see an example of seven learned cluster cen-
ters representing seven different classes, numbered one to seven, and a back-
ground class, numbered zero. There are two distinct categories of classes:
Classes determined by K-Means clustering, and a special class corresponding
to the background information. By convention, a “one” in the input binary
pattern represents information, and a “zero,” the background of the binary
pattern (no information). The solution of the K-Means clustering strongly
depends on the initialization of the cluster centers. With random initial-
ization, K-Means clustering on the same data can lead to quite different
partition results. This problem may be solved by the adaptive initializa-
tion (Wichert et al., 2002). However we opted for a random initialization to
improve the random search in the following experiments.

3.1.2. Mapping

During mapping, the corresponding sub-patterns of an input pattern are
mapped into the corresponding classes. The binary input pattern is tiled with
a squared mask M of size j × j. The tiling can be generated dynamically
by scanning a mask over the input pattern. In each position, a mask is
applied to the input, and the sub-pattern is compared with the previously
learned classes (see Figure 6). For each position, the input is mapped into
the most similar class represented by the index i (between 0 and k). The
index 0 represents the background, by convention, and the indices 1 to k
represent other classes. An index i between 1 to k is the same as the cell-
plane index i in the conventional Neocognitron. The index 0 corresponds
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to the inactivation of cells in all cell planes at a certain position in the
conventional Neocognitron.

During mapping, for each sub-pattern x⃗ the most similar class i is deter-
mined according to the Euclidean distance:

i = min
l
d(x⃗, c⃗l), l ∈ {0, 1, ..., k}. (3)

In contrast to a conventional Neocognitron, we get a reduced represen-
tation of the pattern in the class space. The topological relation between
the pattern and its representation in the class space is guaranteed by the
background information 0 and the binary nature of the input pattern. In
Figure 7 we see the representation of Figure 4 in the class space.

3.1.3. Transformation

The class representation of a pattern is tiled m times with a squared
mask M of size l × l. In each position, a vector c⃗h, with h ∈ {1, 2, ...,m},
of dimensions l × l, is determined. The vector c⃗h describes the presence of
some classes inside the mask M . There are two categories of classes: The
classes that describe the presence of some features, and the background class
represented by zero. The transformation function in the first step eliminates
zeros from the corresponding vector. After the first step, the vector represents
the classes without exact positional information. In the next step, there are
several possible alternatives. We could apply the mode, defined in statistics.
The mode is the value that occurs most frequently. The mode is not unique,
since the same maximum frequency may be attained at different values. For
example the mode of {1, 6, 3, 6, 3, 3, 3} is {3}, but the mode of {1, 6, 3, 6, 3}
is {3, 6}. However the mode eliminates too much important information;
for example the vector {1, 6, 3, 6, 3, 3, 3} indicates the presence of several
classes, 1, 3 and 6. Instead of using the mode, we eliminate the frequency
information for each present class. As a result the position and frequency
information of the classes inside the mask are discarded. The same operation
is performed by the C-cells of Neocognitron. The elimination of frequency
represents shift invariant operator based on the idea that only changes in a
shape matter. A line or a curve is a line or a curve independent of its length.
However by gaining shift invariance we lose some discrimination power, both
prominent features and small noisy features may be treated equivalently.
Figure 8 shows the input into a C-Layer mask. The output of the C-Layer
mask for this position will be the set of all present classes. The background
and the frequency information is discarded by the C-Layer.
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The output of a mask of a C-Layer is represented by a binary vector. A
‘one’ represents a class at the corresponding position of a binary vector; its
absence is denoted by a ‘zero’. The class set {1, 2, 3, 4, 5, 6, 7} is represented
by a binary vector of dimension 7. The presence of the classes {1, 6, 3} is
represented by the binary vector u⃗ = [1 0 1 0 0 1 0], with ones in the cor-
responding positions 1, 3, and 6. We call this vector the uncertainty vector.
The class representation of a pattern is transformed into an uncertain class
representation. For p classes, we get a uncertainty vector u⃗ of dimension p.
The more ones are present in the uncertainty vector u⃗, the more informa-
tion is lost. The result of a transformation of m squared masks M covering
a class pattern is a (m × p)-dimensional binary uncertainty class vector U⃗ .
The index 1 to m concerns the position of the mask M . This binary vector
is composed of m uncertainty vectors

U⃗ = [u⃗1, u⃗2, ..., u⃗m].

3.2. Hidden Stage

The uncertainty class vector represents the input to S-Layer of the hidden
stage. The uncertainty class vector is tiled with a squared mask M of size
j × j in which a corresponding class is determined. The class is determined
through the use of the elements in each squared mask. The elements of each
squared mask are represented by binary sub-vectors of dimension j × j × p.
Each of the j × j elements inside the mask corresponds to a p dimensional
uncertainty vector. The corresponding classes are learned by a clustering
algorithm.

3.2.1. Learning phase

During the learning phase of the S-Layer, the uncertainty class vectors
that were determined by some previous stage are presented to the hidden
stage. They are tiled with a squared mask M of size j × j. In each posi-
tion, a training sub-pattern is determined. All sub-patterns representing the
background, in which all components are zero, are filtered out. The elements
of a squared mask are represented by binary sub-vectors of the dimension
j × j × p.

As a result, we obtain a training set of n sub-patterns represented by
vectors U⃗h, with h ∈ {1, 2, ..., n}. We group the n sub-patterns into clusters
represented by the cluster centers cv. After the clustering, we have cluster
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centers c⃗1, c⃗2, c⃗3, ..., c⃗k for the clusters C1, C2, C3, ..., Ck, with

Cv = {U⃗h|d(U⃗h, c⃗v) = min
i
d(U⃗h, c⃗i)}, (4)

cv =
1

|Cv|
∑

U⃗h∈Cv

U⃗h. (5)

The clustering algorithm uses random initialization with numbers from the
interval 0 to 1 for each component. The number of clusters is determined
experimentally. As in the input stage, there are two distinct categories of
classes: Classes determined by clustering, and a special class corresponding
to the background information.

3.2.2. Mapping

The uncertainty class vector is tiled with a squared maskM of size j×j, in
which a corresponding class is determined. The class is determined through
the use of the elements in each squared mask. The elements of a squared
mask are represented by binary sub-vectors of dimension j × j × p. In each
position, each mask is compared with the previously learned classes.

For each position, the input is mapped to the most similar class, according
to the Euclidean distance represented by the index i ∈ {0, · · · , k}. The index
0 represents the background by convention, and the indices 1 to k represent
other classes.

i = min
l
d(U⃗h, c⃗l), l ∈ {0, 1, ..., k} (6)

In the corresponding stages, the process is repeated. Each stage acts as
a filter that reduces the information. Finally, the last layer corresponds to a
classifier, which in our case is realized by a simple nearest neighbor.

3.2.3. Transformation

The transformation in the hidden stage is the same as in the input stage.
The class representation of a pattern is transformed into a uncertain class
representation. The exact positional and frequency information for each class
present inside a mask are eliminated. The result of the transformation is a
binary uncertainty class vector U⃗ .
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3.3. Recognition Layer

In the R-Layer, the binary uncertainty class vector is classified by a su-
pervised classifier. We use the simplest of all machine learning algorithms,
the nearest neighbor method. It is the k-nearest neighbor method with
k = 1. The distance between the binary uncertainty class vector and pre-
vious learned vectors is calculated by the Euclidean distance. The vector is
assigned to the most similar class of the previously learned vectors.

3.4. Principles

The Map Transformation Cascade resembles Neocognitron in its key prin-
ciples. It also has two types of layers, which represent simple and complex
cell-layers. However, instead of having several outputs for each position in
the input, namely one output for each cell-plane, each layer has only one
output for each position.

In Neocognitron the output indicates how strongly each feature is present
in each position. Each S-cell-plane learns to recognize a different feature,
and the number of cell-planes depends on the selectivity threshold during
the learning phase (Fukushima and Tanigawa, 1996). During recognition,
the threshold should be set lower to improve generalization (Fukushima and
Tanigawa, 1996).

The Map Transformation Cascade implements the winner-takes-all prin-
ciple during the learning and recognition phases. We used the most simple,
unsupervised learning method, the K-Means clustering method. Instead of
measuring the cosine similarity between the input vector and the weight
vector, as is done in Neocognitron (Fukushima, 1989), we measure the Eu-
clidean distance between the two vectors. During recognition only the most
commonly present feature is chosen. By doing so, we get a representation of
the pattern in the class space.

The topological relation between the pattern and its representation in
the class space is guaranteed by the background information. Without the
background, all topological information about the original image is lost. The
loss of information is not provoked by the transformation operation (C-cell
layer in the Neocognitron). This becomes clear by performing repeated map
transformations. Already in the second stage, all topological information
about the input pattern is lost. The second stage uses the class space as the
input, and the class space has no topological relation with the original space,
the input space. A number that indicates a corresponding class replaces each
sub-pattern in a mask, and the number has no relation to the corresponding
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sub-pattern of the input space itself. In the class space 1 and 2 are as
similar as 1 and 6. Since the classes are unary encoded forming the binary
uncertainty vector, all different classes are equally distant according to the
euclidean distance. The same principle holds in Neocognitron. This doesnt
mean that the corresponding sub-patterns have the same relation, see for
example Figure 5 (b), (c) and (g). The figure 7 represents the pattern of
Figure 4 in the class space, the class 1 is as similar to 2 as 1 is to 6, however
the corresponding sub-patterns of the class 1 and 6 are more similar to each
other than 1 and 2). This error grows with corresponding layers recursively.
This loss could be compensated to some extend by using Self-Organizing
Maps (SOM) (Wichert, 1993; Kemke and Wichert, 1993). The essential
background information is also represented by Neocognitron. It corresponds
to the inactivation of cells in all cell planes at a certain position.

The recognition layer was introduced. Even though the conventional
Neocognitron does not have this additional layer, the highest stage resembles
this behavior. A similar function as well was already introduced in (Shouno
et al., 1999) for evaluation. In Neocognitron, the learning process for the
highest stage obeys different rules, and simple cells, unlike in the previous
layers, have a label indicating which class the cell represents. The purpose of
clearly separating the recognition layer is to allow it to function in different
ways, using well known classification algorithms such as KNN, RBF.

The choice of masks to ensure shift invariance and discrimination is a
difficult process that has to be made with care. The choice leads either to
an architecture that is reasonably invariant to shifts at the expense of losing
a certain amount of discrimination power, or to sharp discriminatory power
by sacrificing shift invariance (Barnard and Casasent, 1990). We solve this
problem through a random search over the sizes of different masks.

4. Experiments

The experiments are conducted on the ETL1 data set of handwritten
characters 2. The data set contains handwritten letters and digits. Each
pattern is a 64 × 63 image (horizontal × vertical). All the patterns are
labeled. The digits which total 14450 patterns, are used in the experiments.
The dimensions images are 64 × 63, and they are in gray scale. The train

2ETL1 database, http://www.etl.go.jp/ etlcdb/index.htm.
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and validation sets are generated randomly from the data set, either for each
generation or for each experiment. The images were preprocessed using thrno
3, a binarization program based on the discriminant criterion (Otsu, 1979).
In a recent version of Neocognitron, there is a special layer of cells that is
responsible for contrast-extraction. The thrno software is used to achieve a
similar effect without adding extra complexity to the model, and keeping it
focused on the key principles. An additional background column is added to
the bottom of the patterns to make them square (64× 64). All the masks in
the experiments are also square.

4.1. Parametrization

Like the previous models, the proposed model is highly susceptible to
the network parameters (Barnard and Casasent, 1990). Several networks
with incorrect parameters for this data set performed as badly as randomly
classifying the input, i.e., picking a random number between 0 and 9.

The necessary parameters to define a layer are size, shift, frame, and for
the S-layers, number of classes. As for the Recognitron Layer, size derives
from the parameters of the previous layers. Its size is always the size of the
output of the last stage.

The S-Layer can be predetermined or not. A predetermined S-Layer is
a layer of the first stage with a predetermined number of classes, each of
which represents a straight line with a specific orientation. The concept is
the same as for Neocognitron, and was described in Section Appendix A.3.
The R-Layer should always have the same size of the output of the last stage.
The overlap of a mask is defined by the following equation (see Figure 2):

overlap = size− shift, (7)

and the number of cells per dimension, or equivalently the number of mask
positions per dimension, is defined by the following expression:

mask positions per dimension = ⌊pattern size− size

shift
⌋+ 1. (8)

For overlap = 0 it is simply

mask positions per dimension = ⌊pattern size
size

⌋. (9)

3Taiichi Saito, http://www.is.aist.go.jp/etlcdb/util/thrno.htm.
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Additionally we introduce the frame size. The frame artificially enlarges the
size of the input pattern with background information around the original
pattern. Its purpose is to define the input information for the parts of a
mask that lie outside the original pattern. With frame the number of cells
per dimension, or equivalently the number of mask positions per dimension,
is

mask positions per dimension = ⌊pattern size+ frame× 2− size

shift
⌋+ 1.

(10)

4.2. Parameter optimization

The model has high sensitivity to the parametrization. Genetic algo-
rithms usually have two genetic operators: Crossover and mutation (Srinivas
and Patnaik, 1994). The crossover operator’s purpose is commonly defined
as to find good solutions by combining individuals. The mutation operator
is commonly considered less important and its purpose is to introduce ran-
dom changes to avoid local minimums (Tomassini, 1995). A random search
algorithm with a mutation operator and a fitness function is used to solve
this problem. These changes in individuals are followed by the selection of
the fittest ones. No crossover was used in order to avoid additional complex-
ity in defining the operator, and also because mutation is more useful when
the population is converging (Beasley et al., 1993; Davis et al., 1991). The
optimization takes place through the selection and mutation of individuals.

In each experiment the population has a fixed size. In each generation
the current members are mutated and added to the population. Afterwards,
the already existing members and the new ones are evaluated according to
a fitness function. The population is then trimmed to its defined size by
keeping the best individuals, which can be both current members and new
ones.

Besides comparing networks with different characteristics, the main pur-
pose is to understand the validity of the model in terms of performance,
i.e., how well the model can perform with the right parameters on this data
set, and how good that performance is relative to Neocognitron’s. Due to
the large amount of time required by some of the optimizations, no prede-
termined stopping criteria is established unless explicitly mentioned. Two
stopping criteria for the random search are empirically used: Classification
rate stabilization and population age increase. The first one indicates that
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the networks in the population are not getting better in terms of perfor-
mance, even though they may be changing. The second one indicates that
fewer individuals with improved performance over the existing ones are being
generated, and therefore the population is stabilizing.

The clustering algorithm used in the experiments has a random initializa-
tion, which often makes the results differ for the same network on the same
data sets. This characteristic intuitively reduces local minima problems and
improves diversity, although it also affects the convergence of the optimiza-
tion. For simplicity all networks use nearest the neighbor method in the
Recognition Layer; this value was not subject to any optimization. Some of
the optimizations used the results of previously realized optimizations. The
best individual after optimization for each of the populations of the exper-
iments is shown in Table 4 and their performance on a test set is shown in
Table 5.

The training classification rate for the best individuals of all experiments
is often 100%. Because of this, the training set classification rate are not
used to analyze the relative performance of the networks, since it offers no
guidance. It would be possible for the model to reject a pattern, either
by a minimum similarity threshold or by not choosing a class when two or
more classes are equally probable. However, to facilitate the comparison
with Neocognitrons results and to limit the complexity of the experiments,
rejection will not be considered. The validation set classification rate will
serve as a basis for the parameter optimization analysis, and will also be
referred to as classification rate.

The optimization will be performed primarily on the cell size. The number
of cell classes, and in some experiments the cell frame, will also be optimized.

Early experiments, which tried to optimize the cell shift, proved to be
useless given the great changes they made on the output of each layer. An
increase in the cell shift from 1 to 2 reduces the size of the output almost
by half. These drastic changes in the output size make it difficult for the
following layers to process the output with good results. A more complex
mutation is probably needed to tackle this problem successfully. Because of
this, the optimization of the cell shift was abandoned.

Early experiments with an optimization of the number of stages, besides
the cell size and the cell classes, were conducted. Their strong tendency to
produce one-stage networks made their usefulness unclear. This tendency
could be due to a real better performance of one-stage networks or to an
advantage of the one-stage networks in the optimization process given their
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smaller number of parameters. The optimization of the number of stages in
a single population was abandoned.

Outline of Experiments. The goal of the experiments is to find a parametriza-
tion of the Map Transformation Cascade that can achieve good results on
the ETL1 data set. Besides this goal, the experiments will also serve to an-
alyze different parameterizations. The optimizations maximize the following
fitness function:

f(parametrization) =
# validation patterns correctly classified

# validation patterns
, (11)

i.e., the optimizations maximize the validation set classification rate. Each
experiment is run with a population of size 3, and 2 additional children per
individual of the population. Each child is a copy of one of the members of
the population and is then mutated according to Table 1, using the following
expression 4:

new value =

{
old value+ ⌈old value×mutation⌉ if mutation ≥ 0
old value+ ⌊old value×mutation⌋ if mutation < 0

.

(12)
In each iteration of an optimization, 2 children are generated for each

of the existing 3 members, resulting in 9 members, from which the best 3
become the next population. In the legend of the charts,“per. Mov. Avg.”
refers to “period Moving Average”.

Cell Property Mutation Applied
Classes [−30%,+30%]
Size [−10%,+10%]
Shift 0%
Frame [−10%,+10%]

Table 1: Mutations applied to the existing parameterizations.

The first experiment, Thinning-Out (see Sec. 4.2.1), analyzes two popu-
lations with different thinning-out methods: One that performs the thinning-
out from the S-Layer to the C-Layer and another one that performs it from

4Each parameter is represented by an integer with no specific number of bits assigned.
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the C-Layer to the S-Layer. This experiment is used to choose a thinning-out
method for the remaining experiments.

A second experiment, Stages (see Sec. 4.2.2), analyzes three populations
with different numbers of stages and a predetermined S-Layer. The first pop-
ulation is composed of networks with three stages, the second has networks
with two stages and the third has networks with one stage. The results of
the optimizations of this experiment are used as seeds for another experiment
without a predetermined S-Layer.

The third experiment, No predetermined S-Layer (see Sec. 4.2.3), also
analyzes three populations with different numbers of stages, but without
a predetermined S-Layer. This experiment allows a comparison between
networks with different number of stages without a predetermined S-Layer. It
also allows a comparison between networks with or without a predetermined
S-Layer. The best individual from all the previous experiments will be used
in a final optimization.

The fourth and final experiment, Large Set (see Sec. 4.2.4), analyzes a
single population whose seed individual is the best individual so far from the
previous experiments. The optimization is performed with a larger validation
set which is randomly generated for each generation. The increased size of
the validation set results in an improved level of stability of the optimization.
The best individual of this population is finally tested on different size test
sets.

4.2.1. Thinning-out

The purpose of this experiment is to evaluate the performance of the
proposed model with different thinning-out methods. Thinning-out refers to
a reduction in the number of cells in two contiguous layers. Two thinning-out
methods will be considered, from the S-Layer to the C-Layer and from the
C-Layer to the S-Layer.

This experiment is performed on networks with one stage because they
have fewer parameters than networks with more stages. With fewer parame-
ters, the optimizations can progress more quickly toward a higher classifica-
tion rate. The seed individuals for both populations have minimal size cells
(2 × 2) and have no frame (see Table 3). In the experiment, the stopping
criterion is a maximum number of generations (360). This criterion is used
because the seed individuals of both populations were not derived from any
previous optimization, which allowed for a more faithful comparison.

The training and validation data sets with 20 patterns were generated
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each time a new generation started. These small sets were used to reduce
the time needed to compute each generation. The size of the sets makes the
margin of error of the classification rate considerable. This margin of error
sometimes makes the selection of the best individuals wrong, affecting the
convergence of the optimization although the purpose of this experiment is
just to make a relative comparison.

The mutations used in all experiments are shown in Table 1.
There is no evidence that one of the thinning-out methods can outperform

the other for this data set (see Figure 9 and 10). The C-Layer to S-Layer
thinning-out and the S-Layer to C-Layer thinning-out show similar perfor-
mance. Both thinning-out options empirically appear to be valid. The C
to S-Layer thinning-out, which is uncommon in related models, seems less
susceptible to the remaining parametrization of the network given its early
classification rate burst. This thinning-out method is used in further experi-
ments, because of its less common usage and suggested similar performance.

4.2.2. Stages

The purpose of this experiment is to evaluate the performance of the pro-
posed model using different numbers of stages. All networks have a prede-
termined S-Layer, as is reported in a Neocognitron version for the same task
(Fukushima, 2003). The predetermined S-Layer was previously discussed in
Section Appendix A.3.

The seed individual for the 3-stage, predetermined-S-Layer population
was based on a Neocognitron parametrization for the same task (Fukushima,
2003), although the thinning-out takes place from the C to the S-Layer as
discussed in Section 4.2.1.

The first optimization has 3 stages with a predetermined S-Layer. The
best individual of this population after optimization, was used as a seed for
the 2-stage, predetermined-S-Layer, with the last stage removed. The results
of the 2 stages with a predetermined S-Layer were used in the same way for
the 1-stage, predetermined-S-Layer optimization.

The training and validation data sets with 200 patterns were generated at
the beginning of the experiment and were used throughout the experiment.

The 1-stage, predetermined-S-Layer achieved a significantly poor vali-
dation classification rate (77% see Figure 13) when compared with the 2-
stage, predermined-S-Layer population (89,8% see Figure 12) and the 3-stage,
predetermined-S-Layer population (87,7% see Figure 11).
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The 1-stage, predetermined-S-Layer population classification rate exhibits
monotonic growth (see Figure 13) because there is no random initialization
in its networks. This means that the 1-stage predetermined-S-Layer popula-
tion has no way of adapting besides its parametrization, which empirically
explains its relatively poor performance. The performance of the predeter-
mined S-Layer appears to be poor when no other S-Layer exists.

The 2-stage, predetermined-S-Layer population seems to perform better
than the 3-stage, predetermined-S-Layer population. An explanation for this
is that 2 stages fit the data set better than 3 stages. However, to some extent,
this can also be explained by the smaller number of parameters in the 2-stage
networks.

The predetermined S-Layer is based on Neocognitron (Fukushima, 2003).
The next experiment analyzes the relative performance of this characteristic
for the proposed model. Three optimizations, which are similar to the ones
in this experiment but without the predetermined S-Layer, are analyzed in
the next experiment to analyze the influence of the predetermined S-Layer
on the performance of the model.

4.2.3. No Predetermined S-Layer

The purpose of this experiment is to understand the influence of the
predetermined S-Layer on performance by comparing similar networks with
or without a predetermined S-Layer. The best individuals from Section 4.2.2
are used as seeds for the three populations without a predetermined S-Layer
(see Table 3).

The 3-stage population achieved an 88,4% (see Figure 14) classification
rate on the validation set, compared to 87,7% for the 3-stage, predetermined-
S-Layer one (see Figure 11). The 2-stage population achieved an 89,5%
classification rate on the validation set (see Figure 15), compared to 89,8%
for the 2-stage, predetermined-S-Layer one (see Figure 12). The 1-stage
population achieved the best results, with an 91,1% classification rate on
the validation set (see Figure 16), a great improvement when compared with
77,0% for the 1-stage, predetermined-S-Layer population (see Figure 13).

The networks without a predetermined S-layer achieved a similar or better
validation classification rate for this data set. This is empirically explained
by their higher adaption capacity, since the first S-Layer classes can represent
any kind of feature. As for the predetermined S-Layer, its classes represent
straight lines of different orientations.
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4.2.4. Large Set

The purpose of this experiment is to carry out a final evaluation of the
best network so far, taken from the 1-stage population. The training set size
remains 200 and the validation set size is increased to 500. Finally, the best
individual is tested with different size test sets.

Test Set Size Classification Rate
200 93,00%
500 92,00%
1000 94,20%
3000 93,33%
10000 92,91%

Table 2: Test set classification rates of the best individual of the Large Set population for
different test sets.

The Large Set population (LS) achieved a significant increase in the clas-
sification rate over the 1 stage population (1S), which served as the seed for
this optimization. The increased test set size seems to have an important
impact on the results, given the small number of generations and the signifi-
cant increase in the classification rate. The 1S test classification rate is stable
for 15 generations (see Figure 16), and the LS validation classification rate
improved 1,8% (see Figure 17) in just 11 generations. This suggests that to
optimize the populations above an already high level of fitness, it is necessary
to increase the validation set size. Empirically, this is explained by the reduc-
tion in the margin of error of the fitness function, which may be particularly
significant for these individuals due to their random initialization.

The experiments with the best individual from the LS population show
a good performance of the model on this data set with 200 training patterns
(see Table 2). The training set is not increased, to prevent over-fitting due
to the use of the nearest neighbor classifier.

4.3. Summary of the results

The seed individual of each optimization is shown in Table 3, the best
individual of each population is shown in Table 4 and the results of the best
individuals in a 200 patterns test set are shown in Table 5.

It is interesting that the networks with only 1 stage and no predetermined
S-Layer were the ones that achieved the best performance, 92,91% (see Table
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2), a result which is slightly better than Neocognitron’s 92,8% test classifica-
tion rate, also with 200 training patterns for this same data set (Fukushima,
2003) and a 3000-pattern test set.

This result shows a slightly improved performance of the Map Transfor-
mation Cascade compared to Neocognitron. The network parametrization,
is however, quite different from the reported parametrization of Neognitron
(Fukushima, 2003), which has 4 stages (in Neocognitron the purpose of the
last stage is similar to that of the Map Transformation Cascade’s recogni-
tion layer). In addition, the best parametrization found in the experiments
only has one stage and a recognition layer (corresponding to a Neocognitron
with 2 stages). The results show that it is possible to achieve the same per-
formance with a much simpler model. The result also suggest that despite
the background information, too much information is lost by the class space
representation of the pattern.

5. Conclusion

A new hierarchical network model is proposed through the analysis of the
key principles of Neocognitron. The purpose of this model is to achieve the
same key principles in a simpler way. The main contribution for the simplicity
of the Map Transformation Cascade is the learning. It can be performed
by well-known learning algorithms, avoiding the additional complexity of a
specifically designed learning algorithm.

The cell-planes are not present in the description of our proposed model.
In each S-Layer (simple layer), the input is scanned with a mask in all the
different positions for all the different classes. The mask has the same be-
havior in all the different positions, resembling the weight-sharing mechanism
and cell-plane representation in Neocognitron. However, only one class can
be present at each position inside the mask. This behavior is equivalent to
restricting Neocognitron so that there can only be one active cell for each
position across all cell-planes and so that its activity for that cell is constant.
This behavior reflects an irrevocable decision, made by each layer, on what
feature is present in each position, unlike in Neocognitron, where a measure
of similarity for each class in each position is passed along. The proposed
model’s C-Layer receives as input a single class vector. The input is scanned
with a mask, and for each mask position, the positions of the classes inside
the mask and their frequencies are removed. The proposed model’s complex
layer operation is similar to Neocognitron’s, in fact the algorithmic level of
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Layer Cell Property STOC CTOS 3SPD 3S 2SPD 2S 1SPD 1S LS
S1 size 2 2 6 7 7 9 9 11 11

shift 1 2 2 2 2 2 2 2 2
frame 0 0 8 16 16 9 9 4 11
classes 2 2 16 4 4 7 7 3 85
overlap 1 0 4 5 5 7 7 9 9

cells per dimension 63 32 38 45 45 37 37 31 38
predetermined N N Y Y Y N Y N N

C1 size 2 2 6 3 3 5 5 6 25
shift 2 1 1 1 1 1 1 1 1
frame 0 0 3 5 5 2 2 3 7
overlap 0 1 5 2 2 4 4 5 24

cells per dimension 31 31 39 53 53 37 37 32 28
S2 size 6 10 10 9

shift 2 2 2 2
frame 4 3 3 4
classes 22 81 81 86
overlap 4 8 8 7

cells per dimension 21 25 25 19
C2 size 6 8 8 12

shift 1 1 1 1
frame 3 1 1 5
overlap 5 7 7 11

cells per dimension 22 20 20 18
S3 size 8 11

shift 2 2
frame 5 0
classes 50 89
overlap 6 9

cells per dimension 13 5
C3 size 9 7

shift 1 1
frame 2 5
overlap 8 6

cells per dimension 9 9
R size 31 31 9 9 20 18 37 32 28

Table 3: Seed individuals for each of the populations: S-Layer to C-Layer thinning-
out (STOC), C-Layer to S-Layer thinning-out (CTOS), 3-stage, predetermined S-Layer
(3SPD), 3-stage (3S), 2-stage, predetermined-S-Layer (2SPD), 2-stage (2S), 1-stage,
predetermined-S-Layer (1SPD), 1 stage (1S) and Large Set (LS).
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Layer Cell Property STOC CTOS 3SPD 3S 2SPD 2S 1SPD 1S LS
S1 size 12 14 7 7 9 7 11 11 12

shift 1 2 2 2 2 2 2 2 2
frame 0 0 16 10 9 19 4 11 10
classes 138 175 4 22 7 24 3 85 104
overlap 11 12 5 5 7 5 9 9 10

cells per dimension 53 26 45 39 37 48 31 38 37
predetermined N N Y N Y N Y N N

C1 size 23 20 3 7 5 4 6 25 20
shift 2 1 1 1 1 1 1 1 1
frame 0 0 5 2 2 5 3 7 5
overlap 21 19 2 6 4 3 5 24 19

cells per dimension 16 7 53 37 37 55 32 28 28
S2 size 10 7 9 6

shift 2 2 2 2
frame 3 2 4 3
classes 81 58 86 72
overlap 8 5 7 4

cells per dimension 25 18 19 28
C2 size 8 9 12 16

shift 1 1 1 1
frame 1 7 5 3
overlap 7 8 11 15

cells per dimension 20 24 18 19
S3 size 11 12

shift 2 2
frame 0 0
classes 89 80
overlap 9 10

cells per dimension 5 7
C3 size 7 13

shift 1 1
frame 5 6
overlap 6 12

cells per dimension 9 7
R size 16 7 9 7 18 19 32 28 28

Table 4: Best individual after optimization for each of the populations: S-Layer to C-Layer
thinning-out (STOC), C-Layer to S-Layer thinning-out (CTOS), 3-stage, predetermined-S-
Layer (3SPD), 3-stage (3S), 2- stage, predetermined-S-Layer (2SPD), 2-stage (2S), 1-stage,
predetermined-S-Layer (1SPD), 1-stage (1S) and Large test set (LS).
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information representation is the same, but the word level of explanation
differs.

The unsupervised learning method in Neocognitron was specifically de-
veloped for it, and can be classified under the competitive learning paradigm
(Fukushima, 1989). Cells compete with each other, making each cell special-
ize in a certain stimulus. In the proposed model, the learning algorithms are
not specifically tailored, and well-known algorithms can be used.

There are two different learning needs in this problem: One in the stages,
where the purpose is information reduction and a clustering algorithm is
the most suitable (e.g., K-Means, SOM), the other in the recognition layer,
where the purpose is classification and a supervised classifier is the most
suitable (e.g., KNN, RBF). In the stage’s clustering algorithm, each cluster
is equivalent to a specialization in a certain stimulus in Neocognitron, i.e.,
each cluster is a template. The recognition layer can use any kind of classifier
to map the output of the last stage into a class.

Hierarchical networks are highly sensitive to parametrization. A random
search was used to tune the model for the ETL1 data set of handwritten
digits.

The results of the experiments show good performance, achieving a 92,91%
test classification rate with only a 200-pattern training set. This result is sim-
ilar to Neocognitron’s. The network parametrization that performed best,

Architecture Name Average Test CR Test CR Standard Deviation
STOC 89,20% 0,95%
CTOS 88,05% 1,38%
3SPD 86,25% 1,34%
2SPD 89,10% 2,35%
1SPD 74,00% 0,00%
3S 86,85% 3,50%
2S 89,15% 1,49%
1S 90,85% 1,16%
LS 91,75% 0,75%

Table 5: Results for a train set and a test set with 200 patterns each. The average test
classification rate and standard deviation of 10 runs is shown for each of the population’s
best individual: S-Layer to C-Layer thinning-out (STOC), C-Layer to S-Layer thinning-out
(CTOS), 3-stage, predetermined-S-Layer (3SPD), 3-stage (3S), 2-stage, predetermined-S-
Layer (2SPD), 2-stage (2S), 1-stage, predetermined-S-Layer (1SPD), 1-stage (1S) and
Large test set (LS).
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however, is quite different from Neognitron’s (Fukushima, 2003), which has 4
stages. The best parametrization found in the experiments has only one stage
and a recognition layer (corresponding to a Neocognitron with 2 stages), a
much simpler network parametrization.

Models like Neocognitron use the class space combined with the back-
ground information. Without the background, all topological information
about the original image is lost in the following stages. The principle of this
classification technique is the usage of the background information and the
loss of information provoked by the class representation. Consequently it is
suggested that no significant advantage is achieved by the usage of more than
two stages.

The Map Transformation Cascade can be understood as a sequence of
filters that transforms the input pattern into a space where patterns of the
same class are close. The output of the filters is then passed to a simple clas-
sifier, which produces a classification for the input pattern. The experiments
conducted show that Map Transformation Cascade’s performance is similar
to Neocognitron’s.

Acknowledgments. The author would like to gratefully acknowledge two anony-
mous reviewers and the editor for their valuable suggestions.

Appendix A. Appendix

There are several versions of the Neocognitron. To give a short ex-
planation of the model, we will focus on its most common characteristics
(Fukushima, 1988, 2003).

Appendix A.1. S-cell Layers

S-cells resemble simple cells in the visual cortex. They are feature-
extracting cells. The connections converging to these cells can be modified
through learning, making each of them react to a distinct feature. All of
the S-cells in a cell-plane react to the same feature. This is accomplished by
making all of them share the same weights, which results in the capacity to
identify features independently of the position in which they are presented.
Each of the cell-planes in an S-cell layer is a feature map. They recognize
a certain stimulus at different positions. Each cell-plane only recognizes one
stimulus, i.e., they only have one template to which they tend to react. The
number of cell-planes in each S-cell layer tends to be greater in higher stages.
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Each S-cell has variable excitatory connections from the preceding layer,
and a variable inhibitory connection from a V-cell. The excitatory connec-
tions in the same region are fed into the S-cell and into the V-cell. The
output of an S-cell of the kth cell-plane of the lth stage with receptive field
center location n is determined by the following equation (Fukushima, 2003):

uSl(n , k) =
θl

1− θl
φ

1 +∑KCl
κ=1

∑
|v |<ASl

aSl(v , κ, k)uCl−1(n + v , κ)

1 + θlbSl(k)vl( n)
− 1

 ,
(A.1)

where aSl(v , κ, k) is the strength of the variable excitatory connection coming
from the C-cell uCl−1(n + v , κ) of the κth cell-plane of the preceding stage,
bSl(k)(≥ 0) is the strength of the variable inhibitory connection from the
V-cell, ASl is the radius of the connectable area of the S-cell, θl(> 0) is a
constant threshold that controls the selectivity of the S-cells and φ[] is a
nonlinear function defined by

φ[x] =

{
x if x ≥ 0
0 if x < 0

. (A.2)

A high threshold (θl) makes the cells more selective, whereas a low thresh-
old makes them less selective.

The output of a V-cell in layer uSl is given by the following equation
(Fukushima, 2003):

vl(n) =

√√√√√KCl−1∑
κ=1

∑
|v |<ASl

cSl(v) {uCl−1(n + v , κ)}2, (A.3)

where cSl(v) is a monotonically decreasing function of |v | representing the
strength of the fixed excitatory connections to the V-cell.

Appendix A.2. C-cell Layers

C-cells resemble complex cells in the visual cortex. Their purpose is
to allow positional changes and distortions of the features. They do this
by blurring the stimulus they receive. In most Neocognitron versions, their
input connections from the S-cells are fixed and invariable, which means they
do not learn. Each C-cell receives connections from a group of S-cells that
extract the same feature from slightly different positions. This makes the
same C-cell respond if the stimulus feature is slightly shifted and a nearby
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S-cell is activated instead. The density of cells in both the S-cell and the C-
cell layers tends to decrease towards the higher-order stages becomes higher.
In the output layer, there is a 1 × 1 matrix for each class that the network
classifies. The matrix with the highest response is the classification yielded
by the network.

The output of a C-cell of the kth cell-plane of the lth stage with receptive
field center location n is determined by the following equation (Fukushima,
2003):

uCl(n , k) = ψ

 ∑
|v |<ACl

aCl(v)uSl(n + v , k))

 , (A.4)

where ACl is the radius of the connectable area of the C-cell and ψ [x] =
φ[x]/(1 + φ[x]).

In Neocognitron, the layer sizes are gradually reduced. The first layer of
the first stage has the same size as the patterns to be recognized, and the
last layer of the last stage is 1 × 1. This implies that the dimension of the
layers is progressively reduced from the input layer to the output layer. The
thinning takes place through the integration of local features into more global
features. The dimension of the layers is reduced from the S-cell layers to the
C-cell layers of the same stage (Fukushima, 2003), i.e., their output size is
smaller than their input size. For example, in a version for handwritten digit
recognition (Fukushima, 2003) the thinning-out ratio is 2:1.

Appendix A.3. Learning

There are several training methods in different versions of Neocognitron.
The Neocognitron network can be trained by unsupervised or supervised
learning. Another important distinction in training methods is between si-
multaneous and sequential construction (Fukushima, 1999). In simultaneous
construction, the learning of all layers of the network progresses simultane-
ously. In sequential construction, each stage is trained separately, starting
from the ones closest to the input layer and progressing to the ones closer to
the output layer, where the training of a layer only starts when the training
of all the preceding layers is completely finished. Simultaneous learning has a
slow learning speed, but can accept incremental learning. On the other hand,
sequential learning can finish learning fast but does not accept incremental
learning. Sequential learning is more common in recent versions.

29



Most versions are trained by unsupervised learning. In supervised learn-
ing, the ”teacher” points to the position of the features to be extracted in the
patterns (Fukushima, 1998; Fukushima and Wake, 1991). The cells whose
receptive fields coincide with the position of these features become winners.
The rest of the learning process is similar to that of the unsupervised learning.

The first layer of S-cells (US1) has a predetermined number of cell-planes:
Each of the cell-planes corresponds to a template. Each of these predeter-
mined cell-planes represents a straight line with a specific orientation. A
common number of cell-planes for US1 is 16, so each cell-plane differs by
2π
16

(Fukushima, 2003). The intermediate layers have a variable number of
cell-planes, which depends on a selectivity threshold.

Appendix A.4. S-cells learning

S-cells compete with each other inside their competition area. When an
input is presented to the layer, there can only be one winner cell inside each
competition area. Only the winner cells have their input connections in-
creased. The increase in the connection of a winner cell is proportional to
the presynaptic activity. This behavior creates a specialization in the cells:
They each specialize in a certain stimulus, i.e. they form a template of the
stimulus that made them winners. This principle can be classified under
the competitive-learning paradigm (Fukushima, 1989). The threshold θS of
the S-cell layer determines the number of cell planes generated for the S-cell
Layers (except the edge-extracting layer, which has a predetermined number
of cell-planes). A lower threshold implies a decreased number of cell-planes
and a higher threshold an increased number of cell-planes. Different thresh-
olds can be used in the learning and recognition phase. A high threshold
in the learning phase allows more feature-extracting cells to be generated,
and a low threshold in the recognition phase allows a greater generalization
ability(Fukushima and Tanigawa, 1996; Shouno et al., 1999).
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(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7

Figure 5: (a) Represents the background information by the class 0. (b) to (h) represent
the seven learned classes by 1, 2, 3, 4, 5, 6, 7.

(a) output: 7 (b) output: 2 (c) output: 4 (d) output: 3

Figure 6: Scanning of a mask over the input pattern of the S-Layer of the input stage.
In each position, the sub-pattern in the mask is compared with the previously learned
classes. The classes (see Figure 5) are represented by the numbers from 0 to 7.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 1 1 3 3 3 0 0 0 0
0 0 0 0 0 3 1 1 1 1 1 1 3 3 3 0 0 0
0 0 0 0 3 1 1 1 1 5 5 1 7 2 3 3 0 0
0 0 0 3 1 1 7 3 5 5 5 5 5 2 4 3 0 0
0 0 3 1 1 7 5 5 5 5 5 5 5 7 2 4 0 0
0 0 3 1 6 7 2 4 3 3 3 1 6 7 2 4 3 0
0 0 1 6 7 2 4 3 0 0 0 3 6 7 2 4 3 0
0 3 1 6 7 2 4 3 0 0 0 3 6 7 2 4 3 0
0 3 1 7 2 4 3 0 0 0 0 3 6 7 2 4 3 0
0 1 6 7 2 4 3 0 0 0 0 1 6 7 2 4 3 0
0 1 6 7 2 4 0 0 0 0 0 1 6 7 2 4 3 0
0 1 6 7 2 4 0 0 0 0 3 1 6 7 4 4 0 0
0 1 6 7 2 3 0 0 0 3 1 6 7 2 4 3 0 0
0 1 6 7 2 4 3 3 3 1 1 7 7 2 4 3 0 0
0 1 6 7 2 4 1 1 1 1 7 7 2 4 3 0 0 0
0 3 6 5 5 1 1 1 7 7 5 5 3 3 3 0 0 0
0 3 3 5 5 5 5 5 5 5 5 3 3 3 0 0 0 0
0 0 3 3 5 5 5 5 5 4 3 3 0 0 0 0 0 0
0 0 0 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7: The representation of the pattern of Figure 4 in the class space. Only the
information in the center, where the pattern is represented, is shown here. The background
information is represented by 0.

0 0 0 1 6
0 0 0 3 6
0 0 0 3 3
0 0 0 0 3
0 0 0 0 0

Figure 8: C-Layer mask input in a given position when scanning Figure 7, its output is
{1, 6, 3}. It indicates the presence of these classes.
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Figure 9: Average validation classification rate of population with 1 stage and thinning-out
from the S-Layer to the C-Layer.

Figure 10: Average validation classification rate of population with 1 stage and thinning-
out from the C-Layer to the S-Layer.
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Figure 11: 3-stage, predetermined-S-Layer – validation classification rate. The classifi-
cation rate shows a significant increase in the first few generations and then tends to
stabilize.

Figure 12: 2-stage, predetermined-S-Layer – validation classification rate. The classifica-
tion rate starts with a high value. After a high starting value, the classification increases
very steadily until it stabilizes. The seed individual for the 2-Stage, predetermined-S-Layer
population is the best individual from the 3-Stage, predetermined-S-Layer population. The
initial high classification rate empirically suggests that removing a stage from a network
that already has good performance does not seriously compromise its results.
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Figure 13: 1-stage, predetermined-S-Layer – validation classification rate. The perfor-
mance of this population starts with a much lower level than the individual that served as
its seed (the best individual of the 2-stage, predetermined-S-Layer population, with the
last stage removed). It shows an initial accentuated increase, but then it increases very
slowly through several plateaus. This is empirically explained by the fact that this popula-
tion’s only way of adapting is the parametrization, since the only S-Layer is predetermined
and no learning takes place.

Figure 14: 3-stage population – validation classification rate. The seed individual of
this population is the best from the 3-stage, predetermined-S-Layer population. In a
few generations, the 3-stage population achieved a slightly better performance than the
3-stage, predetermined-S-Layer one. The classification rate rapidly increases and then
stabilizes after a few generations.
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Figure 15: 2-stage population – validation classification rate. The seed individual of this
population is the best from the 2-stage, predetermined-S-Layer population. In a few gener-
ations, the 2-stage population achieved performance similar to the 2-stage, predetermined-
S-Layer one. The classification rate increases slightly in the first 6 generations and then
stabilizes.

Figure 16: 1-stage population – validation classification rate. The seed individual of this
population is the best from the 1-stage, predetermined-S-Layer one. In a few generations,
the 1-stage population achieved a much better performance than the 1-stage, predeter-
mined S-Layer one. The classification rate increases very sharply in the beginning and
then stabilizes. The performance of this population is clearly better than that of the
1-stage, predetermined-S-Layer population.
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Figure 17: Large Set population – validation classification rate. The seed individual of this
population is the best from the 1-stage population. The Large Set population achieved
a significant increase in the classification rate over the 1-stage population that served as
seed for this optimization.

39


