
Under consideration for publication in Math. Struct. in Comp. Science

Non-Disclosure for Distributed Mobile Code

Ana Almeida Matos and Jan Cederquist

Instituto de Telecomunicações and Instituto Técnico de Lisboa

Received 23 June 2010

With the emergence of the new possibilities offered by global computing, new security

issues follow from the fact that those possibilities can just as well be exploited by parties

with hazardous intentions. Many attacks arise at the application level, and can be

tackled by means of programming language techniques. For instance, confidentiality can

be violated during the execution of programs that reveal secret information. This kind of

program behavior can be avoided by information flow analyses that detect the encoding

of illegal flows.

This paper studies information flows that occur in distributed programs with code

mobility, in a language-based security perspective. New forms of security leaks that are

introduced by code mobility, which we call migration leaks, are presented and compared

to well-known forms of illegal flows. We propose an information flow property that is

adequate for networks, consisting of a generalization of the non-disclosure policy. We

design a type and effect system for enforcing it on an expressive distributed calculus, and

explain a soundness proof methodology in detail.

1. Introduction

Protecting confidentiality of data is a concern of particular relevance in a global comput-

ing context. When information and programs move throughout networks they become

exposed to users with different interests and responsibilities. This motivates the search

for practical mechanisms that enforce respect for confidentiality of information, while

minimizing the need to rely on mutual trust. Access control deals with an important

part of the problem, but not with the whole, since it is not concerned with how informa-

tion may flow between the different parts of a system. Surprisingly, very little research

has been done on the control of information flow in explicitly distributed networks. In

fact, to the best of our knowledge, this work is the first to address the problem in an

imperative setting where mobility of resources plays an explicit role.

This paper is concerned with the insurance of confidentiality in networks. More specif-

ically, it is about controlling information flows between subjects that have been given

different security clearances, in the context of a distributed setting with code mobility. In

such a setting, one cannot assume resources to be accessible by all programs at all times.

In fact, a network can be seen as a collection of sites where conditions for computation

to occur are not guaranteed by one site alone. Could failures be exploited as covert in-

A. Almeida Matos and J. Cederquist 2

formation flow channels? The answer is Yes. New security leaks, that we call migration

leaks, arise from the fact that execution or suspension of programs now depend on the

position of resources over the network, which may in turn depend on secret information.

We take a language based approach (Sabelfeld & Myers 2003), thus restrict our concern

to information leaks occurring within computations of programs of a given language.

These can be statically prevented by means of a type and effect system (Volpano, Smith

& Irvine 1996, Lucassen & Gifford 1988), by rejecting insecure programs before execution.

As is standard, we attribute security levels to the objects of our language (memory

addresses), and have them organized into a lattice (Denning 1976). Since confidentiality

is the issue, these levels indicate to which subjects the contents of an object are allowed

to be disclosed. Consequently, during computation, information contained in objects of

“high” security level (let us call them “high objects”) should never influence objects

of lower or incomparable level. This policy has been widely studied and is commonly

referred to as non-interference (Goguen & Meseguer 1982). In a more general setting,

where the security lattice may vary within a program, non-disclosure (Almeida Matos &

Boudol 2005) can be used instead, thus requiring that each step performed by a thread

complies with its current flow policy.

We consider a calculus for mobility where the notion of location of a program and of

a resource has an impact on computations: resources and programs are distributed over

computation sites – or domains – and can change position during execution; accesses to

a resource can only be performed by a program that is located at the same site; remote

accesses (i.e., attempts to access resources that are currently not local) are suspended

until the resources become available. The language of local computations is an imperative

higher-order λ-calculus with concurrent threads, to which we add a standard migration

primitive. We include a flow declaration construct (Almeida Matos & Boudol 2005) that

provides the programmer with means to declare local flow policies for concurrent threads,

allowing in particular to declassify information, that is to explicitly allow certain informa-

tion leaks to occur in a controlled way (find an overview in (Sabelfeld & Sands 2005)). We

show that mobility and declassification can be safely combined provided that migrating

threads compute according to declared flow policies.

The security properties we have at hand, designed for local computations where the

notion of locality does not play a crucial role, are not suitable for treating information

flows in a distributed setting with code mobility. In fact, since the location of resources in

a network can be itself a source of information leaks, the notion of safe program must take

this into account. We therefore propose a new security property, non-disclosure for net-

works, that can detect migration leaks on states that track the positions of programs in a

network. Very much in the spirit of non-disclosure, security insurances regard distributed

local flow policies, which is a crucial aspect of the decentralized nature of networks.

1.1. Contributions

This paper is based on the conference article (Almeida Matos 2005), as well as on the

author’s PhD thesis (Almeida Matos 2006). The main contributions are:

— The formalization of a flexible information flow policy, that directly generalizes non-

Non-Disclosure for Distributed Mobile Code 3

interference and non-disclosure (Almeida Matos & Boudol 2005) to distributed set-

tings with code mobility. We call the property non-disclosure for networks.

— The identification of a new kind of security leak, that we call migration leaks, that

are specific to distributed settings with code mobility. The belief that such leaks are

not limited to the particular language that is presented here is supported by a short

discussion about a study of non-interference for Boxed Ambients (Crafa, Bugliesia &

Castagna 2002).

— The presentation of a new type and effect system for enforcing that property. Be-

sides extending the one in (Almeida Matos & Boudol 2005) to a distributed setting,

when stripped of the conditions and parameters that tackle the networking issues,

it provides an alternative way of enforcing non-disclosure in general, by restricting

information leaks to occur within the boundaries of the flow declarations.

— A detailed presentation of the soundness proof, supported by remarks that give a

rationale to the most important steps. The aim is to provide sufficient explanations

to guide the reader in using the same proof mechanism in other settings.

Outline of the paper The paper is organized as follows: In the next section we provide

intuitions on the main questions that we attempt to answer in this paper. In Section 3 we

define a distributed calculus with code and resource mobility. In Section 4 we formulate

a non-disclosure property that is suitable for a decentralized setting. In Section 5 we

develop a type and effect system that only accepts programs satisfying such a property.

Finally, we comment on related work in Section 6 and then conclude.

2. Motivation

The main question that we aim to answer in this paper is Why does code mobility pose

new challenges regarding the security of information flow? We provide some intuitions

in this section, and discuss briefly what is the desirable information flow property to be

enforced, as well as how declassification can fit into the picture.

2.1. Information Leaks

To start with, let us consider a sequential imperative language, such as the one in

(Volpano et al. 1996), where each variable is assigned one of two security levels, low

(public, L) and high (secret, H), meaning that the information they refer to can only

be read by subjects with the corresponding security clearance. The variables’ security

levels are specified using subscripts. Some programs in our language are said to set up

insecure flows of information, or interferences, during their execution. The reason why

they are considered insecure is that the initial values of high variables may influence the

final value of low variables, thus breaking the intended meaning of the security levels.

The simplest case of insecure flow occurs in an assignment of the value of a high

variable to a low variable, as in bL := aH , which encodes a direct leak of information.

More subtle leaks may be induced by the choice of control paths (control leaks), as in

A. Almeida Matos and J. Cederquist 4

the program

if aH = tt then bL := tt else bL := ff (1)

where at the end of execution the value of bL may contain information about aH . Other

programs may be considered secure as long as they appear in a sequential setting, as for

example the program

(while aH = tt do nil); bL := ff (2)

since whenever it terminates it produces the same value ff for bL. However, in a con-

current setting, this piece of code can be used in the following program, that always

terminates, and where the final value of bL reflects the initial value of the high variable

cH when aH and a′
H are initially assigned tt :

if cH = tt then aH := ff else a′
H := ff ||

(while aH = tt do nil); bL := ff ; a′
H := tt ||

(while a′
H = tt do nil); bL := tt ; aH := ff

(3)

The insecure flow that occurs here is usually called a termination leak, since it results

from the “termination behavior” of a portion of the program.

In a sequential setting it makes sense to look only at the output values that a program

may give, thus ignoring all its non-terminating computations. In fact, only the output

values of terminating computations can be used by other programs that are sequentially

composed with that program. Furthermore, if a computation enters a non-terminating

loop, it is not possible for other programs to interrupt the loop since they will never get

their turn to execute. However, as we’ve just seen, this is no longer true in a concurrent

setting, which indicates that the context in which a program appears is important to

consider the secureness of its execution.

2.1.1. Migration Leaks Here we are interested in the context of a distributed setting with

code mobility, where programs are distributed over computation sites, and the possibility

of execution or failure of programs cannot be guaranteed by one domain alone – it might,

for instance, depend on their location. In order to understand the information flows that

arise in such a setting, let us further enrich our simple concurrent language with the

minimum features that enable us to simulate code mobility in a network.

Suppose that threads are named, where Mn denotes a thread M named n, and that

they are placed in domains to execute. The position of each thread in a network is given

by a special “location-variable” (for a thread n it is denoted by pos(n)), so that migration

is obtained by assigning a new domain name to such variables: pos(n) := d now means

that the thread n migrates to domain d (unless the value is already d, which means that

it is already there). Furthermore, let us assume that the location-variable pos(n) can only

be written by thread n (i.e. migration is self-inflected, or subjective). We will take the

simplest assumption that the value of the location-variable pos(n) can only be tested for

equality to the location of the thread that tests it, i.e., a thread located at d can only

test whether pos(n) = d. This means that a thread can only determine whether threads

are present in the domain it is in.

We can then write the following program, where a form of busy waiting (for the arrival

Non-Disclosure for Distributed Mobile Code 5

of the thread m) is unblocked, depending on the value of a high variable a (assuming

that initially we have pos(m) = d, pos(n1) = d1, and pos(n2) = d2):

(if aH = tt then (pos(m) := d1) else (pos(m) := d2))
m ‖

‖ (while pos(m) 6= d1 do nil); (bL := tt)
n1 ‖

‖ (while pos(m) 6= d2 do nil); (bL := ff)
n2

(4)

Then, depending on the value of the high variable a, different low assignments would

occur to the low variable b. The information leak that is set up by the above program is

hereby called a migration leak, since it follows from the “migrating behavior” of threads.

2.2. Choosing a Calculus for Global Computing

Most of the languages that have been the focus of studies on information flow are local in

the sense that resources are assumed to be accessible to all programs at all times. Such

an assumption does not hold in general for networks. In fact, a network can be seen as a

collection of computation sites – domains – where resources are only accessible by local

programs, and failures can be generated by attempts to access remote resources. In order

to study the problem of whether these forms of failures can give rise to information leaks

like the one in Example (4), we will consider a language where the notion of location of

a program and of a resource has an impact on computations.

The design of network models is a whole research area in itself, and there exists a wide

spectrum of calculi that focus on different aspects of mobility (Sekiguchi & Yonezawa

1997, Dal Zilio 2001). Here we are interested in a general and simple framework that

addresses the unreliable nature of resource access in networks, as well as trust concerns

that are raised when computational entities follow different security orientations. We

will then adopt the “take-away type” of Sekiguchi and Yonezawa and allow references

to move together with the threads that own them, by means of a standard migration

primitive that we include in our language. We also assume that accesses to a reference

can only be performed by a program that is located at the same site; however, inspired by

ULM (Boudol 2004), remote accesses are suspended (without failure) until the references

become available.

To illustrate the suspensive nature of reference access in the language that is studied

in the next section, a read access (that is the dereference) to a reference named a, is

denoted ‘(? a)’ while a write access to a, where a value V is assigned to it, is denoted

‘(a :=? V)’. If we consider a to belong to thread m, and that the access is performed at

the domain d, then the behavior of each of the above constructs is similar to preceding

the read or write operation by:

(while pos(m) 6= d do nil) (5)

This should give an intuition on how migration leaks as the one in Example (4) can be

encoded in our language (see Section 4).

A. Almeida Matos and J. Cederquist 6

2.3. Security Property

The non-interference property, which states the total absence of insecure flows during the

execution of a program, has been studied extensively (Cohen 1977, Goguen & Meseguer

1982, Sabelfeld & Myers 2003), and is still of theoretical interest due to its simple and

elegant properties. However, it relies on the notion of a unique static security lattice

that holds for the entire program, an assumption that is not reasonable in distributed

settings, which are intrinsically decentralized. The applicability of pure non-interference is

also impaired by the fact that it rejects programs that deliberately declassify information

from high security levels to lower ones, thus disabling the use of programs that are very

common and even unavoidable. A typical example is the ubiquitous password checking

procedure, which reveals a little bit of information to any user that happens to attempt

to “log-in”.

In order to accept programs that violate non-interference in a controlled way, one must

resort to a more flexible security property than non-interference. Among the various

proposed mechanisms for allowing declassification (Sabelfeld & Sands 2005) we find the

flow declaration construct (Almeida Matos & Boudol 2005), which is accompanied by a

direct generalization of non-interference called non-disclosure. Due to its flexibility, this

language construct gives the programmer complete power to dynamically declare different

flow policies to hold in different parts of the program. Non-disclosure then states that

each step performed by the program complies to the security policy that is declared

at that moment for the executing thread. This can be used to express permission for

declassification within the scope of such declarations at any point of the program, and

between any two security levels; in this perspective, information leaks are restricted to

occur within the lexical bounds of the flow declarations. Perhaps more interestingly, flow

declarations can naturally be used to express decentralized security policies.

As is often done for non-interference in concurrent settings (Focardi & Gorrieri 1995,

Sabelfeld & Sands 2000, Smith 2001, Boudol & Castellani 2002), non-disclosure is conve-

niently expressed using bisimulations. Dealing with small-step transitions (as opposed to

describing the final result of a computation) is a natural choice for addressing the local

nature of the flow declaration construct, since it suffices to label each transition with the

flow policy that is declared by the evaluation context in order to know what policy holds

for that particular step. For instance,

〈P, S〉 −→
F

〈P ′, S′〉 (6)

means that the program P changes state S into S′, under the flow policy F . Then, by

means of an appropriate bisimulation, it becomes easy to express the idea that a program

is secure if at each step it satisfies non-interference with respect to the flow policy that

holds for each computation step.

Given the attractive qualities of non-disclosure and the flow declaration construct,

among which the possibility of allowing different threads to simultaneously express dif-

ferent flow policies is of particular interest here, we have introduced flow declarations in

our language (Section 3). The next step is to explore the generalizability of the property

to networks, i.e., to distributed settings with code mobility.

Non-Disclosure for Distributed Mobile Code 7

2.3.1. Non-disclosure for Networks Non-disclosure and other information flow properties

that we have at hand, designed for local computations, are not suitable for treating

information flows in a distributed setting with code mobility. Indeed, the notion of safe

program must reflect the fact that the location of references in a network can be itself a

source of information leaks. To this end, we extend the notion of state with a mapping

T that tracks the position of programs in a network.

Since the visibility of threads is a consequence of the possibility/impossibility of ac-

cessing any of its references, we associate to threads a security level that is a lower bound

to the levels of the references that it can own. We then extend the usual indistinguisha-

bility relation between memories into a more general one between states that track the

positions of programs in a network. In this way, it becomes easy to generalize the usual

bisimulation to one that is defined on a small-step semantics with transitions of the form:

〈P, T, S〉 −→
F

〈P ′, T ′, S′〉 (7)

The formalization of non-disclosure is then based on such bisimulations (Section 4).

3. An Imperative Mobile λ-Calculus

In our computation model, a network consists of a number of domains, places where local

computations occur independently. Threads may execute concurrently inside domains,

create other threads, and migrate to another domain. They can own and create a mem-

ory space, a store that associates values to references, which are addresses of memory

containers. These stores move together with the thread they belong to, which means that

threads and their local references are, at all times, located in the same domain. However,

a thread need not own a reference in order to access it. Read and write operations on

references may be performed if and only if the corresponding memory location is present

in the domain (otherwise they are implicitly suspended). We now present the language

we will use for studying the security issues introduced by code mobility.

3.1. Syntax

The language of expressions is a higher-order λ-calculus that includes the imperative

constructs of ML (Milner, Tofte, Harper & MacQueen 1997, Wright & Felleisen 1994),

conditional branching and booleans values, as well as thread and reference creation. It

also includes a declassification mechanism, and is enriched with a notion of domain and

a basic mobility primitive. We now define the syntax of security annotations, types,

expressions and networks (configurations). Their definitions can be found on Figures 1,

2 and 3.

3.1.1. Security Annotations and Types We assume given a set Pri of all the principals

in the system, denoted by p, q. A security level l, j, or k is then a subset of Pri (see

Figure 1). They are apparent in the syntax as they are associated to references (and

reference creators), as well as to threads (and thread creators). The security level of

A. Almeida Matos and J. Cederquist 8

Principals p, q ∈ Pri

Security Levels l, j, k ⊆ Pri

Flow Policies F, G ⊆ Pri × Pri

Thread Identifiers m̌, ň ∈ ˇNam

Effects s ::= 〈l, l, l〉

Type Variables t

Types τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl,m̌j
| τ

s
−−−→
G,m̌j

σ

Fig. 1. Syntax of Security Annotations and Types

Variables x, y ∈ Var

Domain Names d ∈ Dom

Thread Names m, n ∈ Nam

Reference Identifiers u, v ∈ Ref

Reference Names a, b, c ::= mj .u

Decorated Thread Names ::= mj

Decorated Reference Names ::= al,θ

Values V ∈ Val ::= () | x | al,θ | (λx.M) | tt | ff

Pseudo-values W ∈ Pse ::= V | (%x.W)

Expressions M, N ∈ Exp ::= W | (M N) | (M ; N) |

(ref l,θ M) | (? N) | (M :=? N) |

(if M then Nt else Nf) |

(threadl M) | (flow F in M) |

(goto d)

Fig. 2. Syntax of Expressions

Threads ::= Mmj (∈ Exp × Nam × 2Pri)

Pool of Threads P : (Nam × 2Pri) → Exp

Position-Tracker T : (Nam × 2Pri) → Dom

Store S : (Nam × 2Pri × Ref × 2Pri ×Typ) → Val

Networks X, Y ::= d[P, S] | X ‖ Y

Configurations ::= 〈P, T, S〉

Fig. 3. Syntax of Configurations

Non-Disclosure for Distributed Mobile Code 9

a reference is to be understood as the set of principals that are allowed to read the

information contained in that reference.

A flow policy F is a set of pairs of principals, where a pair (p, q) ∈ F , most often

written p ≺ q, is to be understood as “information may flow from principal p to principal

q”, that is, more precisely, “everything that principal p is allowed to read may also be

read by principal q”.

Types and effects are apparent in the syntax of the language. Their syntax is given in

Figure 1, and will be explained in Section 5. These annotations do not play any role in

the operational semantics, but are used for the purpose of proving type soundness.

3.1.2. Expressions The syntax of expressions is defined in Figure 2. We assume given four

disjoint countable sets Dom 6= ∅, Nam , Var , and Ref . Names are given to domains

(d ∈ Dom), threads (m, n ∈ Nam) and references (a, b, c), which we also call addresses.

We add annotations (subscripts) to names: decorated thread names carry the threads

security level, while decorated reference names carry the references security level and the

type of the values that they can hold, as well as the security level of the thread that owns

them. Then, a decorated thread name mj consists of a pair made of a thread name m

and a security level j, while a decorated reference name mj .ul,θ
is a 5-tuple made of a

thread name m, its security level j, a reference identifier u, a type θ and a security level

l. References are lexically associated to the threads that create them: they are of the

form mj .u, where u is an identifier given by the thread. Thread and reference names can

be created at runtime. In the following we may omit subscripts whenever they are not

relevant, following the convention that the same name has always the same subscript.

Values, ranged over by V ∈ Val , are special expressions that cannot compute, and

include: the command () that does nothing; the function abstraction (λx.M) with body

M and parameter x; the boolean values tt and ff . The construct (%x.W), which binds the

occurrences of x in the pseudo-value W , is used to express recursive values – it recursively

executes the result of applying (λx.W) to itself.

The set Exp of expressions, ranged over by M, N , includes: the application (M N) that

applies the function that results from computing M to the result of the computation of N ;

the conditional (if M then Nt else Nf) that executes Nt or Nf depending on whether the

computation of M renders tt or ff ; the sequential composition (M ; N) that executes N

after the execution of M has terminated; the dereferencing operation (? M) that, after

M has executed and returned a decorated reference name, returns the value that the

reference points to; the assignment (M :=? N) of the value returned by the computation

of N to the decorated reference name returned by the computation of M (the notation ‘?’

indicates the fact that these operations are potentially suspensive, when the reference that

is being read or written to, respectively, is not accessible); the thread creator (thread M),

that spawns the thread M , that is to be executed concurrently, and returns (); the

migration construct (goto d), where d is a domain name, that triggers the migration

of the thread that executes the migration operation to the domain d; finally, the flow

declaration construct (flow F in M), where F is a flow policy, and M is any expression

of the language, that has the same behavior as M .

Other useful commands can be derived from the above expressions. For example, we can

A. Almeida Matos and J. Cederquist 10

write the let construct (let x = N in M) as ((λx.M) N). We can write recursive functions

as (%f.(λx.M)), close to (let rec f = (λx.M) in f) written in an ML-like notation. We

denote by loop the expression (%x.x). We may encode while loops in the following standard

way:

(while M do N)
def
= ((%y.(λx.(if M then (N ; (y x)) else x))) ()) (8)

We do not derive sequential composition, as well as other imperative features, from the

functional part of the language for typing reason (as in (Almeida Matos & Boudol 2005,

Boudol 2005b)).

3.1.3. Networks and Configurations We define stores S, that map decorated reference

names to values, and threads, which are named expressions Mmj (the names are deco-

rated). Threads run concurrently in pools P , which are mappings from decorated thread

names to expressions (they can also be seen as sets of threads). Networks are flat juxta-

positions of domains, each containing a store and a pool of threads. Thread and domain

names are assumed to be distinct; furthermore, references are assumed to be located at

the same domain as the thread that owns them (the owner thread’s name is a prefix of

the reference’s name) and to always have the same decorations.

Notice that networks are in fact just a collection of threads and owned references that

are running in parallel, and whose executions depend on their relative location. To keep

track of the locations of threads and references it suffices to maintain a mapping from

thread names to domain names. This is the purpose of T , a position-tracker, which is a

mapping from a finite set of decorated thread names to domain names. Together with

the pool P containing all the threads in the network, and the store S containing all

the references in the network, they form configurations 〈P, T, S〉, on which the reduction

relation is defined in the next subsection. More precisely, given a set D of domain names

in a network, we obtain a configuration of the form 〈P, T, S〉 from a network d1[P1, S1] ‖

· · · ‖ dn[Pn, Sn], where:

— T = {mj 7→ d1|Mmj ∈ P1} ∪ · · · ∪ {mj 7→ dn|Mmj ∈ Pn},

— P = P1 ∪ · · · ∪ Pn, and

— S = S1 ∪ · · · ∪ Sn.

3.2. Semantics

We now define the semantics of the language as a small step operational semantics on

configurations. To this end, we give some useful notations and conventions. We then

describe the transitions on configurations, that are based on evaluation contexts, and

state some properties of the semantics.

3.2.1. Basic Sets and Functions Given a configuration 〈P, T, S〉, we call the pair (T, S)

the state of the configuration. We define dom(T), dom(P) and dom(S) as the sets of

decorated names of threads and references that are mapped by T , P and S, respectively.

We say that a thread or reference name is fresh in T or S if it does not occur, with any

subscript, in dom(T) or dom(S), respectively. We denote by tn(P) and rn(P) the set of

Non-Disclosure for Distributed Mobile Code 11

decorated thread and reference names, respectively, that occur in the expressions of P

(this notation is extended in the obvious way to expressions). Furthermore, we overload

tn and define, for a set R of reference names, the set tn(R) of thread names that are

prefixes of the names in R.

We restrict our attention to well formed configurations 〈P, T, S〉 that satisfy the fol-

lowing conditions for stores, values stored in stores, and thread names: rn(P) ⊆ dom(S);

al,θ ∈ dom(S) implies rn(S(al,θ)) ⊆ dom(S); dom(P) ⊆ dom(T); tn(dom(S)) ⊆ dom(T);

all threads in a configuration have distinct names; and, all occurrences of a name in a

configuration are decorated in the same way.

We denote by {x 7→ W}M the capture avoiding substitution of W for the free occur-

rences of x in M . The operation of adding or updating the image of an object z to z′ in

a mapping Z is denoted [z := z′]Z.

3.2.2. Evaluation Contexts and Flow Contexts In order to define the evaluation order,

it is convenient to write expressions using evaluation contexts. We write E[M] to denote

an expression where the subexpression M is placed in the evaluation context E, obtained

by replacing the occurrence of [] in E by M . The evaluation contexts of the language

define a call-by-value evaluation order (see Figure 4). Intuitively, the expressions that are

placed in such contexts are to be executed first. Evaluation is not allowed under threads

that have not yet been created.

The analysis of whether the information flows that occur in M are to be allowed will

depend on the flow policies that are declared in the evaluation context where M is ex-

ecuted (see next section). We denote by dEe the flow policy that is permitted by the

evaluation context E. It collects all the flow policies that are declared using flow declara-

tion constructs into one single flow policy, using set union. The other evaluation contexts

do not affect the flow policy of the context. We then obtain the following definition:

Definition 3.1 (Flow Policy Declared byan EvaluationContext). The flow policy

declared by the evaluation context E is given by dEe where:

d[]e = ∅, d(flow F in E)e = F ∪ dEe,

dE′[E]e = dEe, if E′ does not contain flow declarations

3.2.3. Small Step Semantics The transitions of our (small step) semantics are defined

between configurations. The evaluation rules are defined in Figure 5. We start by defining

the transitions of a single thread (we omit the set-brackets for pools that are singletons).

These are decorated with the thread Nnk that is possibly spawned during that transition,

where Nnk = () if no thread is created. The last three rules use the information contained

in the label to add any spawned threads to the pool of threads. By the last rule we can

see that the execution of a pool of threads is compositional.

The transitions are also decorated with the flow policy that is declared by the evalua-

tion context where they are performed – see Figure 5. You may however observe that the

transitions do not depend on the flow label F that decorates them. These labels are mere

annotations to be used later during the security analysis. The evaluation of (flow F in M)

A. Almeida Matos and J. Cederquist 12

Evaluation Contexts E ::= [] | (E N) | (V E) | (E; N) |

(ref l,θ E) | (? E) | (E :=? N) | (V :=? E) |

(if E then Nt else Nf) | (flow F in E)

Fig. 4. Evaluation Contexts

〈E[((λx.M) V)]mj , T, S〉
()

−−→
dEe

〈E[{x 7→ V }M]mj , T, S〉

〈E[(if tt then Nt else Nf)]mj , T, S〉
()

−−→
dEe

〈E[Nt]
mj , T, S〉

〈E[(if ff then Nt else Nf)]mj , T, S〉
()

−−→
dEe

〈E[Nf]mj , T, S〉

〈E[(V ; N)]mj , T, S〉
()

−−→
dEe

〈E[N]mj , T, S〉

〈E[(%x.W)]mj , T, S〉
()

−−→
dEe

〈E[{x 7→ (%x.W)}W]mj , T, S〉

〈E[(flow F in V)]mj , T, S〉
()

−−→
dEe

〈E[V]mj , T, S〉

T (nk) = T (mj)

〈E[(? nk.ul,θ)]
mj , T, S〉

()
−−→
dEe

〈E[V]mj , T, S〉
, where S(nk.ul,θ) = V

T (nk) = T (mj)

〈E[(nk.ul,θ :=? V)]mj , T, S〉
()

−−→
dEe

〈E[()]mj , T, [nk.ul,θ := V]S〉

〈E[(refl,θ V)]mj , T, S〉
()

−−→
dEe

〈E[al,θ]
mj , T, [al,θ := V]S〉, a = mj .u fresh in S

〈E[(threadk N)]mj , T, S〉
Nnk

−−−→
dEe

〈E[()]mj , [nk := T (mj)]T, S〉, n fresh in T

〈E[(goto d)]mj , T, S〉
()

−−→
dEe

〈E[()]mj , [mj := d]T, S〉

〈{Mmj }, T, S〉
()
−→
F

〈{M ′mj }, T ′, S′〉

〈{Mmj }, T, S〉 −→
F

〈{M ′mj }, T ′, S′〉

〈{Mmj }, T, S〉
Nnk

−−−→
F

〈{M ′mj }, T ′, S′〉

〈{Mmj }, T, S〉 −→
F

〈{M ′mj , Nnk}, T ′, S′〉

〈P, T, S〉 −→
F

〈P ′, T ′, S′〉 〈P ∪ Q, T, S〉 is well formed

〈P ∪ Q, T, S〉 −→
F

〈P ′ ∪ Q,T ′, S′〉

Fig. 5. Semantics

Non-Disclosure for Distributed Mobile Code 13

simply consists in the evaluation of M , annotated with a flow policy that comprises (in

the sense of set inclusion) F . The lifespan of the flow declaration terminates when the ex-

pression M that is being evaluated terminates (that is, M becomes a value); in this final

step, the declared flow policy is irrelevant, and therefore discarded. These annotations

express that the flows declared in F are allowed to occur during the execution of M .

Notice that we can easily declare two concurrent threads to have different flow policies:

d[{(flow F1 in M1)
m1 , (flow F2 in M2)

m2}, S] (9)

The evaluation of the following expressions depends only on the expressions themselves:

the application of a function with parameter x and body M to a value V returns the

substitution of all free occurrences of x in M by V ; a conditional with a test on a boolean

value V and branches Nt and Nf returns Nt if the value is tt and Nf if the value is ff ;

the sequential composition of a value and an expression N renders N (the value is not

used by this form of composition, and is therefore discarded); the fix point of a pseudo-

value W bound by x results in the substitution of the free occurrences of x in W by the

expression itself.

The evaluation of some expressions might depend on and change the store: the creation

of a reference of level l and type θ containing the value V returns a reference with a name

that does not occur so far in the store (say a), and adds the pair ((a, l, θ), V) to the store;

the dereferencing of a reference, if it is not suspended, returns the value to which the

reference is mapped; the assignment of a value V to a reference al,θ, if it is not suspended,

returns () and updates the store by replacing any occurrence of a pair ((a, l, θ), V ′) (where

V ′ is the old value of a) by ((a, l, θ), V).

The relation between these operations and the position-tracker is the following: when

a reference is created by a thread m, it is named with a fresh name m.u after the parent

thread, for some fresh reference identifier u; the dereference and assignment of a reference

that belongs to a thread named n is only performed by a thread named m if m and n

are both located at the same domain; when a thread is created, its new fresh name and

position is added to the position-tracker; when the (goto d) statement is executed by a

thread m, the position of m in the position-tracker is updated to d.

Summing up, the name of the thread is used in the following rules: for the creation

of a reference, which is named after the parent thread; when a new thread is created,

and attached to a domain (namely the parent’s one); and, in accesses (read or write)

to references, which can only be performed if the accessing thread and the reference are

placed in the same domain, as pointers to the position of the corresponding threads.

When a new thread is created, the flow policy that is permitted by the evaluation

context of the parent thread is not kept (differently from (Almeida Matos & Boudol

2005)). We thus leave open the option of declaring a more permissive flow policy for the

thread that is created.

3.2.4. Properties of the Semantics One can prove that the semantics preserves the con-

ditions for well-formedness. Furthermore, a configuration with a single expression has at

most one transition, up to the choice of new names.

Next we show a simple but crucial property of the semantics, pinpointing the situa-

A. Almeida Matos and J. Cederquist 14

tions in which two computations of the same thread can split, that is can yield different

threads. Apart from the situations in which two distinct fresh references or thread names

are created, this can only occur if the expression is about to read a reference that is

given different values by the memories in the starting configurations. More precisely, the

following result states that, if the evaluation of a thread Mmj differs in the context of two

distinct states while not creating two distinct reference names or thread names, this is

because Mmj is performing a dereferencing operation, which yields syntactically different

results depending on the memory.

Lemma 3.2 (Splitting Computations).

Suppose that 〈Mmj , T1, S1〉
Nnk

−−−→
F

〈M1
′mj , T ′

1, S
′
1〉 and 〈Mmj , T2, S2〉

N ′nk

−−−→
F ′

〈M2
′mj , T ′

2, S
′
2〉

with M1
′mj 6= M2

′mj , dom(T ′
2 −T2) = dom(T ′

1 −T1) and dom(S′
2 −S2) = dom(S′

1 −S1).

Then, Nnk = () = N ′nk , and there exist E and al,θ such that F = dEe = F ′, M =

E[(? al,θ)], M ′
1 = E[S1(al,θ)] and M ′

2 = E[S2(al,θ)] with 〈T ′
1, S

′
1〉 = 〈T1, S1〉, 〈T

′
2, S

′
2〉 =

〈T2, S2〉 and S1(al,θ) 6= S2(al,θ).

Proof. By case analysis on the transition 〈Mmj , T1, S1〉
Nnk

−−−→
F

〈M1
′mj , T ′

1, S
′
1〉. Note

that the only rule where the state is used is that for E[(? al,θ)].

Notice that the inequalities M1
′mj 6= M2

′mj and S1(al,θ) 6= S2(al,θ) are strictly syntactic.

The conditions dom(T ′
2 − T2) = dom(T ′

1 − T1) and dom(S′
2 − S2) = dom(S′

1 − S1) allow

us to ignore the differences in the programs M ′
1 and M ′

2 that might result from the

non-deterministic choice of new names.

4. The Non-disclosure Policy for Networks

In this section we formally define non-disclosure for networks. We start by defining the

security pre-lattices in terms of a flow relation that is parameterized by the context’s

flow policy, and discuss the meaning of a “thread flow policy”; then we exhibit an indis-

tinguishability relation on states and give a bisimulation definition of non-disclosure for

networks; finally, we justify the security property with examples and give some properties

of secure programs.

4.1. Security (Pre-)Lattices

So far we have considered in our examples the simple case where only two security levels

are at hand – high and low. However, our explanations can be extended to a setting with

an arbitrary number of security levels. It is standard to let security levels form a lattice

(Bell & La Padula 1976, Denning 1976), which are based on partial order relations (reflex-

ive, transitive and anti-symmetric), and have the property that any two of its elements

have a (unique) least upper-bound and a (unique) greatest lower-bound, upon which the

(unique) meet and join operations are defined. However, the uniqueness property is not

crucial here. Instead, we choose to deal with pre-lattices, that are analogously based on

preorder relations (reflexive, transitive but not necessarily anti-symmetric). We now give

Non-Disclosure for Distributed Mobile Code 15

the formal definition of the specific pre-lattices that we use in our framework, and of the

adopted meet and join operators.

4.1.1. Concrete Security Pre-Lattices Having confidentiality in mind, we view security

levels of objects as a specification of who is authorized to read information contained

in them, representing read-access rights to references (as in access control lists). This is

apparent in the syntax of our language, where we have seen that security levels j, k, l are

sets of principals p, q ∈ Pri . Our aim is then to insure that information contained in a

reference al1 (omitting the type annotation) does not leak to another reference bl2 that

gives a read access to an unauthorized principal p, i.e., such that p ∈ l2 but p /∈ l1. From

this point of view, given a set Pri of principals, an object labeled Pri (also denoted ⊥)

is a most public one – every principal is allowed to read it –, whereas the label ∅ (also

denoted >) indicates a secret object, so secret that no principal is allowed to read it. One

can easily see that given a set Pri of principals, the pair (2Pri ,⊇) is a lattice, where the

meet and join are set union and intersection, respectively.

So far we have considered the case of a flat structure of principals, assuming no com-

munication between them. One might however wish to express that whatever principal

p can read, also principal q can. This is done by means of flow policies, which are sets of

such statements. As we have seen, a flow policy is represented in our setting as a binary

relation over Pri . We let F , G range over such relations, where a pair (p, q) ∈ F , often

written p ≺ q, is to be understood as “information may flow from principal p to principal

q”, that is, more precisely, “everything that principal p is allowed to read may also be

read by principal q”. We denote, as usual, by F ∗ the reflexive and transitive closure of F .

We will now see how the above lattice (2Pri ,⊇) can be customized by means of relations

on principals, by defining the preorder on security levels �F that is determined by the

flow policy F . For this purpose we use the notion of F -upward closure of a security level

l, defined as l ↑F = {q | ∃p ∈ l. p F ∗ q}. The F -upward closure of l contains all the

principals that are allowed by the policy F to read at level l. We can now derive (as in

(Myers & Liskov 1998, Almeida Matos & Boudol 2005)) a more permissive flow relation

�F , such that

l1 �F l2

is defined as

∀q ∈ l2 . ∃p ∈ l1 . (p, q) ∈ F ∗ (10)

or, equivalently, as

(l1 ↑F) ⊇ (l2 ↑F) (11)

and use it to define the pre-lattice that is determined by a flow policy. Notice that �F

extends ⊇ in the sense that �F is larger than ⊇ and that �∅ = ⊇.

Definition 4.1 (Security Pre-lattice). Given a set Pri of principals and a flow policy

F in Pri × Pri , the pair (2Pri ,�F) is a security pre-lattice, where meet (fF) and join

(gF) are given respectively by the union and intersection of the F -upward closures with

A. Almeida Matos and J. Cederquist 16

respect to F :

l1 fF l2 = l1 ∪ l2 l1 gF l2 = (l1 ↑F) ∩ (l2 ↑F)

We will use the mechanism of extending the flow relation with a flow policy F in the

following way: if G is a global flow policy (i.e. a static security policy that holds in an

entire system), the information flows that are allowed to occur in an expression M placed

in a context E[] must satisfy the flow relation �G∪dEe.

4.1.2. Imposing a Flow Policy In a decentralized setting it is not straightforward to

imagine what the traditional notion of global flow policy should be, since it is unrealistic

to assume that all participants would agree on it. A practical and conservative approach

could be to assume the minimum global flow policy ∅, which clearly all security pre-

lattices satisfy. Nevertheless, for the sake of generality, we can admit the existence of

a global flow policy G that all participants comply to (e.g., in an environment where

F1, . . . , Fn are the relevant flow policies, G could be defined as any subset of
⋂

1≤i≤n F ∗
i),

and use it to parameterize the flow relation. Local flow policies can then be declared to

extend the global flow policies in a decentralized manner.

4.2. A Bisimulation-Based Definition

We now define our security property in terms of the above defined flow relation �F ,

where F is the current flow policy.

4.2.1. Low-equality “Low-equality” is an informal designation of an equality relation that

considers as indistinguishable two memories that coincide in their “low part”. The low

part of the memory is defined with respect to a flow relation �F and to a security level

l that is considered to be “low”, and consequently so are all levels lower than l with

respect to �F (both l and F are used as parameters).

As we will see towards the end of this section, in a distributed environment the position

of a thread in the network can reveal information about the values in the memory.

Furthermore, threads can detect each other’s presence by attempting to access other’s

references (they succeed if and only if the two are located at the same domain). Therefore,

threads that own low references can be seen as “low threads”, and their locations should

be the same in low-equal states. Our notion of low-equality is then extended to states,

and their low part is defined pointwise:

Definition 4.2 (Low Part of a State). The low part of a state 〈T, S〉 is composed of

the low part of a memory S and of the position-tracker T with respect to a flow policy

F and a security level l, which are given by:

T �F,l def
= {(nk, d) | (nk, d) ∈ T & k �F l}

S �F,l def
= {(ak,θ, V) | (ak,θ, V) ∈ S & k �F l}

We then say that two states are low-equal if they coincide (syntactically) in their low

part:

Non-Disclosure for Distributed Mobile Code 17

Definition 4.3 (Low-Equality). Low-equality between states 〈T1, S1〉 and 〈T2, S2〉

with respect to a flow policy F and a security level l is given by the conjunction of

the syntactic equalities between the low parts of memories S1 and S2 and of position-

trackers T1 and T2, with respect to the same security level and flow policy:

〈T1, S1〉 =F,l 〈T2, S2〉
def
⇔ T1 �F,l= T2 �F,l and S1 �F,l= S2 �F,l

In sum, two states are said to be low-equal if they have the same low-domain, and if

they give the same values to low references, and the same positions to low threads. This

relation is also transitive, reflexive and symmetric. We shall use the fact that:

Remark 4.4. F ⊆ F ′ and 〈T1, S1〉 =F ′,l 〈T2, S2〉 implies 〈T1, S1〉 =F,l 〈T2, S2〉

4.2.2. The Security Property We will design a bisimulation to express the requirement

that two networks are to be related if they show the same behavior on the low part of

any two low-equal states. Then, if a network is shown to be bisimilar to itself, one can

conclude that during its computation, the high part of a state cannot interfere with its

low part, i.e., no security leak can occur. This idea will be used to define secure networks.

We now present a bisimulation for networks, defined between sets of threads P with

respect to a low security level and, since the notion of “being low” uses the flow relation

�G, the global flow policy G appears here as a parameter as well. We shall denote by �

the reflexive closure of the union of the transitions −→
F

, for all F .

Definition 4.5 ((G, l)-bisimulation). A (G, l)-bisimulation is a symmetric relation R

on sets of threads such that:

P1 R P2 & 〈P1, T1, S1〉 −→
F

〈P ′
1, T

′
1, S

′
1〉 & 〈T1, S1〉 =G∪F,l 〈T2, S2〉

and (∗) implies

∃T ′
2, P

′
2, S

′
2 . 〈P2, T2, S2〉 � 〈P ′

2, T
′
2, S

′
2〉 & 〈T ′

1, S
′
1〉 =G,l 〈T ′

2, S
′
2〉 & P ′

1 R P ′
2

where:

(∗) dom(S1
′) − dom(S1) ∩ dom(S2) = ∅ and dom(T1

′) − dom(T1) ∩ dom(T2) = ∅

The conditions dom(S1
′−S1)∩dom(S2) = ∅ and dom(T1

′−T1)∩dom(T2) = ∅ guarantee

that any reference or thread name that is possibly created by P1 does not conflict with

free names of P2. The absence of a condition on the flow policy of the matching move for

P2 enables all expressions that do not change the state to be bisimilar, independently of

the flow policy that is declared by their evaluation contexts.

When P1 performs a transition within the scope of the local flow policy F , it is allowed

to read low-references from the input state 〈T1, S1〉 according to the current flow policy

G∪F . Recall that these references are labeled with a security level l′ such that l′ �G∪F l.

As to the output states, they must be low-equal with respect to the global flow policy

G. By starting with pairs of memories that are low-equal “to a greater extent”, i.e.

that coincide in a larger portion of the memory, the condition on the behavior of the

program P2 becomes weaker. As a consequence, we can potentially relate more programs,

thus accepting more of them as being secure. This is where we generalizes classical non-

A. Almeida Matos and J. Cederquist 18

interference, where both low-equality conditions are established with respect to the global

flow policy.

The main difference between our non-disclosure definition and that of (Almeida Matos

& Boudol 2005) is that the position of low threads is treated as low-information. An-

other difference lies in the requirement that here the creation of new references must be

matched by both threads, due to the condition 〈T ′
1, S

′
1〉 =G,l 〈T ′

2, S
′
2〉 that requires the

domains to match. This means that freshly created references are observable, which can

be considered to address an unrealistic power of the observer. This option was taken in

order to gain some technical simplicity: our low-equality becomes an equivalence relation,

which simplifies the soundness proof.

Remark 4.6.

— For any G and l there exists a (G, l)-bisimulation, like for instance the set Val ×Val

of pairs of values.

— The union of a family of (G, l)-bisimulations is a (G, l)-bisimulation.

Consequently, there is a largest (G, l)-bisimulation, which is the union of all (G, l)-

bisimulations:

Notation 4.7 (≈G,l). The largest (G, l)-bisimulation is denoted ≈G,l.

One should observe that the relation ≈G,l is not reflexive. For instance, the insecure

expression (vB :=? (? uA)) is not bisimilar to itself if A 6�G B, since the low-equality

assumption between the two states under consideration does not guarantee that uA has

the same value in both. This is in fact the whole point of the security relation, since as

we can see from the following definition, it should only be “reflexive” with respect to

secure programs.

Definition 4.8 (Non-disclosure for networks with respect to G).

A pool of threads P satisfies the non-disclosure for networks policy (or is secure from

the point of view of non-disclosure for networks) with respect to the global flow policy

G if it satisfies P ≈G,l P for all security levels l. We then write P ∈ NDN (G).

Intuitively, our security property states that, at each computation step performed by

some thread in a network, the information flows that occur respect the global flow policy,

extended with the flow policy (F) that is declared by the context where the command is

executed. In order to motivate our definition, we will now exhibit examples of insecure

programs, focusing on those that set up migration leaks.

4.2.3. Examples of Insecure Programs In the following examples we assume again the

simplified setting with only two security levels H and L such that L � H . We denote,

as usual, references with security levels {H} or {L} simply by aH or bL, leaving out the

type and the brackets. For simplicity, here we omit the stores, as well as threads names

or levels whenever they are irrelevant.

The standard examples of direct leaks and of control leaks (see Subsection 2.1), which

Non-Disclosure for Distributed Mobile Code 19

in our language are written

(aL :=? (? bH)) (12)

(if (? aH) then (bL :=? tt) else (bL :=? ff)) (13)

do not satisfy non-disclosure for networks.

Using a bisimulation approach to security allows us to reject termination leaks, like

for instance

((if (? aH) then () else loop); (bL :=? tt)) (14)

where writing at level L depends on reading at level H . This is because one of the

branches that might result from the conditional (loop; (bL :=? tt)) cannot simulate the

other one ((); (bL :=? tt)) in its change of the low reference bl. Another example of a

termination leak that arises in higher-order settings is:

((? aH)(); (bL :=? tt)) (15)

Indeed, the dereferencing of the high reference aH can be seen as a “high test” that

might result in a terminating or non-terminating branch – take for instance, (λy.(λx.x))

or (λy.loop) as two possible values of aH in two low-equal memories. The application of

these functions to () unravels two expressions with different behaviors, as in the previous

example. Similarly, there is a termination leak in

(((λx.(x ())) (? aH)); (bL :=? tt)) (16)

since in one step we obtain Example (15).

The bisimulation we use is named “strong” as in (Sabelfeld & Sands 2000) (not in

the sense as Milner’s CCS), since each time a transition is matched, we restart the

bisimulation game by comparing the resulting pools of threads in the context of any

new low-equal memories, rather than continuing with the resulting configurations. This

allows us to detect an illegal flow in:

d1[(if (? wX) then ((while (? wX) do ()); (vL :=? (? uH))) else ()), S1] (17)

which, in the case that S1(wX) = tt can be unraveled by other programs that execute

concurrently in the pool of threads, or even in another site:

d2[((goto d1); (wX :=? ff)), S2] (18)

This demanding definition for bisimulations seems therefore appropriate for dealing with

mobile code scenarios, where the shared memory of a system of threads can be modified

by incoming code.

Insecure migrations

We will now see examples of how information about the position of a thread in a

network is accessible via the references that the thread owns. This suggests that the

security level of that information should be a lower bound to the levels of the threads’

references. This is how we will obtain the security level that is associated to the threads’

names (in the next section).

A. Almeida Matos and J. Cederquist 20

Suspension on an access to an absent reference can be unblocked by other threads.

This allows us to write a program that is similar to Example (3), where non-termination

is encoded by a suspended access and unblocked by migration:

d[(if aH then (goto d1) else (goto d2))
nk] ‖

d1[((nk.x> :=? 0); (m1j1 .yL
:=? 1))

m1j1] ‖

d2[((nk.x> :=? 0); (m2j2 .yL
:=? 2))

m2j2]

(19)

Then, depending on the value of the high reference aH , different low assignments would

occur to the low references m1.yL and m2.yL. The same example can show a potential

leak of information about the positions of the threads m1 and m2 via their own low

references m1.yL and m2.yL.

An analogous but more direct example shows that the mere arrival of a thread and its

references to another domain might trigger a suspended low assignment:

d[(if aH then (goto d1) else (goto d2))
nk] ‖

d1[(nk.yL :=? 1)
m1j1] ‖

d2[(nk.yL :=? 2)
m2j2]

(20)

The previous examples show how migration of a thread can result in an information

leak from a high reference to a lower one via an “observer” thread. It is the ability of the

observer thread to detect the presence of the first thread that allows the leak. However,

one must also prevent the thread itself from revealing information about its own position,

like by performing a low assignment following a remote assignment

d[((n.u> :=? 0); (bL :=? 0))
mH

] (21)

or a remote dereference

d[((? n.u>); (bL :=? 0))
mH

] (22)

or when the low assignment itself is remote:

d[(bL :=? 0)
mH

] (23)

4.3. Properties of Secure Programs

Security is compatible with composition by set union:

Proposition 4.9 (Compositionality).

P ∈ NDN (G) and Q ∈ NDN (G) implies (P ∪ Q) ∈ NDN (G)

Proof. If S1 is a (G, l)-bisimulation such that P S1 P and S2 is a (G, l)-bisimulation

such that Q S2 Q, then S = S1 ∪S2 is a (G, l)-bisimulation such that (P ∪Q) S (P ∪Q).

Non-Disclosure for Distributed Mobile Code 21

4.3.1. Operationally High Threads There is a class of threads that have the property of

never performing any change in the low part of the state. These are classified as being

“high” according to their behavior†:

Definition 4.10 (Operationally High Threads). A set H of threads is a set of

operationally (F, l)-high threads if the following holds for all Mmj ∈ H:

〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉 implies 〈T, S〉 =F,l 〈T ′, S′〉

and both M ′mj , Nnk ∈ H

Even if a thread does contain low assignments or low reference creations, it can be

considered operationally high if these commands are never reached in any execution, or

if the assignments do not change the value of any reference. Notice that the low part

of the state is considered with respect to the parameter F , while the flow policy of the

transitions of the thread is not taken into account. When F is the global flow policy,

this definition is consistent with the definition of bisimulation, where the “observation”

of the memories that result from a step are taken from the point of view of the global

flow policy.

Remark 4.11.

— For any F and l there exists a set of operationally (F, l)-high threads, like for instance

{V mj | V ∈ Val}.

— The union of a family of sets of operationally (F, l)-high threads is a set of opera-

tionally (F, l)-high threads.

Therefore, there exists the largest set of operationally (F, l)-high threads, which is the

union of all sets of operationally (F, l)-high threads:

Notation 4.12. The largest set of (F, l)-high threads is denoted by HF,l.

We say that a thread Mmj is an operationally (F, l)-high thread if Mmj ∈ HF,l. Notice

that operationally (F,>)-high threads never modify the state. Furthermore, the flow

policy F with respect to which we define operationally (F,>)-high threads can be made

more strict:

Remark 4.13. If F ′ ⊆ F , then any operationally (F, l)-high thread is also operationally

(F ′, l)-high.

4.3.2. Comparison with Non-disclosure The non-disclosure for networks policy that is

restricted to networks where only one domain exists is equivalent (up to notational issues)

to the non-disclosure policy, if we only consider threads that do not contain migration

instructions‡. To see this, let us rewrite the condition for R to be a bisimulation in the

† The notion of “operationally high thread” that we define here should not not be confused with the
notion of “high thread”. The latter refers to the security level that is associated with a thread, while
the former refers to the changes that the thread performs on the state.

‡ For a comparison between non-disclosure and non-interference, see (Almeida Matos & Boudol 2005,
Almeida Matos 2006)

A. Almeida Matos and J. Cederquist 22

sense of (Almeida Matos & Boudol 2005), but using the language of this paper (excluding

the migration instructions):

P1 R P2 and 〈P1, T1, S1〉 −→
F

〈P ′
1, T1, S

′
1〉 and S1 =G∪F,l S2

and (∗) and (∗∗) implies:

∃P ′
2, S

′
2 : 〈P2, T2, S2〉 � 〈P ′

2, T2, S
′
2〉 and S′

1 =G,l S′
2 and P ′

1 R P ′
2

where:

(∗) dom(S1
′ − S1) ∩ dom(S2) = ∅ (∗∗) img(T1) = img(T2) = {d}

(24)

For the purpose of this comparison, we shall say that if a pool of threads P satisfies

non-disclosure in the above sense, then P ∈ ND(G, d).

We call derivative of an expression M , any expression M ′ that is attainable from M

by a (possibly empty) sequence of small-step transitions.

Definition 4.14 (Derivative of an Expression). We say that an expression M ′ is a

derivative of M if and only if M ′ = M , or there exist two states 〈T1, S1〉 and 〈T ′
1, S

′
1〉

and a derivative M ′′ of M such that, for some F , Nnk :

〈M ′′, T1, S1〉
Nnk

−−−→
F

〈M ′, T ′
1, S

′
1〉

Proposition 4.15. Consider a pool of threads P whose expressions do not contain

migration instructions. Then, if we consider a network with a single domain d, we have

that P ∈ NDN (G) if and only if P ∈ ND(G, d).

Proof. Suppose P ∈ NDN (G). Then, for all security levels l, there exists a relation S

that is a (G, l)-bisimulation according to Definition 4.5, and such that P S P . Then, we

have that

S′ def
= {(Q1, Q2) | Q1 S Q2 & Q1, Q2 are derivatives of P} (25)

is also a (G, l)-bisimulation according to Definition 4.5 and P S′ P . Since P does not

contain migration instructions, then every derivative of P does not contain migration

instructions either. Now, suppose that P1 S′ P2. Then, if

〈P1, T1, S1〉
Nnk

−−−→
F

〈P ′
1, T1, S

′
1〉 (26)

and S1 =G∪F,l S2 and dom(S1
′ − S1) ∩ dom(S2) = ∅, clearly we also have that 〈T1, S1〉

=G∪F,l 〈T2, S2〉 and that img(T1) = img(T2) = {d}. Therefore, since S′ is a (G, l)-

bisimulation according to Definition 4.5,

∃T ′
2, P

′
2, S

′
2 : 〈P2, T2, S2〉 � 〈P ′

2, T
′
2, S

′
2〉 (27)

such that 〈T ′
1, S

′
1〉 =G,l 〈T ′

2, S
′
2〉 and P ′

1 S′ P ′
2. Since P2 does not contain migration

instructions, then T ′
2 = T2. Clearly, S′

1 =G,l S′
2. Therefore, S′ is a (G, l)-bisimulation

according to the condition (24), where P S′ P , and we conclude that P ∈ ND(G, d).

Now suppose P ∈ ND(G, d). Then, for all security levels l, there exists a relation S

that is a (G, l)-bisimulation according to the condition (24), and such that P S P . Now,

Non-Disclosure for Distributed Mobile Code 23

suppose that P1 S P2. Then, if

〈P1, T1, S1〉
Nnk

−−−→
F

〈P ′
1, T1, S

′
1〉 (28)

and 〈T1, S1〉 =G∪F,l 〈T2, S2〉 and dom(S1
′ − S1) ∩ dom(S2) = ∅, clearly we also have

S1 =G∪F,l S2 and img(T1) = img(T2) = {d}. Therefore, since S is a (G, l)-bisimulation

according to the condition (24),

∃P ′
2, S

′
2 : 〈P2, T2, S2〉 � 〈P ′

2, T2, S
′
2〉 (29)

where S′
1 =G,l S′

2 and P ′
1 S′ P ′

2. Clearly, 〈T ′
1, S

′
1〉 =G,l 〈T ′

2, S
′
2〉. Therefore, S′ is a (G, l)-

bisimulation according to Definition 4.5, where P S′ P , and we conclude that P ∈

NDN (G).

It is then clear that all the examples of locally insecure programs, when placed in a single

domain, do not satisfy non-disclosure for networks.

5. Typing Non-disclosure for Networks

What new features are demanded from a type system to guarantee secure information

flow in a distributed setting? In this section we present a type and effect system that

only accepts programs that satisfy non-disclosure for networks. We start by defining the

notation used to express the typing judgments and by explaining their meanings; we then

comment on the typing conditions used in the typing rules, by giving examples of migra-

tion leaks that illustrate why each condition is necessary; finally, we conclude by giving

some properties of the type system, including the Subject Reduction and Soundness

theorems.

5.1. A Type and Effect System with Thread Identifiers

The type and effect system that we present here selects secure threads by ensuring

the compliance of all information flows to the flow relation that rules in each point of

the program. As in (Almeida Matos & Boudol 2005), it constructively approximates

the effects of each expression, which include information on the security levels of the

references on which termination or non-termination of the computations might depend.

A key observation is that here non-termination of a computation might arise from

an attempt to access a foreign reference. In order to distinguish the threads that own

each expression and reference, we associate unique identifiers m̌, ň ∈ ˇNam to names of

already existing threads, as well as to the unknown thread name ‘?’ for those threads

that are created at runtime.

It should now be clear that information on which the position of a thread n might

depend can leak when another thread simply attempts to access one of n’s references. For

this reason, we interpret the threads’ security level – in fact it represents its “visibility”

level – as a lower bound to the references that it can own, since just by owning a low

reference, the position of a thread can be detected by “low observers”. As we will see

soon, the threads’ security levels are used to reinforce security effects: the writing effect is

A. Almeida Matos and J. Cederquist 24

updated when a thread migrates, while the termination effect is updated when a remote

access is attempted.

5.1.1. The Typing Judgments As defined in Figure 6, the judgments of the type and

effect system have the form:

Σ, Γ `
m̌j

G,F M : s, τ

The above judgment can be read as “under the typing context Γ the expression M has

type τ and produces the security effect s when placed in a context that declares the flow

policy F to extend the global flow policy G, and is part of a thread of level j that is

identified by the thread name environment Σ as ‘m̌’. The meanings of the parameters

are as follows:

— The typing context Γ assigns types to variables.

— The expression M is a program.

— The thread identifier m̌ identifies the thread to which the expression M belongs.

— The security level j represents a lower bound to the references that the thread owns

and creates. It corresponds to the security level that is attributed to threads when

they are created.

— The security effect s of the form 〈s.r, s.w, s.t〉, can be understood as follows:

– s.r is the reading effect, an upper-bound on the security levels of the references

that are read by M ;

– s.w is the writing effect, a lower bound on the references that are written by M ;

– s.t is the termination effect, an upper bound on the level of the references on

which the termination of expression M might depend.

According to these intuitions, in the type system the reading and termination levels

are composed in a covariant way, whereas the writing level is contravariant.

— The type τ is the type of expression M . The syntax of types, which is given in

Figure 1, is repeated here, for any type variable t:

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl,m̌j
| τ

s
−−−→
G,m̌j

σ

It includes annotations that are used to determine the effects of the expression that

is being typed. To calculate them we take into account the level of the references that

are accessed and the flow policy of the context. Since we distinguish between local

and foreign references, thread identifiers and security levels appear in the types as

well. Typable expressions that reduce to () have type unit, and those that reduce to

booleans have type bool; typable expressions that reduce to a reference belonging to

process m of level j, which points to values of type θ and has security level l have the

reference type θ refl,m̌j
(the security levels l and j are used to determine the effects of

expressions that handle references); expressions that reduce to a function that takes

a parameter of type τ , that returns an expression of type σ, and with a latent effect

s (Lucassen & Gifford 1988), where G and m̌j are respectively the flow policy and

the thread identifier where the body of the function is to be typed, have the function

type τ
s

−−−→
G,m̌j

σ.

Non-Disclosure for Distributed Mobile Code 25

— The flow policy G is the global flow policy. As we have seen, it is used to parameterize

the security pre-lattice, and in particular the flow relation and meet/join operators.

The flow relation is used in the type system for imposing restrictions on the infor-

mation flows that the typing rules allow, and the meet/join operators are used to

construct the security effects of the expressions.

— The flow policy F is the one that is valid in the evaluation context in which M is

to be typed, and contributes to the meaning of operations and relations on security

levels. It is called the flow policy of the context. It is assumed to contain the global

flow policy, which is extended with the local flow policies declared by the evaluation

context (this assumption implies that in the type system, the relations �F and �F∪G

are equivalent).

— The thread name environment Σ is a binary relation between decorated thread names

extended with ‘?k’ (where ‘?’ represents unknown thread names), and the set of

decorated thread identifiers. We define dom(Σ) as {nk | ∃ňk . (nk, ňk) ∈ Σ}. In fact,

the restriction of Σ to the domain Nam × 2Pri (written Σ ↓Nam×2Pri) is assumed

to be a function, where all thread names n are distinct. The only identifiers that

are images of thread names are those that correspond to threads that have already

created a reference – and whose name is the prefix of that address. The others are

related to ?k for some security level k, which represents the thread names that are

created at runtime.

In some of the typing rules we use the join operation on security effects:

Definition 5.1. s gG s′
def
⇔ (s.r gG s′.r, s.w fG s′.w, s.t gG s′.t)

The type and effect system is given in Figure 7. We use some abbreviations: we write

the flow relation with respect to the global flow policy as �, meet f and join g, instead

of �G, fG and gG, respectively; we also omit the global flow policy that appears as

subscript of `
m̌j

G,F and simply write `
m̌j

F ; whenever we have ∀F, m̌j . Σ; Γ `
m̌j

F M :

〈⊥,>,⊥〉, τ we only write Σ; Γ ` M : τ ; finally, we write l1, . . . , lm �G k1, . . . , kn instead

of ∀1≤i≤m∀1≤j≤n . li �G kj .

The choice of explicitly including sequential composition in our higher order functional

language is now justified by the specialized typing rule that provides more refined typing

for that case. The same applies to the operators for reference creation, dereferencing,

and assignment that may be applied to expressions in general. Notice also that the type

system is syntax directed.

5.2. Typing Conditions

We must now convince ourselves that the type system does indeed select only safe threads,

according to the non-disclosure for networks policy, as defined in the previous section. We

give informal justifications to each side condition that constrains the typing of expressions

and the construction of the security effects. For the sake of completeness, we briefly

explain the treatment of direct leaks, control leaks, and higher-order leaks, and the use

of the termination effect for typing away termination leaks, even though they are not

A. Almeida Matos and J. Cederquist 26

Thread Name Environment Σ ⊆ ((Nam ∪ {?}) × 2Pri) × (ˇNam × 2Pri)

where Σ ↓Nam×2Pri : (Nam × 2Pri) → (ˇNam × 2Pri)

Typing Environments Γ : Var → Typ

Typing Judgments := Σ; Γ `
m̌j

G,F M : s, τ

Fig. 6. Syntax of Typing Judgments (see also Figure 1)

[Nil] Σ; Γ ` () : unit [Flow]
Σ; Γ `

m̌j

F∪F ′ M : s, τ

Σ; Γ `
m̌j

F (flow F ′ in M) : s, τ

[Abs]
Σ; Γ, x : τ `

m̌j

F M : s, σ

Σ;Γ ` (λx.M) : τ
s

−−−→
F,m̌j

σ
[Rec]

Σ; Γ, x : τ `
m̌j

F W : s, τ

Σ;Γ `
m̌j

F (%x.W) : s, τ

[BoolT] Σ; Γ ` tt : bool [BoolF] Σ; Γ ` ff : bool

[Var] Σ; Γ, x : τ ` x : τ [Loc] Σ; Γ ` nk.ul,θ : θ ref l,Σ(nk)

[Ref]

Σ; Γ `
m̌j

F M : s, θ
j � l

s.r, s.t �F l

Σ; Γ `
m̌j

F (ref l,θ M) : s g 〈⊥, l,⊥〉, θ refl,m̌j

[Der]
Σ; Γ `

m̌j

F M : s, θ refl,ňk

Σ; Γ `
m̌j

F (? M) : s g 〈l,>, (if m̌ 6= ň then j g k else ⊥)〉, θ

[Ass]

Σ; Γ `
m̌j

F M : s, θ refl,ňk
Σ; Γ `

m̌j

F N : s′, θ
s.t �F s′.w

s.r, s′.r, s.t, s′.t, j �F l

Σ;Γ `
m̌j

F (M :=? N) : s g s′ g 〈⊥, l, (if m̌ 6= ň then j g k else ⊥)〉, unit

[Cond]

Σ; Γ `
m̌j

F M : s, bool
Σ; Γ `

m̌j

F Nt : st, τ

Σ; Γ `
m̌j

F Nf : sf , τ
s.r, s.t �F st.w, sf .w

Σ;Γ `
m̌j

F (if M then Nt else Nf) : s g st g sf g 〈⊥,>, s.r〉, τ

[App]

Σ; Γ `
m̌j

F M : s, τ
s′

−−−→
F,m̌j

σ Σ; Γ `
m̌j

F N : s′′, τ
s.t �F s′′.w

s.r, s′′.r, s.t, s′′.t �F s′.w

Σ;Γ `
m̌j

F (M N) : s g s′ g s′′ g 〈⊥,>, s.r g s′′.r〉, σ

[Seq]
Σ; Γ `

m̌j

F M : s, τ Σ; Γ `
m̌j

F N : s′, σ s.t �F s′.w

Σ; Γ `
m̌j

F (M ; N) : s g s′, σ

[Thr]
j �F l ň fresh in Σ Σ, ?l : ňl; Γ `ňl

∅ M : s, unit

Σ; Γ `
m̌j

F (threadl M) : 〈⊥, j g s.w,⊥〉, unit

[Mig] Σ; Γ `
m̌j

F (goto d) : 〈⊥, j,⊥〉, unit

Fig. 7. Type and Effect System

Non-Disclosure for Distributed Mobile Code 27

central to this work. We then justify the parts of the rules that reject insecure programs

which exhibit migration leaks.

5.2.1. Direct Leaks and Control Leaks The reading and writing effects are respectively

introduced by the constructs for dereferencing (see Der) and creating or updating the

memory (see the typing rules Ref and Ass).

Cond The constraint s.r � st.w, sf .w insures that the branches Nt and Nf only assign

to references with security level greater than the reading level of M . This prevents

control leaks like the one in Example (13). To the same end, we also require the

writing level of M to be kept in the effect of (thread M).

Ass The condition s′.r � l prevents direct flows, as in Example (12). Furthermore, the

condition s.r � l rules out assignments to expressions that could return different low

references.

App The condition s′′.r � s′.w prevents direct flows from the argument of the function

via an assignment occurring in its body.

Ref The condition s.r � l excludes the creation of a low reference that points to the

return value of an expression that performs high reads.

5.2.2. Termination Leaks The termination effect is introduced in conditional (Cond)

and application (App) constructs. In the conclusion of Cond, we add the reading level

of the test to the termination level of the whole expression. This is because the con-

ditional might choose branches with different termination-behavior depending on the

references that it reads in the predicate. As to why the reading levels of both function

and argument are recorded in the termination level of the application (App), consider

Example (15) and (16), respectively. They show how the application of some argument

to a dereferenced value can also unravel expressions with different termination behavior

(thus depending on the reference that is read). Thread creation expressions (thread M)

have no termination effect, since their evaluation always terminates in one step. Further-

more, since a spawned thread executes in parallel with its creating thread, the reference it

reads and its termination behavior cannot influence future computations of the creating

thread. Hence, its reading and termination effects are set to ⊥.

Seq, Ass, App The conditions s.t � s′.w, s.t � s′.w and s.t � s′′.w (respectively)

prevent termination leaks similarly to Example (14). Notice that these constraints

are not as strict as “no low write after a high read”.

Cond The constraint s.t � st.w, sf .w also insures that the branches only assign to

references with security level greater than the termination level of M .

Ass The conditions s.t � l and s′.t � l prevents termination leaks that result from an

assignment to a low reference or of a value (respectively) that are returned following

a possibly non-terminating computation.

App The condition s′′.t � s′.w also rejects termination leaks resulting from the argu-

ment of the function via an assignment occurring in its body.

Ref The condition s.t � l excludes termination flows resulting from the creation of a

reference that points to a value returned by a possibly non-terminating computation.

A. Almeida Matos and J. Cederquist 28

5.2.3. Higher-Order Leaks

App The condition s.r � s′.w excludes expressions that obtain from a high reference

a function with a low latent write effect, and then unravel this low write effect by

applying it to some argument.

5.2.4. Migration Leaks The management of migration leaks is supported by the features

of the type system that keep track of the location of threads and references.

In rule Loc, since the name of the thread that owns the reference is given in the prefix,

the corresponding thread identifier is found using Σ. In rule Ref, the reference that is

created belongs to the thread identified by the superscript of the ‘`’. We check that the

security level that is declared for the new reference is greater than the level of the thread.

The body of an abstraction (rule Abs) is executed by the thread that applies it to an

argument (see App), in the same flow context of that application. This is why the thread

identifier and flow context of its execution are latent.

In rule Thr, a fresh identifier – image of an unknown thread name represented by ‘?’ –

is used to type the thread that is created. When a runtime thread is created by another

runtime thread, the domain of Σ that is used to type the nested threads contains more

than one entry using ?. The reason why the value of ? cannot be overwritten when typing

nested thread creations is that we must keep a full record of the image of Σ, in order to

guarantee that new thread identifiers that are attributed by the rule Thr are fresh. As

we will see soon, these are used mainly to distinguish accesses to local references from

accesses to foreign references (that are potentially remote).

We have seen in Section 2.1 that termination leaks appear when a change to the

low state depends on the termination of a computation that precedes it, which in turn

depends on high information. Suspension of a thread on an access to an absent reference

can be seen as a non-terminating computation that can be unblocked by migration of

concurrent threads. Therefore, we can deal with migration leaks in similar ways to how

we treat termination leaks.

Example (19) shows how high information can leak by means of a thread (n) that is

located in a domain that is different from where low assignments are performed (by m1

and m2). The key point in this example is that the synchronization between the two

threads is made via the migration of n to a domain where m1 or m2 is located, at a

time where the low assignments that are bound to occur in m1 and m2 are blocked by a

suspension on an access to one of n’s references.

From the point of view of thread n in Example (19), it is not possible to know whether,

in the domains it might migrate to, there are threads that are suspended on its arrival.

Assuming the worst case for thread n, i.e. that there are indeed other threads suspended

on accesses to n’s lowest references, the type system updates the writing effect of the

migration instruction in rule Mig with the security level of n, which is a lower bound

k to the level of all its references. As a consequence, the rule Cond of the type system

imposes the condition H � k over thread n in a standard manner. In general terms, as

long a thread is typable, one can insure that the level of the information on which its

migration depends is lower or equal to the its own security level.

Non-Disclosure for Distributed Mobile Code 29

Now from the point of view of threads m1 and m2 (still in Example (19)), it is not

possible to know whether the arrival of the thread that might unblock their computations

depends on high information or not. Assuming again the worst case for threads m1 and

m2, i.e. that the arrival of the owner (of level k) of the foreign references that m1 and

m2 want to access does indeed carry information of level k, rules Der and Ass of the

type system update the termination effect of m1 and m2 with k. As a consequence, the

rule Seq of the type system imposes the condition k � L over threads m1 and m2 in a

standard manner. In general, as long a thread is typable, we are able to ensure that any

blocked low assignments are not lower than the accesses that are causing the suspension.

Example (19) is thus rejected for the reason that conditions H � k and k � L are not

compatible. In this way, we prevent migrations of threads that own low references from

depending on high information. Similarly, in rule Thr, by adding the security level of

the thread to the write effect of the migration construct, we prevent the creation of low

threads from depending on high information.

In Examples (21) and (22), the low assignment can only occur if the threads m and

n are located in the same domain. Therefore, also the position of m might be leaked

when the low assignment occurs. This is why we also update the termination level of the

assignment (Ass) and the dereference (Der) with m’s security level.

Ref The condition j � l ensures that the references that are created by a thread respect

the security level of the thread, i.e. that they are not lower (with respect to the global

flow policy) than it.

Ass The insecure program in Example (23) is rejected by the condition j �G l in

rule Ass. Similarly, the program in Example (20) is rejected if j1 or j2 6� L, to

prevent revealing information about the positions of m1 and m2. Notice that, in the

typing rule for the cases where m̌ = ň (and therefore j = k), which correspond to

local assignments, the condition j �G l is always satisfied due to the fact that by

assumption k � l always holds for references of type θ refl,ňk
.

Thr The condition j �F l rejects the insecure program:

d[(threadL M)mH] (30)

The reason why this program is considered insecure is that the presence of the high

thread m, which should only be “visible” at level H , is indicated at the level L, at

which the created thread is apparent.

5.2.5. Expressivity of declassification There is a subtlety in the allowed usage of flow dec-

larations that differs from what is allowed in (Almeida Matos & Boudol 2005). Consider

the program

(bL :=? (flow H ≺ L in (? aH))) (31)

which is safe according to our notion of non-disclosure for networks. This program is not

typable because the assignment is not performed inside the flow declaration. Another

example is

((flow H ≺ L in (if (? aH) then () else loop)); (bL :=? 0)) (32)

A. Almeida Matos and J. Cederquist 30

where information about H is allowed to be downgraded to the level L. Consequently it

can be transmitted via the termination behavior of the conditional and possibly stored

in the low level reference b. Notice that the above programs would be accepted if the

flow declaration would encompass the whole assignment, in case of Example (31), and

the whole sequential composition, in case of Example (32).

We could have used as in (Almeida Matos & Boudol 2005) a kind of subsumption

in the Flow rule, on the security effect, to have the above examples accepted (see

(Almeida Matos 2006) for a discussion on this point). This would allow us to mimic the

declassify (M, l) operator that is used in some languages (see (Myers 1999, Sabelfeld

& Myers 2004) for instance) for downgrading the value of M to lower confidentiality

levels. By eliminating subsumption from our type system, here we choose to restrict

purely to the concept of a flow declaration that enables declassification operations. In

this way, we underline the particular style of declassification that is introduced by the

flow declarations, as opposed to the approaches that aim at downgrading values.

Another more technical difference between the type system presented here and the one

in (Almeida Matos & Boudol 2005) is the fact that in the latter one the security effects

are built using the extended flow relation, while here they are built with respect to the

global flow policy. Using the extended flow relation, the security effects are “weaker” –

i.e. more precise. However, this does not necessarily imply greater refinement of the type

system, since the restrictions that are imposed over those security effects are taken with

respect to the extended flow relation. In fact, one can conjecture that the weaker security

effects of (Almeida Matos & Boudol 2005) could be simplified in the same way as here,

without loss of generality.

5.3. Properties of Typed Expressions

We now state and prove the main properties of this work. The aim is to prove soundness

of the type system with respect to our security property, that is that networks of typable

processes are secure with respect to the non-disclosure for networks property. In order

to prove this we verify some intermediate results, including subject reduction. In the

detailed proof that follows, we highlight the differences with respect to (Almeida Matos

& Boudol 2005).

5.3.1. Meaning of Effects Unlike the effects depicted by the type systems in (Almeida

Matos & Boudol 2005), here it is not true that the reading effect of a typable expression

is always upward bounded by its termination effect. In this context, termination of an

expression does not depend only on the existence of non-terminating loops – which in

turn depend on tested values –, but also on the possibility of suspension on accesses to

foreign references – which depend on the relative position of threads in the network. We

can check that the intuitive meaning of the effects is indeed captured by our type system.

Lemma 5.2 (Update of Effects).

1 If Σ; Γ `
m̌j

F E[(? nk.ul,θ)] : s, τ then l � s.r. Also, if m 6= n, then k g j � s.t.

2 If Σ; Γ `
m̌j

F E[(nk.ul,θ :=? V)] : s, τ , then s.w � l. Also, if m 6= n, then k g j � s.t.

Non-Disclosure for Distributed Mobile Code 31

3 If Σ; Γ `
m̌j

F E[(ref l,θ V)] : s, τ , then s.w � l.

4 If Σ; Γ `
m̌j

F E[(goto d)] : s, τ , then s.w � j.

Proof. By induction on the structure of E.

5.3.2. Subject Reduction In order to establish the soundness of the type system of Fig-

ure 7 we need a Subject Reduction result, stating that the typing of expressions is pre-

served by computation. We follow the usual proof steps (Wright & Felleisen 1994) in

detail, remarking that a value, and more generally a pseudo-value, has no effect, and

that this is properly reflected in the type system. Moreover, the typing of a pseudo-value

does not depend on the thread identifier or current flow policy:

Remark 5.3. If W ∈ Pse and Σ; Γ `
m̌j

F W : s, τ , then for all thread identifiers ňk and

flow policies F ′, we have that Σ; Γ `ňk

F ′ W : 〈⊥,>,⊥〉, τ .

The following establishes some standard weakening and strengthening properties:

Lemma 5.4.

1 If Σ; Γ `
m̌j

F M : s, τ and x /∈ dom(Γ) then Σ; Γ, x : σ `
m̌j

F M : s, τ .

2 If Σ; Γ `
m̌j

F M : s, τ and ň fresh in Σ then Σ, ?k : ňk; Γ `
m̌j

F M : s, τ .

3 If Σ; Γ, x : σ `
m̌j

F M : s, τ and x /∈ fv(M) then Σ; Γ `
m̌j

F M : s, τ .

4 If Σ; Γ `
m̌j

G M : s, τ then Σ; Γ `
m̌j

G∪F M : s, τ .

Proof. By induction on the inference of the type judgment.

We now prove two last preliminary lemmas, stating that substitutions and replacements

in contexts preserve types.

Lemma 5.5 (Substitution). If Σ; Γ, x : σ `
m̌j

F M : s, τ and Σ; Γ ` W : σ then Σ; Γ `
m̌j

F

{x 7→ W}M : s, τ .

Proof. By induction on the inference of Σ; Γ, x : τ `
m̌j

F M : s, σ, and by case analysis

on the last rule used in this typing proof, using the previous lemma. We present the cases

of the Thr and Flow typing rules:

Thr Here we have M = (threadk M̄) and for ň fresh in Σ, we have that Σ, ?k :

ňk; Γ, x : σ `ňk

∅ M̄ : s, τ , with τ = unit and s = 〈⊥, s.w,⊥〉. Using assumption

and Lemma 5.4 we have Σ, ?k : ňk; Γ ` W : σ. By induction hypothesis, then Σ, ?k :

ňk; Γ `
m̌j

∅ {x 7→ W}M̄ : s, τ . Therefore, by rule Thr, Σ; Γ `
m̌j

F (threadk {x 7→ W}M̄) :

s, τ .

Flow Here M = (flow F̄ in M̄) and Σ; Γ, x : σ `
m̌j

F∪F̄
M̄ : s, τ . By induction hy-

pothesis, Σ; Γ `
m̌j

F∪F̄
{x 7→ W}M̄ : s, τ . Then, by Flow, we have that Σ; Γ `

m̌j

F

(flow F̄ in {x 7→ W}M̄) : s, τ .

Lemma 5.6 (Replacement). If Σ; Γ `
m̌j

F E[M] : s, τ is a valid judgment, then the

proof gives M a typing Σ; Γ `
m̌j

F∪dEe M : s̄, τ̄ for some s̄ and τ̄ such that s̄.r � s.r,

s.w � s̄.w and s̄.t � s.t. Furthermore, if Σ; Γ `
m̌j

F∪dEe N : s̄′, τ̄ with s̄′.r � s̄.r, s̄.w � s̄′.w

A. Almeida Matos and J. Cederquist 32

and s̄′.t � s̄.t, then Σ; Γ `
m̌j

F E[N] : s′, τ , for some s′ such that s′.r � s.r, s.w � s′.w

and s′.t � s.t.

Proof. By induction on the structure of E. We present the case for the flow declaration

context: If E[M] = (flow F ′ in Ē[M]), then by Flow, we have Σ; Γ `
m̌j

F∪F ′ Ē[M] : s, τ .

By induction hypothesis, the proof gives M a typing Σ; Γ `
m̌j

F̂
M : ŝ, τ̂ , for F̂ , ŝ, τ̂ with

F̂ = F ∪ F ′ ∪ dĒe and ŝ.r � s.r, s.w � ŝ.w and ŝ.t � s.t. Also by induction hypothesis,

Σ; Γ `
m̌j

F̂
Ē[N] : s′, τ , for some s′ such that s′.r � s.r, s.w � s′.w and s′.t � s.t. Then,

again by Flow, we have Σ; Γ `
m̌j

F (flow F ′ in Ē[N]) : s′, τ .

Finally we prove Subject Reduction, which states that computation preserves the type

of threads, and that as the effects of an expression are performed, the security effects of

the thread “weaken”. We assume that the value contained in references that are given

type θ have indeed type θ. The differences regarding Subject Reduction for (Almeida

Matos & Boudol 2005) lie mainly in the fact that we don’t have subsumption, and in the

treatment of thread names. In particular, we ensure that, when a thread is created, it is

typable with respect to a fresh thread identifier, in an environment where Σ is updated

accordingly.

Theorem 5.7 (Subject reduction). If for some Σ, Γ, s, τ, F, mj we have that Σ; Γ

`
Σ(mj)
F M : s, τ and 〈Mmj , T, S〉

Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉 where all al,θ ∈ dom(S) satisfy

Σ; Γ ` S(al,θ) : θ, then ∃s′ such that Σ; Γ `
Σ(mj)
F M ′ : s′, τ , where s′.r � s.r, s.w � s′.w

and s′.t � s.t. Furthermore, we have that ∃ň, s′′ such that Σ, ?k : ňk; Γ `ňk

∅ N : s′′, unit

where ň is fresh in Σ, and s.w � s′′.w.

Proof. Suppose that M = Ē[M̄] and 〈M̄mj , T, S〉
N̄nk

−−−→
F̄

〈M̄ ′mj , T̄ ′, S̄′〉. We start by

observing that this implies F ′ = F̄∪dĒe, M ′ = Ē[M̄ ′], N̄nk = Nnk and 〈T̄ ′, S̄′〉 = 〈T ′, S′〉.

We can assume, without loss of generality, that M̄ is the smallest in the sense that there

is no Ê, M̂ , N̂ such that Ê 6= [] and Ê[M̂] = M̄ for which we can write 〈M̂mj , T, S〉
N̂nk

−−−→
F̂

〈M̂ ′mj , T ′, S′〉.

By Lemma 5.6, we have Σ; Γ `
Σ(mj)

F∪dĒe
M̄ : s̄, τ̄ in the proof of Σ; Γ `

Σ(mj)
F Ē[M̄] : s, τ ,

for some s̄ and τ̄ . We then proceed by case analysis on the transition 〈M̄mj , T, S〉
N̄nk

−−−→
F̄

〈M̄ ′mj , T ′, S′〉, and prove that Σ; Γ `
Σ(mj)

F∪dĒe
M̄ ′ : s̄′, τ̄ , for some s̄′ such that s̄′.r � s̄.r,

s̄.w � s̄′.w and s̄′.t � s̄.t. We mention only two representative cases: If M̄ = ((λx.M̂) V),

and similarly if M̄ = (%x.W), then we use Lemma 5.5. If M̄ = (flow F ′ in V), then by rule

Flow, we have that Σ; Γ `
Σ(mj)

F∪dĒe∪F ′
V : s, τ , and by Remark 5.3, we have Σ; Γ `

Σ(mj)

F∪dĒe

V : 〈⊥,>,⊥〉, τ̄ . Again by Lemma 5.6 we can now conclude that Σ; Γ `
Σ(mj)
F Ē[M̄ ′] : s′, τ ,

for some s′ such that s′.r � s.r, s.w � s′.w and s′.t � s.t.

At last, if Nnk 6= () (Nnk is created), then ∃l, N̂ : M = Ē[(threadl N̂)] and N̄ = N̂ .

By Lemma 5.6, we have Σ; Γ `
Σ(nk)

F∪dĒe
(threadl N̂) : ŝ, unit in the proof of Σ; Γ `

Σ(mj)
F

Non-Disclosure for Distributed Mobile Code 33

Ē[(threadl N̂)] : s, τ , for some ŝ, and τ̂ . By Thr, for some ň fresh in Σ we have Σ, ?k :

ňk; Γ `ňk

∅ N̂ : ŝ, unit, where ŝ = 〈⊥, s.w,⊥〉.

5.3.3. Syntactically High Expressions Some expressions can be easily classified as “high”

by the type system simply because their code does not contain any instruction that could

affect the “low” part of the state. According to Lemma 5.2, this is the case for expressions

with a high writing effect, which can be said to be syntactically high with respect to a

security level, in the context of a flow policy and thread name.

Definition 5.8 (Syntactically “High” Expressions). An expression M is syntac-

tically (F, l, mj)-high if there exist Σ, Γ, s, and τ such that Σ; Γ `
Σ(mj)
F M : s, τ with

s.w 6�F l. The expression M is a syntactically (F, l, mj)-high function if there exist Σ, Γ,

s, τ and σ such that Σ; Γ ` M : τ
s

−−−−−→
F,Σ(mj)

σ with s.w 6�F l.

We are now able to prove that syntactically high expressions have an operationally

high behavior.

Lemma 5.9 (High Expressions). If M is a syntactically (F, l, mj)-high expression,

then Mmj is an operationally (F, l)-high thread.

Proof. We show that if M is syntactically (F, l, mj)-high, that is if there exist Σ, Γ, s

and τ such that Σ; Γ `
Σ(mj)
F M : s, τ with s.w 6�F l, and 〈Mmj , T, S〉

Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉,

then S′ =F,l S. This is enough to prove the lemma since, by Subject Reduction (Theorem

5.7), both M ′ is syntactically (F, l, mj)-high and N is syntactically (F, l, nk)-high. We

proceed by cases on the proof of the transition 〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉, and

show the cases where 〈T, S〉 6= 〈T ′, S′〉.

M = E[(ref l̄,θ̄ V)] Here S′ = {al̄,θ̄ 7→ V } ∪ S where a is fresh for S, and s.w � l̄ by

Lemma 5.2. This implies l̄ 6�F l, hence S′ =F,l S.

M = E[(al̄,θ̄ :=? V)] Here S′ = [al̄,θ̄ := V]S and s.w � l̄ by Lemma 5.2. This implies

l̄ 6�F l, hence S′ =F,l S.

M = E[(goto d)] Here T ′ = [mj := d]T and s.w � j by Lemma 5.2. This implies

j 6�F l, hence T ′ =F,l T .

5.4. Soundness

In this section we follow a proof methodology that has been applied in a series of in-

creasingly complex concurrent settings (Boudol & Castellani 2002, Almeida Matos &

Boudol 2005, Boudol 2005b, Almeida Matos 2006), and that we believe could be used in

others as well. We therefore present and explain in detail the proofs, providing a “Ra-

tionale” that shortly gives the intuition behind the proof for each intermediate result. In

particular, the conditions of the typing rules that are used in the proof are pointed out.

Refer to Subsection 5.2 for examples that justify the need for those conditions.

We prove soundness of the type system of Figure 7 with respect to the notion of

A. Almeida Matos and J. Cederquist 34

security of Definition 4.8, i.e. that under any global flow policy G, all typable sets of

threads P satisfy non-disclosure for networks. Informally, this means that, whatever the

security level that is chosen to be “low” (here that security level will be denoted by

‘low ’), the set P always presents the same behavior according to a weak bisimulation on

low-equal states: if two continuations P1 and P2 of P are related, and if P1 can perform

an execution step over a certain state, then P2 can perform the same low changes to any

low-equal state in zero or one step, while the two resulting continuations are still related.

It is useful to start by analyzing the behavior of the class of expressions that are typable

with a low termination effect, for which we can state a stronger soundness result.

5.4.1. Behavior of “Low”-Terminating Expressions Recall that, according to the in-

tended meaning of the termination effect, the termination or non-termination of ex-

pressions with low termination effect should only depend on the low part of the state. In

other words, two computations of a same thread running under two “low”-equal states

should either both terminate or both diverge. In particular, this implies that termination-

behavior of these expressions cannot be used to leak “high” information when composed

with other expressions (via termination leaks).

The ability of a thread to compute depends on whether its position in the network is

the same as that of the references that it needs to access. This means that to guarantee

that a step is performed by a thread in two different states one must assume that it does

not suspend on an access to an absent reference. The following guaranteed-transition

result holds for low-equal states where, if the thread is about to access a reference, then

either the thread owns that reference, or both the thread and the reference have a low

security level.

Lemma 5.10 (Guaranteed Transitions). Suppose that M is typable for Σ, Σ(mj),

F , and that if M = E[(nk.ul,θ :=? V)] or M = E[(? nk.ul,θ)] then either j g k �F low or

n = m.

If 〈Mmj , T1, S1〉
N

n̄
k̄

−−−→
F

〈M ′
1
mj , T ′

1, S
′
1〉 such that n̄k̄ is fresh for T2 if n̄k̄ ∈ dom(T ′

1 −T1)

and a is fresh for S2 if al,θ ∈ dom(S′
1−S1) and that for some F ′ we have 〈T1, S1〉 =F∪F ′,low

〈T2, S2〉, then there exist M ′
2, T ′

2 and S′
2 such that 〈Mmj , T2, S2〉

N
n̄

k̄

−−−→
F

〈M ′
2
mj , T ′

2, S
′
2〉

with 〈T ′
1, S

′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

Rationale. When a typable thread mj is about to perform an assignment or deref-

erence of a reference that belongs to a thread nk, the execution of this operation

depends on mj and nk being located at the same domain. By assuming that either

both j and k are low, or m and n are the same thread, we can conclude that, in

low-equal states, mj and nk have the same location. Therefore, if M performs a

transition in some state, it is able to perform it in a low-equal state as well.

When a thread nk is created by mj , we use the condition j �F k of rule Thr to

ensure that either k is high (and therefore its creation does not change the low state)

Non-Disclosure for Distributed Mobile Code 35

or mj is a low thread (therefore nk is created at the same place in two low-equal

memories).

Proof. By case analysis on the proof of 〈Mmj , T1, S1〉
N

n̄
k̄

−−−→
F

〈M ′
1
mj , T ′

1, S
′
1〉. In most

cases, this transition does not modify or depend on the state 〈T1, S1〉, and we may let

M ′
2 = M ′

1 and 〈T ′
2, S

′
2〉 = 〈T2, S2〉.

M = E[(ref l,θ V)] Here M ′
1 = E[mj .ul,θ], F = dEe, N n̄k̄ = (), T ′

1 = T1 and S′
1 =

S1∪{mj .ul,θ 7→ V }. Since mj .u is fresh for S2, we also have that 〈Mmj , T2, S2〉
N

n̄
k̄

−−−→
F

〈M ′
1
mj , T2, S

′
2 ∪ {mj.ul,θ 7→ V }〉.

M = E[(? nk.ul,θ)] Here M ′
1 = E[S1(nk.ul,θ)], F = dEe, N n̄k̄ = (), and

〈T ′
1, S

′
1〉 = 〈T1, S1〉. We have 〈Mmj , T2, S2〉

N
n̄

k̄

−−−→
F

〈E[S2(nk.ul,θ)]
mj , T2, S2〉, be-

cause T1 =F∪F ′,low T2 and either: (i) m = n. In this case Mmj cannot suspend.

(ii) m 6= n and j g k �F low . In this case T1(mj) = T2(mj) and T1(nk) = T2(nk).

Since T1(mj) = T1(nk), then T2(mj) = T2(nk). In other words, also in T2 the threads

mj and nk are located in the same domain.

M = E[(nk.ul,θ :=? V)] Then M ′
1 = E[()], F = dEe, N n̄k̄ = (), T ′

1 = T1 and S′
1 =

[nk.ul,θ := V]S1. Analogously to the previous case, in T2 the threads mj and nk are

located in the same domain, so 〈Mmj , T2, S2〉
N

n̄
k̄

−−−→
F

〈E[()]
mj , T2, [nk.ul,θ := V]S2〉.

M = E[(threadk̄ M̄)] Here M ′
1 = E[()], F = dEe, N n̄k̄ = M̄ n̄k̄ , T ′

1 = T1 ∪

{n̄k̄ 7→ T1(mj)}, and S′
1 = S1. Since n is fresh for T2, we have 〈Mmj , T2, S2〉

N
n̄

k̄

−−−→
F

〈E[()]mj , T2 ∪ {n̄k̄ 7→ T2(mj)}, S2〉. Notice that T1 ∪ {n̄k̄ 7→ T1(mj)} =F∪F ′,low

T2 ∪ {n̄k̄ 7→ T2(mj)}, because T1 =F∪F ′,low T2 and if k̄ �F∪F ′ low , then by the con-

dition j �F∪F ′ k̄ in rule Thr also j �F∪F ′ low , in which case T1(mj) = T2(mj).

M = E[(goto d′)] Then M ′
1 = E[()], F = dEe, N n̄k̄ = (), T ′

1 = [mj := d′]T1 and

S′
1 = S1. We have 〈Mmj , T2, S2〉

N
n̄

k̄

−−−→
F

〈E[()]
mj , [mj := d′]T2, S2〉.

The hypotheses of the above lemma are fulfilled when the termination effect is low:

Remark 5.11. Suppose that M = E[(nk.ul,θ :=? V)] or M = E[(? nk.ul,θ)], and that

for some Σ, mj , F , s and τ we have that Σ; Γ `
Σ(mj)
F M : s, τ . Then, s.t �F low implies

that either j g k �F low or n = m.

We now aim to prove that any two computations under low-equal states of a typable

thread that has a low-termination effect should have the same “length”, and in particular

they are either both finite or both infinite. To this end, we design a reflexive binary

relation on expressions with low-termination effects that is closed under the transitions

of Guaranteed Transitions (Lemma 5.10). The definition of T
mj

G,F,low , abbreviated T
mj

F,low

when the global flow policy is G, is given in Figure 8. The flow policy F is assumed to

contain G. Notice that it is a symmetric relation. In order to ensure that expressions that

A. Almeida Matos and J. Cederquist 36

Definition 5.12. We have that M1 T
mj

F,low M2 if Σ; Γ `
Σ(mj)

F M1 : s1, τ and

Σ; Γ `
Σ(mj)

F M2 : s2, τ for some Σ, Γ, s1, s2 and τ with s1.t �F low and s2.t �F low and

one of the following holds:

Clause 1 M1 and M2 are both values, or

Clause 2 M1 = M2, or

Clause 3 M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2, or

Clause 4 M1 = (ref l,θ M̄1) and M2 = (refl,θ M̄2) with M̄1 T
mj

F,low M̄2, and l 6�F low , or

Clause 5 M1 = (? M̄1) and M2 = (? M̄2) with M̄1 T
mj

F,low M̄2, or

Clause 6 M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) with M̄1 T
mj

F,low M̄2, and

N̄1 T
mj

F,low N̄2, and M̄1, M̄2 both have type θ ref l,ňk
for some θ and l such that

l 6�F low , or

Clause 7 M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with M̄1 T
mj

F∪F ′,low
M̄2.

Fig. 8. The relation T
mj

F,low

are related by T
mj

F,low perform the same changes to the low memory, its definition requires

that the references that are created or written using (potentially) different values are

high.

Definition 5.12 (T
mj

F,low). See Figure 8.

Remark 5.13. If for some mj, F and low we have that M1 T
mj

F,low M2 and M1 ∈ Val ,

then M2 ∈ Val .

We have seen in Splitting Computations (Lemma 3.2) that two computations of the

same expression can split only if the expression is about to read a reference that is given

different values by the memories in each of the configurations. Since we will be only

interested in the case where the two memories are low-equal, this situation coincides

with the case where the reference that is read is high. From the following lemma one

can conclude that the relation T
mj

F,low relates the possible outcomes of expressions that

are typable with a low termination effect, and that perform a high read over low-equal

memories.

Lemma 5.14. If there exist Σ, Γ, s, τ such that Σ; Γ `
Σ(mj)
F E[(? al,θ)] : s, τ with

s.t �F low and l 6�F∪dEe low , then for any values V0, V1 ∈ Val such that Σ; Γ ` Vi : θ

we have E[V0] T
mj

F,low E[V1].

Rationale. If a typable expression is about to use a value that results from a high

dereference in such a way that it could influence its termination behavior, then its

termination effect cannot be low (contradicting the assumption). The type system

enforces this by updating the termination effect of the expression with the reading

effect of the dereferencing operation, in the cases where the value is used: in the

predicate of a conditional (s.r in the termination effect of Cond); to determine the

Non-Disclosure for Distributed Mobile Code 37

function of an application (s.r in the termination effect of App); to determine the

argument of an application (s′′.r in the termination effect of App).

The relation T requires that the references that are (respectively) created or written

using the high dereferenced value are high (see Clauses 4 and 6). This is guaranteed

by conditions of the form ‘s.r �F l’, where s is the security effect of the program that

is performing the access, and l is the security level of the reference that is created

or written. More precisely, conditions are imposed when the dereferenced value is

used: to create a reference (s.r �F l in rule Ref); to determine a reference that is

being assigned to (s.r �F l in rule Ass); to determine a value that is being assigned

(s′.r �F l in rule Ass).

Proof. By induction on the structure of E.

E[(? al,θ)] = (? al,θ) We have V0 T
mj

F,low V1 by Clause 1.

E[(? al,θ)] = (E1[(? al,θ)] M) By App we have that Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄
s̄′

−−−−−→
F,Σ(mj)

σ̄ with s̄.r � s.t. By Lemma 5.2, we have l � s̄.r. Therefore l �F s.t,

which contradicts the assumption that both s.t �F low and l 6�F∪dEe low hold.

E[(? al,θ)] = (V E1[(? al,θ)]) By rule App we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄′′, τ̄

with s̄′′.r � s.t. By Lemma 5.2, we have l � s̄′′.r. Therefore l �F s.t, which contradicts

the assumption that both s.t �F low and l 6�F∪dEe low hold.

E[(? al,θ)] = (if E1[(? al,θ)] then Mt else Mf) By Cond we have Σ; Γ `
Σ(mj)
F

E1[(? al,θ)] : s̄, bool with s̄.r � s.t. By Lemma 5.2, we have l � s̄.r. Therefore l �F s.t,

which contradicts the assumption that both s.t �F low and l 6�F∪dEe low hold.

E[(? al,θ)] = (E1[(? al,θ)]; M) By Seq we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄ with

s̄.t �F s.t. Therefore s̄.t �F low , and since l 6�F∪dEe low implies l 6�F∪E1
low , then

by induction hypothesis we have E1[V0] T
mj

F,low E1[V1]. By Lemma 5.6 and Clause 3

we can conclude.

E[(? al,θ)] = (ref l′,θ′ E1[(? al,θ)]) By rule Ref we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄

with s̄.r = s.r �F l′ and s̄.t = s.t. Therefore s̄.t �F low , and since l 6�F∪dEe low

implies l 6�F∪E1
low , then by induction hypothesis we have E1[V0] T

mj

F,low E1[V1]. By

Lemma 5.2 we have l � s.r, so s.r 6�F low . Therefore, l′ 6�F low , and we conclude by

Lemma 5.6 and Clause 4.

E[(? al,θ)] = (? E1[(? al,θ)]) By rule Der we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄ with

s̄.t �F s.t. Therefore s̄.t �F low , and since l 6�F∪dEe low implies l 6�F∪E1
low , then by

induction hypothesis E1[V0] T
mj

F,low E1[V1]. We conclude by Lemma 5.6 and Clause 5.

E[(? al,θ)] = (E1[(? al,θ)] :=? M) By rule Ass we have that Σ; Γ `
Σ(mj)
F

E1[(? al,θ)] : s̄, θ̄ ref l̄,ˇ̄nk
with s̄.t �F s.t and s̄.r �F l̄. Therefore s̄.t �F low , and since

l 6�F∪dEe low implies l 6�F∪E1
low , then by induction hypothesis E1[V0] T

mj

F,low E1[V1].

On the other hand, by Clause 2 we have M T
mj

F,low M . By Lemma 5.2 we have l � s̄.r,

so l �F l̄. Then, we must have l̄ 6�F low , since otherwise l �F∪dEe low . Therefore, we

conclude by Lemma 5.6 and Clause 6.

E[(? al,θ)] = (V :=? E1[(? al,θ)]) By rule Ass we have that Σ; Γ `
Σ(mj)
F V :

A. Almeida Matos and J. Cederquist 38

s̄, θ̄ ref l̄,ˇ̄nk
, and Σ; Γ `

Σ(mj)
F E1[(? al,θ)] : s̄′, θ with s̄′.t �F s.t and s̄′.r �F l̄. There-

fore s̄′.t �F low , and since l 6�F∪dEe low implies l 6�F∪E1
low , then by induction

hypothesis E1[V0] T
mj

F,low E1[V1]. On the other hand, by Clause 2 we have V T
mj

F,low V .

By Lemma 5.2 we have l � s̄′.r, so l �F l̄. Then, we must have l̄ 6�F low , since

otherwise l �F∪dEe low . We then conclude by Lemma 5.6 and Clause 6.

E[(? al,θ)] = (flow F ′ in E1[(? al,θ)]) By rule Flow we have Σ; Γ `
Σ(mj)
F∪F ′

E1[(? al,θ)] : s, τ . By induction hypothesis E1[V0] T
mj

F∪F ′,low E1[V1], so we conclude by

Lemma 5.6 and Clause 7.

We can now prove that T
mj

F,low behaves as a kind of “strong bisimulation”:

Proposition 5.15 (Strong Bisimulation for Low-Terminating Threads). If we

have M1 T
mj

F,low M2 and 〈M1
mj , T1, S1〉

N
n̄

k̄

−−−→
F ′

〈M ′
1
mj , T ′

1, S
′
1〉, with 〈T1, S1〉 =F∪F ′,low

〈T2, S2〉 such that n is fresh for T2 if n̄k̄ ∈ dom(T ′
1 − T1) and a is fresh for S2 if

al,θ ∈ dom(S′
1 − S1), then there exist T ′

2, M ′
2 and S′

2 such that 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 T
mj

F,low M ′
2 and 〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉.

Rationale. If M1 and M2 are equal (related by T using Clause 2), then since they

have a low termination effect we can use Guaranteed Transitions (Lemma 5.10) to

conclude that M2 can also make a step and perform the same changes to low-equal

memories. If the result of performing the two steps is different – therefore not falling

again in Clause 2 – by Splitting Computations (Lemma 3.2) we conclude they have

performed a high dereference. In Lemma 5.14 we have seen that this implies that the

resulting expressions are still in the T relation.

The remaining cases use the fact that M1 is a value if and only if M2 is a value, to

show that if M1 can perform a computation step, then, as long as suspension cannot

occur, so can M2.

Suspension could only occur when the dereference or assignment operations are em-

inent (i.e. when all arguments have computed into values). However, the possibility

of suspension on an access to some reference that belongs to nk is excluded by the

fact that the threads M
mj

1 and M
mj

2 are assumed to have low termination effect. In

fact, since if m 6= n the termination of the threads depends on levels j and k, then

both j and k must be low, which implies that mj and nk have the same position in

low-equal memories. This is guaranteed by the type system in rules Der and Ass,

when the termination effect is updated with j g k.

Proof. By induction on the definition of T
mj

F,low . In the following, we use Subject Reduc-

tion (Theorem 5.7) to guarantee that the termination effect of the expressions resulting

from M1 and M2 is still low with respect to low and F . This, as well as typability (with

the same type) for mj , low and F , is a requirement for being in the T
mj

F,low relation.

Clause 1 This case is not possible.

Non-Disclosure for Distributed Mobile Code 39

Clause 2 Here M1 = M2. By Guaranteed Transitions (Lemma 5.10) there exist T ′
2, M ′

2

and S′
2 such that 〈M

mj

2 , T2, S2〉
N

n̄
k̄

−−−→
F ′

〈M
′mj

2 , T ′
2, S

′
2〉 with 〈T ′

1, S
′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

There are two cases to consider: (i) M ′

2
= M ′

1
. Then we have M ′

1 T
mj

F,low M ′
2, by

Clause 2 and Subject Reduction (Theorem 5.7). (ii) M ′

2
6= M ′

1
. Then by Splitting

Computations (Lemma 3.2) we have that (N n̄k̄ = ()) and there exist E and al,θ such

that F ′ = dEe, M ′
1 = E[S1(al,θ)], M ′

2 = E[S2(al,θ)], 〈T ′
1, S

′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 =

〈T2, S2〉. Since S1(al,θ) 6= S2(al,θ), we have l 6�F∪F ′ low . Therefore, M ′
1 T

mj

F,low M ′
2,

by Lemma 5.14 above.

Clause 3 Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 T
mj

F,low M̄2. Then ei-

ther: (i) M̄1 can compute. In this case M ′
1 = (M̄ ′

1; N̄) with 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 3 and Subject Reduction

(Theorem 5.7) to conclude. (ii) M̄1 is a value. In this case M ′
1 = N̄ and F ′ = ∅,

N n̄k̄ = () and 〈T ′
1, S

′
1〉 = 〈T1, S1〉. We have M̄2 ∈ Val by Remark 5.13, hence

〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈N̄mj , T2, S2〉, and we conclude using Clause 2 and Subject Re-

duction (Theorem 5.7).

Clause 4 Here M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 T
mj

F,low M̄2, and

l 6�F low . There are two cases. (i) M̄1 can compute. In this case M ′
1 = (refl,θ M̄ ′

1)

with 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Subject

Reduction (Theorem 5.7) and Clause 4 to conclude. (ii) M̄1 is a value. In this case

M ′
1 = al,θ, with a fresh for S1, F ′ = ∅, N n̄k̄ = () and 〈T ′

1, S
′
1〉 = 〈T2, S1 ∪ {al,θ 7→ M̄1}〉

(and therefore a is also fresh for S2). Then M̄2 ∈ Val by Remark 5.13, and therefore

〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈al,θ
mj , T ′

2, S2 ∪ {al,θ 7→ M̄2}〉. If we let S′
2 = S2 ∪ {al,θ 7→ M̄2}

then 〈T ′
1, S

′
1〉 =F,low 〈T ′

2, S
′
2〉 since l 6�F low . We conclude using Clause 1 and Subject

Reduction (Theorem 5.7).

Clause 5 Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 T
mj

F,low M̄2. There are two

cases: (i) M̄1 can compute. In this case 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use

the induction hypothesis, Subject Reduction (Theorem 5.7) and Clause 5 to conclude.

(ii) M̄1 is a value. Then M̄1 = nk.ul,θ and M ′
1 ∈ Val , 〈T ′

1, S
′
1〉 = 〈T1, S1〉, F ′ = ∅

and N n̄k̄ = (). By Remark 5.13, M̄2 ∈ Val , and since M1 and M2 have the same

type, it must be a reference nk.vl′,θ. Notice also that T1(nk) = T1(mj). Here, we

further distinguish two sub-cases: n 6= m. Then, by rule Der, we have j g k � s.t,

and therefore j g k �F∪F ′ low . Since T1 =F∪F ′,low T2, then T1(mj) = T2(mj) and

T1(nk) = T2(nk). n = m. Then it is immediate that T2(mj) = T2(nk). In both

the above cases, T2(nk) = T2(mj), and so 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M2
′mj , T2, S2〉 with

M2
′ ∈ Val . We then conclude using Clause 1 and Subject Reduction (Theorem 5.7).

Clause 6 Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where

M̄1 T
mj

F,low M̄2, N̄1 T
mj

F,low N̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and

l such that l 6�F low . There are three cases: (i) M̄1 can compute. In this case

〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Subject Re-

A. Almeida Matos and J. Cederquist 40

duction (Theorem 5.7) and Clause 6 to conclude. (ii) M̄1 is value, but N̄1 can

compute. In this case we have 〈N̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈N̄
′mj

1 , T ′
1, S

′
1〉. By Remark 5.13

also M̄2 ∈ Val . We use the induction hypothesis, Subject Reduction (Theorem 5.7)

and Clause 6 to conclude. (iii) M̄1 and N̄1 are values. Then M̄1 = nk.ul,θ and

M ′
1 = (), 〈T ′

1, S
′
1〉 = 〈T1, {N̄1 7→ M̄1}S1〉, F ′ = ∅ and N n̄k̄ = (). By Remark 5.13,

also M̄2, N̄2 ∈ Val , and since M̄1 and M̄2 have the same type, M̄2 must be a ref-

erence nk.vl′,θ′. Notice that T1(nk) = T1(mj). Here, we further distinguish two sub-

cases: n 6= m. Then, by Ass, we have j g k � s.t, therefore j g k �F∪F ′ low . Since

T1 =F∪F ′,low T2, then T1(mj) = T2(mj) and T1(nk) = T2(nk). n = m. Then it is

immediate that T2(mj) = T2(nk). In both the above cases, T2(nk) = T2(mj), and

so 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M2
′mj , T2, {N̄2 7→ M̄2}S2〉 with M̄ ′

2 ∈ Val . Since l 6�F low ,

then {N̄1 7→ M̄1}S1 =F∪F ′,low {N̄2 7→ M̄2}S2. Since M ′
2 = M ′

1 = (), we then conclude

using Clause 2.

Clause 7 Here we have M1 = (flow F̄ in M̄1) and M2 = (flow F̄ in M̄2) and

M̄1 T
mj

F∪F̄ ,low
M̄2. There are two cases. (i) M̄1 can compute. In this case

〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′′

〈M̄
′mj

1 , T ′
1, S

′
1〉 with F ′ = F̄ ∪ F ′′. By induction hypothesis,

〈M̄
mj

2 , T2, S2〉
N

n̄
k̄

−−−→
F ′′

〈M̄
′mj

2 , T ′
2, S

′
2〉, and M̄ ′

1 T
mj

F∪F̄ ,low
M̄ ′

2 and 〈T ′
1, S

′
1〉 =F∪F̄ ,low

〈T ′
2, S

′
2〉. Notice that 〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉 by Remark 4.4. We use Subject Re-

duction (Theorem 5.7) and Clause 7 to conclude. (ii) M̄1 is a value. In this case

M ′
1 = M̄1, F ′ = ∅, N n̄k̄ = () and 〈T ′

1, S
′
1〉 = 〈T1, S1〉. Then M̄2 ∈ Val by Remark 5.13,

and so 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M̄
mj

2 , T2, S2〉. We conclude using Clause 1 and Subject

Reduction (Theorem 5.7).

We have seen in Remark 5.13 that when two expressions are related by T
mj

F,low and one

of them is a value, then the other one is also a value. From a semantical point of view,

when an expression has reached a value it means that it has successfully completed its

computation. It is easy to check that when two expressions are related by T
mj

F,low and

one of them is unable to resolve into a value, in any sequence of unrelated computation

steps, then the other one is also unable to do so.

Definition 5.16 (Non-resolvable Expressions). We say that an expression M is

non-resolvable, denoted M†, if there is no derivative M ′ of M such that M ′ ∈ Val .

Lemma 5.17. If M T
mj

F,low N and M† for some mj , F and low , then N†.

The following lemma deduces operational “highness” of threads from that of its subex-

pressions.

Lemma 5.18 (Composition of High Expressions). Suppose that Mmj is typable

in Σ and F . Then:

1 If M = (M1 M2) and M1 is a syntactically (F, low , mj)-high function and we have

Non-Disclosure for Distributed Mobile Code 41

that either M1† and M1
mj ∈ HF,low , or that M1

mj , M2
mj ∈ HF,low , then Mmj ∈

HF,low .

2 If M = (if M1 then Mt else Mf) and M1
mj , Mt

mj , Mf
mj ∈ HF,low , then Mmj ∈

HF,low .

3 If M = (ref l,θ M1) and l 6�F low and M1
mj ∈ HF,low , then Mmj ∈ HF,low .

4 If M = (M1; M2) and we have that either M1† and M1
mj ∈ HF,low , or that

M1
mj , M2

mj ∈ HF,low , then Mmj ∈ HF,low .

5 If M = (M1 :=? M2) and M1 has type θ ref l,ňk
with l 6�F low and we have that

either M1† and M1
mj ∈ HF,low , or that M1

mj , M2
mj ∈ HF,low , then Mmj ∈ HF,low .

6 If M = (flow F ′ in M1) and M1
mj ∈ HF∪F ′,low , then Mmj ∈ HF,low .

Rationale. A construct that does not introduce low effects and that is only com-

posed of operationally high expressions can be easily seen to be operationally high:

for all the computation steps that can be performed by any of its derivatives, there

is a corresponding one that can be performed by a derivative of one of its compo-

nents. Since the components are operationally high, then the step does not make low

changes to the state.

Syntactical highness of a function guarantees that its body, which can be seen as a

subexpression of an application, is operationally high. A reference creation or assign-

ment that is only composed of operationally high expressions is operationally high

for the same reasons, provided that the created or written reference is high.

When a non-resolvable expression M1 is composed with an expression M2, as in

(M1 M2), (M1; M2) or (M1 :=? M2), it is enough to require that M1 is operationally

high. In fact, for all the computation steps that can be performed by any of these

expressions’ derivatives, there is a corresponding one that can be performed by a

derivative of M1 – that is, the expression M2 never gets to be evaluated.

Proof. We give the proof for Case 1 (the other cases are analogous or simpler). We

therefore assume that M = (M1 M2) and M1 is a syntactically (F, low , mj)-high function.

There are two main possibilities to consider:

M1† and M1
mj ∈ HF,low Let F be a set of threads that includes HF,low , and that

contains the threads (M1 M2)
mj provided that they are typable in F , and satisfy

M1 /∈ Val and M
mj

1 ∈ F and M1 is a (F, low , mj)-high function. Assume that an

application M = (M1 M2) such that M1† and M1
mj ∈ HF,low performs the transition

〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉. We show that this implies M ′mj , Nnk ∈ F and

〈T ′, S′〉 =F,low 〈T ′, S′〉.

Since M1 is non-resolvable, M1 cannot be a value, and since M can compute,

then also M1 can compute. We then have M ′ = (M ′
1 M2) with 〈M1

mj , T, S〉
Nnk

−−−→
F ′

〈M ′
1
mj , T ′, S′〉. Since M1

mj ∈ HF,low , then also M
′mj

1 , Nnk ∈ HF,low , thus both

M
′mj

1 , Nnk ∈ F , and 〈T ′, S′〉 =F,low 〈T ′, S′〉. By Subject Reduction (Theorem 5.7),

M ′
1 is a (F, low)-high function, and since M1† then M ′

1 /∈ Val . Hence M ′mj ∈ F .

M1
mj , M2

mj ∈ HF,low Let F be a set of pools of threads that includes HF,low ,

A. Almeida Matos and J. Cederquist 42

and that contains threads (M1 M2)
mj provided they are typable in F and satisfy

M
mj

1 , M
mj

2 ∈ F and M1 is a (F, low , mj)-high function. Assume that such an ap-

plication M = (M1 M2) performs the transition 〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉.

We show that this implies M ′mj , Nnk ∈ F and 〈T ′, S′〉 =F,low 〈T ′, S′〉. There are

three sub-cases to consider: If M1 and M2 are values, then M1 = (λx.M̄1),

M ′ = {x 7→ M2}M̄1, N ′ = () and 〈T ′, S′〉 = 〈T, S〉. Since M1 is a (F, low , mj)-high

function, then by Abs M̄1 is syntactically (F, low , mj)-high, and by Substitution

(Lemma 5.5), also M ′ is syntactically (F, low , mj)-high. Therefore, by High Expres-

sions (Lemma 5.9), M ′mj ∈ HF,low . Otherwise, if M1 can compute, then we have

M ′ = (M ′
1 M2) with 〈M1

mj , T, S〉
Nnk

−−−→
F ′

〈M ′
1
mj , T ′, S′〉. Since M1

mj ∈ HF,low , then

also M
′mj

1 , Nnk ∈ F and 〈T ′, S′〉 =F,low 〈T ′, S′〉. By Subject Reduction (Theorem 5.7)

M ′
1 is a (F, low)-high function. Hence M ′ ∈ F . Finally, if M1 is a value but M2

can compute, then we have M ′ = (M1 M ′
2) with 〈M2

mj , T, S〉
Nnk

−−−→
F ′

〈M ′
2
mj , T ′, S′〉.

Since M2
mj , Nnk ∈ HF,low , then also M

′mj

2 , Nnk ∈ F and 〈T ′, S′〉 =F,low 〈T ′, S′〉.

Hence M ′ ∈ F .

Lemma 5.19. If for some mj , F and low we have that M1 T
mj

F,low M2 and M1
mj ∈

HF,low , then M2
mj ∈ HF,low .

Rationale. The proof relies on the fact that if an expression M1 of the form (M̄1; N̄1)

or (M̄1 :=? N̄1) is operationally high, in spite of N̄1 not being operationally high, then

M̄1 is non-resolvable. To see this, note that if M1 were not non-resolvable, we would

have, for some value V , that (V ; N̄1) or (V :=? N̄1) would be derivatives of M1. We

can then see that, for all the computation steps that can be performed by any of

N̄1’s derivatives, there is a corresponding one that can be performed by a derivative

of M1. Since N̄1 is not operationally high, then also M would not be operationally

high.

From the fact that an expression is operationally high, we can easily conclude that

the first subexpression to be evaluated is also operationally high. Clauses 3 and 6 do

not require their second subexpression N̄1 to be operationally high. However, by the

above observation and by Lemma 5.17 this implies that M̄2 is non-resolvable. We can

then argue that the expressions in the T relation have the same “composition”, and

conclude that they are operationally high using Composition of High Expressions

(Lemma 5.18).

Proof. By induction on the definition of M1 T
mj

F,low M2. Clauses 1 and 2 are direct.

Clause 3 Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2. Clearly we

have that M̄
mj

1 ∈ HF,low , so by induction hypothesis, also M̄
mj

2 ∈ HF,low . We dis-

tinguish two sub-cases: (i) N̄mj ∈ HF,low . Then, M̄
mj

2 , N̄mj ∈ HF,low . Therefore,

by Composition of High Expressions (Lemma 5.18) we have that M2
mj ∈ HF,low .

Non-Disclosure for Distributed Mobile Code 43

(ii) N̄mj /∈ HF,low . Then M̄1†, and by Lemma 5.17 also M̄2†. Therefore, by Com-

position of High Expressions (Lemma 5.18) we have that M2
mj ∈ HF,low .

Clause 4 Here M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 T
mj

F,low M̄2, and

l 6�F low . Clearly we have that M̄
mj

1 ∈ HF,low , so by induction hypothesis also

M̄
mj

2 ∈ HF,low . Therefore, by Composition of High Expressions (Lemma 5.18) we

have that M2
mj ∈ HF,low .

Clause 5 Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 T
mj

F,low M̄2. Clearly we have

that M̄
mj

1 ∈ HF,low , so by induction hypothesis also M̄
mj

2 ∈ HF,low . This implies

that M2
mj ∈ HF,low .

Clause 6 Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where

M̄1 T
mj

F,low M̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such that

l 6�F low , and N̄1 T
mj

F,low N̄2. Clearly we have that M̄
mj

1 ∈ HF,low , so by induction hy-

pothesis also M̄
mj

2 ∈ HF,low . We distinguish two sub-cases: (i) N̄
mj

2
∈ HF,low . Then,

M̄
mj

2 , N̄
mj

2 ∈ HF,low where M̄2 has type θ refl,ňk
for some θ and l such that

l 6�F low . Therefore, by Composition of High Expressions (Lemma 5.18) we have

that M2
mj ∈ HF,low . (ii) N̄

mj

2
/∈ HF,low . Then M̄1†, and by Lemma 5.17 also M̄2†.

Therefore, since M̄2 has type θ refl,ňk
for some θ and l such that l 6�F low , by

Composition of High Expressions (Lemma 5.18) we have that M2
mj ∈ HF,low .

Clause 7 Here we have M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with

M̄1 T
mj

F∪F ′,low M̄2. Clearly we have that M̄
mj

1 ∈ HF,low , so by induction hypothesis

also M̄
mj

2 ∈ HF,low . Therefore, by Composition of High Expressions (Lemma 5.18)

we have that M2
mj ∈ HF,low .

5.4.2. Behavior of Typable Low Expressions In this second phase of the proof, we consider

the general case of threads that are typable with any termination level. As in the previous

subsection, we show that a typable expression behaves as a strong bisimulation, provided

that it is operationally low. For this purpose, we make use of the properties identified

for the class of low-terminating expressions by allowing only members of this class to be

followed by low-writes. Conversely, high-terminating expressions can only be followed by

high-expressions (see Definitions 4.10 and 5.8).

Since we are considering the general case where threads do not necessarily have a

low termination effect we cannot, as we did in the previous section, state a guaranteed-

transition result. However, from Guaranteed Transitions (Lemma 5.10) and Remark 5.11

we can guarantee transitions in the cases M 6= E[(nk.ul,θ :=? V)] and M 6= E[(? nk.ul,θ)],

as well as for these two cases when M is low-terminating. The following lemma covers

the remaining cases by asserting that if M = E[(? al,θ)] when M is not low-terminating,

then M is operationally high (therefore it cannot perform low changes on the state).

Lemma 5.20 (Potentially Suspensive Transitions). Suppose that Mmj is ty-

pable in Σ and F , and consider the two cases where M = E[(nk.ul,θ :=? V)] and

M = E[(? nk.ul,θ)] with j g k 6�F low and n 6= m. Then Mmj ∈ HF,low .

A. Almeida Matos and J. Cederquist 44

Rationale. By Remark 5.11, the assumptions j g k 6�F low and n 6= m indicate

that, as far as the type system is concerned, accesses performed by a thread mj to

a reference that belongs to a thread nk under low-equal memories are potentially

suspensive. This means that, according to the principle that no low-writes can follow

high-terminating portions of the program, then a thread that is performing such an

access must be high.

The above mentioned principle is guaranteed by the type system using conditions of

the form ‘s.t �F ’ on the effects and security levels representing writes that are to be

performed after the execution of a subprogram with security effect s. More precisely,

conditions are imposed when the foreign access is used: to create a reference (s.t �F l

in rule Ref); to determine a reference that is being assigned to (s.t �F s′.w and

s.t �F l in rule Ass); to determine a value that is being assigned (s′.t �F l in rule

Ass); to determine the predicate of a conditional (s.t �F st.w, sf .w in rule Cond);

to determine a function that is being applied (s.t �F s′.w and s.t �F s′′.w in rule

App); to determine an argument to which a function is being applied (s′′.t �F s′.w in

rule App); to evaluate the first component of a sequential composition (s.t �F s′.w

in rule Seq).

Proof. By induction on the structure of E. Consider M = E[M0], where either M0 =

(nk.ul,θ :=? V) or M0 = (? nk.ul,θ). The case where E[M0] = M0 is direct.

E[M0] = (E1[M0] M1) Then, by rule App, we have that Σ; Γ `
m̌j

F E1[M0] :

s1, τ1
s′

1−−−→
F,m̌j

σ1 and Σ; Γ `
m̌j

F M1 : s′′1 , τ1 with s1.t �F s′′1 .w and s1.t �F s′1.w. By

Remark 5.11 we have s1.t 6�F low . Therefore, s′1.w 6�F low , and s′′1 .w 6�F low ,

which means that E1[M0] is a syntactically (F, low , mj)-high function and M1 is

(F, low , mj)-high. By High Expressions (Lemma 5.9) we have M1
mj ∈ HF,low . By

induction hypothesis E1[M0]
mj ∈ HF,low . Then, by Composition of High Expressions

(Lemma 5.18), Mmj ∈ HF,low .

E[M0] = (V E1[M0]) Then by App we have Σ; Γ `
m̌j

F V : s1, τ1
s′

1−−−→
F,m̌j

σ1 and Σ; Γ `
m̌j

F

E1[M0] : s′′1 , τ1 with s′′1 .t �F s′1.w. By Remark 5.11 we have s′′1 .t 6�F low . Therefore,

s′1.w 6�F low , and s′′1 .w 6�F low , which means that V is a syntactically (F, low , mj)-

high function and E1[M0] is (F, low , mj)-high. By induction hypothesis E1[M0]
mj ∈

HF,low . Then, by Composition of High Expressions (Lemma 5.18), Mmj ∈ HF,low .

E[M0] = (if E1[M0] then Mt else Mf) Then, by rule Cond, we have Σ; Γ `
m̌j

F

E1[M0] : s1, bool, and Σ; Γ `
m̌j

F Mt : s′1, τ1 and Σ; Γ `
m̌j

F Mf : s′′1 , τ1 with

s1.t �F s′1.w, s′1.w. By Remark 5.11 we have s1.t 6�F low , and so s′1.w, s′1.w 6�F low .

By High Expressions (Lemma 5.9) we have Mt
mj , Mt

mj ∈ HF,low . By induction hy-

pothesis E1[M0]
mj ∈ HF,low . Then, by Composition of High Expressions (Lemma

5.18), Mmj ∈ HF,low .

E[M0] = (E1[M0]; M1) Then by Seq we have that Σ; Γ `
m̌j

F E1[M0] : s1, τ1 and

Σ; Γ `
m̌j

F M1 : s′1, τ
′
1 with s1.t �F s′1.w. By Remark 5.11 we have s1.t 6�F low , and

so s′1.w 6�F low . By High Expressions (Lemma 5.9) we have M1
mj ∈ HF,low . By

Non-Disclosure for Distributed Mobile Code 45

induction hypothesis E1[M0]
mj ∈ HF,low . Then, by Composition of High Expressions

(Lemma 5.18), Mmj ∈ HF,low .

E[M0] = (ref l,θ E1[M0]) Then by Ref we have that Σ; Γ `
m̌j

F E1[M0] : s1, θ with

s1.t �F l. By Remark 5.11 we have s1.t 6�F low , and so l 6�F low . By induction

hypothesis E1[M0]
mj ∈ HF,low . Then, by Composition of High Expressions (Lemma

5.18), Mmj ∈ HF,low .

E[M0] = (? E1[M0]) Easy, by induction hypothesis.

E[M0] = (E1[M0] :=? M1) Then, by Ass, we have Σ; Γ `
m̌j

F E1[M0] : s1, θ ref l̄,ňk̄

and Σ; Γ `
m̌j

F M1 : s′1, τ1 with s1.t �F s′1.w and s1.t �F l̄. By Remark 5.11 we have

s1.t 6�F low , and so l̄ 6�F low and s′1.w 6�F low . Hence, by High Expressions (Lemma

5.9) we have M1
mj ∈ HF,low . By induction hypothesis E1[M0]

mj ∈ HF,low . Then, by

Composition of High Expressions (Lemma 5.18), Mmj ∈ HF,low .

E[M0] = (V :=? E1[M0]) Then by Ass we have Σ; Γ `
m̌j

F V : s1, θ ref l̄,ňk̄
and

Σ; Γ `
m̌j

F E1[M0] : s′1, τ1 with s′1.t �F l̄. By Remark 5.11 we have s′1.t 6�F low ,

and so l̄ 6�F low . By induction hypothesis E1[M0]
mj ∈ HF,low . Then, by Composition

of High Expressions (Lemma 5.18), Mmj ∈ HF,low .

E[M0] = (flow F ′ in E1[M0]) Then by Flow we have Σ; Γ `
m̌j

F∪F ′ E1[M0] : s1, τ1. By

induction hypothesis E1[M0]
mj ∈ HF∪F ′,low , which implies E1[M0]

mj ∈ HF,low by

Remark 4.13. Then, by Composition of High Expressions (Lemma 5.18), we conclude

that Mmj ∈ HF,low .

We now design a binary relation on expressions that uses T
mj

F,low to ensure that high-

terminating expressions are always followed by operationally high ones. The definition

of R
mj

G,F,low , abbreviated R
mj

F,low when the global flow policy is G, is given in Figure 9.

The flow policy F is assumed to contain G. Notice that it is a symmetric relation. In

order to ensure that expressions that are related by R
mj

F,low perform the same changes

to the low memory, its definition requires that the references that are created or written

using (potentially) different values are high, and that the body of the functions that are

applied are syntactically high.

Definition 5.21 (R
mj

F,low). See Figure 9.

Remark 5.22. If M1 T
mj

F,low M2, then M1 R
mj

F,low M2.

The above remark is used to prove the following lemma.

Lemma 5.23. If for some mj , F and low we have that M1 R
mj

F,low M2 and M
mj

1 ∈

HF,low , then M
mj

2 ∈ HF,low .

Rationale. Similarly to Lemma 5.19, the proof rests on the fact that if an expression

M1 of the form (M̄1 N̄1), (M̄1; N̄1) or (M̄1 :=? N̄1) is operationally high, in spite of

N̄1 not being operationally high, then M̄1 is non-resolvable.

Clauses 5’, 7’ and 11’ do not require N̄1 to be operationally high. However, by

A. Almeida Matos and J. Cederquist 46

Definition 5.21. We have that M1 R
mj

F,low M2 if Σ; Γ `
Σ(mj)

F M1 : s1, τ and

Σ; Γ `
Σ(mj)

F M2 : s2, τ for some Σ, Γ, s1, s2 and τ and one of the following holds:

Clause 1’ M1
mj , M2

mj ∈ HF,low , or

Clause 2’ M1 = M2, or

Clause 3’ M1 = (if M̄1 then N̄t else N̄f) and M2 = (if M̄2 then N̄t else N̄f) with

M̄1 R
mj

F,low M̄2, and N̄t
mj , M̄f

mj ∈ HF,low , or

Clause 4’ M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 R
mj

F,low M̄2, and

N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 are syntactically (F, low , mj)-high functions, or

Clause 5’ M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T
mj

F,low M̄2, and N̄1 R
mj

F,low N̄2,

and M̄1, M̄2 are syntactically (F, low , mj)-high functions, or

Clause 6’ M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 R
mj

F,low M̄2, and N̄mj ∈ HF,low ,

or

Clause 7’ M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2, or

Clause 8’ M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) with M̄1 R
mj

F,low M̄2, and l 6�F low , or

Clause 9’ M1 = (? M̄1) and M2 = (? M̄2) with M̄1 R
mj

F,low M̄2, or

Clause 10’ M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) with M̄1 R
mj

F,low M̄2, and

N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type θ ref l,ňk
for some θ and l such that

l 6�F low , or

Clause 11’ M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) with M̄1 T
mj

F,low M̄2, and

N̄1 R
mj

F,low N̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such that

l 6�F low , or

Clause 12’ M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with M̄1 R
mj

F∪F ′,low
M̄2.

Fig. 9. The relation R
mj

F,low

the above observation and by Lemma 5.17 this implies that M̄2 is non-resolvable.

Therefore, it is sufficient to conclude that M̄2 is operationally high.

Proof. By induction on the definition of M1 R
mj

F,low M2. Clauses 1’ and 2’ are direct.

Clause 3’ Here we have that M1 = (if M̄1 then M̄t else M̄f) and that M2 =

(if M̄2 then M̄t else M̄f) with M̄1 R
mj

F,low M̄2 and M̄
mj

t , M̄
mj

f ∈ HF,low . Clearly we

have that M̄
mj

1 ∈ HF,low , so by induction hypothesis also M̄
mj

2 ∈ HF,low . Therefore,

by Composition of High Expressions (Lemma 5.18) we have that M2
mj ∈ HF,low .

Clause 4’ Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 R
mj

F,low M̄2, M̄1 and M̄2

are syntactically (F, low , mj)-high functions, and N̄
mj

1 , N̄
mj

2 ∈ HF,low . Clearly we

have that M̄
mj

1 ∈ HF,low , so by induction hypothesis also M̄
mj

2 ∈ HF,low . Therefore,

by Composition of High Expressions (Lemma 5.18) we have that M2
mj ∈ HF,low .

Clause 5’ Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T
mj

F,low M̄2, M̄1 and M̄2

are syntactically (F, low , mj)-high functions, and N̄1 R
mj

F,low N̄2. Clearly we have

that M̄
mj

1 ∈ HF,low , so by Lemma 5.19 also M̄
mj

2 ∈ HF,low . We distinguish two

sub-cases: (i) N̄
mj

1
∈ HF,low . Then, by induction hypothesis, also N̄

mj

2 ∈ HF,low .

Therefore, by Composition of High Expressions (Lemma 5.18) we have that M2
mj ∈

Non-Disclosure for Distributed Mobile Code 47

HF,low . (ii) N̄
mj

1
/∈ HF,low . Then M̄1†, and by Lemma 5.17 also M̄2†. Therefore, by

Composition of High Expressions (Lemma 5.18) we have that M2
mj ∈ HF,low .

Clause 6’ Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 R
mj

F,low M̄2 and N̄mj ∈

HF,low . Clearly we have that M̄
mj

1 ∈ HF,low , so by induction hypothesis also M̄
mj

2 ∈

HF,low . Therefore, by Composition of High Expressions (Lemma 5.18) we have that

M2
mj ∈ HF,low .

Clause 7’ Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2. Clearly we

have that M̄
mj

1 ∈ HF,low , so by Lemma 5.19 also M̄
mj

2 ∈ HF,low . We distinguish

two sub-cases: (i) N̄mj ∈ HF,low . Therefore, by Composition of High Expressions

(Lemma 5.18) we have that M2
mj ∈ HF,low . (ii) N̄mj /∈ HF,low . Then M̄1†, and by

Lemma 5.17 also M̄2†. Therefore, by Composition of High Expressions (Lemma 5.18)

we have that M2
mj ∈ HF,low .

Clause 8’ Here M1 = (refl,θ M̄1) and M2 = (ref l,θ M̄2) where M̄1 R
mj

F,low M̄2, and

l 6�F low . Clearly we have that M̄
mj

1 ∈ HF,low , so by induction hypothesis also

M̄
mj

2 ∈ HF,low . Therefore, by Composition of High Expressions (Lemma 5.18) we

have that M2
mj ∈ HF,low .

Clause 9’ Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 R
mj

F,low M̄2. Clearly we have

that M̄
mj

1 ∈ HF,low , so by induction hypothesis also M̄
mj

2 ∈ HF,low . This implies

that M2
mj ∈ HF,low .

Clause 10’ Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where

M̄1 R
mj

F,low M̄2, and N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type θ refl,ňk
for

some θ and l such that l 6�F low . Clearly we have that M̄
mj

1 ∈ HF,low , so by induc-

tion hypothesis also M̄
mj

2 ∈ HF,low . Therefore, by Composition of High Expressions

(Lemma 5.18) we have that M2
mj ∈ HF,low .

Clause 11’ Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where

M̄1 T
mj

F,low M̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such that

l 6�F low , and N̄1 R
mj

F,low N̄2. Clearly we have that M̄
mj

1 ∈ HF,low , so by Lemma 5.19

also M̄
mj

2 ∈ HF,low . We distinguish two sub-cases: (i) N̄mj ∈ HF,low . Then,

M̄
mj

2 , N̄mj ∈ HF,low . Therefore, by Composition of High Expressions (Lemma 5.18)

we have that M2
mj ∈ HF,low . (ii) N̄mj /∈ HF,low . Then M̄1†, and by Lemma 5.17

also M̄2†. Therefore, by Composition of High Expressions (Lemma 5.18) we have that

M2
mj ∈ HF,low .

Clause 12’ Here we have M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with

M̄1 R
mj

F∪F ′,low M̄2. Clearly we have that M̄
mj

1 ∈ HF,low , so by induction hypothesis

also M̄
mj

2 ∈ HF,low . Therefore, by Composition of High Expressions (Lemma 5.18)

we have that M2
mj ∈ HF,low .

We have seen in Splitting Computations (Lemma 3.2) that two computations of the

same expression can split only if the expression is about to read a reference that is given

different values by the memories in which they compute. In Lemma 5.24 we saw that the

relation T
mj

F,low relates the possible outcomes of expressions that are typable with a low

termination effect. Finally, from the following lemma one can conclude that the above

relation R
mj

F,low relates the possible outcomes of typable expressions in general.

A. Almeida Matos and J. Cederquist 48

Lemma 5.24. If there exist Σ, Γ, s, τ such that Σ; Γ `
Σ(mj)
F E[(? al,θ)] : s, τ with

l 6�F∪dEe low , then for any values V0, V1 ∈ Val such that Σ; Γ ` Vi : θ we have

E[V0] R
mj

F,low E[V1].

Rationale. If a typable expression is about to use a value that results from a high

dereference, then the following situations can occur:

If the termination effect is low, i.e. if the value cannot influence the termination

behavior of the dereference, then by Lemma 5.14 any two possible outcomes are in

the relation T (see Clauses 5’, 7’ and 11’) and hence in R.

Otherwise, if the terminating effect is not low, then the type system must ensure

that no low writes follow the high dereference (see Clauses 4’, 6’ and 10’). This is

partly guaranteed by conditions of the form ‘s.t �F s′.w’, where s is the security

effect of a subprogram that is performed before another subprogram whose security

effect is s′. More precisely, conditions are imposed when the dereferenced value is

used: to determine a reference that is being assigned to (s.t �F s′.w in rule Ass);

to determine a function that is being applied (s.t �F s′′.w in rule App); to evaluate

the first component of a sequential composition (s.t �F s′.w in rule Seq).

The relation R requires that the references that are created or written using the

high dereferenced value are high (see Clauses 8’, 10’ and 11’), and that function

applications that use the high dereferenced value are syntactically high. This is partly

guaranteed by conditions of the form ‘s.t �F l′, where s is the security effect of the

subprogram that performs the high dereference, and l is the security level of the

reference that is created or written. More precisely, conditions are imposed when the

dereferenced value is used: to create a reference (s.r �F l in rule Ref); to determine

a reference that is being assigned to (s.r �F l in rule Ass); to determine a value

that is being assigned (s′.r �F l in rule Ass); to determine a function that is being

applied (s.r �F s′.w in rule App); to determine an argument to which a function is

being applied (s′′.r �F s′.w in rule App).

When the high dereferenced value is used in the predicate of a conditional, the

branches should be operationally high (see Clause 3’). This is guaranteed by the

type system with the condition s.r �F st.w, sf .w in rule Cond.

Proof. By induction on the structure of E.

E[(? al,θ)] = (? al,θ) We have V0 R
mj

F,low V1 by Clause 1’.

E[(? al,θ)] = (E1[(? al,θ)] M) By rule App we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄
s̄′

−−−−−→
F,Σ(mj)

σ̄ and Σ; Γ `
Σ(mj)
F M : s̄′′, τ̄ with s̄.r �F s̄′.w and s̄.t �F s̄′′.w. By

Lemma 5.2, we have l � s̄.r. Therefore l �F s̄′.w. Since by hypothesis l 6�F∪dE1e low

(therefore l 6�F low), then s̄′.w 6�F low , that is E1[(? al,θ)] is a syntactically

(F, low , mj)-high function. By Lemma 5.6, the same holds for E1[V0] and E1[V1].

By induction hypothesis we conclude that E1[V0] R
mj

F,low E1[V1]. There are two

cases to consider: (i) s̄.t 6�F low . Then s̄′′.w 6�F low (and also s̄′′.w 6� low) so

by High Expressions (Lemma 5.9) we have Mmj ∈ HF,low . Therefore, we con-

Non-Disclosure for Distributed Mobile Code 49

clude E[V0] R
mj

F,low E[V1] by Clause 4’ and Lemma 5.6. (ii) s̄.t �F low . Then by

Lemma 5.14 we have E1[V0] T
mj

F,low E1[V1]. Therefore, since M R
mj

F,low M by Clause

2’, we conclude that E[V0] R
mj

F,low E[V1] by Clause 5’ and Lemma 5.6.

E[(? al,θ)] = (V E1[(? al,θ)]) By App we have Σ; Γ `
Σ(mj)
F V : s̄, τ̄

s̄′

−−−−−→
F,Σ(mj)

σ̄ and

Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄′′, τ̄ with s̄′′.r �F s̄′.w. By Lemma 5.2, we have l � s̄′′.r,

and so l �F s̄′.w. Since by hypothesis l 6�F∪dE1e low (therefore l 6�F low), then

s̄′.w 6�F low , that is V is a syntactically (F, low , mj)-high function. By Clause 1

we have V T
mj

F,low V . By induction hypothesis E1[V0] R
mj

F,low E1[V1]. Therefore we

conclude that E[V0] R
mj

F,low E[V1] by Clause 5’ and Lemma 5.6.

E[(? al,θ)] = (if E1[(? al,θ)] then Mt else Mf) By Cond we have Σ; Γ `
Σ(mj)
F

E1[(? al,θ)] : s̄, bool, and Σ; Γ `
Σ(mj)
F Mt : s̄t, τ̄ and Σ; Γ `

Σ(mj)
F Mf : s̄f , τ̄ with

s̄.r �F s̄t.w, s̄f .w. By Lemma 5.2, we have l � s̄.r and so l �F s̄t.w, s̄f .w. Since by

hypothesis l 6�F∪dE1e low (therefore l 6�F low), then s̄t.w 6�F low and s̄f .w 6�F low .

This implies that Mt
mj , Mf

mj ∈ HF,low . By induction hypothesis E1[V0] R
mj

F,low

E1[V1]. Therefore we conclude that E[V0] R
mj

F,low E[V1] by Clause 3’ and Lemma 5.6.

E[(? al,θ)] = (E1[(? al,θ)]; M) By Seq we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄ and

Σ; Γ `
Σ(mj)
F M : s̄′, τ̄ ′ with s̄.t �F s̄′.w. There are tow cases to consider:

(i) s̄.t 6�F low . Then s̄′.w 6�F low so by High Expressions (Lemma 5.9) we have

Mmj ∈ HF,low . By induction hypothesis E1[V0] R
mj

F,low E1[V1]. We then conclude

that E[V0] R
mj

F,low E[V1] by Clause 6’ and Lemma 5.6. (ii) s̄.t �F low . Then by

Lemma 5.14 we have E1[V0] T
mj

F,low E1[V1]. Therefore, we conclude using Clause 7’

and Lemma 5.6.

E[(? al,θ)] = (ref l̄,θ̄ E1[(? al,θ)]) By Ref we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄ with

s̄.r = s.r �F l̄ and s̄.t = s.t. Therefore, since l 6�F∪E low implies l 6�F∪E1
low , then

by induction hypothesis we have E1[V0] R
mj

F,low E1[V1]. By Lemma 5.2 we have l � s.r,

so s.r 6�F low . Therefore, l̄ 6�F low , and we conclude by Lemma 5.6 and Clause 8’.

E[(? al,θ)] = (? E1[(? al,θ)]) By rule Der we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄ . By

induction hypothesis E1[V0] T
mj

F,low E1[V1]. We conclude by Lemma 5.6 and Clause 9’.

E[(? al,θ)] = (E1[(? al,θ)] :=? M) By rule Ass we have that Σ; Γ `
Σ(mj)
F E1[al,θ] :

s̄, θ̄ ref l̄,ˇ̄nk
with s̄.r �F l̄ and s̄.t �F s̄′.w. By Lemma 5.2 we have l � s.r, so

s.r 6�F low and so l̄ 6�F low . There are two cases to consider: (i) s̄.t 6�F low . Then

s̄′.w 6�F low so by High Expressions (Lemma 5.9) we have Mmj ∈ HF,low . By in-

duction hypothesis E1[V0] R
mj

F,low E1[V1]. We then conclude that E[V0] R
mj

F,low E[V1]

by Clause 10’ and Lemma 5.6. (ii) s̄.t �F low . Then by Lemma 5.14 we have

E1[V0] T
mj

F,low E1[V1]. Therefore, we conclude using Lemma 5.6, Clause 11’ and Clause

2’ (regarding M).

E[(? al,θ)] = (V :=? E1[(? al,θ)]) By rule Ass we have that Σ; Γ `
Σ(mj)
F V :

s̄, θ̄ ref l̄,ˇ̄nk
, Σ; Γ `

Σ(mj)
F E1[al,θ] : s̄′, θ with s̄′.r �F l̄. By Lemma 5.2 we have l � s̄′.r,

so l �F l̄. Then, we must have l̄ 6�F low , since otherwise l �F∪E low . By Clause 1

we have that V T
mj

F,low V , and by induction hypothesis E1[V0] R
mj

F,low E1[V1]. We then

conclude by Lemma 5.6 and Clause 11’.

A. Almeida Matos and J. Cederquist 50

E[(? al,θ)] = (flow F ′ in E1[(? al,θ)]) By rule Flow we have Σ; Γ `
Σ(mj)
F∪F ′ V : s, τ .

By induction hypothesis E1[V0] T
mj

F∪F ′,low E1[V1], so we conclude by Lemma 5.6 and

Clause 12’.

We now state a crucial result of the paper: the relation R
mj

F,low is a sort of “strong

bisimulation”.

Proposition 5.25 (Strong Bisimulation for Typable Low Threads).

If M1 R
mj

F,low M2 and M1 /∈ HF,low and 〈M1
mj , T1, S1〉

Nnk

−−−→
F ′

〈M ′
1
mj , T ′

1, S
′
1〉, with 〈T1, S1〉

=F∪F ′,low 〈T2, S2〉 such that n is fresh for T2 if n ∈ dom(T ′
1 − T1) and a is fresh for S2

if al,θ ∈ dom(S′
1 − S1), then there exist T ′

2, M ′
2 and S′

2 such that 〈M2
mj , T2, S2〉

Nnk

−−−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 R
mj

F,low M ′
2 and 〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉.

Rationale. Assuming that M1 (and M2) are not operationally high allows us to

conclude in many cases that a certain subexpression can compute, using Composition

of High Expressions (Lemma 5.18). It applies in particular to potentially suspensive

expressions.

If M
mj

1 and M
mj

2 are equal (related by T using Clause 2), then we can reject the

case where mj is accessing a high remote reference, since by Potentially Suspensive

Transitions (Lemma 5.20) we would have M
mj

1 operationally high. We can then

proceed as in Strong Bisimulation for Low-Terminating Threads (5.15).

Proof. By induction on the definition of R
mj

F,low . We use Subject Reduction (Theo-

rem 5.7) to guarantee typability (with the same type) for mj , low and F , which is a

requirement for being in the R
mj

F,low relation. We also use the Strong Bisimulation for

Low Terminating Threads Lemma (Lemma 5.15).

Clause 1’ This case is excluded by assumption.

Clause 2’ Here M1 = M2. If M1 = E[(nk.ul,θ :=? V)] or M1 = E[(? nk.ul,θ)] with

j g k 6�F low and n 6= m, then by Potentially Suspensive Transitions (Lemma 5.20)

we have that Mmj ∈ HF,low , which is rejected by assumption. Otherwise, the proof is

analogous to the corresponding case in Strong Bisimulation for Low-Typable Threads

(Lemma 5.15): By Guaranteed Transitions (Lemma 5.10) there exist T ′
2, M ′

2 and

S′
2 such that 〈M

mj

2 , T2, S2〉
Nnk

−−−→
F ′

〈M
′mj

2 , T ′
2, S

′
2〉 with 〈T ′

1, S
′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

There are two cases to consider: (i) M ′

2
= M ′

1
. Then we have M ′

1 R
mj

F,low M ′
2, by

Clause 2’ and Subject Reduction (Theorem 5.7). (ii) M ′

2
6= M ′

1
. Then by Splitting

Computations (Lemma 3.2) we have that Nnk = () and there exist E and al,θ such

that F ′ = dEe, M ′
1 = E[S1(al,θ)], M ′

2 = E[S2(al,θ)], 〈T ′
1, S

′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 =

〈T2, S2〉. Since S1(al,θ) 6= S2(al,θ), we have l 6�F∪F ′ low . Therefore, M ′
1 R

mj

F,low M ′
2,

by Lemma 5.24 above.

Clause 3’ Here we have that M1 = (if M̄1 then M̄t else M̄f) and that M2 =

(if M̄2 then M̄t else M̄f) with M̄1 R
mj

F,low M̄2 and M̄
mj

t , M̄
mj

f ∈ HF,low . We can

Non-Disclosure for Distributed Mobile Code 51

assume that M̄
mj

1 /∈ HF,low , since otherwise M
mj

1 ∈ HF,low by Composition of

High Expressions (Lemma 5.18). Therefore, M ′
1 = (if M̄ ′

1 then M̄t else M̄f) with

〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 3’ and

Subject Reduction (Theorem 5.7) to conclude.

Clause 4’ Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 R
mj

F,low M̄2, M̄1 and

M̄2 are syntactically (F, low , mj)-high functions, and N̄
mj

1 , N̄
mj

2 ∈ HF,low . We can

assume that M̄1 can compute, since otherwise M
mj

1 ∈ HF,low by Composition of

High Expressions (Lemma 5.18). Therefore, M ′
1 = (M̄ ′

1 N̄1) with 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 4’ and Subject Reduction

(Theorem 5.7) to conclude.

Clause 5’ Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T
mj

F,low M̄2, M̄1 and M̄2 are

syntactically (F, low , mj)-high functions, and N̄1 R
mj

F,low N̄2. We distinguish two sub-

cases: (i) M̄1 can compute. In this case there exists M̄ ′
1 such that 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use Lemma 5.15, Subject Reduction (Theorem 5.7) and

Clause 5’ to conclude. (ii) M̄1 is a value. Then by Remark 5.13, M̄2 ∈ Val . We can

assume that N̄
mj

1 , N̄
mj

2 /∈ HF,low , since otherwise M
mj

1 ∈ HF,low by Composition of

High Expressions (Lemma 5.18). Then, N̄1 can compute, and so there exist N̄ ′
1 such

that 〈N̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈N̄
′mj

1 , T ′
1, S

′
1〉 with M ′

1 = (M̄1 N̄ ′
1). We use the induction

hypothesis, Clause 5’ and Subject Reduction (Theorem 5.7) to conclude.

Clause 6’ Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 R
mj

F,low M̄2 and N̄mj ∈

HF,low . We can assume that M̄
mj

1 /∈ HF,low , since otherwise M
mj

1 ∈ HF,low by

Composition of High Expressions (Lemma 5.18). Therefore, we have M ′
1 = (M̄ ′

1; N̄)

with 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 6’

and Subject Reduction (Theorem 5.7) to conclude.

Clause 7’ Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2. We distin-

guish two sub-cases: (i) M̄1 can compute. In this case there exists M̄ ′
1 such that

〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use Lemma 5.15, Subject Reduction (Theorem

5.7) and Clause 7’ to conclude. (ii) M̄1 is a value. Then M ′
1 = N̄ , F = ∅, Nnk = ()

and 〈T ′
1, S

′
1〉 = 〈T1, S1〉. By Remark 5.13, M̄2 ∈ Val . Then, we have 〈M

mj

2 , T1, S1〉
Nnk

−−−→
F ′

〈N̄mj , T ′
1, S

′
1〉. We conclude using Lemma 5.15 and Clause 2’.

Clause 8’ Here M1 = (refl,θ M̄1) and M2 = (ref l,θ M̄2) where M̄1 R
mj

F,low M̄2, and

l 6�F low . We can assume that M̄
mj

1 /∈ HF,low , since otherwise M
mj

1 ∈ HF,low by

Composition of High Expressions (Lemma 5.18). Then, M̄1 can compute, and M ′
1 =

(refl,θ M̄ ′
1) with 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis,

Subject Reduction (Theorem 5.7) and Clause 8’ to conclude.

Clause 9’ Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 R
mj

F,low M̄2. We know that

M̄1 can compute, since otherwise M1
mj ∈ HF,low . Then, we have 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Subject Reduction (Theorem 5.7)

and Clause 9’ to conclude.

A. Almeida Matos and J. Cederquist 52

Clause 10’ Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where

M̄1 R
mj

F,low M̄2, and N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type θ refl,ňk
for

some θ and l such that l 6�F low . We can assume that M̄1 can compute, since other-

wise M
mj

1 ∈ HF,low by Composition of High Expressions (Lemma 5.18). Therefore,

M ′
1 = (M̄ ′

1 :=? N̄1) with 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction

hypothesis, Clause 10’ and Subject Reduction (Theorem 5.7) to conclude.

Clause 11’ Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where

M̄1 T
mj

F,low M̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such that

l 6�F low , and N̄1 R
mj

F,low N̄2. We can assume that M1 cannot be a redex, with

M̄1, N̄1 ∈ Val , since otherwise M
mj

1 ∈ HF,low by Composition of High Expressions

(Lemma 5.18). There are two cases to consider: (i) M̄1 can compute. Then we have

〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use Lemma 5.15, Clause 11’ and Subject Re-

duction (Theorem 5.7) to conclude. (ii) M̄1 is a value but N̄1 can compute. Then

by Remark 5.13, M̄2 ∈ Val , so 〈N̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈N̄
′mj

1 , T ′
1, S

′
1〉. We conclude using

induction hypothesis, Clause 11’ and Subject Reduction (Theorem 5.7).

Clause 12’ Here we have M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with

M̄1 R
mj

F∪F ′,low M̄2. We can assume that M̄
mj

1 /∈ HF∪F ′,low , since otherwise M̄
mj

1 /∈

HF,low and by Composition of High Expressions (Lemma 5.18) M
mj

1 ∈ HF,low . There-

fore 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′′

〈M̄
′mj

1 , T ′
1, S

′
1〉 with F ′ = F̄ ∪ F ′′. By induction hypothesis,

we have that 〈M̄
mj

2 , T2, S2〉
Nnk

−−−→
F ′′

〈M̄
′mj

2 , T ′
2, S

′
2〉, and that M ′

1 R
mj

F∪F̄ ,low
M ′

2 and also

〈T ′
1, S

′
1〉 =F∪F̄ ,low 〈T ′

2, S
′
2〉. Notice that 〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉 by Remark 4.4. We

use Subject Reduction (Theorem 5.7) and Clause 12’ to conclude.

5.4.3. Behavior of Sets of Typable Threads To conclude the proof of the Soundness The-

orem, it remains to exhibit an appropriate bisimulation on pools of threads.

Definition 5.26 (R?
G,low). The relation R?

G,low is inductively defined as follows:

a)
Mmj ∈ HG,low

{Mmj} R?
G,low ∅

b)
Mmj ∈ HG,low

∅ R?
G,low {Mmj}

c)
M1 R

mj

G,low M2

{M1
mj} R?

G,low {M2
mj}

d)
P1 R?

G,low P2 Q1 R?
G,low Q2

P1 ∪ Q1 R?
G,low P2 ∪ Q2

Proposition 5.27. The relation R?
G,low is a (G, low)-bisimulation.

Rationale. Operationally high threads can be added to any pool of threads without

affecting its capability of being bisimilar to another pool of threads. This results

from the fact that threads in the set H can only generate threads that are in H, and

none of them can perform changes to the low memory. Therefore, any step that is

performed by an operationally high thread can be simulated by any pool of threads

Non-Disclosure for Distributed Mobile Code 53

by doing nothing.

For each of the pairs of threads that are related by R?, we use Strong Bisimulation for

Typable Low Threads (Proposition 5.25), and Clause 2’ to prove that the expressions

that are related by R
mj

G,low can simulate each other’s steps, and that any threads that

they eventually create are related by R?.

Proof. First, it is easy to see, by induction on the definition of R?
G,low , that this relation

is symmetric. Now we show, by induction on the definition of R?
G,low , that if P1 R?

G,low P2

and 〈P1, T1, S1〉 −→
F

〈P ′
1, T

′
1, S

′
1〉, n is fresh for T2 if n ∈ dom(T ′

1−T1) and a is fresh for S2

if al,θ ∈ dom(S′
1 − S1), and if 〈T1, S1〉 =F∪G,low 〈T2, S2〉, then there exist T ′

2, P ′
2 and S′

2

such that 〈P2, T2, S2〉 � 〈P ′
2, T

′
2, S

′
2〉 and P ′

1 R?
G,low P ′

2 and 〈T ′
1, S

′
1〉 =F∪G,low 〈T ′

2, S
′
2〉.

Rule a) Then P1 = {Mmj}, P2 = ∅, and Mmj ∈ HG,low . In this case we have

〈Mmj , T1, S1〉
Nnk

−−−→
F

〈M ′mj , T ′
1, S

′
1〉, with P ′

1 = {M ′mj , Nnk}, where we have

M
′mj

1 , Nnk ∈ HG,low and 〈T ′
1, S

′
1〉 =G,low 〈T1, S1〉. We have that 〈P2, T2, S2〉 �

〈P2, T2, S2〉 and by transitivity 〈T ′
1, S

′
1〉 =G,low 〈T2, S2〉. By Rule a) we have

{M
′mj

1 } R?
G,low ∅ and {Nnk} R?

G,low ∅. Therefore, by Rule d), we have P ′
1 R?

G,low ∅.

Rule c) Then P1 = {M1
mj} and P2 = {M2

mj}, and we have M1 R
mj

G,low M2. By

the case for Rule a), we have that P ′
1 R?

G,low ∅ and 〈T ′
1, S

′
1〉 =F∪G,low 〈T ′

2, S
′
2〉. If

M
mj

1 ∈ HG,low , then by Lemma 5.23 also M
mj

2 ∈ HG,low , so by Rule b) ∅ R?
G,low P2.

Then, by Rule d), we have P ′
1 R?

G,low P2. If M
mj

1 /∈ HG,low , there are two cases

to be considered: (i) P ′

1
= {M ′

1

mj }. Then 〈M1
mj , T1, S1〉

()
−→
F

〈M ′
1
mj , T ′

1, S
′
1〉 and

so by Strong Bisimulation for Typable Low Threads (Proposition 5.25) there exist

T ′
2, M ′

2 and S′
2 such that 〈M2

mj , T2, S2〉
()
−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 R
mj

G,low M ′
2

and 〈T ′
1, S

′
1〉 =G,low 〈T ′

2, S
′
2〉. Then, by Rule c), we have {M1

mj} R?
G,low {M2

mj}.

(ii) P ′

1
= {M ′

1

mj , Nnk}. Then we have 〈M1
mj , T1, S1〉

Nnk

−−−→
F

〈M ′
1
mj , T ′

1, S
′
1〉 and

again by Strong Bisimulation for Typable Low Threads (Proposition 5.25) there exist

T ′
2, M ′

2 and S′
2 such that 〈M2

mj , T2, S2〉
Nnk

−−−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 R
mj

G,low M ′
2

and 〈T ′
1, S

′
1〉 =G,low 〈T ′

2, S
′
2〉. Then, by Rule c) we have {M1

mj} R?
G,low {M2

mj}.

By Subject Reduction (Theorem 5.7), by Lemma 5.4, and by Clause 2’ we have

N Rnk

G,low N , and so by Rule c) we have {Nnk} R?
G,low {Nnk}. Therefore, by Rule

d), we have {M1
mj , Nnk} R?

G,low {M2
mj , Nnk}.

Rule d) Then P1 = P̄1 ∪ Q̄1 and P2 = P̄2 ∪ Q̄2, with P̄1 R?
G,low P̄2 and Q̄1 R?

G,low Q̄2.

Suppose that 〈P̄1, T1, S1〉 −→
F

〈P̄ ′
1, T

′
1, S

′
1〉 – the case where Q̄1 reduces is analo-

gous. By induction hypothesis, there exist T ′
2, P̄ ′

2 and S′
2 such that 〈P̄2, T2, S2〉 �

〈P̄ ′
2, T

′
2, S

′
2〉 with P̄ ′

1 R
?
G,low P̄ ′

2 and 〈T ′
1, S

′
1〉 =G,low 〈T ′

2, S
′
2〉. Then, 〈P̄2 ∪ Q̄2, T2, S2〉 �

〈P̄ ′
2 ∪ Q̄2, T

′
2, S

′
2〉, and by Rule d) then P̄ ′

1 ∪ Q̄1 R?
G,low P̄ ′

2 ∪ Q̄2.

We now state the main result of this paper:

A. Almeida Matos and J. Cederquist 54

Theorem 5.28 (Soundness for Non-disclosure for Networks).

Consider a pool of threads P and a global flow policy G. If for all Mmj ∈ P there exist Σ,

Γ, s and τ such that Σ; Γ `
Σ(mj)
G,G M : s, τ , then P satisfies the non-disclosure for networks

policy with respect to G.

Proof. By Clause 2’ of Definition 5.21, for all choices of security levels low , we have that

M R
mj

G,low M . By Rule c) of Definition 5.26 we then have {Mmj} R?
G,low {Mmj}. Since

this is true for all Mmj ∈ P , by Rule d) we have that P R?
G,low P . By Proposition 5.27

we conclude that P ≈G,low P .

The above result is compositional, in the sense that it is enough to verify the typability of

each thread separately in order to ensure non-disclosure for the whole network. The global

flow policy G can be taken as the “intersection” of the flow policies of all the threads in

the network. As was observed earlier this operation seems too costly and complex to be

used in a general case. The result can be conveniently approximated by the empty flow

relation, which gives the minimum flow security pre-lattice that all threads must satisfy.

6. Related Work

To the best of our knowledge, this is the first study on the security of information flows

that are introduced by mobility in the context of a distributed language with states.

Moreover, it seems to be the first to consider the usage of declassification in a distributed

scenario. This discussion will focus on type-based approaches for enforcing information

flow policies in settings with distribution and mobility, giving particular attention to the

work that is closest to ours (Crafa et al. 2002).

This work follows a line of study that approaches similar problems in the context of

simpler concurrent settings. When studying non-interference for an imperative multi-

threaded language, Smith and Volpano (1998) recognized termination leaks as an issue

that is specific to concurrent settings, and provided a type system that rejects them. This

was followed by a series of studies that consider increasingly expressive languages and

refined type systems (Smith 2001, Boudol & Castellani 2002, Honda & Yoshida 2002,

Almeida Matos & Boudol 2005, Boudol 2005b). A particular kind of termination leak,

known as suspension leak, was studied and handled in (Sabelfeld 2001, Almeida Matos,

Boudol & Castellani 2004) in the presence of different forms of synchronization.

Already in a distributed setting, but where interaction between domains is restricted

to the exchange of values (no code mobility), Mantel and Sabelfeld (2003, 2002) have

provided a type system for preserving confidentiality for different kinds of channels es-

tablished over a publicly observable medium. Sharing our underlying aim of studying the

distribution of code under information flow policies, Zdancewic et al. (2002) have how-

ever set the problem in a very different manner: they considered a distributed system of

potentially corrupted hosts and of principals that have different levels of trust on these

hosts, and proposed a way of partitioning and distributing a program over that setting.

This work is supported on the Decentralized Label Model (Myers & Liskov 2000), where

data is owned by sets of principals, each of which can affect the security label that is

associated to that piece of data. Most recently, in a work by the same author (Almeida

Non-Disclosure for Distributed Mobile Code 55

Matos 2009), the problem of declassification control is studied for a distributed language

with “allowed flow policies” associated to each site, in a simpler memory model where

resources are globally shared.

Progressing rather independently we find a field of work on mobile calculi that are

purely functional concurrent languages. To mention a few representative works on process

calculi, we have Honda et al.’s paper for π-calculus (2000), and Hennessy and Riely’s

study for the security π-calculus (2002). In (Kırlı 2000), mobility of functions as values

is studied for a deterministic language with only two sites.

Non-interference for Boxed Ambients Castagna, Bugliesi and Crafa seem to have

been the first to approach the study of non-interference for a language with both dis-

tribution and mobility (2002). We will conclude with a short discussion of this work,

which was done for Boxed Ambients (Bugliesi, Castagna & Crafa 2001) (abbreviated

BA), a purely functional process calculus (i.e., without side-effects) derived from Mobile

Ambients (Cardelli & Gordon 2000) that the authors had previously used as a frame-

work for distributed resource access security (Bugliesi et al. 2001). Non-interference is

stated by means of a contextual equivalence and a sound type system is presented. How-

ever, a unique lattice representing the flow policy was considered, and no declassification

mechanisms are contemplated.

Distribution in BA is hierarchical, where mobility consists of having ambients enter or

exit the boundaries of neighboring or parent ambients. Communication can occur locally

via an unnamed channel, or across boundaries, between parent and child, via a channel

with the child’s name. The execution of both the communication and migration instruc-

tions depend on the presence of ambients at certain (neighboring) positions, and are

otherwise suspended (in the same sense that our dereference and assignment operations

suspend in the absence of the reference they want to access).

Since ambient names correspond simultaneously to places of computation, to migrating

entities, and to resources for passing values, and because it is purely functional, it is hard

to establish a correspondence between BA and our language. However, some analogies

can be drawn. Roughly speaking, security levels are associated to ambient names, as they

are here to references and threads. Similarly to this work, the knowledge of the position of

an ambient of level l is considered as l-level information. Message passing between parent

and child involves a synchronization that respects the position of those two domains, as

it happens here for accesses to foreign references. Migration is also identified as a way of

revealing the position of “high-ambients” to lower levels, though the dangerous usages

of migration are rejected rather differently. Some elucidative examples that pinpoint

similarities between the two studies can be found in the authors PhD thesis (Almeida

Matos 2006).

7. Conclusion

We now summarize the main technical contributions of this work, and conclude with

some motivation for future work.

Security Policies We have addressed the issue of what is a secure program in a network

A. Almeida Matos and J. Cederquist 56

from the point of view of confidentiality in information flow. To this end, we have

proposed and studied the non-disclosure property for networks, that determines the

absence of information flows that are insecure according to a dynamically chosen

ordering of security levels, in a setting where the location of processes plays a crucial

role. The formalization of non-disclosure for networks is largely independent of the

particular language that was considered here, and should be easily adaptable to other

imperative distributed models with a flat structure of computation domains.
Computation Models We have considered a distributed setting with thread migra-

tion, where threads execute in different domains, and the relative location of threads

and resources determines the circumstances in which they can execute. We found that

new forms of security leaks – the migration leaks – can be encoded. Similarities with

information flow issues that appear in ambient-like networks (Crafa et al. 2002) seem

to indicate that this problem is not confined to our particular model. This point has

been further confirmed in a recent work by the same author (Almeida Matos 2009)

where migration leaks are shown to appear in a setting where a globally shared mem-

ory is considered, and where distribution rather resides in the concept of a site’s

“allowed flow policy”. This is a first step in the direction of introducing membrane

computation (Boudol 2005a) as a prerequisite for a thread to enter a domain. It would

be interesting to further explore how new ways of controlling information leaks can

be obtained from considering more complex models of global computing.
Language Features The language we have proposed to study is simple but expressive.

It results from adding to an imperative higher-order lambda-calculus with thread and

reference creation a flow declaration construct that allows a dynamic customization

of the security ordering, and also a notion of domain and a migration instruction that

changes the position of threads and its references. We note that, by incorporating flow

declarations in our study of information flow control for networks, we have shown their

robustness when used in new computation settings.
Enforcement Mechanisms To enforce our security policy on the programs of our

language we have presented a new type and effect system that can be used to enforce

non-disclosure for networks in a decentralized manner. It also provides a variation of

(Almeida Matos & Boudol 2005), by restricting declassification to occur by means

of declassification operations that are contained within a flow declaration. We have

thus highlighted the distinction between our new declassification paradigm and the

more common declassification by value downgrading. The type soundness proofs,

which we explained in detail, result from the generalization of a proof mechanism

that was first used in (Boudol & Castellani 2002), and later pursued in (Almeida

Matos & Boudol 2005, Boudol 2005b, Almeida Matos 2009). We have thus given

further evidence that our proof mechanism can be adapted to other settings as well,

and hope that the explanations in this paper can provide a good support in that

direction.

The topics of declassification and mobility in information flow are rather independent

problems. It is perhaps not surprising that the two could be combined with little technical

effort. However, we must point out that this facility is rooted in the highly decentralized

nature of the flow declarations. No global agreement is assumed about the flow policies for

Non-Disclosure for Distributed Mobile Code 57

declassification. Moreover, the changes to the flow policy that are dynamically performed

by programs have a local scope, and do not affect the whole system.

The potential dangers that are opened by allowing declassification in a mobile setting

might seem more striking than its advantages. One can imagine the example of a mi-

grating thread that declares a very permissive flow policy for its own execution: once it

arrives at a domain where another thread that owns secret references is computing, it

can declassify that information. This could be encoded in our language as follows:

d1[(goto d2); (flow H ≺ L in (m.bL :=? (? n.aH)))
m

] ‖ d2[Nn] (33)

According to non-disclosure for networks, the above program is secure – in fact, thread

m complies with the declared flow policy when copying the value of the reference n.aH to

m.bL. This is not surprising, considering that flow declarations are a means for extending

the flexibility of what is allowed to do, and not a way to restrict it; furthermore, in

this setting we are not considering any access control features that take into account

ownership of information. Indeed, the control of the usage of declassification operations

such as the flow declarations is beyond the scope of non-disclosure, which focuses purely

on the compliance of a program to the declared flow policies. However, the location in

the program where declassifications might occur, and the security levels between which

information can flow are delimited in the program, which could enable other forms of

security analysis.

One can see the potential for formulating other security properties that are concerned

with the context in which declassification is performed. Enforcement of such proper-

ties could be obtained by designing language constructs that condition the execution

of programs to comply to more strict flow policies, or even by setting up fire-wall-like

conditions that control the migration of mobile threads. This direction is pursued in a

recent paper by the the same author (Almeida Matos 2009), where a new security policy

named “Confinement” is studied in a setting where different “allowed” flow policies are

associated to computation sites. In that setting, confinement is formulated as a property

that requires flow declarations to comply with the flow policies that are allowed by the

locations where they are executed. The paper also studies language based solutions for

controlling migration of threads according to the flow declarations that are performed,

and for enabling a program to offer alternative behaviors to be taken in contexts where

flow declarations are forbidden.

Dually to the above example, we find that of a mobile thread that brings its own data

to some site where it should perform private computations. Then, the possibility of a

migrating thread to declare its own flow policies turns into an advantage. For instance,

we could write the program:

d1[(goto d2); (flow H ≺ L in (n.bL :=? (? m.aH)))
m

] ‖ d2[Nn] (34)

These two examples point to the potential relevance of taking into account the ownership

of information when considering the control of declassification in distributed settings.

There is little practical experience in using mobile computing systems, which makes it

hard to evaluate the particular relevance of allowing declassification in a mobile comput-

ing setting. Nevertheless, declassification seems to be a crucial feature in any language

A. Almeida Matos and J. Cederquist 58

that is subject to information flow control, which a fortiori justifies the option of in-

cluding it in our mobile language. We believe that the mobile language presented in this

paper, being simple yet expressive, is a good starting ground for building more com-

plex frameworks that could bring new views on how to tackle issues that are raised by

declassification, as well as to the study of secure information flow in networks in general.

References

Almeida Matos, A. (2005), Non-disclosure for distributed mobile code, in R. Ramanujam &

S. Sen, eds, ‘FSTTCS’05: 25th International Conference on Foundations of Software Tech-

nology and Theoretical Computer Science’, Vol. 3821 of Lecture Notes in Computer Science,

Springer, pp. 177–188.

Almeida Matos, A. (2006), Typing secure information flow: declassification and mobility, PhD

thesis, École Nationale Supérieure des Mines de Paris.

Almeida Matos, A. (2009), Flow-policy awareness for distributed mobile code, in ‘Proceedings of

CONCUR 2009 - Concurrency Theory’, Vol. to appear of Lecture Notes in Computer Science,

Springer.

Almeida Matos, A. & Boudol, G. (2005), On declassification and the non-disclosure policy, in

‘CSFW’05: 18th IEEE Computer Security Foundations Workshop’, IEEE Computer Society,

pp. 226–240.

Almeida Matos, A., Boudol, G. & Castellani, I. (2004), Typing noninterference for reactive

programs, in A. Sabelfeld, ed., ‘FCS’04: Workshop on Foundations of Computer Security’,

Vol. 31 of TUCS General Publications, Turku Center for Computer Science, pp. 205–222.

Bell, D. E. & La Padula, L. J. (1976), Secure computer system: Unified exposition and multics

interpretation, Technical Report MTR-2997, The MITRE Corporation.

URL: http://csrc.nist.gov/publications/history/bell76.pdf

Boudol, G. (2004), ULM: A core programming model for global computing, in D. A. Schmidt,

ed., ‘ESOP’04: 13th European Symposium on Programming’, Vol. 2986 of Lecture Notes in

Computer Science, Springer, pp. 234–248.

Boudol, G. (2005a), A generic membrane model, in C. Priami & P. Quaglia, eds, ‘GC’04:

IST/FET International Workshop on Global Computing’, Vol. 3267 of Lecture Notes in Com-

puter Science, Springer, pp. 208–222.

Boudol, G. (2005b), On typing information flow, in D. V. Hung & M. Wirsing, eds, ‘ICTAC’05:

Second International Colloquium on Theoretical Aspects of Computing’, Vol. 3722 of Lecture

Notes in Computer Science, Springer, pp. 366–380.

Boudol, G. & Castellani, I. (2002), ‘Noninterference for concurrent programs and thread systems’,

Theoretical Computer Science 281(1–2), 109–130.

Bugliesi, M., Castagna, G. & Crafa, S. (2001), Boxed ambients, in N. Kobayashi & B. C. Pierce,

eds, ‘TACS’01: 4th International Symposium on Theoretical Aspects of Computer Software’,

Vol. 2215 of Lecture Notes in Computer Science, Springer, pp. 38–63.

Cardelli, L. & Gordon, A. D. (2000), ‘Mobile ambients’, Theoretical Computer Science

240(1), 177–213.

Cohen, E. (1977), Information transmission in computational systems, in ‘SOSP’77: sixth ACM

Symposium on Operating Systems Principles’, ACM Press, pp. 133–139.

Crafa, S., Bugliesia, M. & Castagna, G. (2002), Information flow security for boxed ambients, in

V. Sassone, ed., ‘F-WAN’02: Workshop on Foundations of Wide Area Network Computing’,

Vol. 66 of Electronic Notes in Theoretical Computer Science, Elsevier, pp. 76–97.

Non-Disclosure for Distributed Mobile Code 59

Dal Zilio, S. (2001), Mobile processes: A commented bibliography, in F. Cassez, C. Jard, B. Rozoy

& M. D. Ryan, eds, ‘MOVEP’00: 4th Summer School on Modeling and Verification of Parallel

Processes’, Vol. 2067 of Lecture Notes in Computer Science, Springer.

Denning, D. E. (1976), ‘A lattice model of secure information flow’, Communications of the ACM

19(5), 236–243.

Focardi, R. & Gorrieri, R. (1995), ‘A classification of security properties for process algebras’,

Journal of Computer Security 3(1), 5–33.

Goguen, J. A. & Meseguer, J. (1982), Security policies and security models, in ‘Proceedings of

the 1982 IEEE Symposium on Security and Privacy’, IEEE Computer Society, pp. 11–20.

Hennessy, M. & Riely, J. (2002), ‘Information flow vs. resource access in the asynchronous pi-

calculus’, ACM Transactions on Programming Languages and Systems 24(5), 566–591.

Honda, K., Vasconcelos, V. T. & Yoshida, N. (2000), Secure information flow as typed process

behaviour, in G. Smolka, ed., ‘ESOP’00: 9th European Symposium on Programming’, Vol.

1782 of Lecture Notes in Computer Science, Springer, pp. 180–199.

Honda, K. & Yoshida, N. (2002), A uniform type structure for secure information flow, in

‘POPL’02: 29th ACM Symposium on Principles of Programming Languages’, ACM Press,

pp. 81–92.

Kırlı, D. (2000), Mobile functions and secure information flow, in P. Degano, ed., ‘WITS’00:

Workshop on Issues in the Theory of Security’.

Lucassen, J. M. & Gifford, D. K. (1988), Polymorphic effect systems, in ‘POPL’88: 15th ACM

symposium on Principles of programming languages’, ACM Press, pp. 47–57.

Mantel, H. & Sabelfeld, A. (2003), ‘A unifying approach to the security of distributed and multi-

threaded programs’, Journal of Computer Security 11(4), 615–676.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1997), The definition of Standard ML, revised

edn, MIT Press.

Myers, A. C. (1999), JFlow: Practical mostly-static information flow control, in ‘Proceedings

of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages’,

ACM Press, pp. 228–241.

Myers, A. C. & Liskov, B. (1998), Complete, safe information flow with decentralized labels, in

‘19th IEEE Computer Society Symposium on Security and Privacy’, IEEE Computer Society,

pp. 186–197.

Myers, A. C. & Liskov, B. (2000), ‘Protecting privacy using the decentralized label model’, ACM

Transactions on Software Engineering and Methodology 9(4), 410–442.

Sabelfeld, A. (2001), The impact of synchronisation on secure information flow in concurrent

programs, in D. Bjørner, M. Broy & A. V. Zamulin, eds, ‘PSI’01: 4th International Andrei

Ershov Memorial Conference on Perspectives of System Informatics’, Vol. 2244 of Lecture

Notes in Computer Science, Springer, pp. 225–239.

Sabelfeld, A. & Mantel, H. (2002), Securing communication in a concurrent language, in M. V.

Hermenegildo & G. Puebla, eds, ‘SAS’02: 9th International Symposium on Static Analysis’,

Vol. 2477 of Lecture Notes in Computer Science, Springer, pp. 376–394.

Sabelfeld, A. & Myers, A. (2004), A model for delimited information release, in ‘International

Symposium on Software Security (ISSS’03)’, Vol. 3233 of Lecture Notes in Computer Science,

Springer-Verlag.

Sabelfeld, A. & Myers, A. C. (2003), ‘Language-based information-flow security’, IEEE Journal

on Selected Areas in Communications 21(1), 5–19.

Sabelfeld, A. & Sands, D. (2000), Probabilistic noninterference for multi-threaded programs, in

‘CSFW’00: 13th IEEE Computer Security Foundations Workshop’, IEEE Computer Society,

pp. 200–215.

A. Almeida Matos and J. Cederquist 60

Sabelfeld, A. & Sands, D. (2005), Dimensions and principles of declassification, in ‘CSFW’05:

18th IEEE Computer Security Foundations Workshop’, IEEE Computer Society, pp. 255–269.

Sekiguchi, T. & Yonezawa, A. (1997), A calculus with code mobility, in ‘FMOODS’97: IFIP

TC6 WG6.1 international workshop on Formal methods for open object-based distributed

systems’, Chapman & Hall, pp. 21–36.

Smith, G. (2001), A new type system for secure information flow, in ‘CSFW’01: 14th IEEE

Computer Security Foundations Workshop’, IEEE Computer Society, pp. 115–125.

Volpano, D. M., Smith, G. & Irvine, C. E. (1996), ‘A sound type system for secure flow analysis’,

Journal of Computer Security 4(2–3), 167–188.

Wright, A. K. & Felleisen, M. (1994), ‘A syntactic approach to type soundness’, Informnation

and Computation 115(1), 38–94.

