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Abstract

Image recognition problems are usually difficult to solve using raw pixel data.
To improve the recognition it is often needed some form of feature extraction
to represent the data in a feature space. We use the output of a biologically
inspired model for visual recognition as a feature space. The output of the
model is a binary code which is used to train a linear classifier for recognizing
handwritten digits using the MNIST and USPS datasets. We evaluate the
robustness of the approach to a variable number of training samples and
compare its performance on these popular datasets to other published results.
We achieve competitive error rates on both datasets while greatly improving
relatively to related networks using a linear classifier.

Keywords: image recognition, simple and complex cells, handwritten
digits, feature extraction

1. Introduction

Handwritten digit recognition despite being a well studied problem is
still an active topic of research. This problem is relevant for tasks like postal
mail sorting or form data processing. Several works have been devoted to the
problem from a feature extraction or classification perspective. In this text
we analyze the application of the map transformation cascade (MTC) [1] to
this task, which works as feature extractor combined with a classifier. MTC
is a model for visual recognition where simple and complex cells are arranged
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in a hierarchy like proposed by Hubel and Wiesel for the visual cortex [2] and
incorporated in several models like Neocognitron [3] and HMAX [4]. In [1]
the MTC relation and comparison with Neocognitron was established using
a nearest neighbor classifier. In this text we discuss how it relates to HMAX
[4] and compares with other pattern recognition methods on two popular
datasets of handwritten digits using a linear classifier. A combination of
HMAX’s features and a classifier has been shown to achieve good results on
object recognition [5].

In the next section we make a short overview of biological vision and
computational models for visual recognition. Afterwards we describe MTC
and finally evaluate its performance of MTC on handwritten digit recognition
using the USPS and MNIST datasets. We analyze how the performance of the
approach is affected by the number of training samples and finally measure
the error rate on the entire dataset.

2. Related Work

The classical hypothesis of Hubel and Wiesel [6] has been transposed
into several computational models for visual recognition. The key idea is
that two kinds of cells are arranged in layers, being the simple cells selective
for a particular stimulus and a position of that stimulus in the visual field
and complex cells also selective for a particular stimulus but less selective
for its position in the visual field. These two types of cells are then arranged
in a hierarchy where the cells’ primary stimulus becomes increasingly more
sophisticated. The cell’s receptive field size increases gradually along the
ventral stream [7, 8]. The complexity of the preferred stimuli also increases as
we move away from the input [6, 8]. In the temporal visual cortex (IT) some
neurons are tuned to specific views of objects [9] while others are invariant to
these views and respond identically to an object independently of the view
[10, 11].

Cells in the primary visual cortex are organized in columns according to
their preferences, being a hypercolumn a block of cortical cells in which all
orientation preferences are represented for a small portion of the visual field
[7]. A plausible reason for their existence is sharpening selectivity [12, 13],
selectivity may be sharpened by lateral inhibitory connections from neighbor
cells with slightly different orientations.

From a computational perspective Neocognitron [14, 3] established key
principles for a neural network for visual recognition based on Hubel and
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Wiesel’s classical hypothesis. Simple cells preferred stimuli in Neocogni-
tron is tuned by competitive learning in which the stronger the response of
neighboring units, representing lateral connections, the smaller the chance of
the unit becoming winner. The simple cells are arranged in cell-planes and
each of these planes reacts to a specific stimulus in different positions, after
learning each cell-plane becomes independent. HMAX [4, 15, 5] also builds
on the classical hypothesis of Hubel and Wiesel. A key difference between
HMAX and Neocognitron is the complex cells responses which on the first
is the maximum of the afferent responses and on the second the sum[16] or
squared sum [17] of the afferent responses. Another important difference be-
tween HMAX and other works is that the model parameterization aims at
replicating biological measurements [18] and biological performance [5].

The key difference between MTC [1] and both Neocognitron and HMAX
is in simple cell responses. Among all cells which share the same receptive
field, only the cell whose preferred stimulus is most similar to the current
one is active, while others are silent. This sparse simple cell response can be
biologically implemented through lateral inhibition as in LISSOM [19]. This
response is analogous to LISSOM activity bubble stabilizing with only one
active cell. MTC’s complex cells are active if any of its afferent simple cells
are active, which is therefore equivalent to HMAX’s complex cells.

The MTC architecture is related to convolutional networks [20] which are
trained by error back-propagation. It can be described as a filter bank learned
over regularly-spaced patches by quantization, a winner-take-all operation
over the filter bank and a maximum pooling operation of filters over patches.
The model is multi-stage and the filter bank for the first stage is learned
over the input patterns (i.e. image patches), while on the following layers is
learned over the filter responses of previous layers. A MTC with only a simple
and a complex layer is related to a spatial bag of features model [21] where
the filter bank is learned by quantization of dense SIFT [22] features. The
filter bank is chosen so as to minimize the mean squared error. In Deep Belief
Networks [23, 24] each layer is a Restrict Boltzman machine which is trained
to minimize the energy of the input units over a set of hidden units, resulting
in the hidden units learning to represent features that capture higher-order
correlations in the input data.

MTC is trained in an unsupervised and greedy manner, one layer at
a time, analogously to Neocognitron’s intermediate layers [25, 26]. After all
layers are trained, the output of the last layer to a set of input patterns is used
to train a classifier. Unsupervised greedy layer-wise training has been used
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in related network architectures [23, 27, 24]. In MTC the filter weights are
chosen so to minimizing the mean squared error produced by the filter bank
at the simple layer. In encoder–decoder methods [27] the filter weights are
optimized according to the reconstruction error after the maximum pooling.
A semi-supervised method for training deep nets was proposed in [28] which
learns filter banks which produce similar responses for samples with the same
label.

MTC produces a binary sparse code as the result of the lateral compe-
tition in the responses after learning. In [27] a rather opposite approach is
taken after learning, the stochastic binary units are replaced by continuous
sigmoid units to avoid quasi-binary codes. In [29] the responses are made
sparser by suppressing the ones below an adaptive threshold. In [27] the
sparsity constraint is introduced during learning by a sparsifying logistic be-
tween the encoder and decoder and in [30] the sparsity is also induced during
learning using the PSD algorithm [31].

The first layer filter bank tends to recognize orientations as is explicitly
done by Gabor filters [4] or direction gradients [32]. The expansion of the
MNIST dataset through distortions has been shown to improve recognition
when using a convolutional network [33].

3. Map Transformation Cascade

In this section we describe MTC which was previously proposed in [1].
The model was proposed to retain the functional principles of Neocognitron
in a computationally simpler way. MTC is composed by two types of cells
arranged hierarchically. Simple cells are responsible for selectivity by reacting
to a particular stimulus. Complex cells are responsible for invariance to
position of the stimulus. The two types of cells are arranged in layers of
the same cell type. Layers are arranged in ordered pairs where the first has
simple cells and the second complex cells. The number of pairs of layers can
vary. The operation of a network with two pairs of layers as later used in the
experiments is illustrated in Fig. 1 and the connectivity between the cells
is illustrated in Fig. 2. In a given layer all cells have the same number of
afferent connections, except the cells whose receptive field is partly outside
the input pattern as defined by the frame parameter. The receptive field part
which lays in the frame region provides no afferent connections. All simple
and complex layers are unsupervised and their output works as a dictionary
to describe the input patterns in a feature space.
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Figure 1: MTC operation — The model operation is sequential. During learning the first
simple layer (S1) receives the input stimuli and learns a set of preferred stimuli. Afterwards
it responds according to the learnt preferred stimuli. This response is then fed into the
first complex layer (C1) which performs a fixed operation and passes its responses to the
second simple layer (S2). In S2 a set of preferred stimuli is learnt and then the responses
are passed into the second complex layer (C2) which performs a fixed operation producing
the C2 responses. The responses of the last layer (C2) are then used to train a classifier.
Operations related only to learning are represented by a dashed line and therefore do not
apply after the training.

3.1. Simple cell layer

Simple cells react to a particular stimulus in a particular location. Among
all cells which have the same receptive field, only the cell whose preferred
stimulus is most similar to the current one is active, while other cells are
silent. This sparse simple cell response can be biologically implemented
through lateral inhibition. In MTC the cells preferred stimulus is learned
by K-means clustering. Other unsupervised learning methods can be used.
A related model [34] uses a self-organizing map. A biologically plausible
model for how simple cells preferred stimulus develops along with orienta-
tion columns has been proposed in [35].
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Figure 2: MTC layer connectivity — For a given receptive field in the input pattern
there are several simples cells with different preferred stimulus. Several simple cells in
contiguous locations reacting to the same preferred stimulus are afferent connections to a
complex a cell. The second simple layer receives afferent connections from cells in the first
complex layer in contiguous locations across all preferred stimulus. The second complex
layer, like the first complex layer, pools over cells in contiguous locations reacting to the
same preferred stimulus.

The input pattern is tiled with a squared mask M of size j × j. Each
position of the mask, representing a receptive field in the input pattern,
results in a sub-pattern and the n sub-patterns ~xh, with h ∈ {1, 2, ..., n}, are
the input to a clustering algorithm (K-means). The output of the clustering
is a set of k preferred stimulus represented by the cluster centers cv given by
~c1,~c2,~c3, ...,~ck of the clusters C1, C2, C3, ..., Ck, with

Cv = {~xh|d(~xh,~cv) = min
i
d(~xh,~ci)}, (1)
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cv =
1

|Cv|
∑
~xh∈Cv

~xh. (2)

After learning the set of k classes (preferred stimuli) is used to describe
the input pattern over the different positions of the maskM . In each position,
a mask is applied to the input, and the sub-pattern is compared with the
previously learned classes.

During mapping, for each sub-pattern ~x, representing a receptive field in
the input pattern, the most similar class i is determined according to the
Euclidean distance:

i = min
l
d(~x,~cl), l ∈ {1, ..., k}. (3)

The cell i whose preferred stimulus is more similar to the sub-pattern is
active (response is 1), while all other cells with same receptive field are silent
(response is 0).

3.2. Complex cell layer

The output of a complex cell layer mask is represented by a vector. As
in the simple cell layer, a ‘one’ stands for a class being active in the corre-
sponding position of the vector; its inactivity is denoted by a ‘zero’. The
class representation of a pattern is tiled m times with a squared mask M of
size l × l. In each position, a vector ~ch, with h ∈ {1, 2, ...m}, of dimensions
l × l, is determined. The vector ~ch describes the presence of some classes
inside the mask. Complex cells are active if any of its afferent simple cells
are active. This is similar to HMAX’s maximum response in complex cells.

Each position of the vector ~ch (l × l) is represented by a class activity
vector {1, 2, ..., p} of dimension p, e.g. the presence of the classes {1, 4, 3}
with k=5 is represented by the vector ~u = [1 0 1 1 0], with ones in the
corresponding positions 1, 3, and 4. The result of a transformation of m
squared masks M covering a class pattern is a (m × p)-dimensional class

activity vector ~U . The index 1 to m concerns the position of the mask M .
This binary class vector is composed of m activity vectors:

~U = [~u1, ~u2, ..., ~um].

This is equivalent to a maximum operation. The complex layer operation is
therefore predetermined and is not the result of learning.
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3.3. Additional Layers

A MTC network can have a variable number of layers (see Fig. 2). The
training of the network is performed sequentially, i.e. each layer training is
finished before the next layer is trained, starting from the layer closer to the
input. If the network has more than one simple layer the output of the first
complex layer is then used to train the second simple layer analogously. Each
cell in the second and following simple layers has afferent connections from
complex cells with different preferred stimulus (e.g. different orientations).
After learning, the second simple layer classifies the output of the first stage
complex layer and passes it’s output to the second complex layer. Only simple
layers are modified during learning since complex layers have a predetermined
operation. The process is repeated till the last layer is reached.

The response of the last layer can then be used with a classifier for tasks
like image recognition.

4. Experiments

In the experiments we evaluate the performance of MTC combined with
a linear SVM.

A SVM, as originally proposed, solves a binary classification problem
[36]. For the multi-class problem we used the “one-against-one” approach
[37, 38]. Therefore we solve a binary classification problem for all the two
class combinations, training k(k − 1)/2 binary classifiers. The output of the
binary classifiers is then combined by voting [39]. Another possible approach
is the “one-against-all”, for a comparison between the two refer to [40]. We
use a linear kernel and cost parameter c = 10 in all experiments. We use
the SVM implementation from [39]. To reduce the cost of the SVM training
and due to MTC producing sparse binary vectors we use a linear SVM as
it is common for large datasets in text classification. We also empirically
observed it achieves similar results to a Gaussian SVM.

To limit the computational cost when training the simple layers, we use
a common practice in quantization which is to use a subsample of the entire
samples available. When training the simple layer classes using K-means, we
take at most 100×more patches than the number of classesK by subsampling
or all of the available if less.

We evaluate the performance on the USPS and MNIST datasets (see
Section 4.1) and start by finding a parameterization for MTC independently
for each dataset (see Section 4.2). We finally evaluate the performance for a
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variable number of training samples and compare the results with previous
works (see Section 4.3).

4.1. Datasets

The USPS dataset contains gray scale images of size 16 × 16. The dataset
is divided in a training set with 7291 samples and a test set with 2007 samples.
The MNIST dataset contains gray scale images of size 28×28. We resize both
datasets to 64 × 64 using bilinear interpolation and scale them to [0:1].

The number of samples of each digit differs (see Table 1) for both datasets.
The human error rate for the USPS dataset is estimated at 2.5% [41] while
for the MNIST dataset at 0.2% [42]. Several published results for USPS
dataset are shown in Table 2 and for the MNIST dataset in Table 3.

USPS MNIST
Digit Train Test Train Test

0 1194 359 5923 980
1 1005 264 6742 1135
2 731 198 5958 1032
3 658 166 6131 1010
4 652 200 5842 982
5 556 160 5421 892
6 664 170 5918 958
7 645 147 6265 1028
8 542 166 5851 974
9 644 177 5949 1009

Total 7291 2007 60000 10000

Table 1: USPS and MNIST digit samples

4.2. Parameterization

First we performed a random search using cross-validation on the train
set to tune the parameters of the network like described in [1]. We fix as in
[26] the shift in simple layers (S1,S2) to 1 and in complex layers (C1,C2) to
2, representing a 2:1 thinning out from simple cells to complex cells. The
remaining parameters for each layer (see Fig. 3) are the size of the mask
and the size of the frame around the input to the layer. Additionally for
the simple layers the number of classes k is also a parameter. We find these
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Method Error Rate
nearest neighbor classifier (Euclidean) 5.6%

Relevance Vector Machine [43] 5.1%
Convolutional network (LeNet-1) [44] 4.2%

Support Vector Machine [45] 4.0%
Invariant Support Vectors [46] 3.0%

tangent distance [47] 2.2%
Human [41] 2.5%

Table 2: Other results on USPS.

Method Error Rate
linear SVM [48] 12.0%

nearest neighbor classifier (Euclidean) 3.09%
Deep Belief Network + linear SVM [48] 1.90%

Convolutional Net LeNet-1 [20] 1.7%
stacked RBM network [24] 1.2%

polynomial SVM [20] 1.1%
Convolutional Net LeNet-4 [20] 1.1%

tangent distance [20] 1.1%
Convolutional Net LeNet-5 [20] 0.95%

large Conv. Net, unsup. pretraining [27] 0.60%
large Conv. Net, unsup. pretraining [30] 0.53%

direction gradient [32] 0.42%
Human [42] 0.2%

Table 3: Other results on MNIST.
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remaining parameters by random search. We initialize the random search
with size = 3, frame = 1 for all layers and classes = 20 for all simple
layers.

size 

shift 

frame 

Figure 3: MTC parameter illustration — the smaller squares represent two different posi-
tions of mask M . The size refers to the size of the mask, and the shift to distance between
different positions of mask M . The frame represented by the gray area determines the
extra area without activity which is added to the input patterns, e.g. for the first simple
layer this is represent by white background and for the complex layer by no activity in the
previous simple layer cells. Additionally for simple layers the number of classes k must
also be chosen.

The train and validation sets for each iteration of the optimization were
randomly sampled from the entire train set, taking 1000 samples for each.
In each iteration the best three parameterizations regarding validation set
error rate were used to generate six new parameterizations (two copies from
each of three) where each parameter p is updated according to the following
equation

pnew =

{
d(pold + ε)1+θre if r ≥ 0
b(pold + ε)1−θrc otherwise.

(4)

where r is sampled from a uniform distribution U(−1, 1), θ controls the
strength of the change and is set to 0.2 and ε is small positive constant
which prevents p from settling in 0.

The resulting nine parameterizations are then evaluated and the best
three kept. The search ends if the best parameterization is the same for
three consecutive iterations. The resulting parameters are shown in Table
4, the number of units results from the parameters. The number of units
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Layer Cell Property USPS MNIST
S1 size 6 3

shift 1 1
frame 4 2
classes 20 16
#units 67× 67× 20 66× 66× 16

C1 size 7 4
shift 2 2
frame 2 1
#units 33× 33× 20 33× 33× 16

S2 size 3 6
shift 1 1
frame 2 2
classes 129 171
#units 35× 35× 129 32× 32× 171

C2 size 10 10
shift 2 2
frame 0 0
#units 13× 13× 129 12× 12× 171

Table 4: MTC parameters and resulting number of units used in the experiments for each
of the datasets.

of layer C2 is therefore the dimensionality of the vectors used for the linear
classifier, i.e. 21801 for USPS and 24624 for MNIST.

4.3. Results

We then evaluated the performance of the proposed approach with a linear
SVM for a varying number of training samples using the parameterizations
from Table 4.

We generated pairs of train and test sets with a different number of sam-
ples 10, 50, 200, 1000 samples (10 of each size). Samples were randomly se-
lected for the generated train and test sets from the respective original sets.
The results of the approach for a varying number of training samples are
shown in Table 5 for USPS and in Table 6 for MNIST.

It is worth noticing that MTC performs well with few training samples.
The error rate for 1000 training examples is 2.22% which compares favorably
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to 3.21% in [27].
We finally evaluated the performance of MTC on the entire datasets.

For the unsupervised learning of simple cell classes we use on the USPS
dataset all train samples and on the MNIST dataset we use 10000 out of
the 60000 available to reduce the computational cost. To choose the best
preferred stimuli for simple cell layers, we repeat the unsupervised learning
10 times and keep the best by cross-validation on the train set. We randomly
pick to train 6291 samples for the USPS and 10000 samples for the MNIST.
To validate we randomly pick 1000 samples out of the respective remaining
training sets. Finally we take the best unsupervised learning according to
validation error to produce the second complex layer (C2) responses for all
patterns. We obtain a test error rate of 2.64 % in USPS and 0.71 % in
MNIST, which is close to the best results on both datasets and significantly
better than several other published results (see Table 2 and 3).

It is also noticeable that this is major improvement (0.71 % vs. 1.90%)
over using a deep belief network with a linear SVM [48].

#train #test test error rate
100 100 11.90±4.48%
200 200 6.85±1.97%
500 500 5.36±0.67%
1000 1000 4.72±0.70%
7291 2007 2.64%

Table 5: Results on USPS

#train #test test error rate
100 100 8.70±3.09%
200 200 5.35±2.01%
500 500 2.88±0.69%
1000 1000 2.22±0.35%
60000 10000 0.71%

Table 6: Results on MNIST
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5. Conclusion

We evaluated the combination of MTC with a linear classifier. MTC
showed good generalization for a small number of training examples. The
combination of MTC and a linear SVM achieved competitive results on both
USPS (2.64%) and MNIST (0.71%) datasets. MTC greatly improves the
results relatively to using a deep belief network with a linear SVM [48]. It
is also interesting that in [27] quasi-binary codes are unsuitable for clas-
sification, while the MTC binary codes can be used for classification with
competitive results using a linear classifier.
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