
Mashic Compiler: Mashup Sandboxing based on Inter-frame Communication

Zhengqin Luo
INRIA

Zhengqin.Luo@inria.fr

Tamara Rezk
INRIA

Tamara.Rezk@inria.fr

Abstract—We propose a new compiler, called Mashic, for the
automatic generation of secure Javascript-based mashups from
existing mashup code. The Mashic compiler can effortlessly be
applied to existing mashups based on a wide-range of gadget
APIs. It offers security and correctness guarantees. Security is
achieved via the Same Origin Policy. Correctness is ensured in
the presence of benign gadgets, that satisfy confidentiality and
integrity constrains with regard to the integrator code. The
compiler has been successfully applied to real world mashups
based on Google maps, Bing maps, YouTube, and Zwibbler
APIs.

I. INTRODUCTION

Mixing existing online libraries and data into new on-
line applications in a rapid, inexpensive manner, often
referred to as mashups, has captured the way of design-
ing web applications. ProgrammableWeb mashup graphs
currently report that over 5000 mashup-based web ap-
plications and over 3000 gadget APIs currently exist
(http://www.programmableweb.com/). Since the
release of the first major example, HousingMaps.com in
early 2005, mashups have offered the potential to finally
make widespread software reuse a reality.

In a mashup, the integrator code integrates gadgets
from external code providers. Typically, code is written in
JavaScript (JS) and executes on the browser as embedded
script nodes in the Document Object Model (DOM) [Hors
et al., 2000]. External gadget code in a mashup can be
included in two ways:
• either by using the script tag and granting access to all

the resources of the integrator, permitting to execute
untrusted code with otherwise impossible integrator
privileges due to browsers security policies;

• or by using the iframe tag, in which case the Same Ori-
gin Policy (SOP) applies. The SOP isolates untrusted
JS external code, limiting the interaction of gadget and
integrator to message sending [Barth et al., 2009b].

Mashup programmers are challenged to provide flexible
functionality even if the code consumer is not willing to
trust the gadgets that mashups utilize. Unfortunately, pro-
grammers often choose to include gadgets using the script
tag and resign security in the name of functionality.

Recently, Smash [Keukelaere et al., 2008], AdJail [Louw
et al., 2010], and Postmash [Barth et al., 2009a] proposed
to use inter-frame communication between integrator and

Figure 1. Target Architecture Automatically Generated by Mashic

gadgets. Smash proposes a secure component model for
mashups that generalizes the security policies imposed by
the SOP. The model is implemented via inter-frame com-
munication and offered as Javascript libraries. However,
integrators and gadgets code have to be adapted to this
specific way of communication. AdJail focuses on adver-
tisement scripts by delegating limited DOM interfaces from
the integrator. PostMash targets interfaces to operate on
gadgets and proposes an architecture for mashups depicted
in Figure 1. In the PostMash design there are stub libraries
on both the integrator and the gadget. On the integrator
side, the stub library must provide an interface similar to
the original gadget’s interface. The stubbed interface sends
corresponding messages by means of the PostMessage API
in HTML5. On the gadget side, there is another stub library,
listening and decoding incoming messages. Barth et al.
[2009a] evaluate the feasibility of the PostMash design via
a case study using a version of a Google Maps gadget by
creating a stub library that mimicked GMap2 API. Regarding
the libraries, the authors argue that the stub library can either
be provided by the integrator (one for each untrusted gadget),
or by the gadget in which case the library must be audited
for security by the integrator.

In this work, we address the following questions about
the PostMash design:

1) Can the stub libraries be made general (the same
libraries for every gadget and integrator)?

2) Can PostMash mashups be automatically generated

starting from potentially insecure mashups and presev-
ing only the good behaviour of the original mashup?

3) Is it possible to precisely define the security guarantees
offered by the architecture?

We have positively answered these questions.
We address questions 1 and 2 with a novel compiler

called Mashic which inputs existing mashup code, JS code
integrated to HTML, to generate reliable mashups using
gadget isolation as shown in Figure 1. In addition, for
question 2, we formalize the notion of “benign gadget” that
is useful to prove precisely in which cases the generated
mashup behaves as the original one. Notably, the answer to
question 3 corresponds to the first formalization (in the shape
of an observational semantics equivalence) of the security
guarantees offered by the Same Origin Policy in a browser,
that, we conjecture, coincides with a form of declassification
policy known as delimited release [Sabelfeld and Myers,
2004]. The Mashic compiler1 offers the following features:

Automation and generality: Inter-frame communication
and sandboxing code is fully generated by the compiler and
can be used with any untrusted gadget without rewriting
the gadget’s code. After sandboxing, gadget objects are not
directly reached by the integrator when the SOP applies.
Instead the integrator uses opaque handles [Vinoski, 1997]
to interact with the gadget. Due to the asynchronous nature
of the PostMessage API, integrator’s code is transformed
into CPS.

Correctness guarantees: We prove a correctness theorem
that states that the behavior of the Mashic compiled code
is equivalent to the original mashup behavior under the
hypothesis that the gadget is benign and a correctness notion
of marshaling/unmarshaling for objects that are sent via
postMessage.

The correctness notion of marhaling/unmarshaling allow
us to identify, for example, that the implementation of a
secure mashup is not correct as soon as the integrator
sends an object with a cyclic structure to the gadget (if the
implementation uses the json stringify for marshaling).

Precisely defining a benign gadget turned out to be a
technical challenge in itself. For that, we instrument the JS
semantics extended with HTML constructs by a generaliza-
tion of colored brackets [Grossman et al., 2000] and resort
to equivalences used in information flow security [Sabelfeld
and Myers, 2003].

Security guarantees: We prove a security theorem that
guarantees a delimited form of integrity and confidentiality
for the compiled mashup. Information sent from the integra-
tor to the gadget, corresponds to a declassification. We prove
that the gadget cannot learn more than what the integrator
sends. Analogously, the influence that the gadget can have on
the integrator is delimited to the actions that the integrator

1Implementation and proofs can be found at
http://www-sop.inria.fr/indes/mashic/

performs with the messages that the gadget sends to the
integrator. These guarantees are essential for the success of
the compiler since the programmer can rely on this precise
notion of security for compiled mashups using untrusted
gadgets without further hypotheses. Indeed, if the gadget
is not benign in the original mashup, malicious behavior is
neutralized in the compiled mashup. This proof relies on the
browsers’ SOP, that we formalize by means of iframe DOM
elements.

The proposed compiler is directly applicable to real world
and widespread mashups. We present evidence that our
compiler is effective. We have compiled several mashups
based on Google and Bing maps, YouTube, and Zwibbler
APIs.

Because of lack of space, we opt to focus Mashic’s
presentation on:

• Design and implementation choices and proof tech-
niques used for the compiler (without fully describing
the transformations themselves);

• Formalization of correctness (together with restrictions
on integrator’s code to which it applies) and security
properties that are guaranteed;

• The definition of benign gadget, that can independently
(from Mashic) be useful for specifying other properties
regarding mashups.

Limitations: The current implementation of the Mashic
compiler suffers from the following limitations:

• Unsupported Constructs: Our integrator transformer
currently supports the full JS language [ECMA, 2009]
except for a few programming constructs. Specifically,
the for-in construct and exception construct are not
supported. Some JS features considered “dangerous”
such as eval are not supported neither.

• Multiple gadgets inter-communication: The compiler is
completely independent of gadget code, and does not
support inter-gadget communication (communication is
always done via the integrator), since this would imply
transforming gadgets that want to use others’ interfaces.
(Note: for simplicity, the formal presentation of the
Mashic compiler applies to one gadget but its im-
plementation supports multiple gadgets by generating
unique ids for each iframe and using them in the proxy
interface. Authentication is ensured by the PostMessage
mechanism Barth et al. [2009b]).

• Symmetric Interface: The current Mashic architecture
is restricted to mashups that employ only one-way
communication, i.e. only the integrator will invoke
interfaces provided by the gadget. Certain types of
mashups do not fall into this category, notably mashups
containing advertisement scripts. Louw et al. [2010]
addresses two-way communication in ADJail where a
subset of the DOM interface from the integrator is also
provided to the gadget by dynamically modifying the

DOM interface in the sandboxed gadget. In Mashic,
in order to enable general interfaces to be exposed to
gadgets, the gadget has to be CPS-transformed. At the
cost of losing gadget-code independence, it is straight-
forward to use the Mashic compiler (transformations
applied to integrator) for gadgets code, without loosing
any of the correctness guarantees.
Related Work: The closest works to Mashic are Ad-

Jail [Louw et al., 2010], Smash [Keukelaere et al., 2008],
and Postmash [Barth et al., 2009a], and are described above.
We focus now in other related work. Jang et al. [2010]
study on top of 50000 websites privacy violating information
flows in JS based web applications. Their survey shows
that top-100 sites present vulnerabilities related to cookie
stealing, location hijacking, history sniffing and behavior
tracking. Browser implementation vulnerabilities have also
been shown to leak JS capabilities between different ori-
gins [Barth et al., 2009c]. Many mechanisms to prevent
JS based attacks have been deployed. For example the
Facebook JS subset (FBJS) [Inc., 2011a] was intended to
prevent user-written gadgets to attack trusted code but it did
not really succeed in its goals [Maffeis and Taly, 2009].
Google Caja [Inc., 2011b] is similar to FBJS, transforming
JS programs to insert run-time checks to prevent malicious
access. Yahoo ADsafe [Crockford, 2011] statically validates
JS programs. Maffeis et al. [2010] resort to language-based
techniques to find out a subset of JS that can be used to prove
an isolation property for JS code. For that, they identify a
capability-safe subset of JS. They do not formalize the SOP
and they focus on pure isolation of gadgets in contrast to
our confidentiality and integrity properties. Static analysis is
usually not applicable or not sound for large and real world
web applications due to the highly dynamic nature of JS
programs and because gadgets in general cannot be restricted
to subsets of JS. As a response to the increasing need
to get flexible functionality without resigning to security
guarantees, the research community has proposed several
communication abstractions [Wang et al., 2007, Crockford,
2010, Jackson and Wang, 2007, Keukelaere et al., 2008].
Specifically, OMASH [Crites et al., 2008] proposes a refined
SOP to enable mashup communication.These abstractions
usually require browser modifications and so far have not
been adopted in HTML standards [Hickson, 2011]. There
are other works [Bohannon and Pierce, 2010, Akhawe et al.,
2010] pursuing the direction of formalizing web applica-
tions, but none of them formally model the SOP.

II. RUNNING EXAMPLE

In order to provide some background, we illustrate with
a mashup different kinds of gadget inclusions and inter-
frame communication. We reuse this example throughout
the rest of the sections. In the example an integrator at
i.com wants to include a gadget gadget.js provided
by untrusted.com. The integrator creates an empty div

element to delegate part of the DOM tree. The integrator
includes the gadget by using a script tag:

1 <div id=gadget_canvas></div>
2 <script src=’http://untrusted.com/gadget.js’></

script>

Listing 1. Code Snippet of http://i.com/integrator.html

We focus on gadget scripts that provide a set of interfaces to
enable the integrator to manipulate the gadget. The integrator
calls methods or functions as interfaces to change the state
of the gadget. For example, the following is a code snippet
(in the integrator) to manipulate the untrusted gadget via
interfaces:

1 var mydiv = document.getElementById("gadget_canvas
")

2 var instance = new gadget.newInstance(
3 mydiv, gadget.Type.SIMPLE);
4 instance.setLevel(9);

Listing 2. Code Snippet of http://i.com/integrator.html

The gadget defines a global variable gadget to provide
interfaces to the integrator. The gadget.newInstance
is used to create a new gadget instance that binds to
the div; and instance.setLevel is a method used to
change state at the gadget instance. Let us assume that the
integrator stores a secret in global variable secret and a
global variable price holding certain information with an
important integrity requirement:

1 var secret = document.getElementById("secret_input
");

2 var price = 42;

Listing 3. Code Snippet of http://i.com/integrator.html

The secret flows to an untrusted source, and the price
is modified at the gadget’s will if the gadget contains the
following code:

1 var steal;
2 steal = secret;
3 price = 0;

Listing 4. Non-benign Gadget

If the gadget is isolated using the iframe tag with a
different origin, variables secret and price cannot be
directly accessed by the gadget. We can modify the example
in the following way:

1 <iframe src=’http://u-i.com/gadget.html’></iframe>

Listing 5. Code Snippet of http://i.com/integrator-msg.html

1 <div id=gadget_canvas></div>
2 <script src=’http://untrusted.com/gadget-msg.js’>
3 </script>

Listing 6. Code Snippet of http://u-i.com/gadget.html

Instead of directly including the script, the integrator in-
vents a new origin u-i.com to be used as an untrusted gad-
get container, and puts the gadget code in a frame belonging
to this origin. By doing this, the JS execution environment

between integrator and gadget is isolated, as guaranteed by
the browser’s SOP. Limited communication between frames
and integrator is possible through the PostMessage API in
the browser if there is an event listener for the ‘message’
event. To register a listener one provides a callback func-
tion as parameter and treats messages in a waiting queue,
asynchronously. With PostMessage, only strings can be sent.
However, it is possible to marshal objects that do not point
to themselves (as e.g. the global object), via a marshaling
method, such as the standard JSON stringify. Code in
gadget-msg.js and integrator-msg.html needs
to adapt to the asynchronous behaviour. Instead of calling
methods or functions, the integrator must send messages to
manipulate the untrusted gadget as shown in the following
example:

1 PostMessage(stringify({action : "newInstance",
2 container : "gadget_div",
3 type : "SIMPLE"}),
4 "http://u-i.com");
5 PostMessage(stringify({action : "setLevel",
6 container : "gadget_div"}),
7 "http://u-i.com");

Listing 7. PostMessage Example

Compilation with Mashic will not preserve the malicious
behavior of Listing 4 but will only preserve behavior that
does not represent a confidentiality or integrity violation to
the integrator.

III. DECORATED SEMANTICS

We propose a decorated semantics to partition a JS heap at
the granularity of object properties. In order to prove security
policies in a mashup, it is essential to distinguish at each ex-
ecution step properties corresponding to different principals.
Note that static decorations assigned to variables, tradition-
ally used in information flow security policies [Sabelfeld
and Myers, 2003], is not enough to specify security in JS
programs due to two reasons: the dynamic nature of JS
does not always allow us to syntactically determine the set
of properties modified by a program (c.f. Maffeis and Taly
[2009]), and existing native properties in the heap may either
be changed by programs or its decoration may depend on the
context due to the SOP. Hence, we have resorted to ideas
from colored brackets [Grossman et al., 2000] and adapt
them to a semantics modeling the SOP in the browsers.
When decorations are erased, our JS decorated rules are
compliant with JS semantics (Maffeis et al. [2008]). For the
sake of simplicity in the presentation, we limit this section
to the inclusion of only one gadget as a frame, although the
JS semantics (and the Mashic compiler) is not limited in
the number of gadgets included in a mashup. Thus, in this
presentation, we need to distinguish three different colors.
The ♠ color for the Integrator Principal, the ♥ color for
the Gadget Principal, and the ♦ color to denote a neutral
principal. We use 2 or 4 to denote any of them.

Decorated Objects: An object o is a tuple{
i1{2} : v1, . . . in{4} : vn

}
associating decorated properties

i{2} (internal identifiers or strings) to values. We use i
instead of i{2} whenever the decoration is not important.
We distinguish internal properties that cannot be changed
by programs with the symbol “@” in front of an identifier.
We present a series of auxiliary definitions used in the
operational semantics. For an object o and a property i, we
use i{2} ∈ o to denote that o has property i with decoration
2, and use i 6∈ o to denote o does not have property i.

Heaps: Objects are stored in heaps. A heap h is a
partial mapping from locations in a set L to objects. We
use the notation h(`) = o, to retrieve the object o stored in
location `; and the notation o.i{2} = v to retrieve the value
stored in property i{2}. We also use a shortcut h(`).i{2}
whenever possible. To update (or create) a property i{2}
of an object at location ` in the heap, we use the notation
h(`.i{2} = v) = h′, where h′ is the updated heap. We
also use Alloc(h, o) = h′, `′, where `′ 6∈ dom(h), for
allocating a fresh location for an object in the heap. After
adding the location, the new heap is h′. JS heaps contain
two important chains of objects. The scope chain keeps
track of the dynamic chains of function calls via the @scope
property. To resolve a scope of a variable name, one starts
from the bottom of the chain, until reaching a scope object
which contains the searched variable name. The scope look-
up process Scope(h, `,m) function takes 3 parameters: a
current heap, a heap location for a scope object (as the
bottom of the scope chain), and a variable name as string
to look up. Similarly, the prototype chain represents the
hierarchy between objects. A property that is not present
in the current object, will be searched in the prototype
chain, via the @prototype property. The helper function
Prototype(h, `,m) looks for the m property of the object
h(`) via the prototype chain.

On top of a scope chain, there is a distinguished object,
namely the global object.

Integrator and Gadgets Global Objects: We use sub-
index i to indicate initial global object for the integrator
code.

We define a (simplified) initial global object below (we
use the form #addr to represent an unique heap location):

global i =

@this{♦} : #global i
@scope{♦} : null
“Stringify”{♦} : #stringifyi
“Parse”{♦} : #parsei
“PostMessage”{♦} : #postmessagei
“Addlistener”{♦} : #addlisteneri
“window”{♦} : #global i

Global variables are defined as properties in the global
object. For example window is a global variable holding
the location #global i of the initial global object. Notice that
properties in the initial global object are decorated with ♦,

M ::= <html> F J </html> HTML page
F ::= <iframe src=u></iframe> | ε a frame or empty
J ::= <script2> s </script> J | ε sequence of scripts
P, s ::= e | . . . Javascript programs
R ::= M | F J | FRT J | J | s J run-time programs
FRT ::= <iframe> J </iframe> run-time frames

| <iframe> s J </iframe>
e ::= . . . | @FunExe(`, s,2) run-time expressions

| @NewExe(`o, `, s,2)
v ::= . . . | ` | undefined run-time values

Figure 2. JS Syntax with Decorations (excerpt)

which are not considered as heap locations created neither
by the integrator nor the gadget.

Since by SOP the integrator and the frame do not share
objects in the heap, we define similarly an initial global
object global f for the frame, in which the properties hold
locations #global f , #stringifyf ,. . . , and #addlistenerf .
Heap locations of the form #addrf with a subscript f , as
in #global f , denote native objects that reside in the frame
reserved part of the heap, as described by the semantics rules
shown later.

Native functions in a heap are represented by locations
(e.g. #postmessagei) as abstract function objects. We use
NativeFuns to denote the set of locations of native func-
tions. We assume that Alloc(h, o) never allocates those pre-
defined heap locations mentioned above. We also use ⊕ to
denote the union of two disjoint heaps (with non-overlapping
addresses).

It is useful to define an initial heap. An initial heap for
the integrator (resp. for the frame), denoted by hin (resp.
hfin), is one that contains a single element in its domain
such that hin(#global i) = global i (for the case of frame
hfin(#global f) = #global f). We omit explanations for other
pre-defined native objects.

Decorated Heap Projections: We say that a decorated
object o is single-colored if and only if all properties of o
are decorated with the same color. The projection o�2 for a
decorated object o is defined by eliminating non-2 colored
properties of o. If there is no property in o with color 2 then
the projection is undefined and denoted by ⊥. We define
heap projections in order to reason about the portion of the
heap owned by a given principal.

Projection h�2 is either undefined if there is no property
of color 2 in h or it is a heap h′ such that: ∀` ∈
dom(h), h(`)�2 6= ⊥ ⇔ ` ∈ dom(h′) & h′(`) = h(`)�2.
We define h = h′ as equality on heaps. We denote h′ =2 h
for h′�2 = h�2.

Syntax: We present in Figure 2 a simplified syntax of
the extension of JS with HTML constructs. We assume that
u ∈ Url where Url is a set of URLs or origins. A program
in the language is an HTML page M with embedded scripts
and frames. Frames are important to reason about the SOP
and untrusted code. For simplicity, we choose to restrict the

language with at most one frame in HTML pages. Inclusion
of many frames adds confusion and does not add any insights
to the technical results. (This restriction does not apply to
the Mashic compiler.) We assume that there is an implicit
environment Web : Url 7→ J that maps URLs to gadgets
code. In the frame rule, we model with Web(u) a gadget
from a different origin u ∈ Url . In the syntax, scripts
are decorated with a color to denote the principal owner
of the script. Statements and expressions ranged over by
P , s, and e are standard (see e.g. Maffeis et al. [2008]).
Notice that f ranges over native functions, as the native
PostMessage function. We further extend the syntax for
run-time expressions denoted as R. Run-time expression e
is extended with a special context for executing functions.
Run-time value v is extended with heap locations ` and the
undefined value.

Before a JS program in a script node is executed, or before
a body of a function is evaluated, all variable declarations
are added to the current scope object in the heap. To that
end, we use a function VD that returns a heap and takes as
parameters a heap h, a location ` of the current scope object,
a statement s, and a color 2 to bind variables declared by
var x with proper decorations to the scope object `, as in
h(`.x{2} = undefined).

Configurations: Instrumented configurations feature a
decoration component that denotes the owner principal of
the program being executed. A configuration is a 5-tuple
(2, h, `, R,Q) that features: a decoration 2 that denotes the
principal of the current program in the configuration, a heap
h, a location ` ∈ L pointing to the current scope object (or
null only for the initial configuration), a run-time program R
currently being executed, a waiting queue Q in order to give
semantics to PostMessage mechanism. A waiting queue is of
the form 〈`i,mqi〉 ‖ 〈`f ,mqf 〉, where `i and `f are locations
for event listeners and mqi and mqf are message queues for
both, the integrator and the frame, respectively. The syntax
for defining a message queue is : mq ::= m mq | ε where
m is a string. We use mq1+mq2 to denote the concatenation
of two message queues.

An initial configuration is of the form
(2, ε,null ,M,Qinit) where Qinit = 〈null , ε〉 ‖ 〈null , ε〉.

The small step semantics is modeled by a relation −→
between configurations. Explanations for the rules in Fig. III
follow:

DINIT: A mashup execution starts by initializing the
heap of the configuration to the initial heap of the integrator
hin . The scope object is set to the global object #global i.

DSCRIPT: A 4-decorated script starts by initializing
variables defined in s. VD(h, `, s,4) adds the variables to
the current scope object ` in h. The new configuration takes
the color 4 of the script.

DFRAME: A frame fetches the content Web(u) and
merges the initial frame heap hfin to the current heap. The
key point here is that addresses in h do not overlap with

DINIT
P = <html> FJ </html>

(2, ε,null , P,Qinit)−→(2, hin ,#globali, FJ,Qinit)

DSCRIPT
VD(h, `, s,4) = h′

(2, h, `,<script4> s </script>, Q)−→(4, h′, `, s,Q)

DFRAME
Web(u) = J h′ = h⊕ hfin

(2, h, `,<iframe src=u></iframe>, Q)−→(2, h′,#global f ,<iframe> J </iframe>, Q)

DPOSTMSGI
`′ = #postmessagei Q = 〈`i,mqi〉 ‖ 〈`f ,mqf 〉

(2, h, `, `′(m), Q)−→(2, h, `, undefined , 〈`i,mqi〉 ‖ 〈`f ,mqf +m〉)

DADDLISTENERI
`′ = #addlistener i Q = 〈`i,mqi〉 ‖ 〈`f ,mqf 〉

(2, h, `, `′(`0), Q)−→(2, h, `, undefined , 〈`0,mqi〉 ‖ 〈`f ,mqf 〉)

DCALLBACKI
`f 6= null Q = 〈`i,mqi〉 ‖ 〈`f ,m+mqf 〉

(2, h, `, ε,Q)−→(2, h,#global f , `f (m), 〈`i,mqi〉 ‖ 〈`f ,mqf 〉)

DASGN-NEW-PROPERTY
m 6∈ h(`1) h(`1.m{2} = v) = h1

(2, h, `, `1[m] = v,Q)−→(2, h1, `, v,Q)

DMODIFY-PROPERTY
m{2} ∈ h(`1) h(`1.m{2} = v) = h′

(4, h, `, `1[m] = v,Q)−→(4, h′, `, v,Q)

DGETVPROP
Prototype(h, `,m) = `2

v =

{
undefined if `2 = null

h(`2).m otherwise

(2, h, `, `1[m]])−→(2, h, `, v)

DCALLFUNC
`1 6∈ NativeFuns h(`1).@body{4} = function(x){s} Alloc(h, os) = h1, `s

os = {@scope{4} : h(l1).@fscope,@prototype{4} : null ,@this{4} : `g , “x”{4} : v} VD(h1, `s, s,4) = h2 `g = GetGlobal(h, `)

(2, h, `, `1(v), Q)−→(4, h2, `s,@FunExe(`, s,2), Q)

Figure 3. Decorated Semantics Rules (excerpt)

addresses in hfin . Because of this and by the JS semantics, a
pointer reference from h cannot be accessed via a program
with a scope object in hfin . This DFRAME rule precisely
models the SOP since no address in the integrator’s heap
can be reached from a JS program with a scope object in
hfin . Notice that the current scope object is set to the frame’s
global object.

DPOSTMSGI: When the integrator sends a message m,
the gadget waiting queue is updated.

DADDLISTENERI: The integrator sets an event listener
`0 in the waiting queue by calling the native function from
the location addlisteneri . Notice that for simplicity, we are
assuming only one listener in the formal semantics.

DCALLBACKI: This rule together with the symmetric
one for frame callback are the only ones introducing non-
determinism to the semantics. When no program is execut-
ing, pending messages in the waiting queues are handled via
the event listeners.

DASGN-NEW-PROPERTY: To create a new property m,
h(`1) is updated with m. The new property is decorated with
the colour of the current principl. A decoration cannot be
changed after creation.

DMODIFY-PROPERTY: It is similar to DASGN-NEW-
PROPERTY. The color of the property in the heap is not
changed.

DGETVPROP: To access a property of an object, we
look up through the prototype chain. The value v could

possibly be a location. When the property m does not exist
we return undefined .

DCALLFUNC: To invoke a function, a new scope object
`s is set as current scope object. The @scope property is set
to the function’s closure scope h1(`1).@fscope. The @this
property of `s is set to `g that is the global scope object
of the current scope chain. VD(h1, `s, s,4) initializes local
variables defined in the body of the function in `1 with the
decoration of the function object rather than the current
decoration in the configuration. The resulting expression
@FunExe(`, s,2) keeps record of the scope object ` to
return, and the decoration 2 to recover when the function
execution finishes. For simplicity, we present functions with
one parameter only. Function GetGlobal looks up in the
scope chain to get the address of the global object via the
window property.
Example 1 (Decorated Global Object). Recall variables
secret and steal in Listing 4 and 3 of Section 2.
Assuming that the secret input is “yes”, by semantics (after
execution of the non-benign gadget) the shared global object
has the following form:

h(#global i) =

...

“price”{♠} : 0
“secret”{♠} : “yes”
“steal”{♥} : “yes”

If the gadget is sandboxed as in Listing 5, the gadget

code gets stuck by the semantics when trying to read
“secret” since the variable has not been defined. (In practice,
however, the program raises an exception that we do not
model in the semantics.)

IV. COMPILATION OVERVIEW

In this section we describe in detail how proxy and listener
libraries work. For that, we need to define opaque object
handles.

Opaque Object Handle: By the SOP policy, the inte-
grator and the framed gadget cannot exchange JS references
to objects. Our libraries provide a way for the integrator
to refer to objects that are defined inside the gadget, called
opaque object handles [Barth et al., 2009a].

An opaque object handle is essentially an abstract repre-
sentation of a JS object. In our libraries it is a unique number
associated with an object in the frame.

On the listener library side, we keep a list for associating
handles and objects. Since an object could possibly be
an opaque object handle, it is necessary to dynamically
check whether the object being operated is an opaque object
handle or a local object existing in the integrator. If it is an
opaque object handle, we need to proxy the operation to
the sandbox; if it is a local object, we can directly operate
on this object. We define an isOpaque function to do the
dynamic check.

Bootstrapping: We model the interface provided by a
given gadget as a set V of global variables in the gadget.
Example 2. For instance in our running example, V =
{gadget}, since gadget is the only global variable defined
by the gadget. Another example is the interface provided by
Google Maps API, that contains only the global variable
google.

The Mashic compiler inserts bootstrapping scripts on both
sides, integrator and gadget. The bootstrapping script for the
integrator takes a set of variables V = {x1, . . . , xn} and
generates opaque object handles for each of them:

1 var xi = new OHandle(i);

Listing 8. Integrator Bootstrapping

The bootstrapping script for the gadget also generates
opaque object handles and add them to a list.

1 add_handle_object(new OHandle(i),xi);

Listing 9. Gadget Bootstrapping

In the rest of the paper we let BootstrapVi and BootstrapVg
be the bootstrapping scripts for variable set V for the
integrator and the gadget respectively.

Proxy and Listener Interface: In the rest of the paper
we let Pp denote the proxy library, and Pl the listener library.
On the proxy library side, we provide a series of interfaces
to obtain an opaque object handle, or operate on it.

To obtain an opaque object handle from a global variable
in the gadget, we use the GET_GLOBAL_REF interface.

The GET_GLOBAL_REF interface takes two parameters,
the global_name, and a function cont to be used as
continuation.

The GET_GLOBAL_REF function, upon invocation on
the proxy side, composes a message with a fresh message
id and sends it to the gadget in iframe. Because of the
asynchronous nature of the PostMessage communication,
the listener library on the gadget side cannot respond to
this message immediately. Hence, we register a continuation
cont with the message id m_id.

There are other interfaces that are supported to operate on
opaque objects handles:
• GET_PROPERTY: to obtain an opaque object handle

or the primitive value of a property of a given object
(opaque object handle);

• OBJ_PROP_ASSIGN: to assign a primitive value or
an object or an opaque object handle to a property of
a given object;

• CALL_FUNCTION: to call a function (opaque object
handle) with all parameters being primitive values,
objects or opaque object handles;

• CALL_METHOD: to call a method of an object (opaque
object handle) with all parameters being primitive val-
ues or objects or opaque object handles;

• NEW_OBJECT: to instantiate a function object (that
is, an opaque object handle) with all parameters being
primitive values or objects or opaque object handles.

Example 3. Recall the mashup from Section II. The interface
to obtain an opaque object handle in the integrator is:

GET_GLOBAL_REF("gadget", function(val){...});

where “gadget” is the interface provided by the gadget
and the second parameter is a callback function. Once the
integrator obtains an opaque object handle, it can use other
interfaces from the integrator to operate on the opaque object
handle. If opq_inst corresponds to an instance object
inside the gadget, to mimic the code of line 4 in Listing 2
we use:

CALL_METHOD(opq_inst, "setlevel", function(val)
{...},9);

The interface CALL_METHOD sends a message via PostMes-
sage, and waits for a response from the gadget. Once the
response arrives, the callback function(val){...} is
invoked on the returned result. Note that the result might be
an opaque object handle as well.

In the listener library, there are interfaces to generate a
response as the function GET_GLOBAL_REF_L that gets
the real object by the global name, and generates an opaque
object handle if the object is not a primitive value. Then
the opaque object handle is sent back to the integrator via
PostMessage as a response for the previous sent message.
Finally, the associated continuation cont will be applied on
the response (possibly an opaque object handle).

C〈e0[e1]〉 :
function(k){
C〈e0〉(function(x0){
C〈e1〉(function(x1){

if (isOpaque(x0)){
GET_PROPERTY(x0, x1, k);
} else {

k(x0[x1]);
}
}); }); }

C〈new e0(e1)〉 :
function(k){
C〈e0〉(function(x0){
C〈e1〉(function(x1){

if (isOpaque(x0)){
NEW_OBJECT(x0, x1, k);
} else {

var x2, x3, x4;
x3 = function(x){};
x3[“prototype”] = x0[“prototype”];
x2 = new x3();
x4 = function(v){ k(x2); };
x2[“ fun”] = x0;
x2[“ fun”](x4, x1);

}
}); }); }

Figure 4. Integrator Transformation Excerpt

Integrator Code Transformation: JS does not support
Scheme-style call/cc (Call-with-Current-Continuation) for
suspending and resuming an execution. Demanding the
programmer to write in CPS would turn the proposal im-
practical.
Example 4. Recall the example in Section II. In order
to obtain the property gadget.Type.SIMPLE, the pro-
grammer should write the following code (using the proxy
interface):

1 GET_GLOBAL_REF("gadget",
2 function(opq_gadget){
3 GET_PROPERTY(opq_gadget,"Type",
4 function(opq_Type){
5 GET_PROPERTY(opq_Type,"SIMPLE",
6 function(val_SIMPLE){...});});});

The function C : s 7→ s, see Figure 4, transforms JS code
of the integrator into CPS and transforms the integrator code
to invoke the proper interfaces from the proxy library.

For each operation, the compilation inserts dynamic
checks to verify whether the object is an opaque object
handle or not.

We transform e0[e1] to a function taking a parameter k as
continuation. In the body of this function, we apply the trans-
formed code of e0 to a continuation where the transformed
code of e1 is applied to an inner-most continuation. In the
inner-most continuation x0 and x1 bind to the results of
evaluating e0 and e1 respectively. We dynamically check if
x0 is an opaque object handle to decide whether to use the

proxy interface or to apply k to x0[x1] directly.
Overall Picture: In order to state the theorem, we

define decorations for original and compiled mashups. In

the original mashup we decorate the integrator as ♠ and the
gadget as ♥.

Definition 1 (Decorated Original Mashup). Let Pi be an
integrator script and Pg be a gadget script. We define the
original mashup M̃(Pi, Pg) to be:

<html>
<script♥> Pg </script>
<script♠> Pi </script>

</html>

In the compiled mashup we decorate the run-time libraries
as ♦. The run-time libraries are marked as neutral color
♦ since we show with the correctness theorem that the
integrator’s heap is preserved in the original and compiled
version. The runtime libraries do not appear in the original
heap.

Definition 2 (Mashic Compilation). Let Pi be an integrator
script, Pg be a gadget script, V be a set of variables denoting
global names exported by the gadget script, we define the
Mashic compilation M̃c(Pi, Pg,V) to be:

<html>
<iframe src=u></iframe>
<script♦> Pp ;BootstrapVi </script>
<script♠> C〈Pi〉(function(x){ x}) </script>

</html>

where

Web(u) =
<script♦> Pl </script>
<script♥> Pg </script>
<script♦> BootstrapVg </script>

V. CORRECTNESS THEOREM

In this section we formally present the correctness theo-
rem and its assumptions.

A. Preliminary definitions

Correct Marshaling: We define the notion of correct
marshal and unmarshal functions w.r.t. to a set of objects S.
Intuitively this definition states that the process of marshal-
ing and then unmarshaling an object preserves the structure
of the object in the heap and preserves values that are not
locations.

Definition 3 (Correct marshal/unmarshal for S). Let ∼ be
defined as v ∼ v′ in h iff there exists a bijection β such
that v, v′ 6∈ L and v = v′ or v, v′ ∈ L and β(v) = v′ and
for every property p in h(v), h(v).p ∼ h(v′).p. Given two
functions f and f−1, we say that they are correct for a set
of objects S if for all o ∈ S, heap h, and f−1(f(o)) = o′

we have o′ satisfies: for every property p in o, o.p ∼ o′.p in
h.

Definition 3 is useful for the correctness theorem of the
compiler. It captures the weakest hypothesis possible for

the correctness theorem to hold. Following this hypothesis,
implementation of marshaling/unmarshaling functions may
vary. In the current prototype of the Mashic compiler we
implement these functions with JSON stringify and parse,
which do not preserve the structure of the objects if the
structure contains a cycle. Thus, these functions are consid-
ered correct only if the set S of objects to be marhaled does
not contain objects with cyclic structures. We have chosen
JSON stringify/parse for efficiency reasons. However, it
is straightforward to write correct marshaling/unmarshaling
functions for a set of objects that also contain cycles in their
structures.

Benign Gadget: Intuitively, a benign gadget Pg does
not rely on the integrator’s portion (marked by ♠) and the
neutral portion (marked by ♦) of the heap. Furthermore the
evaluation of Pg does not depend on any part of the heap
except for the initial heap.

In order to state the definition we first define a benign
gadget heap as a heap that contains gadget functions with
confidentiality and integrity properties.

Definition 4 (Benign Gadget Heap). A heap hg is benign
if and only if for any heaps h0, h1 such that hj�♥ = hg
(j ∈ {0, 1}), for any function located in ` ∈ dom(hg),
for any `′ such that h0(`′) = h1(`

′) is an object, and
(♠, hj , `i, `(`′), Q) −→∗ (♠, h′j , `′j , v′j , Q′), the following
conditions holds:

1) v′0 = v′1;
2) (integrity) hj =♠ h′j and hj =♦ h

′
j ;

3) (confidentiality) h′0�♥ = h′1�♥;
4) (preservation of benignity) h′1�♥ is benign

Example 5 (Benign Heap). Recall the integrator’s code in
Listing 3 in Section II. If the gadget contains the following
code, then the gadget will not produce a benign gadget heap:

1 var rungadget;
2 rungadget = function(x){
3 var steal;
4 steal = secret;
5 price = 0;
6 };

Listing 10. Non-benign Gadget Heap

The gadget defines a function in the heap which tries to
read from the global variable secret and tries to write
into the global variable price. Calling the function from
the integrator will violate the integrity and confidentiality
requirement.

Definition 5 (Benign Gadget). Program Pg is benign if and
only if for any heaps hi (i ∈ {0, 1}) such that hi�♥ =
∅ and (♥, hi, `, Pg, Q) −→∗ (♥, h′i, `, vi, Q

′), the following
conditions hold:

1) (integrity) hi =♠ h′i and hi =♦ h
′
i;

2) (confidentiality) h′0 =♥ h
′
1;

3) h′0�♥ is benign.

Example 6 (Benign Gadget Example). Recall the example
in Section II, Listing 4. The gadget is not benign since it
tries to read from the global variable secret and tries to
write into the global variable price.

In the benign gadget definition we explicitly require that
the initialization phase (adding functions to the heap) and
execution of all functions (that are defined in the heap)
always terminate.

It is possible to relax this definition by not requiring
termination of benign gadgets (by using indistinguishability
invariants for intermediate running expressions) but we
consider more appropriate to see non-terminating behaviour
in gadgets as non-benign behaviour since the gadget will
never let the integrator execute. Hence if the gadget is
non-terminating we do not offer any correctness guarantees
(security guarantees still apply).

Notice that the termination requirement on gadgets does
not imply termination of the mashup. The mashup might
never terminate if gadget and integrator continuously run
listener continuations and this is independent of termination
of functions in gadgets (see e.g. fair termination Boudol
[2010]).

Correct Integrator: For correctness, we impose some
reasonable restrictions on the integrator’s code. Intuitively, a
correct integrator does not modify directly a non-♦-colored
property; and does not use objects defined by gadgets
in the prototype chain. This restriction is not limiting in
practice since integrator’s usually operate on gadgets via
the interfaces provided by it and not directly modifying
its properties. Given marshal/unmarshal functions, we also
require a correct integrator only sends to gadgets objects for
which these functions are correct.

First, we give a notion of reachability of a location from
a global variable in a given heap h.

Definition 6 (Reachability). A location l is reachable from
a variable x in h if and only if either:

• h(@global).x = l; or
• ∃p such that l is reachable from h(h(@global).x).p.

Now we give the definition for correct integrator.

Definition 7 (Correct Integrator for f ,f−1,V). Program Pi
is a correct integrator, if and only if, for any benign heap hg
such that (♠, hin ⊕ hg,#global , Pi) reaches a redex e and
a heap h then the following conditions hold:

1) If e is of the form x = v and Scope(h, `, “x”) = `n,
then either `n = null or “x” is a ♠-colored property
of h(`n).

2) If e is of the form `′[m] = v, then h(`′) is a ♠-single-
colored object.

3) For any ` such that ` ∈ dom(h�♠) and
h(`).@prototype = `n, either `n = null or h(`n)
is a ♠-colored object.

4) If e is of the form `f (`
′) and h(`f) is a ♥-colored

function, then h(`′) is an object correct for f and f−1

and `f is reachable from V in h.

Example 7 (Correct integrator prototype chain). We illustrate
why an integrator’s object cannot have a gadget’s object as
its prototype object (bullet 3). Assume that in the heap of
the original mashup, h(`i) is a ♠-colored object, and h(`g)
is a ♥-colored object such that

h(`i) = {@prototype : `g} h(`i) = {a : 3}

By reading the property “a” of `i in the original mashup we
get 3. The heap of the compiled code will contain a pointer
to a handle:

h(`i) = {@prototype : `o}

h(`o) =

{
“ id” n
“ is ohandle” true

}
Hence, by reading the property “a” of `i in the compiled

mashup we do not get 3.

B. Indistinguishability and Correctness

To define indistinguishability between the original heap
and compiled heap, the structure of the scope chain in the
heap must be preserved. We use ` ∈ `1`2 . . . `n to denote
that scope object ` (either the global object or an object
featuring a @scope property) is included in a list of scope
objects in a heap h linked by the @scope property as a chain
`1`2 . . . `n (i.e. h(`i).@scope = `i+1).

We define the β-indistinguishability ∼β on values, ob-
jects, and scope chains, where β : L ⇀ L is a partial
injective function between heap locations.

Definition 8 (Scope Chain Indistinguishability). Let `1 be
a scope object in h and `′1 be a scope object in h′, and
β : L ⇀ L be a partial injective function. Let `1`2 . . . `n
be the scope chain of `1 in h, let `′1`

′
2 . . . `

′
m be the scope

chain of `′1 in h′, we say that the two scope chains are
indistinguishable, denoted (h, `1)≈β(h′, `′1) if and only if:

1) β(`1)β(`2) . . . β(`n) is a sub-sequence of `′1`
′
2 . . . `

′
m;

2) for ` 6∈ β(`1)β(`2) . . . β(`n), and ` ∈ `′1`
′
2 . . . `

′
m,

∀i ∈ dom(h′(`)),
i ∈ {@scope,@prototype,@this, “ k”, “ l”, “ m”, “ xi”}

The intuition of scope indistinguishability is that the
structure of scope chains is preserved by the integrator
transformation (even if scope chains do not have a one to
one correspondence), as illustrated in Fig. 5. In the figure,
scope objects are represented by round points, and the solid
arrows represent the scope chain. The scope chain on the
left is obtained by a normal execution of integrator code.
The scope chain on the right is obtained by execution of the
corresponding transformed code, where there are more CPS-
administrative scope objects (gray-colored in the figure). The

Scope Object

Figure 5. Example: Scope Indistinguishability

scope indistinguishability does not take into consideration
those CPS-administrative scope objects.

Two values are indistinguishable either if they are equal
or if they are both locations related by β. Even assuming a
deterministic allocator, we need β to relate two heaps since
objects created in the original mashup and compiled mashup
will be necessarily different since the compiled heap will
contain more objects.

Definition 9 (Value Indistinguishability). Let v1 and v2 be
two values, and β : L ⇀ L be a partial injective function,
value indistinguishability is defined as follows:

v 6∈ L
v ∼β v

v1, v2 ∈ L β(v1) = v2

v1 ∼β v2

Objects are related if they have the same properties
with the same values. Exceptions to this are properties
{@scope,@fscope,@this} and function objects. Properties
{@scope,@fscope} are related via the scope chain indis-
tinguishability as explained above. Function objects are
indistinguishable if the @body property contains the same
code in its original and compiled form.

Definition 10 (Object indistinguishability). Let o1 and o2 be
two objects, and β : L ⇀ L be a partial injective function.
We say o1 'β o2, if for every i ∈ dom(o1) one of the
following holds:

1) i ∈ {@scope,@fscope,@this};
2) i 6∈ {@body ,@scope,@fscope,@this} and if o1.i ∈

dom(β) then o1.i ∼β o2.i;
3) i = @this then o1.@this ∼β o2.“ this”;
4) i = @body then o1.@body = function(x){s},

then @body ∈ dom(o2) and o2.@body =
function(fun cont , x){s}, where

s = var this;
this = this;
(C′〈s〉)(fun cont)

Example 8 (Object indistinguishability). Let o1, o2 o3 be:

o1 =

a : 2
b : `1
@scope : `2
@this : `3

 o2 =

a : 2
b : β(`1)
@scope : `′2
“ this” : β(`3)

o3 =

a : 2
b : `′1
@scope : `′2
“ this” : β(`3)

If `′1 6= β(`1) and `2 6= `′2, then we have o1 'β o2 and
o1 6'β o3.

Finally, heaps are indistinguishable if all objects are
indistinguishable and respective scope chains are indistin-
guishable.

Definition 11 (Heap indistinguishability). We say that
(h1, `1) and (h2, `2), are indistinguishable with respect to β :
L ⇀ L with dom(β) = dom(h1) and rng(β) ⊆ dom(h2),
denoted (h1, `1) 'β (h2, `2), if and only if:

1) h1(`) 'β h2(β(`)) for every ` ∈ dom(β)
2) if ` ∈ dom(β) and h1(`) has the @body property, then

(h1, h1(`).@fscope) ≈β (h2, h2(β(`)).@fscope)
3) (h0, `0) ≈β (h1, `1).

The correctness theorem gives strong guarantees if the
gadget is benign: behavior of original and compiled mashup
are equivalent in terms of the integrator’s heap. If the gadget
is not benign there are no correctness guarantees but only
security guarantees described in the following section. We
use in the hypothesis that integrator and gadget do not
declare the same variables var(Pi) ∩ var(Pg) = ∅, where
var(P) is the set of variables x declared with var x in P .

In the following, let M̃c be the Mashic compiler using f
and f−1 for marshaling and unmarshaling. Let V be a set
of names used by the integrator as the gadget interface.

Theorem 1 (Correctness). Let Pi be a correct integra-
tor for f ,f−1,V and Pg be a benign gadget such that
var(Pi)∩ var(Pg) = ∅. If (♠, ε,null , M̃(Pi, Pg), Qinit) −→∗
(2, h0, `0, ε,Qinit) then,

(♠, ε,null , M̃c(Pi, Pg,V), Qinit) −→∗ (2, h1, `1, ε,Q1)

where Q1 has no message waiting, and there exists β such
that

(h1�♠, `1) 'β (h0�♠, `0)

The proof proceeds in two stages by means of an interme-
diate compilation and by structural induction on programs.

VI. SECURITY THEOREM

In Mashic compiled code, the integrator has complete
access to gadget resources but the gadget only has access
to resources offered by the integrator in the proxy library.

After Mashic compilation, the malicious gadget cannot scan
properties of the integrator, as e.g. in Listing 4, because the
SOP policy prevents the framed gadget from accessing the
JS execution environment of the integrator as shown in the
DFRAME rule in Fig. III.

Example 9 (Gadget modifies native functions). A native
function that can commonly appear in the integrator code
is the setTimeout function. This function takes two
parameters, the first one is a function that will be executed
when the time (in milliseconds) specified in the second
parameter has passed:

1 setTimeout("alert(timeout!!)",5);

In this example, after 5ms a pop-up window with caption
“timeout!” appears.

This function, as all native JS functions, is associated as
a property of the global object. As many native functions
the code associated to the setTimeout function can be
changed at execution time, changing in this way the assumed
behavior for setTimeout.

Suppose the untrusted gadget owned by the attacker writes
a function of its own into the setTimeout property:

1 setTimeout=function (x,y) { evil code here} ;

Then every call to setTimeout in the integrator’s
code will be calling the attacker’s code with the integrator
privileges.

If instead the gadget is enclosed in a frame, the same code
trying to affect the setTimeout property of the global
object will only affect the property of the global object of
the frame, that is in a disjoint part of the heap according to
the SOP.

In order to state the security guarantee, we consider that
all code coming from origin u is part of the gadget principal
♥. In contrast to the decorations used for correctness, we
now consider the listener library and bootstrapping as gad-
get’s code. This should not be surprising since the gadget can
modify this code and the security theorem must be valid also
in this case. We decorate all code residing in the integrator
with ♠. This is also different from the correctness theorem.
Essentially, we are now interested in asserting that the gadget
cannot change the proxy library or bootstrapping in the
integrator, whereas for the correctness theorem we were
interested in heap indistinguishability only for the integrator
heap in original and compiled mashup. Furthermore, we
assume hin is decorated with ♠, and hfin is decorated with
♥.

(Notice that decorations do not affect the compiler or
semantics of JS code and are only used as technical in-
strumentation for the theorems and their proofs.)

Definition 12 (Decorated Mashic Compilation (for security
theorem)). Given an integrator script Pi and a gadget script
Pg , a set of variable V denoting global names exported

by the gadget script, we define the Mashic compilation
.

Mc(Pi, Pg,V) to be:

<html>
<iframe src=u></iframe>
<script♠>
Pp;BootstrapVi ; C〈Pi〉(function(x){ x})

</script>
</html>

where

Web(u) = <script♥> Pl;Pg;BootstrapVg </script>

Example 10 (Integrity violation). In the example referred
just above, the initial heap contains the native function
setTimeout. Since the initial heap is decorated with ♠, the
“timeout” property of the global object is a property of
the integrator. By using decoration of Definition 12 and
semantics rules, we get that the projection h�♠ of the
integrator heap before execution of the gadget and projection
h′�♠ after execution of the gadget do not coincide. The
setTimeout property of the integrator’s global object has
been changed by the gadget execution. This represents an
integrity violation.
Example 11 (Confidentiality violation). Recall variable
secret in the example of Section 2. Let us assume that
the gadget’s heap is h�♥.

After execution of the non-benign gadget in Listing 4
with an integrator’s global object containing “secret”{♠} :
“yes” the gadget heap has h �♥ (#global f).“steal” =
“yes”. But starting with integrator’s global object con-
taining “secret”{♠} : “no” the gadget heap is h �♥
(#global f).“steal” = “no”. This difference depends on the
integrator’s heap and represents a confidentiality violation.

We show that for any gadget code Pg , and any integrator
code Pi, the Mashic compilation

.

Mc(Pi, Pg,V) provides
integrity and confidentiality guarantees:

Theorem 2 (Security Guarantee of Integrator). Let Pg and
Pi be gadget and integrator code respectively, and let V be
a set of variables. For any configuration reachable from a
Mashic compilation

.

Mc(Pi, Pg,V):

(♠, ε,null ,
.

Mc(Pi, Pg,V), Qinit) −→∗ (♥, h, `, s,Q)

if
(♥, h, `, s,Q)−→(♥, h′, `′, s′, Q′)

then we have
1) (integrity.) h�♠ = h′�♠ ;
2) (confidentiality.) For any h0 such that h0�♥ = h�♥, we

have (♥, h0, `, s,Q)−→(♥, h′0, `′, s′, Q′), and h′0�♥ =
h′�♥ .

The proof of security proceeds by induction on the
length of the execution and is simpler than the one of the
correctness theorem.

(a) Map Directions (b) Youtube Player Controls
Figure 6. Case Studies of Applying Mashic Compiler

VII. IMPLEMENTATION AND CASE STUDIES

The Mashic compiler is written in Bigloo 2 (a dialect of
Scheme) and JS. It has 3.3k lines of Bigloo code and 0.8k
lines of JS code.

CPS in Javascript: Since JS does not support any
tail-recursive call optimization, CPS-transformed code can
easily run out of call stacks. In order to deal with this, we
implement a trampoline mechanism as proposed by Loitsch
[2009]. We define a global variable counter to count the
depth of current call stacks. If the counter exceeds a certain
limit a tail call will return a trampoline object instead of
invoking the function.

This is shown in Listing 11.
1 if (counter > 30)
2 return new Trampoline(fun, arg);
3 return fun(arg);

Listing 11. Trampoline of Tail Call

A guard loop, on the top level, detects if a trampoline object
is returned, as shown in Listing 12. If a trampoline object
is detected, the loop restarts the execution of the tail call.

1 res_or_tramp=fun(arg);
2 while (res_or_tramp instanceof Trampoline)
3 res_or_tramp = res_or_tramp.restart();

Listing 12. Guard Loop of Trampoline Execution

Event Handler: In mashups, we also find demands
for registering integrator-defined functions as event handlers
of gadgets’ DOM objects. For example, the Google Maps
API provides an interface to set an integrator’s function
as a handler of the event of clicking on the map. Every
time the map is clicked, the corresponding function will
be invoked, to notify the integrator of the event. By the
SOP, the integrator and the gadget in a Mashic compilation
cannot exchange function references. Hence we design and
implement a mechanism called Opaque Function Handle
to achieve the same functionality of event handler. Similar
to the opaque object handle, we associate opaque function
handles with function objects on the integrator side.

Case Studies: We have successfully applied our com-
piler to mashups using well-known gadget APIs, such as
Google Maps API, Bing Maps API, and Youtube API. Those

2http://www-sop.inria.fr/mimosa/fp/Bigloo/

Mashup Gadget API Description
Polyline Drawing (P) Google Maps Integrator uses the APIs to draw several random

lines on the displayed map.
Marker Drawing (P) Google Maps Integrator uses the APIs to place several random

markers on the displayed map.
Map Controls (O) Bing Maps Integrator implements several controls over the

map such as zooming, relocating, etc.
Player Controls (O) Youtube Integrator implements several controls over the

player such as forwarding, stop, etc.
Translator (O) Bing Translator Integrator uses the provided translating API to do

translation.
Polyline and Marker (O) Google Maps A mashup that contains multiple gadgets.

Figure 7. Selected Case Studies

examples involve non-trivial interactions between the inte-
grator and the gadget.

In Figure 6 we show two concrete examples. The first
example is a mashup using Google Maps API to calculate
driving directions between two cities. The map gadget is
sandboxed by the Mashic compiler in an iframe, as indicated
by a black box in the figure. The compiled integrator, as in
the original integrator, permits to choose a starting point and
an ending point to display a route in the map. The gadget’s
response displayed by the integrator, is the distance between
the two points. The latter example shows a sandboxed
Youtube player, where one can control the behavior of the
player though buttons in the integrator.

We report a selected list of mashups in Fig. 7. In the first
column of the figure, the mark P means that the integrator’s
code was obtained from public available code in the web,
whereas mark O means that the code is ours.

Discussion on Performance and Optimization: The
Mashic compiler prototype does have a running overhead
on a compiled mashup compared to the original mashup.
(This penalty is not perceptible for the final consumer of
the mashup, if the interaction with the gadget is not inside a
loop, for example.) The performance penalty mainly comes
from the unoptimized CPS-transformation and message-
passing. We discuss different optimizations.
• CPS Optimization: In order to optimize trampolines, a

solution is to use a partial CPS-transformation where
code segments not involved in the interaction with
gadgets are not transformed. Other techniques proposed
by Pettyjohn et al. [2005], Loitsch [2007] to imple-
ment call-with-current-continuation in JavaScript are
also suitable in our case.

• Batching Optimization: Message-passing is the main
cause of performance penalty, especially inside a loop.
For example in the mark drawing mashup we show
in Figure 7, a loop inserts markers into the map. For
each marker, it requires two round-trips of messages.
The total message-passing overhead is proportional to

the number of loop iterations. Although in practice, as
in the above example, often is the case that the loop
can be parallelized, parallelism is not yet available in
JS. Another alternative is to “batch” these messages to
reduce the total message-passing overhead to constant
time. We plan to implement batching [Ibrahim et al.,
2009] in Mashic to reduce message-passing penalties.

VIII. CONCLUSION

We have proposed the Mashic compiler as an automatic
process to secure existing real world mashups. The Mashic
compiler can offer a significant practical advantage to
developers in order to effortlessly write secure mashups
without giving up on functionality. Compiled code is for-
mally guaranteed to satisfy precisely defined integrity and
confidentiality properties of integrator’s sensitive resources.
We plan to investigate the integration of ADJail policy
language and mechanisms (as discussed in Section VII) in
order to safely apply the compiler to gadgets which are
advertisement scripts.

Acknowledgments: We thank Bernard Serpette, Sergio
Maffeis, Shriram Krishnamurthi, José Santos, and anony-
mous reviewers for their comments on how to improve this
work.

REFERENCES

Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C.
Mitchell, and Dawn Song. Towards a formal foundation
of web security. In CSF, pages 290–304, 2010.

Adam Barth, Collin Jackson, and William Li. Attacks
on JavaScript Mashup Communication. In W2SP2009,
2009a.

Adam Barth, Collin Jackson, and John C. Mitchell. Securing
Frame Communication in Browsers. Commun. ACM, 52
(6):83–91, 2009b.

Adam Barth, Joel Weinberger, and Dawn Song. Cross-origin
Javascript Capability Leaks: Detection, Exploitation, and

Defense. In USENIX security symposium, pages 187–198,
2009c.

Aaron Bohannon and Benjamin C. Pierce. Featherweight
Firefox: Formalizing the core of a web browser. In Usenix
Conference on Web Application Development (WebApps),
June 2010.

Gérard Boudol. Typing termination in a higher-order con-
current imperative language. Inf. Comput., 208:716–736,
2010.

Steven Crites, Francis Hsu, and Hao Chen. OMash: Enabling
Secure Web Mashups via Object Abstractions. In CCS,
pages 99–108, 2008.

Douglas Crockford. The <module> Tag , 2010.
http://www.json.org.

Douglas Crockford. ADsafe, 2011. http://www.adsafe.org/.
ECMA. ECMAScript Language Specification. Technical

report, ECMA, 2009. http://www.ecma-international.org/.
Dan Grossman, J. Gregory Morrisett, and Steve Zdancewic.

Syntactic type abstraction. TOPLAS, 22:1037–1080, 2000.
Ian Hickson. HTML5. Technical report, W3C, May 2011.
Arnaud Le Hors, Philippe Le Hegaret, Gavin Nicol, Jonathan

Robie, Mike Champion, and Steve Byrne. Document Ob-
ject Model (DOM) level 2 Core Specification. Technical
report, W3C, November 2000.

Ali Ibrahim, Yang Jiao, Eli Tilevich, and William R. Cook.
Remote batch invocation for compositional object ser-
vices. In ECOOP, 2009.

Facebook Inc. Facebook Javascript Subset, 2011a.
https://developers.facebook.com/docs/fbjs/.

Google Inc. Google Caja Project, 2011b.
http://code.google.com/p/google-caja/.

Collin Jackson and Helen J. Wang. Subspace: Secure Cross-
domain Communication for Web Mashups. In WWW,
2007.

Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav
Shacham. An Empirical Study of Privacy-violating Infor-
mation Flows in JavaScript Web Applications. In CCS,
2010.

Frederik De Keukelaere, Sumeer Bhola, Michael Steiner,
Suresh Chari, and Sachiko Yoshihama. Smash: Secure
component model for cross-domain mashups on unmodi-
fied browsers. In WWW, 2008.

Florian Loitsch. Exceptional continuations in JavaScript.
In Workshop on Scheme and Functional Programming,
September 2007.

Florian Loitsch. Scheme to JavaScript Compilation. PhD
thesis, Université de Nice - Sophia Antipolis, March 2009.

Mike Ter Louw, Karthik Thotta Ganesh, and V. N.
Venkatakrishnan. AdJail: Practical Enforcement of Confi-
dentiality and Integrity Policies on Web Advertisements.
In USENIX Security Symposium, 2010.

S. Maffeis and A. Taly. Language-based Isolation of Un-
trusted Javascript. In CSF, pages 77–91. IEEE, 2009.

S. Maffeis, J.C. Mitchell, and A. Taly. An operational

semantics for JavaScript. In APLAS, volume 5356 of
LNCS, pages 307–325, 2008.

S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities
and isolation of untrusted web applications. In IEEE
Security and Privacy, 2010.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Kr-
ishnamurthi, and Matthias Felleisen. Continuations from
generalized stack inspection. In ICFP, pages 216–227,
2005.

A. Sabelfeld and A.C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Com-
munications, 21, 2003.

Andrei Sabelfeld and Andrew C. Myers. A model for
delimited information release. In Software Security -
Theories and Systems, Second Mext-NSF-JSPS Interna-
tional Symposium, ISSS 2003, Tokyo, Japan, November
4-6, 2003, Revised Papers, Lecture Notes in Computer
Science, pages 174–191, 2004.

S. Vinoski. Corba: Integrating diverse applications within
distributed heterogeneous environments. Communications
Magazine, IEEE, 35(2):46–55, 1997.

Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and Communication Abstractions for
Web Browsers in MashupOS. In SOSP ’07, pages 1–16,
2007. ISBN 978-1-59593-591-5.

