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Ângelo Cardoso1, Ricardo Ferreira1, Ricardo Santos1, Alexandre Bernardino1

Abstract— Sensorimotor coupling is ubiquitous in living or-
ganisms. Sensory and motor systems are utterly useless if
left without the presence of the other. One crucial faculty
that organisms have developed with tremendous ecological
advantages is the ability to discern between the origins of
perceptual input as being originated by the environment or
the organism itself, provided by resource efficient sensor and
motor systems. This ability has been shown to be implemented
through a specialized circuit (forward model) receiving a copy
of the motor command (corollary discharge). We propose a
fast method to derive a resource constrained forward model by
framing sensorimotor coupling as a low-rank approximation of
an overly detailed forward model. By framing the problem as a
factorization approach we can resort to currently available off-
the-shelf solvers for matrix factorization. We experimentally
show that by solving the problem as a low-rank approxima-
tion we obtain more than an order of magnitude speed up
relatively to minimizing the objective function with gradient
descent methods. The development of resource constrained and
ecologically adapted sensorimotor systems is essential for the
deployment of low-cost energy efficient autonomous robots for
the execution of specific tasks in particular environments.

I. INTRODUCTION

Without perception (the organization, identification and
interpretation of sensory information) one is left with little
criteria to decide which actions to take, while at the same
time there is no purpose in having perception if you cannot
act on the world. An ideal rational agent [1] always takes the
actions which maximize its performance measure based on
its perceptions and built-in knowledge. This definition frames
perception as a component used to choose the right action,
and not as a goal by itself. Under this light a broad goal is
to develop sensorimotor structures which support choosing
the right action. Analogously animal brains evolved for
sensorimotor control and still retain much of that architecture
[2].

Sensorimotor coupling refers to the fact that the sensory
and motor systems work in an integrated fashion. In primates,
future fields [3] are a good example of this coupling: before
a saccade (cortically controlled eye movement) the animal
brain already has an expectation of what it should see
after the saccade. This is thought to be very important for
having stable visual perception despite the eyes performing
several saccades per second. Whenever an animal performs
an action, the corresponding motor command is not only
sent to the muscles to invoke movement but also a copy
(corollary discharge) is sent to other brain areas with the
goal of generating predictions of future stimuli.
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Portugal – Email: {acardoso,ricardo,rsantos,alex}@isr.ist.utl.pt

In this work we consider an agent that collects visuo-
motor experiences in the environment and self-organizes
its visual topology (a retina), its motor system (a set of
actions) and a predictor system able to forecast the future
stimuli resulting from the agent’s own motor actions. In
previous work [4] we have shown that a special structure
in the coupling between the visual, motor and predictive
systems enable the development of highly adapted visuo-
motor predictive structures, exhibiting simultaneously low
computational resources and low prediction error. In that
work development was achieved through the minimization,
with gradient descent methods, of the prediction error subject
to structure constraints.

In this paper we frame the sensorimotor coupling problem
as a low-rank approximation of an overly detailed forward
model, i.e. a forward model which makes explicit predictions
about a high number of sensors and motor actions. The low-
rank approximation in the sensors can be seen as finding
groups of sensors which are affected by the motor actions in
a similar way. While on the motor actions it can be seen as
grouping motor actions which affect the sensors in a similar
way. By framing the problem as a low-rank approximation,
we can resort to efficient methods for matrix factorization
available in the literature. By doing so, as we will see in
later sections, we also separate the sensorimotor coupling
into a set of sub-problems which can be solved in a more
efficient manner. We will focus on a particular method to
accomplish the low-rank approximation: non negative matrix
factorization [5], however others could be used such as non
negative sparse coding [6].

II. RELATED WORK

The ability to predict the sensory effects of motor actions
is grounded in the corollary discharge (copy of a motor
command) which is sent to a brain area for a different
reason than producing a movement. The corollary discharge
is crucial for the ability to discern the sensory input as being
originated by the environment (exafference) or as the result
of animal’s own movement (reafference) [7]. The ability to
discern between these two origins of sensory input requires
a forward model [8] to predict the effect a given movement
(action) has on its sensory input.

The retinotopic structure of an unknown visual sensor has
been reconstructed using an information measure, as well as
the optical flow induced by motor actions [9]. A robot with
the goal of estimating the distance to objects using motion
parallax developed a morphology for the position of movable
light sensors which was fit for the task [10].



Guiding the development of a sensorimotor system to
maximize the ability of predicting the effect an action has on
its sensory input, allows for the emergence of highly regular
sensory structures without any prior knowledge. To develop
such ability we follow two main principles: the sensory
system should capture stimuli which are relevant to motor
capabilities and the actions of the motor system should have
predictable effects on the sensory system [11].

These principles are related to idea of ”morphological
computation” in robotics and artificial intelligence, which
aims at reducing the computational complexity of a problem
by using a specifically designed body to solve it (e.g. [12]).

The non negative matrix factorization (NMF) problem
[5] has been proposed to decompose a matrix into the
product of two positive matrices and it has found multiple
applications in engineering. Multiple efficient methods have
been proposed to solve the problem [13].

The human visual system representation of the visual
world is progressively differentiated from what is captured
through the retina to support complex tasks, e.g. cells which
are selective to objects. Also, in machine learning it is known
that for recognition tasks there are huge advantages in using
specific architectures [14].

III. FINDING A LOW-RANK FORWARD MODEL

We consider an agent capable of observing its environment
by sensing a light field i which falls on a sensory surface.
Similarly this agent is able to interact with its environment
by executing a particular primitive action q on its action
space. For implementation purposes, we represent the light
field as a vector i of NS pixels, and the action space is
represented as a vector q with Nm elements, where a single
non-zero entry represents the activated motor primitive. If
the mth index of q is 1, then the mth primitive action is
performed (e.g. shift left by a certain amount). Note that
no topological assumptions exist on the spatial locations of
either the sensors or the motor primitives.

During the learning phase, the agent interacts with the
environment by randomly choosing a motor primitive q
while collecting pre-action and post-action sensory stimuli
(i0 and i1 respectively). A set of (I0m, I1m,qm) triplets is
collected and the full batch is used as training data. Triplets
are obtained from a 2448 by 2448 pixels grayscale image as
environment (see Figure III).

To illustrate the overall method and result of each step
we we use a retina of 32 by 32 pixels (NS = 1024)
and motor commands with 4 degrees of freedom and 5
actions per degree of freedom (NM = 625 = 54) being
the actions {−12,−6, 0, 6, 12} × {−12,−6, 0, 6, 12} ×
{−90◦,−45◦, 0◦, 45◦, 90◦} × {0.8, 0.9, 1, 1.1, 1.2} (XY
translations, rotation and zoom respectively) .

Now considering the Sensory Motor optimization problem
[11], which defines an objective function for the problem we
address throughout this text,

argmin
P>0,S>0,M>0

NM∑
m

∥∥ST
[
PMTqm

]
�
SI0

m − I1
m
∥∥2 (1)

Fig. 1. Image used as environment to create the triplets (I0m, I1m,qm)
– horizontal and vertical axes represent pixels.

Here S (Ns × NS) contains the receptive field (Ns

elements) representation of the input sensor space (NS

elements), M (Nm × NM ) the motor field (Nm elements)
representation of the motor actions (NM actions) and P is a
basis for predictors (Ns ·Ns×Nm), interpreted as associated
with both the motor and receptive fields. I0m (NS ×Nm

a ),
I1

m (NS ×Nm
a ) are pre and post sensor input respectively

(collected data) for primitive action m over Nm
a samples.

The column vector qm (NM ×1) has a single entry different
from zero and equal to 1 depending on which of the NM

distinct actions considered in our formulation it represents.
The square symbol � denotes a reshape of the contained
vector to a square matrix.

A. Find the high-rank predictors P

A relaxation of Equation (1) is the simpler problem

argmin
Pm>0

NM∑
m

‖PmI0
m − I1

m‖2 (2)

where a full predictor Pm (NS × NS) is learned for each
kind of primitive action m. Since we consider each action m
one at a time, samples I0

m and I1
m can be discarded after

Pm is obtained).
After estimating the full predictors Pm a factorization is

applied to estimate all the symbols in problem (1) (S̃, M̃, P̃)
such that for any action m

Pm ≈ S̃T
[
P̃M̃qm

]
�
S̃ (3)

more specifically we will find (S̃, M̃, P̃) which are common
to all actions such that

argmin
P̃>0,S̃>0,M̃>0

NM∑
m

∥∥∥S̃T
[
P̃M̃qm

]
�
S̃−Pm

∥∥∥2
F

(4)

After the full set {Pm} has been sampled, we will factor-
ize this data to recover approximations to S̃, M̃ and P̃ using
equation (3) to impose the required structure. We do this one
variable at a time. While we do this mostly for simplicity
as we do not know how to do it all at once, by solving
one variable at a time we also reduce the computational
complexity by solving several smaller sub-problems.
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(d) RZ motor fields, Nm = 256

Fig. 2. Motor fields (M̃) found by the proposed method for different Nm

values – horizontal and vertical axes represent the actions for each degree
freedom (i.e. horizontal and vertical translations for XY; zooms and rotations
for RZ respectively) , the center of mass of each motor field is shown
in a voronoi partition. Each motor field center of mass is defined by a 4
dimensional point (4 degrees of freedom) which we project for visualization
into horizontal and vertical translation degrees of freedom (XY) and rotation
and zoom (RZ). Each degree of freedom values are scaled to a common
reference to have equal influence in the space partition. We can see that if the
number of motor fields available Nm is higher, each one covers a smaller
portion of the action space and therefore a larger specialization occurs. We
can see for instance that if for Nm = 64 there is almost no specialization
in different zoom scales while for Nm = 256 there are additional motor
fields specialized in zoom in and zoom out.

Consider the nonnegative matrix factorization problem of
decomposing matrix V (n×d) into a product of two positive
matrices W (n×k) and H (k×d) such that V ≈WH where
both W and H are positive. More specifically, the solution
of the problem

argmin
W>0,H>0

‖V −WH‖2F , (5)

where ‖‖2F is the Froebenius norm and k is a parameter
controlling the dimensionality of matrices W (n × k) and
H (k × d) decomposing V (n × d) and is inversely related
to the residual error (‖V −WH‖2F ). In this paper we use
the parameter-free non-negative matrix factorization method
from [15].

B. Find the motor fields M

We start by factoring M̃. We take equation (3) and rewrite
it as 1

vec (Pm) ≈ (S̃T ⊗ S̃T )P̃M̃qm (6)

1Here we use the rule vec (ABC) = (CT ⊗A)vec (B).

(a) receptive fields, Ns = 64 (b) receptive fields, Ns = 256

Fig. 3. Receptive fields (S̃) found by the proposed method for different
Ns values – horizontal and vertical axes represent pixels, the center of mass
of each receptive field is shown in a voronoi partition. We can see that if
the number of receptive fields available Ns is higher, each one covers a
smaller portion of the action space. The receptive fields near the border are
substantially larger for Ns = 64 than for Ns = 256.

and collect (column-wise) all the samples vec (Pm) in a
single matrix P =

[
vec
(
P1...nM

)]
. This matrix obeys:

P = (S̃T ⊗ S̃T )P̃︸ ︷︷ ︸
P

M̃[q1 . . .qNm ],

where P (Ns · Ns × Nm) is a set of Nm predictors in the
sensory input space. This can be decomposed into a product
of two matrices resorting to NMF as defined in equation (5).

P︸︷︷︸
V

≈ P︸︷︷︸
W

M̃[q1...qNM ]︸ ︷︷ ︸
H

.

We solve this equation using the method from [15] that
induces sparsity in W.

We can see in Figure 2 the solutions for M̃ for different
numbers of motor fields Nm. This illustrates how the motor
fields spread across each degree of freedom and how some
degrees of freedom can be more important for predicting
sensory input than others. We can see for this particular data
that rotation is much more important than zoom since the
motor fields are spread mostly along the rotation axis.

Where the last equation evidences how we factor P into
WH by solving the NMF problem defined in (5) with Nm as
the parameter controlling the dimensionality. Once factored
we recover M̃ by multiplying H by [q1...qNm ]+ 2:

M̃ = H[q1...qm]+, (7)

where A+ is the pseudo-inverse of A.

C. Find the sensory fields S

Starting from P obtained in the previous step, which we
now factor as

P = (S̃T ⊗ S̃T )P̃,

2This matrix is known at sampling time and we assume it is full rank
due to the nature of the qm.



we can write for each column i of P 3 containing a prototype
predictor in the input sensor space for a single motor field:

Pi = (S̃T ⊗ S̃T )P̃i

[Pi]� = S̃T [P̃i]�S̃

where S̃ (Ns × NS) contains the sensory fields and P̃i

represents a prototype predictor in sensor field space for
a single motor field. Here S̃T works as the reconstruction
operator in an autoencoder framework [16].

We rearrange in matrix form and decompose using NMF
as defined in equation (5).[P1]�

[P2]�
...


︸ ︷︷ ︸

V

≈

S̃
T[P1]�

S̃T[P2]�
...


︸ ︷︷ ︸

W

S̃︸︷︷︸
H

this evidences the factorization operation [15] (that induces
sparsity in W) where H yields S.

We can see in Figure 3 the solutions for S̃ for different
numbers of receptive fields Ns. The receptive fields are
smaller in the center than in the periphery showing that the
center of the image is more relevant to achieve a smaller
prediction error for this particular data.

D. Find P

We finally obtain P̃ by taking W from the previous step
which we rearrange into W′ such that

W′ =
[
S̃T [P̃1]�S̃

T [P̃2]� · · ·
]

we then decompose it as W′ ≈ S̃TX by solving a
nonnegative least squares problem

argmin
X>0

‖W′ − S̃TX‖2F

where ‖‖2F is the Froebenius norm and X contains

X =
[
[P̃1]

T
�[P̃2]

T
� · · ·

]
from which, after some index manipulation, we finally obtain

P̃ =
[
P̃1P̃2 · · ·

]
.

We can see the predictors which more are suited for two
particular actions in Figure 4.

IV. EXPERIMENTS

We will start by comparing the performance of explicitly
minimizing the objective function (see Equation (1)) using a
gradient method (coordinate descent algorithm) or to use the
low-rank approximation of the high-rank forward model.

For each experiment we perform 10 independent runs (i.e.
solve the optimization problem). We generate a triplet (I0m,
I1

m,qm) for each of the NM actions covering 4 degrees
of freedom (horizontal and vertical translations, rotation and
zoom scale factor) and a set of actions for each degree of

3Here we use the rule vec (ABC) = (CT ⊗A)vec (B) in the reverse
direction.

(a) motion fields, Ns = 64, Nm = 64

(b) motion fields, Ns = 256, Nm = 256

Fig. 4. Motion fields (P̃) found by the proposed method for different Ns

and Nm – horizontal and vertical axes represent pixels. Each arrow origin is
placed in the center of mass of each receptive field. The arrows are pointing
to the receptive field which has a stronger activation produced by the
originating receptive field for that prototype predictor (P̃i), the arrow length
is constant. On the left figures we show the prototype predictor P̃i which
is more strongly activated (according to M̃) for the action (12, 12, 1, 0)
representing a horizontal and vertical translation of 12 pixels. On the right
we plot the same for the action (0, 0, 1, 90◦) representing a 90◦ rotation
centered in the axis without zoom. We can see that prototype predictors are
quite specialized.

freedom. Each triplet contains 100 independent samples of
the same action.

The agent is equipped with a square retina of NS pixels
which is used to acquire grayscale images with intensity
ranging from 0 to 1. Triplets used (I0m, I1

m,qm) are
obtained from a 2448 by 2448 pixels image as environment
(forest image, see Figure III). The triplets simulate an agent
placed in a random place in the environment and observing
I0

m, then doing an action qm and after doing the action
observing I1

m.
We start by evaluating the quality of the method proposed

in Section III to find a low-rank forward model to solve
the sensorimotor optimization problem defined in Equation
(1). We do so by comparing the objective function value
using a coordinate descent gradient algorithm when starting
from either a random initialization or from the proposed
method. The rationale for the comparison is to evaluate if
the approximation is useful in solving the original problem
(see Equation (1)) and also if it can be used as a warm-
start when the best possible solution is needed. While the
initialization using the proposed method (see Section III)
already incurred in a computational cost (equivalent to very
few gradient iterations) it is absolutely negligible relatively
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Fig. 5. Average MSE and standard deviation (over 10 runs) per pixel
in predicted image after a variable number of gradient iterations starting
from a random initialization (random) and using the proposed low-rank
approximation as the initialization (proposed). We can see that the proposed
method is useful in minimizing the original cost function (Equation 1) since
after a few gradient iterations we reach a value which is on the range of
the best attainable.

to the number of iterations needed for the gradient descend
method to reach a solution.

We use a retina of 9 by 9 pixels (NS = 81) and motor
commands with 4 degrees of freedom and 3 actions per
degree of freedom (NM = 81 = 34) being the actions
{−3, 0, 3}×{−3, 0, 3}×{−90◦, 0◦, 90◦}×{0.8, 1, 1.2} (XY
translations, rotation and zoom respectively) .

We can see in Figure 5 that in terms of objective func-
tion value there is huge advantage not only in the first
iterations but that this advantage remains highly significant
until convergence as shown in Figure in 5 . The speed up
provided by the proposed method to reach a near optimal
solution comes at the cost of a few iterations and is almost
negligible relatively to the total number of iterations that
the gradient method requires when starting from a random
initialization. Moreover if we look at the overall organization
of the intermediate solutions we can see that the difference is
even more striking. The intermediate solution for the gradient
method (with random initialization) even after 1000 iteration
(see Figure 8a and 6a) is still far from the final solution
(see Figure 8b and 6e). The solution found by the proposed
method (see Figure 9a and 7a) is almost identical to the final
solution (see Figure 9b and 7d).

V. CONCLUSION

We presented a novel perspective and method for the self-
organization of sensorimotor systems and forward models
by showing its relation to an extensively studied problem in
the literature. We have shown by uncovering the structure of
both the sensor and motor inputs that this approach can solve
complex problems (i.e. with many sensors and motor actua-
tors). The results show a promising path for the development
of more efficient robotic sensorimotor systems which are
adapted to specific tasks and particular environments. In the
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(c) RZ motor fields (1000
iter.)
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(f) RZ motor fields
(10000 iter.)

Fig. 6. Intermediate and final receptive and motor fields for the gradient
method starting from a random initialization – horizontal and vertical axes
represent the actions for each degree freedom (i.e. horizontal and vertical
translations for XY; zooms and rotations for RZ respectively). The center
of mass of each receptive field is shown in a voronoi partition. The center
of mass of each motor field is shown in a voronoi partition. Each center
of mass is defined by a 4 dimensional point (4 degrees of freedom) which
we group for visualization into horizontal and vertical translation degrees
of freedom (XY) and rotation and zoom (RZ). Each degree of freedom
values are scaled to a common reference to have equal influence in the
space partition. We can see only after 1000 iterations some structure starts
to appear while the motor fields regarding the RZ degrees of freedom have
still to differentiate.
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Fig. 7. Intermediate and final receptive and motor fields for the gradient
descent using the proposed approximation as initialization – horizontal and
vertical axes represent the actions for each degree freedom (i.e. horizontal
and vertical translations for XY; zooms and rotations for RZ respectively).
The center of mass of each receptive field is shown in a voronoi partition.
The center of mass of each motor field is shown in a voronoi partition. Each
center of mass is defined by a 4 dimensional point (4 degrees of freedom)
which we group for visualization into horizontal and vertical translation
degrees of freedom (XY) and rotation and zoom (RZ). Each degree of
freedom values are scaled to a common reference to have equal influence in
the space partition. We can see that solution found by the proposed method
(0 iter.) is already organized and very similar to the final solution after
10000 gradient iterations.



(a) motion fields (1000 iter.)

(b) motion fields (10000 iter.)

Fig. 8. Intermediate and final motion fields for the gradient descent starting
from a random initialization (horizontal and vertical axes represent pixels).

future we plan to demonstrate the usefulness of the method
by applying it in tasks such as the detection of external
movement during self-motion in unstructured environments.
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