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Abstract most solutions have been directed towards local computa-
tion scenarios, thus overlooking decentralization isshats
Several programming constructs have recently been pro-are inherent to distributed settings. Indeed, enforcemint
posed with the purpose of enabling the programmer to en- confidentiality in networks must deal with distributed secu
code declassifying information flows within a program that rity policies, since differentomputation domain®r siteg
complies with information flow security policies. These follow different security orientations. For example, nagr
constructs may or may not incorporate some means for con-ing programs that were conceived to comply to certain flow
trolling when, where, what, or by whom the declassifica- policies don't necessarily respect those of the computatio
tion can be set up. In the context of global computing, locations they might end up executing at. This problem
other forms of controlling declassification that transcend seems to be beyond the grasp of single declassification con-
the power of a single declassification construct may turn structs that can restrict by whom, when, what, or where in
out to be desirable. In this paper we point out potential the program declassification can be performed [23], since
unwanted behaviors that can arise in a context where pro- now the question isn which context?
grams that contain declassifying instructions can migrate |, this paper we show that the issue of enabling and con-
to computation domains with different security policie® W ro|jing flexible information flow policies in computations
propose programming language design techniques for tack-yat can spread out over sites that are governed by different
ling sgch unwanted behaviors and_prove soundness of thosg,y, policies can be addressed at the programming language
techniques at the global computation level. level. We propose to remove some of the burden of restrict-
ing declassification away from the declassification instruc
tion itself, and transfer it to new program constructs that
1. Introduction provide awareness about the flow policy of the context in
which it is running. Given the appropriate tools to predict

The new possibilities opened by global computing have alternatives to the pieces of code that contain potentially
brought information security issues to a new level of con- forbidden declassification operations, it becomes réalist

cern. Indeed, such possibilities can just as well be exgdoit to write programs that can safely run under any flow policy.
by parties with hazardous intentions. Many attacks arise at Some security minded distributed network models have
the application level, and can be tackled by means of pro-been proposed with the purpose of controlling the migration
gramming language design and analysis techniques, such agf code in between computation sites, such as by means of
static analysis and proof carrying code. For instance, con-programmable domains [4] and type systems [17]. These
fidentiality can be violated by execution of programs that ideas can be applied to the proof-carrying code model [20],
reveal secret information. This kind of program behavior since it consists of a particular instance of boundary trans
can be controlled usinmpformation flowanalyses [22], by  position control that performs type checks to incoming code
detecting dependencies in programs that could encode flow$12]. We propose to apply migration control techniques
of information from private to publicly available resousce  to the problem of controlling declassification by prevegtin

In the field of security, control must often be balanced programs from migrating to sites if they would potentially
with flexibility for practical reasons, since models thag ar violate that site’s flow policies. However, we fall short of
prohibitively restrictive do not suit the real world-needis technical mechanisms that would allow, on one hand, for a
information flow research, it has been a challenging prob- site to know what are the most flexible flow policies that a
lem to find an alternative to the classical non-interference program sets up for its own executions; on another hand,
property [11] that is flexible enough to allow fdeclassi-  for a program to know how flexible is the flow policy of the
ficationto take place in a controlled manner [26]. So far, contextin which it is running.



Setting We follow the non-disclosure point of view of policy I is allowed by the current domain and executes
information flow analysis presented in [1,2]. Then- branches\f or N accordingly. Programs can then offer al-
disclosure propertys a generalization of non-interference. ternative behaviors to be taken in case the domains they end
It uses information provided by the program semantics de-up at do not allow declassifications of the kind they wished
scribing which flow policies are valid at different points of to perform:
the computation, to ensure that, at each step, all infoanati
flows comply to the valid flow policy. In order to enable dy-
namic Changes to the valid flow po"cy, the programming The allowed-condition brings no guarantees that the
language may be enriched wittlaw declaratiorconstruct ~ “PlanB” of the above program does not disclose just as
(low F in M) that simply declares the flow policy) that ~ much as theM branch. However, as we will see right
is valid in its scope §/) within the program, while the se- ahead, misbehaving programs can be rejected by the do-
mantics Of the |anguage may Convey information regarding mains Where they WOUld I|ke to execute, SO |t iS in the inter'
the flow policy that rules at each step. It is then easy to est of the programmer to increase the chances that its pro-
set up more flexible flow policy environments for delimited 9ram will be allowed to execute, by adequately “protecting”
blocks of code, as for instance the part of a program that isPortions of code containing declassifications by appro@ria
executed by authenticated users: allowed-conditions.

(if authenticatecthen (low Fhermissivein M) else N) In thg spirit of the'proof.carrying codg mode!, domains
In this example, the program declares that flowadrcom- can statically check incoming code against their own flow

ply to a flow policy that is extended (made more permissive) Fhoehcfosyrfnia!):]g?ﬁ;:e ddeg%girtlggﬁi:g:: t?wfsgar?fdrams
by Fpermissive(the N branch is of course not given this flex- brog ' P prog

S : e should be “let in”. A certificate could consist of informa-
ibility). In other words,M may contain declassifications . L .

tion about all the flow policies that are declared in the pro-
that comply toFpermissive

Once the language is enriched with flow declarations gram and doot appear within the "allowed" branch of an

(or any other means for expressing declassification), Sc)meallowed-cond|t|0n that tests the declared flow policy. We

mechanism for controlling the usage of that construct is de-CaII this fI(;)w po!g:y th?declassrflcat]:on e;fte_cm_f th(?t pr%]

sirable. This is particularly relevant in distributed segs \?vrrig’tr?:prg;\gme a type system for obtaining It en.

with mobile code. For instance, a computation domain

might want to impose a limit to the flexibility of the flow (allowed F then M else (flow F5 in N))

declgrations that are uged within its programs, since so fany,ould have a declassification effect that includes —

nothing prevents incoming code from containing: meaning that it should only be allowed to run in domains
(flow Fa_is_allowedin M) whereF, is allowed —, the program

In the gbove example_, the flow d_eclaration validates any in- (allowed F then (flow F in M) else N)

formation flow that might occur in/, regardless of what

is considered acceptable Hy This motivates the notion of ~ (assuming thafl/ and N do not contain any flow declara-

a domain’sallowed flow policy which represents the flow ~ tions) would have an empty declassification effect — mean-

policy that should rule for all programs that are running at ing that it could be safely allowed to run in any domain.

a certain domain. We can then define the notionmffine- In order to formalize these ideas, it is useful to consider

ment with respect to a flow poli@s a property of programs @ concrete distributed language with code mobility, where

that can only perform steps that comply to that allowed flow We use the declassification effect to control migration ac-

policy. We will see that this property can be formalized by cording to the following rule: programs can only migrate

making use of the information about the declared flow poli- t0 @ site if their declassification behaviors comply to that

cies that is provided by the semantics. site’s flow policy. We can then analyze the conditions under

At the moment that a program is written, it might Which the programs of this distributed language comply to
be hard to anticipate which flow policies will be im- a network level version of the information flow and confine-
posed at execution time by the domains where the pro-ment properties.
gram will run. In a distributed context with code mobil-
ity, the problem becomes more acute, since the computa-Outline of the paper We start by introducing the lan-
tion site might changduring execution, along with the al- guage and its operational semantics (Section 2). Two main
lowed flow policy that the program must comply to. In section follow, each presenting the security analysis or o
order to provide programs with some awareness regard-information flow property of Non-disclosure (Section 3)
ing the flow policy that is ruling in the current compu- and for the new Confinement property (Section 4). Each of
tation domain, we introduce thallowed-condition writ- these sections start by formally defining the respective se-
ten(allowed F then M else N), that tests whether the flow  curity properties (Subsections 3.1 and 4.1); a type system i

(allowed Fyiscosesecretthen M else plan_B)



then presented, and its soundness is proved (Subsectibns 3values (here thépxz.WW) construct provides for recursive
and 4.2). Finally we discuss related work (Section 5) and values). Variables: and references, b, ¢ are drawn from
conclude (Section 6). Due to space constraints, proofs aregwo disjoint countable setgar andRef, respectively. Ref-
omitted from the paper, but appear in detail in the Appendix. erence names can be created at runtime. There are two
new kinds of names, given to threads,(») and to do-
2. Language mains (), each drawn from two new disjoint countable sets
Dom # () andNam. The new features are the flow dec-
laration and the allowed-condition. The flow declaration
construct is writtenflow F in M), whereM is executed
in the context of the current flow poliogxtended with?;
after termination the current flow policy is restored, that

The language that we consider for the study of local com-
putations is a distributed imperative higher-ordearalculus
with reference and thread creation, where we include a flow

olicy declaration construct (for directly manipulatin ) . R
policy ( y P o is, the scope of" is M. The allowed-condition is simi-

policies [1, 2]) and the new allowed flow policy tester con- | dard bool diti ith the diff h
struct that branches according to whether a certain flow poI-_"’lr to a standard boolean condition, with the difference tha

icy is allowed in the program’s computing context. We also " (allowed £ then N; else Ny) the branched, or Ny are

add a notion of computation domain, to which we associate e?;e,cut(ﬁd acgc?lrdmg th wh_(l::';hetrhor rfj@us allotvlved dbijt[he
an allowed flow policy, and a code migration primitive. Pro- >'c > &llOWed Tow policy. the threa creafghread, M)

grams computing in different domains are subjected to dif- spawns a thread, to which a name and the security level

ferent allowed flow policies — this is what distinguishes lo- is given, and retumg; the new thread is to be executed con-

cal computations from global computations, and is the main currently. The mea_ning of the migration constrigito d),
novelty in this language. We opt for a rather simplistic where_d IS a domaln_name IS tha_t the thread that e_xecutes
memory model, assuming memory to be shared by all pro_the migration operat!on shou!q migrate to th.e domain
grams and every computation domain, in a transparentform. _Nétworksare flat juxtapositions of domains, each con-
This will allow us to avoid synchronization issues that are t@ining a store and a pool of threads, which are subjected
not central to this work (and that are already handled else-t© the flow policy of the domain. They are in fact just a
where [1]). Nevertheless, as we will see in Subsection 2'collecnon of referer_wc_es, threads that are running in paral
this assumption does not imply the loss of the model's dis- |€!: @nd the flow policies allowed by each domain. Threads
tributed nature, since the location in which programs com- 'un concurrently inpools P = (Nam x 27) — Bxp,

pute will have a direct impact on the results we study here. Which are mappings from decorated thread names to ex-
pressions (they can also be seen as sets of thregtses

Svnt S . tati dt tinth S : (Ref x 2P x Typ) — Val map decorated reference
yntax  Security annotations and typage apparentin the names to values. To keep track of the locations of threads it

syntax of the language, though they do not play any role in suffices to maintain a mapping from thread names to do-
the operational semantics (they will be used at a later stagemain names. This is the purpose of thesition-tracker

of t_he analysis). Security levelsj, k are sets of principals, T : (Nam x 2°7) — Dom, which is a mapping from a
which are ranged over by, q < Pri. They are asso_mated finite set of decorated thread names to domain names. The
to references (and reference creators), representingethe s pool P containing all the threads in the network, the map-
of principals that are allowed to read the information con- ing T that keeps track of their positions and’ the store
tained in each reference. We also decorate references wit containing all the references in the netv;/ork, focon-

the type of '_[he yalues tha_1t they can hold. The syntax of figurations(P, T, S), over which the evaluation relation is
typesr, U’.e IS given Iater_m Subsections 3'2. and 4.2. In defined in the next subsection. The flow policies that are
the following we may omit reference subscripts whenever allowed by each domain are kept by thelicy-mapping
they are not relevant. A security level is also associatedW . Dom — 2PxPri from domain names to flow policies

to each thread, and appears as a subscript of thread name\:i,hi'Ch is considered fixed in this model. '
This level can be understood as the set of principals that are

allowed to know about the location of the thread in the net-

work. Flow policiesA, F, G are binary relations ove®ri. Operational semantics We now define the semantics of

A pair (p, q) € F, most often writterp < ¢, is to be under-  the language as a small step operational semantics on con-
stood as “information may flow from principato principal figurations. The call-by-value evaluation order can be con-

q", thatis, more precisely, “everything that principeik al- veniently specified by writing expressions usigluation
lowed to read may also be read by princigalWe denote, contexts Intuitively, expressions that are placed in such
as usual, by the reflexive and transitive closure bt contexts are to be executed first. We wilit\/] to denote

The language othreads(defined in Figure 1) is based an expression where the subexpressiéns placed in the
on a call-by-value\-calculus extended with the impera- evaluation contexE, obtained by replacing the occurrence
tive constructs of ML, conditional branching and boolean of [| in E by M.



Variables z,y € Var Thread Names m,n € Nam

Reference Namesa,b,c € Ref Domain Names d € Dom
Values V e Va == (|z|lae|AzM)|tt]|ff
Pseudo-values W € Pse := V|(oz.W)
Expressions M,N € Exp == W |(M N)|(M;N) | (if M then N; else Ny) | (vef; o M) | (! N) | (M := N) |
(thread; M) | (goto d) | (low F in M) | (allowed F' then N; else Ny)
Threads n= M™ (€ Exp x Nam x 2™)

Figure 1. Syntax of Threads

Evaluation Contexts E =[] | (low F inE) | The transitions of ousmall step semantiese defined in
(EN)|(VE)|(E;N) | (refio E)| " E) | Figure 2. In the first group of rules, corresponding to local
(E:= N)|(V :=E) | (if E then N; else Ny) computations, theA I’ turnstile makes explicit the allowed

The analysis of whether the information flows that occur 1OW policy A of the site where the computations are taking
in M are to be allowed depends on the flow policies that place. The semantics of local evaluation is embedded in the

are declared in the evaluation context whafés executed.  distributed language, by means of the last two rules in Fig-
We denote by E] the flow policy that is permitted by the ~ Ure 2. This |s.f0rmaI|zed in the former rule by specifying the
evaluation contexE. It collects all the flow policies thatare 0¢@! flow policy A asW (T'(m;)), whereT'(im;) represents

declared using flow declarations into one single flow policy: the location of the threadh; that is being considered. The
last rule establishes that the execution of a pool of threads

Definition 2.1 (Flow Policy Declared by an Evaluation compositional (up to the expected restriction on the choice

Context) Theflow policy declared by the evaluation con- of new names). The semantics of global computations intro-

textE is given by[E] where: duces the rule for thread creation and the rule for migration
= o, [(flow Fin E)] = F U [E], which depends on the type system of Sectién Betailed

'E'[E]] = [E], if E’ does not contain flow declarations explanations on the meaning of the typing judgment in its

basi . d ) fl f side condition are postponed to Subsection 4.2. For now, it
Sqme asic hotations an co_nvennon_s are usetul forig enough to know that represents an approximation of the
defining transitions on configurations. Given a configu- {4, policies that are used by the typed expression and are

ratiop (P, T’ S), we cal! the pair(T’, 5) the state of the not protected (in the sense explained in the introductign) b
configurations. We defingéom(S) as the set of decorated | appropriate allowed-condition.

reference names that are mappedspysimilarly, the sets The labeled transition rules of our semantics are deco-

dom(W), dom(P) anddom(T'), are the sets of domains . ) .
and decorated names of threads that are mappat by rated with the flow policy declared by the evaluatl_o_n con-
text where they are performed. Most of the transitions do

ﬁ?gTIf iY\:jeose?syntgf‘ éc?ctl?rrevighoggiff;;insierigta nt;fnlls(;;a f? n not depend on the'flow labél that decor'ates them.' In par-
dom(S), respectively. We denote by (P) al’,]drn(P) the ticular, the evaluation offlow F' in M) simply consists in

’ . . the evaluation of\/, annotated with a flow policy that com-
set of decorated thread and reference names, reSpethe%rises (in the sense of set inclusiai) The lifespan of the
Fhat occur.in the expressionSBf(this notation is extended flow declaration terminates when tHe expressidrthat is
In the obvious way to expressions). We fe{)/) be the being evaluated terminates (that i, becomes a value).

set of variables occurring free ifd. We restrict our at- . . .
tention to well formed configuration&®, T, ) satisfying The flow policy that decorates the transition steps is used
” only by the rules fo(allowed F' then N else Ny), whose

the following additional conditions for memories, values N o ;
. ) . ) semantics is similar to the conditional branching, but veher
stored in memories, and thread nameag(P) C dom(S5); . .
the choice of the branch depends on whetkias allowed
for any a; 9 € dom(S) we havern(S(a;g)) C dom(S)
’ ’ to be declared or not.

dom(P) C dom(T); tn(dom(S)) C dom(T); all threads ) ) _
The allowed flow policyA of a site represents a restric-

in a configuration have distinct names, and also all occur- he fi licies th b b
rences of a name in a configuration are decorated in the!" N the flow policies that can be set up by programs

same way. We denote Hy — W} M the capture-avoiding — _ _ 3
substitution ofi¥’ for the free occurrences afin M. The A similar rule appears in [12]. The side condition represehe stan-
dard theoretical requirement of checking incoming codeigeéllowing it

opgration Of.addi'."g or updating the image of an objettt to execute in a given machine. It abstracts away from theilsiethhow
z' in a mappingZ is denotedz := 2']Z. the migration control is implemented.




AF (E[(Az.M) V)], S) = (E[{z — V}M],S)
At (E[(if tt then Ny else Ny)], S) F (E[N¢], S)
At (E[(if ff then Ny else Ny)], S) o (E[Ny], S)
A+ (E[(allowed F then N else N¢)], S) F (E[N¢], S), whereF C A*
A+ (E[(allowed F then N else N¢)],S) — (E[N¢], S), whereF ¢ A*

- E[N], S)

E[({z — (oz.W)} W)], S)
E[V], S)

E[V],S), whereS(ai,0) =V
E[0], [ai,6 := V]S)

E[al,g], [al,e = V]S}, a fresh inS

>F<
>F<
>E><
>E><
>F<
) —

[E]

W {({E[(thread; )™}, T, 8) —= ({BI0]™, N"}, [n := T(m;)IT, 5), wheren fresh inT

W + ({E[(goto )]}, T, S) E} H{E[0]™}, [m; := d]|T, S), whereT + E[()] : s,7and s C W (d)*

b

T

—

&3]

I o

>
>SS

W(T(m;)) F (M,S) = (M',S") Wk (P, T,S) = (P, T',8"Y (PUQ,T,S) is well formed

WE {M™}T,S) - {M'™i}, T, S") WE(PUQ,T,S) - (PruQ,T',5")
Figure 2. Operational Semantics. See Figure 4 for the side co  ndition of the migration rule.

running in that site. At the level of the semantics, the site’ tracker, associated to the parent domain. Wherigbe d)
allowed flow policyA is used to determine the behavior of statement is executed by a thread the position ofm in
the allowed-condition, which tests whethiis allowed by the position-tracker is updated & Thread names are also

A, and can safely set up a flow declaration foin its “al- (implicitly) used when an allowed-condition is performed:
lowed” branch. A typical usage of the construct could be: the tested flow policy is compared to the allowed flow policy
(allowed {H < L} then (flow {H < L} in (z1, := (! y))) of the site where that particular thread is executing.
else plan.B)

The allowed flow policy is also used at migration ti,(,}& to Distribution According to the chosen semantics, deref-
determine whether or not a migration instruction may be €rencing and assigning to a reference can be done by all
consummated. The idea is that a thread can only migrate tghreads, regardless of their position in the network. One
another domain if it respects its allowed flow policy. E.g., Mmay wonder whether it is reasonable to consider a system
as will become clear in Subsection 4.2, the configuration Witu_a sha(ljreldt?lobal state asddfifs”ibu'felilj- Wg fFl’Oint olgt_that
. . m, in this model, by associating different allowed flow poliie
{E[((goto d); (flow F in M)I™},T, ) ) to different computation domains, where programs have the
can only perform an execution steplif (d) allows for £, power to test the allowed flow policy of the site they are lo-

otherwiseT it gets stuck. Notice that the floyv declarat_ion cated at, the behavior of a program fragment may differ on
does notimply checks to the allowed flow policy of the site. yitterent machines. As an example, the thread
Here we preserve the original semantics of the flow declara- ’

tion [2] as a construct that does not change the behavior of (allowed F then (yr, := 1) else (y. := 2))"™  (3)
programs. The functionality of inspecting the allowed flow running in a network P, T, S such thatV (d,) = F, and

policy is thus restricted to the allowed-conditfon W(ds) = F», whereF C Fj but F ¢ Fj. The thread

Thread names are used in three situations: When a néWy nertorm different assignments depending on whether
thread is created, its fresh name is added to the posmon-T(m,) — dy or T(m;) = ds. In Subsection 3.1 we will
3/ 3/ . .

2Besides avoiding the computational cost of continuousBcking the see that their behavior is distinguishable by the infororati
allowed flow policy of the current domain, this design demisivoids flow bisimulation relation we are interested in this paper.
some redundancy at the level of the semantics design. Henésli¢o sep- In other words. the network does exhibit a distributed be-
arate the enabling vs. controlling dimensions of declasgifin, and leave . ! .. . S
it to the security analysis mechanism to match flow decianatiagainst ~ Navior. For a study of a similar model with distributed and

the allowed-conditions of the context where they appear. mobile references, see [1].




3. Information flow analysis

In this section we start by briefly defining the security
property of Non-disclosure for Networks, the underlying
information flow policy that this work is based on (we re-
fer the reader to [1] for further explanations). We will see
that a new form of migration leaks appears due to the new
allowed-condition primitive that was introduced in ourdan

guage. We then present a type system for enforcing non-

disclosure, and state its soundness.

3.1. Non-Disclosure for Networks

The study of confidentiality traditionally relies on a lat-
tice of security levels [10], corresponding to securityatie

ances that can be associated to information containers in

a programming language. Here, as in [2], we will use a

more general structure, that of a pre-lattice (a preordered
set such that any two elements have a least upper-bound

and a greatest lower-bound), that is sufficient and conve-
nient for defining a dynamic flow relation that accounts for
runtime changes in the flow policy of a program. More con-
cretely, our security pre-lattices are derived from a sécur
lattice where security levels are sets of principals regmes
ing read-access rights, partially ordered by the reverse in
clusion relation, which indicates allowed flows of informa-
tion: if I; O Iy then information in a reference, may be
transferred tay,, since the principals allowed to read this
value fromb were already allowed to read it from Flow
policies, which are binary relations between principdsnt
represent additional directions in which information is al

lowed to flow. This leads to the underlyimgeorder on

security levelsgiven byl; <p I, & (li Tr) 2 (I2 TF),

where theF'-upward closureof a security level, defined
as! 1r= {q | Ip € l. p F* q} contains all the principals
that are allowed by the policy’ to read the contents of a
reference labeled. We choosd; Ar Iy = [ Uly and
li Yrla=(lh Tr) N (l2 TF) as meet and join operations,
from whichT = () and_L = Pri. Notice that< - extendsD
in the sense that i is larger thar and that<y = 2.
Equipped with a flow relation between security levels,
we can define the notions of low part of a state and of low-
equality between states with respect to a flow poktgand
security levell. Intuitively, two states are said to be “low-
equal” if they have the same “low-domain”, and if they give

_Fl

7. [M'=T 17! and
S1 rF,l: S [F,l
where: T |7 (ni, d) | (ng,d) € T &k <r 1}
S1PN L {(are, V) | (aro, V) € S & k <p 1}
This relation is transitive, reflexive and symmetric.

Given that we are considering a concurrent (and dis-
tributed) setting, it is natural to formulate our infornaati
flow property in terms of a bisimulation [5, 24]. Our bisim-
ulation, which is based on the small-step semantics defined
in Section 2, relates two pools of threads if they show the
same behavior on the low part of two states. In the follow-
ing we denote by-* the reflexive and transitive closure of

the union of the transition?:, for all F.

(T1, 51) (T2, S2) &g

. def

Definition 3.2 (~;). Anl-bisimulation is a symmetric rela-
tion R on sets of threads such that, for 4ll, S, 7%, So:

PiR PyandW i (P1,T1,51) — (P{,T{,51) and
(T1, 81) =5 (T, S5) implies

3P, T4, Sy . W i (P2, Tz, S2) —* (P4, T4, S5) and
(17, 81) ="' (1%, 5%) and P{ R P4 when

(dom(S1’) — dom(S1)) N dom(S2) = @ and:
(dom(T1") — dom(T1)) Ndom(T2) = 0
The largest-bisimulatior? is denoted by;.

The above bisimulation potentially relates more pro-
grams than one for Non-interference thanks to the stronger
premiseS; =! S,. By starting with pairs of memories
that are low-equal “to a greater extent”, i.e. that coindide
a larger portion of the memory, the condition on the behav-
ior of the progranP, becomes weaker. The bisimulation re-
lation could have been parameterized by an additional flow
policy G, which would represent the global flow policy that
is assumed to hold everywhere by default. In this paper we
chose to omit this parameter by fixidg= 0, for notational
clarity, though all the results can be easily extended akcor
ingly. For simplicity of the bisimulation definition, we are
also not concerned with the fact that this definition can be
considered somewhat restrictive in what respects changes i
references that are created at run-time.

Note that the relatiors; is not reflexive. For instance,
the insecure expressidas := (! u4)) is not bisimilar to
itself if A Ar B. In fact, if a program is shown to be
bisimilar to itself, one can conclude that the high part of
the state has not interfered with the low part, i.e., no secu-
rity leak has occurred. This motivates the definition of our
security property:

the same values to all objects (in this case, references anghefinjtion 3.3 (Non-disclosure for Networks)A pool of

threads) that are labeled with “low” security levels.

Definition 3.1 (Low-Equality) The low-equality between
states(77,.51) and(Ty, Sy) with respect to a flow policy’
and a security levdlis given by

threadsP satisfies the Non-disclosure for Networks policy
if it satisfiesP ~; P for all security leveld.

SNote that for anyl there is ani-bisimulation, like for instance the
set of pairs of named values. Furthermore, the union of alyaafi-
bisimulations is ari-bisimulation, which is the largestbisimulation.



Intuitively, the above definition requires information that are written byl/; s.t is thetermination effegtan upper
flows occurring at any computation step that can be per-bound on the level of the references on which the termi-
formed by some thread in a network, to comply with the nation of expressiod/ might depend. According to these
flow policy that is declared by the context where the com- intuitions, in the type system the reading and termination
mand is executed. levels are composed in a covariant way, whereas the writing

level is contravariant.

Migration leaks We are considering a simplistic memory ~ Types have the following syntax (s a type variable):

model where all of the network’s memory is accessible at all 7,0,0 € Typ == t|unit|bool | ref, | 7 = o

times by every process in the network. With this assumption g

we avoidmigration leaksthat derive from synchronization  Typable expressions that reduce(tchave typeunit, and
behaviors on memory accesses [1]. However, in our set-those that reduce to booleans have tppel. Typable ex-
ting, migration leaks can be encoded nonetheless. The ideg@ressions that reduce to a reference which points to values
is that now a program can reveal information about the po- of type § and has security levélhave the reference type
sition of a thread in a network by performing tests on the ¢ ref;. Here the security levdl is used to determine the

flow policy that is allowed by that site: effects of expressions that handle references. Typable ex-
(if (! 1) then (goto d1) else (goto da)) ; pressions that reduce to a function that takes a parameter
(allowed F then (yr, := 1) else (yz, = 2)) (4) of type 7, that returns an expression of typeand with a

latent[15] effects, flow policy F' and security levej have

In this example, the thread will migrate to domaihsor ; p ; .
P g i the function typer -0 The latent effect is the security
J

ds depending on the tested high value; then, if these do- ,
mains have different allowed flow policies, different low- effect of the body of the function, while the latent flow pol-
assignments are performed, thus revealing high leveldinfor icy is the one assumed to hold when the function is applied
mation. Therefore, the program is insecure with respect toto an argument, and the latent security leyé that of the
Non-disclosure for Networks. thread containing the expression.

The fact that synchronization issues that are typical of We use a (join) pre-semilattice on security effects, that is
distributed settings appear in spite of the state being-glob obtained from the pointwise composition of the pre-lastice
ally shared allows us to make the point that migration leaks of the security effects. More precisely:
are not specific to distributed memory mode!s. In fact, they s<p s & o <p s & 5w < 50 kst <p 5
can occur whenever the semantics or behavior of a program . det , , ,
fragment differs on different machines. SYps & (s7Yps.1,5wApsw,s.tYr st

L = (Pri, 0, Pri)
3.2. Type System We use some abbreviations to alleviate the notation of
the typing judgments and operations, namely we write

We now present a type and effect system that acceptsl F M : 7 whenI' = M : (L, T, 1), 7, which is mainlly
programs that satisfy Non-disclosure for Networks, as de-Used when ,typm_g (pseudo)-values, and we wHtE s
fined in Subsection 3.1. The judgments of the type and ef-Whens Yg s’, which is used when constructing the secu-

fect system, presented in Figure 3, have the form rity effects of the typed expressions. o
; Our type and effect system applies restrictions to pro-
FHL M s,

grams in order to enforce compliance of all information
meaning that the expressidd is typable with typer and flows to the flow relation that is parameterized with the cur-
security effeck in the typing context’ : Var — Typ, which rent flow policy. This is achieved by conditions of the kind
assigns types to variables. The turnstile has two parameter “<z" in the premises of the typing rules, and by the up-
the flow policydeclared by the conteXt, representsthe one  date of the security effects in the conclusions. Apart from
that is valid in the evaluation context in which the expres- the parameterization of the flow relation with the current
sion M is typed, and contributes to the meaning of oper- flow policy, these are fairly standard in information flow
ations and relations on security levels; the security lgvel type system and enforce syntactic rules of the kind “no low
represents the confidentiality level associated to theathre writes should depend on high reads”, both with respect to
that the expressiof/ is part of, which is the confidentiality  the values that are read, and to termination behaviors that

level of the position of that thread in the network. might be derived. Notice that tha.Bw rule types the body
The security effect is composed of three security levels of the flow declaration under a more permissive flow policy.
that are referred to by.r, s.w ands.t, and can be under- The extra conditions that are introduced in order to deal

stood as follows:s.r is thereading effegtan upper-bound  with new forms of migration leaks that appear in our dis-
on the security levels of the references that are reafllby  tributed setting (such as Example 4) deserve further atten-
s.w is thewriting effect a lower bound on the references tion: the security levej that is associated to each thread,



[NIL]T F () : unit [BOOLT]T' F ¢t : bool [BOOLF]T F ff : bool [LoC]T F ajp : O ref;

F,x:rl—fwM:s,a F,a::Tl—pr:s,T
[VAR] T,z :7Fx: 7T [ABS] = [REC]
F"()\.Z‘.M)ZTTO’ 'k (oz.W):71
g

T+ Ny : .
F Ve E St T Jj 3F St.w, Sp.w

IH. . N:sT 'H Ny:
[Frow] ———=F [ALLow] — r S8 T .
' (low F'in N) : s, 7 I' - (allowed F' then Nielse N¢) : s¢ Y sp Y (L, T,5), T
F"J}.;‘MZS,Q s.rys.t <pl FI—%M:S,Qrefl

[REF] [DER]

- ER -
I'HL (refio M) = s Y (L1, 1),0ref, FHL(M):sY (I, T,1),0

st <p s’w

J . J Yy
FHe M:s,0ref; THL N :s',0 s s st st <pl

[Asq 5 n ;
FFL (M :=N):sYs Y (L, L), unit
; T Ny tose, T
j . F ) ) .
T'Fp M s, bool TH, Ny:sp, T 87,88 JF Se.w, 850 'ty M:s,7 THLN:s,0 st =psw

[ConD]

[SEQ]

[ 9, (if M then Ny else Ny) :sY s: Y s Y (L, T,87),7 TH, (M;N):sY s, o

st <p s"w
" " !
s.r,s .r,st, st X sw
TH.(MN):sYsYs" Y {(LT,srys'r)o

F}‘%M:S,TLJ TH.N:s" T
Fj
[APH

j=pl TFyM:s,unit

[THR] — . :
I' H. (thread; M) : (L,j A s.w, L), unit

[MIG] T H%, (goto d) : (L, 4, L), unit

Figure 3. Type and Effect System for Non-disclosure for Netw orks

and represents the confidentiality level of the positiormeft  fies the Non-disclosure for Networks policy.
thread in the network is used to update the writing effect in
the thread creation and migration rules, as well as the ter- Notice that our soundness result for non-disclosure is
mination effect in the allowed-condition rule; on the other compositional, in the sense that it is enough to verify the
hand, it is constrained not to “precede low writes” in rule typability of each thread separately in order to ensure non-
ALLow, and to be a lower bound of runtime threads in rule disclosure for the whole network.
THR. We refer the reader to [1] for further explanations on
the remaining conditions. 4. Confinement analysis

One can prove a subject reduction result stating that the
type of a thread is preserved by reduction, while its effects

\f[veaken § V}/hten fz;m texpresion e>;ecuteds ba con:jputahonment for Networks, a new security property that specifies
Step, some ot Its eliects may be performed by reading, Up-y,q rogtricted usage of declassification instructions. \ilfe w
dating or creating a reference or by creating or migrating a

. : resent a simple type system for calculating the declassi-
_thread, vv_h_|le some may a'?o be d|scard(_ed when a brancrﬁcation effect of programs, which can be used by the se-
in a conditional expression is taken.  This result can then

. mantics of the language to control migration between sites.
be used tq verify that the the proposed_type syst_em ENSUreHe prove the soundness of the proposed migration control
the non-disclosure property, i.e. that it constrains the us mechanism, and discuss other alternative approaches
age of the new constructs introduced in this language in or- ’ '
der to prevent them from encoding information leaks. In
fact, security of expressions with respect to Non-disalesu
is guaranteed by the type system:

In this section we formally define Operational Confine-

4.1. Operational Confinement

Here we will deal with relations between flow policies,
Theorem 3.4 (Soundness for Non-disclosure for Net- which leads us to define a (meet) pre-semilattice of flow
works.) Consider a pool of threadB. If for all M™i ¢ P policies. We introduce thereorder on flow policiess, thus
there exist’, s andr such thafl’ l—é M : s, 7, thenP satis- overloading the notation for the flow relations on security



levels. The meaning of relating two flow policies agin <
F, is that 7 is more permissive thahy, in the sense that
Iy encodes all the information flows that are enabledby

n=F%¥rRcr
Where the meet operation is given By A F> = F} U F5.
Consequently, we have = 0.

We now define operational confinement with respect to
an allowed flow policy, and justify the chosen formalization
The property is formulated abstractly for any distributed
model that includes the concept of an allowed flow policy

formulate a more general notion of operational confinement
that refers to the allowed flow policies of the sites where
each part of the program actually executes.

The following confinement property is set up on pairs
that carry information about the location of each thread.
The allowed flow policy of the current location of the thread
is used to place a restriction on the flow policies that deco-
rate the transitions, step-by-step.

Definition 4.2 (Operationally Confined Located Threads)
Given a fixed policy-mappind/’, a setC of pairs(d, M™)

of a site, and whose semantics is decorated with the flowis said to be a set obperationally confined located threads

policies that are set up by each transition.

In light of the semantics of our flow declarations, we can
predict which flow policies are declared by a program at
runtime by observing the flow policy that decorates each of
the possible steps it might take. Then, confinement to an
allowed policyA means that every step is decorated with a
flow policy F' that is stricter tham:

Definition 4.1 (OperationallyA-Confined Threads)Given
a fixed policy-mappindl’, a setC of threads is said to be
a set of operationallyd-confined threads if the following
holds for anyM™: € C, forall T, S:

Wt {M™i},T,S) - {M™i}, T',8") implies

A< FandM'™i € Cand

Wt {M™i},T,S) - {M™i N"™ 3}, T, S") implies:
A=< FandM'™i N cC

We say that a thread/™- is operationally A-confined if
it belongs to the largest set of operationalf+confined
thread$.

OperationalA-confinement is useful from the point of
view of a class of sites whose allowed flow policies are
weaker thand. However, during global computations, the
location of a program is not fixed, nor is the allowed flow
policy that the program should comply to. This means that
the notion of operational confinement to a single flow policy
does not speak of compliance to the flow policies of all sites
where each program might execute. Consider for instance

(allowed F' then (flow F'in M) else Ms) (5)
where the flow declaration of the polidy is executed only

if the following holds for anyd, M™i) € C, forall T, S:
Wt ({M™i},T,S) - ({M'™i}, T',8") implies
W(T(m;)) < F and(T"(m;),M"™i) € C and
Wt ({M™i},T,S) - ({M'™i N'™ 3} T S") implies
W (T (my)) = Fand(T’'(m;), M"™), (T" (ny), N**) € C

when:
T(m;) =d

We say that a located thredd, M ™) is operationally con-
fined if it belongs to the largest set of operationally cordine
threads.

Intuitively, operational confinement means that for every
execution step that is performed by a program at a certain
site, the declared flow policy always complies to that sites
allowed flow policy. We will return to Example 6 and its
security analysis in Subsection 4.2, at the point where the
semantics of migration can be fully understood.

From the definition of operational confinement of indi-
vidual threads, we can derive a notion of network confine-
ment by obtaining, from a pool of threadsand its corre-
sponding position-trackér, the set:

pair(P,T) £ {(d, M™) | M™ € P andT(m;) = d}

A network is said to be operationally confined if all of the
pairs of threads and their location are operationally ceafin

in the sense of Definition 4.2.
4.2. Type System

We now present a type and effect system that constructs

if F' has been tested as being allowed by the domain thea declassification effect that can be used to enforce Confine-

program is located at. Assuming there are no flow declara-
tions in M; and M., for every allowed flow policyA4, this
program is operationallyi-confined. However, in a slight
variation of the program where we introduce migration

(allowed F then ((goto d); (flow F in M7)) else Ms)

. . . 6
the continuation of the program that can migrate ie th
operationallyF-confined. It would then be convenient to

4The largest of these sets exists, for analogous reasonstodte 3.

ment (as defined in Subsection 4.1). The judgments of the
type and effect system of Figure 4 are a lighter version of
those that were used in Subsection 3.2. They have the form

I'EM:s, T

meaning that the expressidd is typable with typer and
security effect in the typing context’ : Var — Typ, which
assigns types to variables.

5The largest of these sets exists, for analogous reasonstodte 3.
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Figure 4. Fragment of the Type and Effect System for Calculat  ing the Declassification Effect

Here the security effect corresponds to thdeclassifi- ity of the type system, notice that it does take that ef-
cation effect a lower bound to the flow policies that are fort into account when building the declassification effect
declared in the typed expression, excluding those that ardn fact, when a part of the program is “protected” by an
positively tested by an allowed-condition. Types have the (allowed F' then M else N) construct, some of the infor-
following syntax ¢ is a type variable): mation in the declassification effect can be discarded. By
hiding the tested flow policy from the declassification efffec
of the “allowed” branch. As a result, programs contain-
The meanings are anak)gous to those of Subsection 32|ng flow declarations that are too permissive might still be
We also use a similar abbreviation when typing (pseudo)- authorized to execute in a certain domain, as long as they
values, namely we writé - M : 7 whenl' - M : T, 7. occur in the “allowed” branch of our new construct, since

In Figure 4 we only exhibit the typing rules that are rel- as we know (by its semantics), it will never be executed.
evant to the construction of the declassification effecte Th
omitted rules are a simplified version of those that appearSoundness We start by stating that the type of a thread is
in Figure 3, where typing judgments have no parameters,preserved by reduction, while its effects “weaken”. When
and the updates of the security effects as well as all sidean expression executes a computation step, some of its ef-
conditions involving=<r are removed. The meet operator fects may be performed by terminating computations within
A is used instead of because the declassification effectis a flow declaration, or may also be discarded when a branch
contravariant with respect to the effects of Subsection 3.2 in a conditional expression is taken.

Our type and effect system accurately constructs the de-
classification effect of the program, which allows to test
confinement of all flow declarations with respect to any al-
lowed flow policy. The new effect is updated in ruledw,
each time a flow declaration is performed, and “grows” as ~ ® If W = ({M™},T,5) — ({M™},T", '), then
the declassification effects of subterms are met (by union) there exists’ such thaf" - M’ : s', 7, and wheres U
in order to form that of the parent command. An exception W(T(m;)) < 5.
appears in rule ALow, where the declassification effect of
the “allowed” branch is not used entirely: the part that has ¢ If W = ({M™}, T, 5) — ({M"™", N™},T",5"),

7,0,0 € Typ == t|unit|bool|fref; |72 o

Proposition 4.3 (Subject Reduction) Consider a fixed
policy-mappind/V and a thread\ ™ for which there exist
T, F,sandr suchthaf - M : s, 7.

been tested by the allowed-condition is omitted. The intu- then there exists’, s” such thatl' - M’ : s/, and
ition is that the part that is removed (sa&), is of no concern I = N : s” unit, and wheres U W(T'(m;)) < s’
since in practice the allowed branch will only be executed ands U W (T (ng)) = s".

if F'is allowed.

As we have mentioned, the declassification effect should . th p i tv.i.e that policis th
give information about the potential flow policy environ- nism ensures the continement property, 1.€. that polic

ments that are set up by the program. It is easy to see thafre declared by flow declarations never violate the allowed

the proposed type system provides a rather naive SOIUtiontlr?i\évepnOc:IICz/vg ]:Ntirl]lesgg Thaal? t\l’llv: chlt::syifi?:raetigr? r(];cf)f:anc]:teg:.anth:e
to this problem, since it does not take into consideratien th ' . . : - .
migration instructions that appear in the code. This mean:sused for gnforcmg opgr_atpnal confmem(_ar_]t. if a program is
that it might over-approximate the declassification eftact typable with a declassification effegtand if it performs an

counting in flow declarations that are not relevant to the sit executl.on step in a context.that enforces a flow poHCy
where the program is arriving. thenF' is allowed bys, meaning that the actual flow policy

Here we are not concerned with the precision of the that was ruling for that step is stricter than the declassific

type system, but rather with putting forward its idea. As tion effeCt- To fgrmahze th|s result, we use the r_10t|.on of
we will see ahead in Subsection 4.2, its imprecisions Canoperatlonal confinement with respect to a flow policy:

be overcome by good programming practices, since re-Proposition 4.4(Meaning of the declassification effect)
jection of programs can be avoided by proper usage oflf for a thread M™s there existl’, G, s and 7 such that
the allowed-condition construct. In spite of the simplic- T'+ M : s, 7, thenM ™ is operationallys-confined.

We will now verify that our migration control mecha-
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According to the above result, a site can trust that declas-so that the flow declaration of’ would not contribute
sifications performed by an incoming thread are not moreto weaken the declassification effect of the continuation
permissive than what is declared in the type. Programs(allowed F' then (flow F in M) else My).
whose declassification effect cannot guarantee respect for Here we follow the spirit of the proof carrying code
the allowed flow policy of the site can then be treated as scenario: The typing procedure provides enough informa-
insecure by that site — in our model, they are simply forbid- tion for a machine to decide whether the incoming program
den to enter. This migration control mechanism allows us should be free to run in it or not. When using the type sys-
to formulate a network level soundness result, stating thattem to construct a declassification effect, we provide a way
typable programs can roam over the network with the guar-to build a certificate for the program, that can be analyzed
antee that they will not violate the allowed flow policy of at any time and place to conclude about whether a program
the sites where they execute: should be allowed to execute or not. In case the certificate

is not trusted, programs could also be statically checked to
Theorem 4.5(Soundness of Typing Confinement for Net- pe “flow declaration safe”.

works). Consider a fixed policy-mapping/, a pool of
threadsP and its corresponding position tracké&r, such
that for all M™i € P there existl’, s and 7 satisfying
't M :s,mandW(T'(m;)) < s. Then the sepair(P, T') )
is a set of operationally confined located threads. Mantel and Sabelfeld [16] approach the study of infor-
mation flow in a distributed setting by providing a type
The above result might seem somewhat surprising atsystem for preserving confidentiality for different kinds o
first, given that in the typing rule of the allowed construct, channels established over a publicly observable medium,
the flow policy that is being tested is subtracted from the but where interaction between domains is restricted to the
declassification effect of the allowed branch. Notice how- exchange of values (no code mobility). Sharing our un-
ever that the allowed branch will only be taken if the tested derlying aim of studying the distribution of code under de-
flow policy is allowed (byG) in the first place. This means centralized security policies, Zdancewat al. [27] study
that the part of the declassification effect of the allowed the secure partitioning of programs into a distributed sys-
branch that is omitted is known to be allowed 6y To tem of potentially corrupted hosts and of principals. Crafa
illustrate this idea, consider again Example 1, which has anBugliesi and Castagna study non-interference for a purely
empty declassification effect (and is therefore syntaltyica functional distributed and mobile calculus [9], where ne de
G-confined, for all@); its transitions can however be deco- classification mechanisms are contemplated. The work that
rated with the flow policy{ H < L} in case the first branch is closest to ours is [1], which studies insecure infornmatio
is taken, which in turn can only happen{iif < L} C G*. flows that are introduced by mobility in the context of a dis-
tributed language with states. Declassification is preigent
the language by means of flow declarations. In the compu-

Mlgrat|_on contro! The propos_ed methoql for enfo_rcmg tation model that is considered, threads own references tha
operational confinement combines a static analysis tech- . . R .
move along with them during migration; this setting also

nigue for calculating the declassification effect of a pesgr gives rise tamigration leaks

with a migration control technique that is built into the se- In a recent survey [23], Sabelfeld and Sands examine
mantics of the language. Our analysis technique does nOtthe literature regarding the subject of declassificatior a

offer ‘,",l safety rgsult, guaranteeing that programs nevr ‘ge observe that declassification can be controlled according t
stuck”. In fact, it can happen that a thread is blocked at the . . .
four main orthogonal goals as tahatinformation should

pomt_ of perfprmmg a m|grgt|on instruction, for the reason e released [14, 21Whenit should be allowed to happen
that it contains code that is not allowed to execute in the : . .
L ) . . [8], who should be authorized to use it [19], antherein
destination domain. Let us reconsider Example 6: : i . .
the program it can be stated [2,7]; these dimensions can also

(allowed F then ((goto d); (low F'in M1)) else M3) be combined [3]. Most of the overviewed approaches im-
plicitly assume local settings, where the computation-plat
form enforces fixed policies. Furthermore, the tools that ar
provided for controlling the usage of declassification op-
erations are restricted to the declassifying operatioasith
selves, as opposed to the techniques that are proposesl in thi
paper: both the allowed-construct and restricted versfon o
migration are external to the flow declaration construct.

Previous works have studied forms of dynamic flow pol-
((goto d); (allowed F then (flow F in M) else M>)) icy testing in settings where distribution and mobility are

5. Related work

According to the type system of Figure 4, the declassifica-
tion effect of the continuatioif(goto d); (low F'in My))
includesF'. This means that the migration instruction will
be performed only in the case that the allowed flow policy
of d allows for F'; otherwise, the program will get stuck.
We notice, however, that in order to avoid this situatioe, th
program might have better been written
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not explicitly dealt with. In [28] and [25], testing is per- up a migration control mechanism for deciding whether or
formed over security labels, while the underlying security not programs should be allowed to execute at each site.
lattice remains fixed. Closer to ours is the work by Hicks ¢ Theidentification of a new form ahigration leakghat
etal.[13], where the global flow policy can be updated and ¢4 e encoded in a distributed language with code mobility
tested. However, the language that is considered is local,, means of the new allowed construct. These do not result
and sequential, and updates to the global flow policy are nott;om memory synchronization issues, but reflect instead the
meant as declassification operations. Furthermore, the sepq,y nossibilities of accessing information about the loca-
curity property _does not deal with updates, but rather with jon of programs in the network. We show how these mi-
what happens in between them. In [6] access control andyation leaks can be controlled by means of a type system
declassification are combined in order to make sure that 3that enforces the non-disclosure policy, for a distribuaed

program can only declassify information that it has thetigh ,,5ge with code mobility containing the allowed construct.
to read, by using access control primitives for controlling

the access level of programs that perform declassifications = ©N€ could also mention the dual problem, that informa-

tion that is carried by programs into sites with more permis-
) sive flow policies becomes vulnerable. In order to tackle
6. Conclusions and Future Work this problem, one could consider a model where references
can move along with threads [1]. We leave this research
The issue of controlling information flow in global com-  direction for future work. Nevertheless, we believe that
puting is attracting increased attention Here we have mo-the allowed-condition construct that was introduced here
tivated the need for controlling the usage of declassifying can play an important role in the solution, since it enables
instructions in a global computing context by pointing out threads to inspect the allowed flow policy of a site, accord-
that programs that were conceived to comply to certain flow ing to which they can decide whether to remain there or to
policies don't necessarily respect those of the computatio  migrate away.
locations they might end up executing at. We have ad-
dressed this issue, by providing techniques for ensuriaig th
a thread can only migrate to a site if it complies to its al-
lowed flow policy. More concretely, the technical contribu-
tions of this paper are the following:
° A new programming construct
(allowed F then M else N) that tests the flexibility
of the allowed flow policyimposed by the domain where
it is currently located and can act accordingly. This is a
first step towards programming in contexts where domains

can change their allowed flow policies dynamically. In the o ]
presence of code mobility, thelowed construcprovides Similarly to the Decentralized Label Model (DLM) [18],

useful expressibility for programming alternative beloasi  the (Pre)-lattices of security levels that were consid e
that a program can have, should it end up in a site where@'® based on the notion of principal, which can be seen
certain declassification operations are not permitted. as the underlying entity that holds read and write capabil-
e A new security property we cationfinement to a flow ities, and for which confidentiality is designed. The DLM
policy, that ensures programs will respect certain flow poli- model adds another dimension to it, by endowing principals

cies, regardless of the declassification operations thgmi ~ With ownership capabilities. Another direction in whicteth
contain. This property is formulated at the network level, model for attributing security labels to resources could be

by considering distributed flow policies and the location of Made more expressive would be by considering a connec-
programs at runtime. tion between locations and principals.

e A new form of security effect that can be associated  The network model we studied in this paper assumes that
to a program, containing information about the declassify- the allowed flow policy of each domain is constant in time.
ing environments that can potentially be established bly tha It would be interesting to generalize the model in order to
program. We call it theleclassification effecand it is flexi- account for dynamic changes in these policies. However,
ble enough to allow programs containing operations that arecombining this more general scenario with the allowed-
forbidden at certain sites to be considered secure neverthecondition would lead to inconsistencies, since the pdicie
less, as long as these operations are protected by an appr@ould potentially change after the branch of the allowed-
priateallowedconstruct. We show that the declassification condition had been chosen. This motivates the study of
effect can be easily constructed by means of a simple typeother alternatives to the allowed-condition for inspegtime
and effect system. This information is useful when setting currentallowed flow policy of the context.

When considering a strictly distributed memory model
(where accesses to remote references are restricted), mem-
ory synchronization issues can lead to migration leaks as
was shown in [1]. However, this paper shows that migra-
tion leaks do not exclusively depend on the memory model.
In fact, even while assuming transparent remote accesses to
references, a new form of migration leaks appear as a result
of introducing our new program construction for inspecting
the site’s flow policies. This motivates a better understand
ing of migration leaks in global computations.
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A. Notations Proof. By induction on the inference df,z : 7 H, M
s, 0, and by case analysis on the last rule used in this typing
For notational convenience, in this appendix we repre- pProof, using the previous lemma. O
sent transitions that refer to pools of single threads in a
slightly different way. When a step is performed by a single
thread while no new thread is created

Lemma B.4 (Replacement)
If T . E[M] : s,7 is a valid judgment, then the proof
gives M a typingl’ M : §,7 for somes and 7

FU[E]
Wi (M™}, T, S> — {M™}, T, 5) suchthats.r < s.r, s.w < 5.w ands.t < s.t. Inthis case,
if T '_FU[E'\ N : & 7withs.r < 35r, sw < §.wand
here we write: 5.t < 5.t, thenT %, E[N] : ¢, 7, for somes’ such that

0 s'r<s.r, sw=<s.wands'.t < s.t.
Wi <{Mml}a T7 S> - <{Mlmj}a T/a Sl>
F Proof. By induction on the structure @. O

When the step represents the creation of a new thread Proposition B.5 (Subject Reduction)Consider a thread

W ({M™),T, S> — ({M'™i N™}, T, S") M™i for which there existl’, F', s and 7 such that
TH,. M:s,7. Then, itW + ({M™},T,8) 25

here we write ({M'™mi}, T, 8"), there exists’ such thatl %, M’ : s/, 7,
WE (M™, T, 8) 25 ((Mma), T, 8 and wheres'.r < s.r, s.aw < s’.w ands’.t < s.t. Further-

more,3s” such thafl =j NV : s, unitands.w < s”.w.

Furthermore, we may represent all transitions of single proof. We consider the smallest/ such thatM = E[M]
threads by in the sense that Ehere is o, M, N such thatE +#
[ and E[M] = M for which we can writeW

W {M™},T,S) 5 ((M™i}, T, 8 ({NI™a\, T, 5> S (M}, T, S"). We then proceed
F

whereN"* represents the dummy thregdn case nonew by case analysis on the transitiéhi {{M™i}, T, S)
thread is created. ﬂ ({M"™i}, 7", 8"), using Lemmas B.3 and B.4.

Suppose that/ = E[M] and thatW + ({M™i}, T, S)
ﬁ ({M'™i}, T",S"). We start by observing that this

B.1. Subject Reduction implies I/ = F U [E], M' = E[M'|, N = N and
S =9 We can assume, W|thout loss of generality, that
In order to establish the soundness of the type system of)/ is the smallest in the sense that there isthad/, N
Figure 3 we need a Subject Reduction result, stating thatsuch thatfs # [] andE[ 1] = M for which we can write

types that are given to expressions are preserved by comp m; mj ’oQr
tation. To prove it we follow the usual step [ W = {M hT S> <{M HT S

B. Information flow analysis (proofs)

By Lemma B.4, we have +’ M : 5,7 in the proof

Remark B.1. If W € PseandT +,, W : s, 7, then for all o FU[E]
flow policiesF”, we have that' ,_gw W (LT, 1), of T I—J E[M] : s, T, for somes and7. We proceed by
case analysis on the transitioii - ({M™i}, T, S>

{M'™i}, T, S"), and prove that' I—FU[E] M':

5,
somes’ such that’.r < 5.r, 5.w < §.w ands’.t < 5.t.

Lemma B.2. F
7, for

1. fT H, M : s,7 andz ¢ dom(T') thenT',z : &

M :s,T.
2. fT,x: 0 M : s,randz ¢ fv(M) thenT +, o [M = ((Az.M) V)]
M:s,T. Here we haveM’ = {z— V}M. By rule App,
J .
Proof. By induction on the inference of the type judgment. we havel '_FUfEW (A M) &7 FU[E],j ¢ and
O PF%’UTET V :§" 7, wheres’.r < 5.r 5w < 3§.wand

Lemma B.3 (Substitution) 4 §'.t < 5.t. By ABs, thenl, z : 7 |_Fu]'E] M: &6,
f T,z:0 % M : s,7andl = W @ o thenD and by Remark B.1 we havel- V' : 7. Therefore, by
{x—=W}M :s,7. Lemma B.3, we geF {z—V}IM:8,6

FU[E]
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[M = (if tt then N else Ny).]
Here we havel/’ N;. By CoOND, we have that
I+

7*.

FU[EWN: wheres;.r < 5.7, 5.w < sp.w
ands;.t < 5.t.
o [M = (ref,o V)]

Here we havéll’ = a; 4. By LOC, we havel’ '_Furm
: (L, T, 1), 0ref;, which satisfiesL. < s.r, s.w =<

T andl = s.t.

[ ] [M = (' al’g).]
Here we havell’ = S(a; ¢). By assumption, we have
thatT" l—%um S(arg) : (L, T,L),0, which satisfies
1 <sr,sw=<Tandl < s.t.

e [M = (low F'in V)]
Here we havell’ = V. By rule FLow, we have that

T '_ZwurEqu' V : §,7 and by Remark B.1, we have
r I—}U(E] V. (L, T, 1), 7, which satisfiesl. < s.r,

saw =< Tandl < s.t.

e [M = (allowed F’ then N; else Ny)
F' C W(T(m;))*]
Here we havell’ = N,. By ALLow, we have that
T I—ZVU[E1 N; : s¢, 7, Wwheres,.r < 5.7, 5.w = sp.w
ands;.t < 5.t.

e [M = (allowed F’ then N; else Ny)
F' ¢ W(T(m;))*]
Here we havell’ = N;. By ALLow, we have that
r H?u(EW : sg, 7, wheresy.r < 5.r, 5w < spaw
andss.t < 5. t

and

and

The proof for the cas#/ = (gz.W) is analogous to the one
for M = ((Az.M) V), while the proofs for the cased =
(if ff then N; else Ny) andM = (V; M) are analogous to
the one forM = (if ¢ then N, else Ny), and the ones for
M = (aj9 := V), M = (thread; M) is analogous to the
one forM = (ref, 9 V). By Lemma B.4, we can conclude
thatT' +4, E[M’] : &', 7, for somes’ such thats’.r < s.r,
saw < s’.wands’.t < s.t.

Now, if N 2 () (N™* is created), the@AN : M =
E[(thread), N)] and N = N By Lemma B.4, we have

r '_Furm (thready N) : 3,unit in the proof of ' 7,

E[(thread J\[)] : s, 7, for somes, and7. By THR, we
havel' Hf N : 8, unit, wheres = (L, s.w, L). Therefore,
s.r<s.r, saw < swands.t < s.t. O

B.2. Non-disclosure for Networks

We now present the main steps for proving soundness of

the type system of Figure 3 with respect to the notion of
security of Definition 3.4.
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B.2.1 Basic Properties

Properties of the Semantics One can prove that the se-
mantics preserves the conditions for well-formedness, and
that a configuration with a single expression has at most one
transition, up to the choice of new names.

The following result states that, if the evaluation of a
thread M™ differs in the context of two distinct states
while not creating two distinct reference names or thread
names, this is because eithdf™s is performing a derefer-
encing operation, which yields different results depegdin
on the memory, or becaudd™ is testing the allowed pol-

icy.

Lemma B.6 (Splitting Computations)

If we have thatW +F ({M™i},T1,5)
{M;"™3}, T, S1) and also thatW + ({M™i}, Ty, Sa)
N UM™Y, T3, S5) with My™  # M,™ and
dom(T2 — Ty) = dom(Ty — T1), dom(S5 — Ss)
dom(S] — S1), thenN™ = () = N'™* and either:

e there existE anda; ¢ such thatt’ = [E]
E[(' aw)], andM' = E[Sl (aw)], M'" =
with (Ty,S7) = (T1, S1) and (T3, S%) =

N™k
—_—
F

= F/' M =
E[S2(a,0)]
<T2,SQ>, or

e there existE and F' such thatF’ = [E] = F, M
E[(allowed F” then N, else N¢)], and Ti(m,)
Ty(m;) with (T1,S7) = (T1,S1) and (T3, S5%)
<T2, SQ>, Or.

[N

Proof. Note that the only rules that depend on the
state are those for the reduction &[(! a;4)] and
of E[(allowed F’ then Ny else N¢)]. By case analy-

sis on the transitonWW + ({M™i},T3,51) %
({Ma"™}, 17, 81). 0
Effects
Lemma B.7 (Update of Effects)

1. T H B[ ng.ugg)] « s, 7 thenl < s.r.

2. fT H, El(nguy g := V)] : 5,7, thens.w < L.

3. IfT I—% E[(ref; 9 V)] : 5,7, thens.w <.

4. IfT H, E[(goto d)] : s, 7, thens.w < j.

5. If T ), E[(allowed F then N; else Ny)] : s,7, then

J X s.t.

Proof. By induction on the structure @. O



High Expressions We can identify a class of threads that We proceed by cases on the proof of the transitign-
have the property of never performing any change in the ({M™i},T, S> <{Mlm7} 77, 8'). The lemmais triv-
“low” part of the memory. These are classified as being o

“high” according to their behaviér al i all the cases wher@ S) =({T",5).

Definition B.8 (Operationally High Threads)A setH of * [M = E[(agg := V)]] HereS" = [a75 := V]S

threads is said to be a set adperationally (¥, )-high and SOS-IUFiI [ by Lemma B.7. This implies A [,
threadsf the following holds for any//™ € ‘H: henceS’ =" 5.

my gy - e [M = E[(goto d)].] HereT’ = [m; := d|T and

WM™ LT, S> <{M b T, 57) implies alsos.w = j by Lemma B.7. This implieg £r I,
hencel” = T.

(T,8) =t (1", 5"y and bothM '™, N™* € H

The largest set of operationall§f, {)-high threads is de- 1 he Proof of the casé/ = E|(ref;y V)] is analogous to

m; i the proof forM = E[(a;¢ := V)], while the proof for the
noted byHr;. We then say that a threatl ™ is opera- )
tionally (F ?jl-high if Ny eyHFl. P caseM = E[(thread; My)] is analogous to the one for

M = E[(goto d)]. O
Remark that for any"" and! there exists a set of opera-
tionally (F,1)-high threads, like for instancgV/™ | V' ¢

! ) B.2.2 Behavior of “Low”-Terminating Expressions
Val}. Furthermore, the union of a family of sets of opera-

tionally (F,1)-high threads is a set of operationa(l, !)- Recall that, according to the intended meaning of the ter-
high threads. Notice that # C F, then any operationally mination effect, the termination or non-termination of ex-
(F,1)-high thread is also operationally”, [)-high. pressions with low termination effect should only depend

Some expressions can be easily classified as “high” byon the low part of the state. In other words, two computa-
the type system, which only considers their syntax. Thesetions of a same thread running under two “low”-equal states
cannot perform changes to the “low” memory simply be- should either both terminate or both diverge. In partigular
cause their code does not contain any instruction that couldthis implies that termination-behavior of these exprassio
perform them. Since the writing effect is intended to be a cannot be used to leak “high” information when composed
lower bound to the level of the references that the expres-with other expressions (via termination leaks).
sion can create or assign to, expressions with a high writing  The ability of a thread containing a migrating instruction
effect can be said to ®yntactically high to compute depends on whether it is typable with a declas-
sification effect that complies to the allowed flow policy of
the destination site. The following guaranteed-transite>
sult holds for low-equal states.

Definition B.9 (Syntactically High Expressions)An ex-
pression M is syntactically (F,, j)-high if there exists
I', A, s,7 such thafl’ H. M : s, 7 with s.w Ap [. The ex-

pression} is asyntactically(£', /, j)-high functionif there | emma B.11(Guaranteed TransitionsiConsider a thread
existsl', s, 7 suchthat - M : 7 FL> o with s.w £r [. Mmi that is typable forF. If W + ({M™i}, Ty, S1)

)

(™}, 17, 84 h thatn is fresh for T if
We can now state that syntactically high expressions r {71 T, 5) sue _t atny, 1S fres . ords |
have an operationally high behavior. ng € dom(I{ —T1) and a is fresh forS; if aip <
, : . , dom(S] —S;) and for some™” we havgTy, S;) =FVElow
Lemma B.10(High Expressions)If M is a syntactically (7, g,) then there existMj, T; and S such that

(F,1,j)-high expression, thed/™s is an operationally e N m;
(F,1)-high thread. W ({M™i},T5,S2) —— ({M5"™},Ty,S5) with

/ Qr\ _FUF’ low /
Proof. We show that ifM is syntactically(F,, j)-high, (1, 51) = (T2, 55)-

with sw Arp [, and W + ({M™i},T,S) 7 <{MmJ} T1,5'1> - <{M{m1} Ti,S!). In most cases,
({M'™mi},T',8") thenS’ =F*1 . This is enough since, this transition does not modify or depend on the state
by Subject Reduction (Theorem B.5), bailf’ is syntac- (Ty, S1), and we may letM, = M/ and (T},S) =
tically (F,l,j)-high andN is syntactically(F, !, k)-high. (T3, Ss).

6The notion of “operationally high thread” that we define heheuld _ r
not not be confused with the notion of “high thread”. The fermefers to o [M= E[(refl %,V)] ] He;re M - E[,al’e]'
the security level that is associated with a thread, whiteldltter refers to F = [E], N = ), ] T = ] Ty and 57 =
the changes that the thread performs on the state. S1 U {ap — V}. Sincea is fresh for Ss,
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we also have thalV N7

<{Mmj}’T2’SQ> T’
<{M{mj}7T27 Sé U {alﬁ = V}>
o [M =E[(!aip)].] Here M’ = E[Si(a)l,
F = [E], N = (), and (T{,S]) =
(Ty,S1). We haveW I+ ({M™i}, Ty, So) NT>
({E[S2(a1,0)]™ }, T2, S2).
o [M =E[(aj9:=V)].] thenM' = E[(], F =
|—E.|, N = O, T1/ = T andS{ = [alyg =
V]Si. We haveW F ({M™}, Ty, Sso) NT>

{E[0]™}, Ty, [a,9 := V]S2).

e [M = E[(thread; M)].] Here M’ = E[()], F = 0,
N7 = M, T{ = Ty U {ng — Ti(m;)}, andS; =
Sl: Sincen is fresh forTy, W = ({M™i}, Ty, Sa)
A B0 T U (g Ta(m)}. Sa). No-

tice that Ty U {n; Ty(mj)} =FVFlow
ToU {ﬁE — Tg(mj)}, becausd] =FUF,low T> and
if | <pyp low, then by the conditiof <pypr: [ in
rule THR alsoj <pyps low, in which casel; (m;) =
Tg(mj).

—

e [M = E[(gotod’)].] Then M’ = E[(], F =
Si. This means thatl' =) E[()] : s,7.  There-
fore, we also haveV + ({M™i},T5,Ss) NTR’%
{E]™}, [my; = d']T3, Sa).

O

We aim at proving that any typable thre&f™s that has
a low-termination effect always presents the same behav-
ior according to sstrongbisimulation on low-equal states:
if two continuationsM;" and M, of M™: are related,
and if M| can perform an execution step over a certain
state, then\/,"’ can perform the same low changes to any

low-equal state in precisely one step, while the two result-

Definition B.12 (72
T I—% M : s, 7andl I—% M : so, 7 for somel’, A, s1, s
and 7 with s1.t <r low ands,.t <r low and one of the
following holds:

ow)- We have thatVsy 77, Mo if

[Clause 1.] M; and M, are both values, or
[Clause 2.]M, = Ms, or

[Clause 3] M, = (M;;N) and M, =
whereM; T} o, Mo, or

(Ma; N)
low

[Clause 4.1 M, = (ref, 9 My) and My = (vef; 9 M>)

whereM; T3, ,,, Mo, andl %5 low, or

[Clause 5.] M; =
My TPZ Ms, or

(! My) and My = (! Ms) where
low
[Clause 6.] M; = 4(]\_41_:: Ny) and My =
(MQ = NQ) with M, Tlﬁ’low Mo, and Ny TF]'JOW No,
and M, M, both have type ref; for somed and [
such that A low, or

[Clause 7.] M, = (flow F'in M) and M, =
(ﬂOW F’in Mg) with My T}?'UF’,IOW M.

Figure 5. The relation 77,

ing continuations are still related. This implies that ang t
computations of\/™ under low-equal states should have
the same “length”, and in particular they are either both
finite or both infinite. To this end, we design a reflexive
binary relation on expressions with low-termination effec
that is closed under the transitions of Guaranteed Transi-
tions (Lemma B.11).

The definition of77. ,, is given in Figure 5. Notice that
itis a symmetric relation. In order to ensure that expre®sio
that are related by7., ., perform the same changes to the
low memory, its definition requires that the references that
are created or written using (potentially) different valaee
high.
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Remark B.13. If for some j, F' and low we have
My T}, M2 and M, € Val, thenM, € Val.

From the following lemma one can conclude that the re-

lation 7./~ relates the possible outcomes of expressions

that are typable with a low termination effect, and that per-
form a high read over low-equal memories.

Lemma B.14. If there existl, s, 7 such thatl’ +,
E[('aip)] : 5,7 with s.t <p low andl Zpyrg) low, then
for any valuesy, V1 € Val such thatl’ - V; : 6 we have

E[VO] Tlg‘,low E[Vl]

Proof. By induction on the structure d.

Tj

° [E[(' al,g)] = (! al,g).] We haveV, Flow

Clause 1.

Vi1 by

[E[(! a,0)] = (E1[(! a1,6)] M).] By APPwe have
T Fi-. El[(' alﬂ)]

Lemma B.7, we havé < 7§.r. Thereforel <r s.t,
which contradicts the assumption that beth=<r low
and! Apug low hold.

: 8, T ;_—> g with s.r < s.t. By
J

[E[(! ar,9)] = (V E1[(! ar,6)]).] By rule Arpwe
havel' H,. E1[(! ai)] : 3,7 with 3".r < s.t. By
Lemma B.7, we havé < 3”.r. Thereforel <p s.t,
which contradicts the assumption that beth<r low

and! ArUg low hold.

[E[(! a,0)] = (if E1[(! al,gl)] then M, else My).]
By ConD we have thaf® +%. E;[(! ai)] : 5, bool
with 5.r < s.t. By Lemma B.7, we havé < s5.r.
Thereforel < s.t, which contradicts the assumption
that boths.t < low andl Apyg low hold.

[E[(! aig)] = (E1[(! a1,9)]; M).] By SEQwe have

I' H. Eq1[('are)] : 5,7 with 5.t <p s.t. There-
fore 5.t <p low, and sincel Ap_g low implies

I ZruE, low, then by induction hypothesis we have
Eq1[Vo) 72, E1[V4]. By Lemma B.4 and Clause 3
we can conclude.

[E[(! ar,e)] = (refror E1[(! ai6)]).] By rule Rer
we have that" +}. Ei[('aig)] : 5,7 with 5.0 =
s.r <p I’ ands.t = s.t. Therefores.t <r low, and
sincel Arug low implies! Zryug, low, then by in-
duction hypothesis we hav [Vo] 77, E1[Vi]. By
Lemma B.7 we haveé < s.r, sos.r Zr low. There-
fore,!’ A4 low, and we conclude by Lemma B.4 and
Clause 4.

[E[(! a,6)] = (' E1[ai,6]).] By rule DER we have
I H. Ei[('awe)] : 5 7 with 5.6 <z s.t. There-
fore 5.t <p low, and sincel ZArpugp low im-
plies! Apug, low, then by induction hypothesis
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E1[Vo] 72, E1[Vi]. We conclude by Lemma B.4
and Clause 5.

e [E[(! are)] = (E1[(! ar,0)] := M).] By rule Ass
we have thal’ H}, Ei[as] : 5,0 refr, with 5.6 <p
s.t ands.r <p [. Therefores.t <p low, and since
I ZruE low implies! Arug, low, then by induction
hypothesist: [Vo] 774, E1[V1]. On the other hand,
by Clause 2 we have/ 77, , M. By Lemma B.7
we havel < 5.r, sol <p [. Then, we must have
I £F low, since otherwisé < r low. Therefore,
we conclude by Lemma B.4 and Clause 6.

o [E[(! are)] = (V := Ea[(! ai0)]).] By rule Ass
we have thatl' 5 V : §0ref;, , andl' +
Eilarg] @ &,0 with 3.t <p st andd.r <p L.
Therefores’.t <r low, and sincd Apug low im-
plies Zrur, low, then by induction hypothesis
E1[Vo] 771, E1[V1]. On the other hand, by Clause 2
we havel/ Tlg;,low V. By LemmaB.7 we have= §'.r,

sol <r I. Then, we must have 4 low, since oth-
erwisel <pug low. We then conclude by Lemma B.4
and Clause 6.

[E[(! a1,9)] = (flow F’ in E1[(! a1,9)]).] By rule
FLow we havel' ., V : s,7. By induction hy-
pothesist [Vo] i r 10, E1[Vi], SO we conclude by
Lemma B.4 and Clause 7. Thereferé <5 low, and
sincel Zrur low implies! Arug, low, then by in-
duction hypothesis we hav& [Vo] 77, E1[Vi]. By
Lemma B.4 and Clause 8 we can conclude.

O

We can now prove thaf  behaves as a kind of
“strong bisimulation”:

Proposition B.15 (Strong Bisimulation for Low-Termina-

tion).
If we haveM; 7, M and alsoW + ({M;™}, Ty, S1)
_)N;IK <{M{m1}7T1/, Si>, W|th <7"17 Sl> :FUF/,low <7*:27 SQ>

such thatn is fresh forT: if iy € dom(7] — 71) anda
is fresh forSsy if a; 9 € dom(S] — Si1), then there exist

T3, M3 and S such thatW = ({M"}, T3, S2) NFk

({M4™), T4, 54) with My 7,77, M and (T, S7) ="t
(13.53).

Proof. In the following, we use Subject Reduction (Theo-
rem B.5) to guarantee that the termination effect of the ex-
pressions resulting from/; ands is still low with respect

to low and F'. This, as well as typability (with the same
type) form;, low and F, is a requirement for being in the

Tr 11, relation.



e [Clause 1.] This case is not possible. — [My is a value.] In this cas/] = a4, with a
fresh forSy, F/ = 0, N" = () and(T},S]) =

e [Clause 2.] HereM; = M,. By Guaranteed Transi- (T, S1 U{ar9 — M, }) (and therefore: is also
tions (Lemma B.11) there exigtz’ M}, and S}, such fresh forS;). ThenM, € Val by Remark B.13,
that W + ({M3J"}, Ty, Sa) 2 ({MLJ™Y, T4, S5) and thereforelW + ({My™ 1}, Ty, So) 105
with (T}, 8}y =FVF"low (T, SQ>. ({are™}, T3, S2 U{arg — Ma}). If we let

Sé =S U {au) — Mg} then <T1/, Si> =Flow
- [M} = M].] Then we have\i{ 7./, Mj, by (T4, S4) sincel A low. We conclude using
Clause 2 and Subject Reduction (Theorem B.5). Clause 1 and Subject Reduction (Theorem B.5).

— [M} # M;.] Then by Splitting Computations e [Clause 5.] HereM; = (! M) and My = (! M>)

(Lemma B.6) (V" = ()) and we have two whereN, 777, M. We distinguish two sub-cases.
possibilities:
(1) there existE anda; s such thatM] = — [M; can compute] In this caséV K

E[Si(aie)], F' = [E], My = E[S2(ae)],

IT)’L7

(T1,8]) = (T1,5;) and (T}, S}) = (Tb,Ss). (M}, Ty, S1) S ({0}, T4, S1). We
Since Si(azp) #  Sa(arg), we have use the induction hypothe5|s Subject Reduction
I Arpupr low. Therefore, M| T;f'l-;w M3, (Theorem B.5) and Clause 5 to conclude.

by Lemma B.14 above. — [M, is avalue.] Then; = a; 9 andM] € Val,

(2) there existsE such that M] = (T1,8}) = (T11,S1), F = 0 andN™ = ().
E[(allowed F then NV, el_se Nf/)]' /F' = [E], By Remark B.13,M, € Val, and sinceM;
andTl(/mjz 7# To(my) with (T7, S1) = (T, 51) and M, have the same type, it must be a ref-
and (T3, 53) = (I»,52). SinceTi(m;) # erenceay g. Then, W + ({My™}, Ty, So)

Ts(m;), we havej A low, and by Lemma B.7 NE - )
we( hf':l)ves.t Zr low, which contradicts the — ({M""9}, Ty, S5) with M € Val, and
assumption. we conclude using Clause 1 and Subject Reduc-
tion (Theorem B.5).
e [Clause 3.] Heré\l; = (M;; N) andMy = (Ma; N)

wherelM, 7,7} = M,. Then either: o [Clause 6] Here we havel; = (M;:=N)
’ and M2 = (M := Ny) where M, TF hw M2 and
— [ M, can compute.] In this case we havg = Ny T, N2, and My, M, both have type ref; ,,

N% for somee and! such that Ar low. We distinguish

(M{;N) with W = ({M{"}, T1,S1) —— three sub-cases.

({M;"™7}, T}, S};). We use the induction hypoth-

esis, Clause 3 and Subject Reduction (Theorem — [M; can compute] In this caséV +
B.5) to conclude. ({7, T1,51> -~ <{M/m.}} TI,S81). We

— [M;, is a value.] In this casé/{ = N and use the induction hypothesis, Subject Reduction
F' =0, N** = () and(T},S]) = (T1,51). (Theorem B.5) and Clause 6 to conclude.

We havel, & Val by Remark B.13, hence — [M;, is value, butN; can compute.] In this

W E ({Ma™}, Ty, S2) = 7 = ({N™}.1>, 55), case we have thaV’ + ({N,"}, Ty, S1) LFk
and we conclude using Clause 2 and Subject Re- <{N{mj}7 T7.S1). By Remark B.13 alsdil €

duction (Theorem B.5). Val. We use the induction hypothesis, Subject

o [Clause 4] HereM; = (refyg M) and M, = Reduction (Theorem B.5) and Clause 6 to con-
(vefi g M) where My 7,77, Mo, andl Zp low. clude.
There are two cases. — [M; and M; are values.] Then; = a;g
_ and M| = (), (T{,S7) = (T1,{V — M}S1),
— [M; can compute.] In this case we ha¥€ = F' = ¢ and N** = (). By Remark B.13,
(refrg My) with W ({M™}, Ty, S1) Nk, also My, N, € Val, and sinceM; and M,
P _ R have the same typell/> must be a reference
({M,"},T{,5]). We use the induction hy- . NE
pothesis, Subject Reduction (Theorem B.5) and avg. Then, W = ({Mx™}, 1o, S2) ——
Clause 4 to conclude. ({My'™}, Ty, {V' +— M3}Ss) with M} €
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Val. Sincel Ar low, then we know that Proof. Let us suppose thatNt{. That means that there ex-

{V — M}S, =FUF low fy7 §,1S,. We ists a finite number of stated, S1), ..., (T, S,), and
conclude using Clause 1 and Subject Reduction (77, S1), ..., (T}, S;,) and of expressiondT, ..., N, such
(Theorem B.5). that
° [Clause 7.] Here we havkl; = (ﬂow Fin M;) and Wt ({N},T1,51) — {{N:i},77,57) and
= (flow Fin M) andMy 77 ., Mo. There W (N1}, 1o, S2) —  ({N2},T3,55) and

are two cases.

— [M; can compute] In this caséV F
({M["},T1, S1) —> ({7}, T, S7) with
F'=FUF". By mductlon hypothesis, we have and such thatv,, € Val. By Strong Bisimulation for Low-

W (™Y T S N T g Terminating Threads (Proposition B. 15) we have that there
(M7} T2, 2> o (M}, T3, 85), exists a finite number of statég’, S1), ..., (T/,5!) and

and M| TFuF o M3 and (T],8;) =FUFlow of expressiond/y, ..., M, such that

(T3, S%). Notice that(Ty,S}) =Flew (T3 Sh).
We use Subject Reduction (Theorem B.5) and

WE ({Na 1 b T S — (N}, T2, S1)

W+ <{M},T1,Sl> — <{M1},T{,Si> and

Clause 7 to conclude. Wk ({Mi}, Tz, S2) ({M;}, Ty, S5) and
- [M; is a value]] In this caseM] = M;, :
=0, N"s = O and <T{,S{> = <T1,51>. Wk <{Mn71},Tn,Sn> N <{MTL}’T7/L’S;L>

Then M, € Val by Remark B.13, and st/
(M}, To, Sa) o5 (M5}, T, So). We  such that

conclude using Clause 1 and Subject Reduction M, T 7 ow Ny, and ..., and M, TPZ e N
(Theorem B.5). ! ou
By Remark B.13, we then have thaf, € Val. SinceM,,
is a derivative of\/, we conclude that M 1. O

We have seen in Remark B.13 that when two expressions
are related by}, and one of them is a value, then the
other one is also a value. From a semantical point of view,
when an expression has reached a value it means that it hasemma B.19(Composition of High Expressionssuppose
successfully completed its computation. We will now see that /™ is typable inF. Then:
that when two expressions are related By, ,, and one ] )
of them is unable taesolveinto a value, in any sequence 1. If M = (M; M) and M, is a syntactically
of unrelated computation steps, then the other one is also (£’ low, j)-high function and either
unable to do so. We shall use the notiordefivative of an o Myt andM,™ € Hp jou, OF

expression\/: _ v
L4 MlmJaMQmJ S HF,low:

The following lemma deduces operational “highness” of
threads from that of its subexpressions.

Definition B.16 (Derivative of an Expression)\Ve say that

an expressiorl/’ is aderivativeof an expressiod/ if and thenM™ € Hr,iow-
only if 2.1f M =  (if My then M, else M;) and
o M = M, or Mlmjathj7Mfmj € HF,lowx thenM™i € HF,low-
e there exist two state$7,S;) and (77,5;) and a 3. If M = (vefip My) andl Ar low and M;™ €
derivativeM" of M such that, for som&/, F, N™: HF 10w, thenM™i € Hp jow.
Wk (M T1,51> § (M’ !, 87 4. If M = (M;y; Ms) and either
o Mt andM,™ € HFJm,,, or
Definition 3.17 (Non-resolvable Expressmns\)\{e say that o M, My™ € Hr ow,
an expression is non-resolvabledenotedV/ 1, if there is
no derivativeM’ of M such that\/’ € Val. thenM ™ € Hp iow-
Lemma B.18. If for some F', low and j we have that 5. If M = (M, := M) and M; has typef ref; ,,, with
M T%,,, N and M+, thenN't. I ZF low and either
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o MitandM;™ € Hp, o, OF — [M; can compute.] Thed!’ = (M Mz) with

o My, M2™ € HFiow, W (M™, T, S) N},:k’ (M{™,1",5"). Since
thenM™i € Hp o M,™ € Hp 0w, then alsal;™, N™ ¢ F and
’ (T",8"y =Flow (17 8" By Subject Reduction
6. If M = (flow F'in M;) and M, € HF 0w, then (Theorem B.5)M] is a (F, low)-high function.
M™i € HF iow- HenceM’ € F.
7.1f M = (allowed F then M, else M;) and — [M is a value butM; can compute.] Then we
thj7Mfmj € HF low» thenM ™ S HF low haVGM/ = (Ml Mé) with Wt <M2mJ7T’ S>
’ ’ "k . . )
. N, (M5™ ., T'.8").  Since My™/, N™ ¢
Proof. We give the prooffor the case whelé = (M; Ms) F .
and M, is a syntactically(F, low, j)-high function. The HElow tpflen also M, 7, N™ € F and
other cases are analogous or simpler. (T",8") ="tew (17, 5"). HenceM' € F.
o [Myt and M;™ € Hruow] Let F be a set u

of threads that include${r,,, and that contains
the threads(M; M)"™ provided that they are ty-
pable in F, and satisfyM; ¢ Val and M;" ¢
F and M, is a (F, low, j)-high function. Assume  prqof, By induction on the definition of/; T
that an applicatiom = (M; M) such thatM;f

and M1 € Hp,, performs the transitiolV e [Clause 1.] Direct.
N"k

(M™3, T, S) — (M'™.T",S"). We show that
this implies M'™i N™* ¢ F and(T’,8') =Ilow
(T",5").

Since M, is non-resolvable); cannot be a value,
and sinceM can compute, then als®/; can com-
pute. We then have/’ = (M; Ms) with W +

Lemma B.20. If for somej, F' and low we have that
My T}, M2 and My € Hr 10w, thenMs € Hriou.

Ms.

Jlow

e [Clause 2.] Direct.

e [Clause 3.] HereM; = (M;;N) and M, =
(Ma; N) with My T7,,,, M. Clearly we have that
M € HF 100, SO by induction hypothesis, aldd, €
HF, 100w We distinguish two sub-cases:

(M, T, 8) X5 (Mi™ T, S, Since My™ — [N € Hpiw] Then, My, N € Hpou.
B s Therefore, by Composition of High Expressions
€ Hrow, then alsoM; ™, N™ & Hpow, thus (Lemma B.19) we have thatly € Hr 0.

M™ N™ € F,and(T",S") =Plew (1", 8"). By
Subject Reduction (Theorem B.5)/] is a (F, low)-
high function, and sincé/; } thenM; ¢ Val. Hence
M'™i e F.

— [N ¢ Hr,i0w-] ThenM,t, and by Lemma B.18
also Mst. Therefore, by Composition of High
Expressions (Lemma B.19) we have thds <
HF,low-

e [Clause 4.] HereM; = (ref o M;) and My =
(ref g M) where M, T7,,,, M, andl Zp low.

o [M™,M2™ € Hp,on.] Let F be a set of
pools of threads that includ€sr ;,.,, and that con-
tains threadgM; Ms)™ provided they are typable

in F and satisfy M, M) € F and M; is a Clearly we have thab/; € HF,i0w, SO by induction
(F, low, j)-high function. Assume that such an appli- hypothesis alsd/, € Hr, 1w Therefore, by Compo-
cation M = (M, Ms,) performs the transitioiV’ - sition of High Expressions (Lemma B.19) we have that
(M™ T, S) NF—% (M'™,T",S"). We show that My € Hrtow.
this implieSM'mJ,N""‘ c F and <T/,S/> __F,low o [Clause_5.] JHerd\{l = (' Ml) andMg = ('_Mg)
(T, 8"). where M, Ty ,,,, M. Clearly we have thabl, <
B HF 10w, SO by induction hypothesis aldd; € Hr 10w -
— [M; and M are values.] Thed; = (Az. M), This implies thatVz € Hr, jou -
M' = {z+— My}M; andN' = (), (T",5") = _ _
(T, S). SincelM, is a(F, low, j)-high function, e [Clause 6] Here we havel, = (M;:=Ni)
then by Ass M is syntactically (F, low, j)- and My = (M, := N) where M, T, Ms, and
high, and by Substitution (Lemma B.3), also M, M both have typé ref; for some¢ and/ such
M is syntactically(F, low, j)-high. Therefore, that! A low, andN; 7,,,, No. Clearly we have
by High Expressions (Lemma B.10)}/'™ € that M; € Hpuw, SO by induction hypothesis also
HE, 0w M, € ‘HF,100. We distinguish two sub-cases:
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Proof. By
Lemma B.7 and Lemma B.10 and Lemma B.7. Consider
M = E[Mj], whereM, = (allowed F’ then N; else Ny).

- [N2 € HF,low-] Then1 MZ;NQ c HF,low
where M, has typed ref; ,,, for somef and!
such that Az low. Therefore, by Composition
of High Expressions (Lemma B.19) we have that
M € Hrlow-

- [N2 € Hriow-] Then M;f, and by
Lemma B.18 alsoM,t. Therefore, since
M has typé) ref; ,,, for somef and! such that
I ZAr low, by Composition of High Expressions
(Lemma B.19) we have thadtly € HF o0 -

e [Clause 7.] Here we havel; = (flow F’in M)
andM, = (ﬂOW F’in Mg) with Ml TIﬁUF,’low Mg.
Clearly we have that/; € Hpr 0., SO by induction
hypothesis alsd/; € Hr ... Therefore, by Compo-
sition of High Expressions (Lemma B.19) we have that
M2 S HF,low-

O

B.2.3 Behavior of Typable Low Expressions

In this second phase of the proof, we consider the general
case of threads that are typable with any termination level.
As in the previous sub-subsection, we show that a typable
expression behaves as a strong bisimulation, provided that
it is operationally low. For this purpose, we make use of the
properties identified for the class of low-terminating eegr
sions by allowing only these to be followed by low-writes.
Conversely, high-terminating expressions can only be fol-
lowed by high-expressions (see Definitions B.8 and B.9).

Lemma B.21 (High Threads might Split) Consider
a thread M™s fc
7 such thatT' H4 M :s,7 and suppose thatV/ =
E[(allowed F” then N; else Nf)] with j Ar low. Then
M™i e HF,low-

for which there existI’, F, s and

induction on the structure ofE, using

e [E[Mo] = My.] Then, using rule ALow, we
have thafl’ F. (allowed F” then Ny else Ny) : s, 7
wherel' . N, : s;,7, [ F., Ny : sp7 and
Jj =F sgw,spaw. This meanss,.w, sp.w Ap low,
so by Lemma B.10, thedV,""/, N/ € Hp iow.
By Composition of High Expressions (Lemma B.19),
M™i ¢ HF,low-

[E[My] = (E1[My] M1).] Then by rule AP we
have thatl' %, E;[Mj] :

My @ s{,m with s1.r <p sf.w ands;.r <p sf.w.
By Lemma B.7 we havg < s;.t, which implies that

s )
S1,T1 F_1'>01 andI’ "jF

)
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Jj =r sit andsi.t Ap low. Therefore,E;[Mo]

is a syntactically( F, low, j)-high function andM; is
(F, low, 7)-high. By High Expressions (Lemma B.10)
we haveM;™ € Hp.,. By induction hypothesis
E1[Mo]™ € HF 10w Then, by Composition of High
Expressions (LemmaB.19/™ € Hp iow.

e [E[Mo] = (V E1[Mp]).] Then by APP we have

CH,V:s,n ;—1j>01 andl’ H, B [Mo] : s/,
with 7.t < s{.w ands}.t < s{.w. By LemmaB.7
we havej =< s{.t, which implies thatj <p s7.t
and s{.t Ar low, and sosj.w A low. There-
fore, s).w Ar low, ands!.w A low, which means
thatV is a syntactically( F, low, j)-high function and
E1[My] is (F, low, j)-high. By induction hypothesis
E1[Mo]™ € HF.i0w- Then, by Composition of High
Expressions (LemmaB.19/™ € Hp iow.

[E[My] = (if E1[Mo] then M, else My).] Then
by rule COND we have thal’ %, E;[Mo] : sy, bool,
andT' F, M, : sy,m andT +}, M; : s/, 7 with
s1.t Xp sh.w, s).w. By LemmaB.7 we havg < s;.t,
which implies thatj <p s;.t and s;.t Zp low.
Therefore,s].w, s;.w Ar low, so by High Expres-
sions (Lemma B.10) we hav®l,7, M;™ € Hp iow-

By induction hypothesi&; [Mo]™ € Hr 10w- Then,
by Composition of High Expressions (Lemma B.19),
M™i ¢ HF,low-

e [E[M,] = (E1[Mpy]; M1).] Then by $Q we have

thatl' H,. E{[Mo] : s1,7n andl’ . My : si, 7]
with s1.t <p s}.w. By LemmaB.7 we havg < s .,
which impliesthaf < s;.t ands;.t Az low. There-
fore,s}.w Ar low, and by High Expressions (Lemma
B.10) we havell;™ € Hr 0. By induction hypoth-
esisE1[My]™ € Hr,10w. Then, by Composition of
High Expressions (Lemma B.19)/™ € Hr jow-

[E[Mo] = (ref;,9 E1[Mo]).] Then by ReEFwe have
that ' '_;7 El[MQ] : 81,9 with s1.t =p L. By
Lemma B.7 we havg = s;.t, which implies that

j = si.tands;.t Ag low. Therefore] Ar low, and
by induction hypothesi&; [My]"’ € Hr,100. Then,
by Composition of High Expressions (Lemma B.19),
M™i ¢ HF,low-

[E[Mo] = (! E1[Mo)]).] Easy, by induction hypoth-
esis.

[E[MO] = (E]_[M()] = M]_)] Then by Ass we
have thatl' . Eq[M] s1,0ref; and T H,
My : sy, 7 with s1.t <p sj.w ands;.t <p [. By
Lemma B.7 we havg = s;.t, which implies that
j =p s1.t ands;.t Zr low. Therefore] 4 low and



si.w £p low. Hence, by High Expressions (Lemma
B.10) we haveM1™ € Hp 0. By induction hypoth-
esisE;[My]™ € Hr,10w. Then, by Composition of

High Expressions (Lemma B.19)/™ € Hr,iow-

e [E[My] = (V := E;1[Mjy]).] Then by Asswe have
F'HL Vs, 6 ref,:nﬁ andI’ 5. E{[M] : s}, 71 with
sh.t <p [. By Lemma B.7 we havé =< s}.t, which
implies thatj <p ).t ands|.t £ low. Therefore,

I Zr low, and by induction hypothesis; [My]™’ €
Hr,i0w- Then, by Composition of High Expressions
(LemmaB.19)M™ € HF, iow-

° [E[MO] = (ﬂOW F’in El [M()])] Then by
rule FLow we havel’ H. ., E{[Mo] : s1,71. By
induction hypothesi&; [Mo]"™ € Hrup 10w, Which
impliesE;1[Mo]™ € Hr,100. Then, by Composition
of High Expressions (Lemma B.19), we conclude that
M™i e HF,low-

o [E[MO] = (ﬂOW'El [M()] in Ml)] Then by EOW
we have thal’ H. E{[M)] : sq,flows andT l—}up
My : si,m with s;.t <p sj.w. By Lemma B.7
we havej =< sp.t, which implies thatj <g s1.t
ands;.t Ar low. Therefores).w A low, and by
High Expressions (Lemma B.10) we hagé; ™ €
HpuF 10w~ BY induction hypothesidt; [My]™
Hr,i0w- Then, by Composition of High Expressions
(LemmaB.19)M™ € HF, iow-

O

‘We now design a binary relation on expressions that uses
T} 1., to ensure that high-terminating expressions are al-
ways followed by operationally high ones. The definition
of R¢; £ 100 2DDIeviatedRy ,,, when the global flow pol-
icy is G, is given in Figure 6. The flow policy’ is assumed
to containG;. Notice that itis a symmetric relation. In order
to ensure that expressions that are relatedy;,,, per-
form the same changes to the low memory, its definition
requires that the references that are created or writterg usi
(potentially) different values are high, and that the botly o
the functions that are applied are syntactically high.

Remark B.23. If M, T/, Mo, thenM; R}, .~ Ms.

The above remark is used to prove the following lemma.

Lemma B.24. If for somej, F' and low we have that
M, Rﬁlow My and My € Hr jouw, thenMs € Hp o,

Proof. By induction on the definition ofi/; R%,zow Mo,
O

Definition B.22 (R} ). We have thatl, R% ,,, M, if

[+ M,y : sy, 7 and T H, My : sy, 7 for somer, sy, so
andr and one of the following holds:

[Clause 1. M1™7, My™i € Hp jow, OF
[Clause 2’.] M1 = M5, or

[Clause 3] M; = (if M; then N, else‘Nf) and
My = (if My then N, else Nf) with MM Rf,,?low M,
andN,", M;™ € Hp, o0, OF

[Clause 4'.] M, = (M; N,) and My = (M; No)

with My Ry, Ma, and Ny, Ny* € Hp 100, and
M;, M are syntactically(F, low, j)-high functions,
or

[Clause 5'.] M, = (M; N;) and My = (M; No)
with M, TFJ',low Mo, anle R]F,low No, andMl,Mg
are syntactically(F, low, j)-high functions, or

e [Clause 6"] M, = (A_gl;N) and M, = (My; N) with

My R 100 M2, @andN™i € Hp 104, OF

[Clause 7°.] My = (M;; N) and M, = (Ma; N) with
Ml TI?‘ MQ, or

Jlow

[Clause 8’] M; = (refw Ml) andMy = (refw Mg)
with M R ., Mo, andl Zp low, or

e [Clause 9] M, = (! M) and My = (! My) with

J
M1 RF,low M2' or

[Clause 10’] M, = (Ml = Nl) and My =
(MQ = NQ) with Ml RJF,low Mg, anlemj,]\_mej S
HF 10w, and My, Ms both have typé ref; ,,, for some
6 and! such that Az low, or

[Clause ll’] M, = (Ml = ]\71) and My =
(MQ = ]\72) with Ml TFj‘,low Mg, anle R]F,low NQ,
and My, M, both have typd ref; ,,, for somef andl
such that A low, or

e [Clause 12'] M; = (low F’in M;) and M, =

(ﬂOW F’in MQ) with Ml R%UF’,low M.

Figure 6. The relation Rz,

using Lemma B.20.

We have seen in Splitting Computations (Lemma B.6)
that two computations of the same expression can split only
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if the expression is about to read a reference that is given
different values by the memories in which they compute.
In Lemma B.25 we saw that the relatid ,,, relates the esisl Apure,) low (thereforel ZAr low), then
possible outcomes of expressions that are typable with a low 5iw Ar low andsypw Ap low. This implies that
termination effect. Finally, from the following lemma one M,™ ,M¢™ € Hriow. By induction hypothesis

can conclude that the above relatigs, ,,, relates the pos- E1[Vo] R%, .. E1[Vi]. Therefore we conclude that
sible outcomes of typable expressions in general. ’

E[Vo] R} 1,., E[V1] by Clause 3’ and Lemma B.4.

5r =g 5.w,5rw. By Lemma B.7, we have
[ < 5r andsol <p 5.w,57.w. Since by hypoth-

Lemma B.25. If there existl', 4,s,7 such thatl' +,
E[(! ai,p)] : s,7 with | Apyrey low, then for any val-
ues Vo,V € Val such thatl’ - V; 6 we have
E[VO] RJF,low E[‘/l]

e [E[(! ar,0)] = (E1[(! ai,6)]; M).] By SEQwe have
I' H. Eq[('ae)] : 5,7 andT H. M : §,7 with
5.t <p §.w.

— [5.t AF low.] Thens.w Ar low so by High
Expressions (Lemma B.10) we havd™i <
Hr,10w- By induction hypothesig, [V] R}Jw
E,[Vi]. Then,E[Vo] R%, ... E[Vi] by Clause 6’
and Lemma B.4. ’

Proof. By induction on the structure ofE using
Lemma B.4, Lemma B.14, Lemma B.10.

o [E[(! ar0)] = (! ar,p)] We havely R}, Vi by
Clause 1'.
e [E[(! arp)] = (E1[(! a1,6)] M).] By rule Appwe — [5.t XF low.] Then by Lemma B.14 we have

j 5 j E1[Vo] 72, E1[V4]. Therefore, we conclude
J ! . J . 11Y0] 2f 0w D1Vl )
havel' by Ea[(taro)] = 5,7 i andl’ by M : using Clause 7' and Lemma B.4.

/.7 with 5.r <p 5w andst =<p 3.w. By

Lemma B.7, we havé < 5.r. Thereforel < 3.w. o [E[(! aip)] = (refrg E1[(! ar6)])] By REF we

Since by hypothesis Aryg,1 low (thereforel Ar
low), thens’.w Ar low, that iSE1[(! a; )] is a syn-
tactically (F, low, j)-high function. By Lemma B.4,
the same holds foE,;[Vs] andE;[V1]. By induction
hypothesis we conclude thBg [Vo] R+, ;,,, E1[V1].

— [58.t AF low.] Thens”.w AFr low (and also
5w £ low) so by High Expressions (Lemma
B.10) we haver”-f € Hr,0w- Therefore, we
concludeE[Vo] Ry, E[Vi] by Clause 4’ and
Lemma B.4.

— [5.t XF low.] Then by Lemma B.14 we have
El[VO] T}g',low El[‘/l] Since M 'R’%,low M by
Clause 2’, we conclude th@l{Vp] R% ,,., B[V]
by Clause 5’ and Lemma B.4.

e [E[(!a,9)] = (V E1[(! a1,6)]).] By rule Arpwe

have thal %, V : 5,7 F_j & andl H, By [(! ag)] -
5,7 with 3’.r <p 5.w. By Lemma B.7, we have
I < 5".r, and sol <Xr §.w. Since by hypothesis
I Zpure,] low (thereforel Zp low), thens’.w Ap
low, that isV" is a syntactically I, low, j)-high func-
tion. By Clause 1 we hav&” 7, V. By induc-

tion hypothesisty [Vo] R, E1[Vi]. Therefore we

conclude that[Vy] R}, ,,, E[Vi] by Clause 5’ and
Lemma B.4.

¢ [E[(! ar,p)] = (if E1[(! ai,0)] then M, else My).]
By CoND we have thaf® +7. Eq[(! a,¢)] : §,bool,
andl' -9, M; : 5,7 andT' H5. My : 57,7 with
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havel ., Ei[('ae)] : 5,7 with 5.7 = 5.7 <p
ands.t = s.t. Therefore, sincé ZArpug low im-
plies! Arur, low, then by induction hypothesis we
haveE: [Vo] R 4, E1[V1]. By Lemma B.7 we have
| < s.r, S0s.r Zp low. Therefore] £ low, and we
conclude by Lemma B.4 and Clause 8'.

[E[(! ai,e)] = (! E1[(! ar,6)]).] By rule DER we
havel' H. Eq[(!' a;)] : §,7. By induction hypothe-
sisE; V] TFj;,low E;[Vi1]. We conclude by Lemma B.4
and Clause 9'.

[EI(! as,0)] = (Ba[(! ave)] := M).] By rule Ass
we have thal -}, E1[as] : 5,0 ref7;, With 5.0 <p [
ands.t < 5.w. By Lemma B.7 we havé < s.r, SO
s.r 2p low and sd A low.

— [8.t AF low.] Thens.w Ar low so by High
Expressions (Lemma B.10) we havd™i <

Hr.10w- By induction hypothesig, [Vo] R}JW
E1[V1]. Then E[Vy] R} ,,., E[V1] by Clause 10
and Lemma B.4.

— [5.t XF low.] Then by Lemma B.14 we have
E1[Vo] T7,,, E1[Vi]. Therefore, we conclude
using Lemma B.4, Clause 11’ and Clause 2’ (re-
gardingM).

[E[(' al’g)] = (V = El[g' al,g)]).] By rule Ass
we have thal’ 7, V' : 5,0 ref;, , T' =} Eifa ] :
5,0 with .r <p [. By Lemma B.7 we havé <

5., sol < I. Then, we must havé £r low,



since otherwisé =<rug low. By Clause 1 we have
thatV' 77,,,, V, and by induction hypothesis; [V;]
R{WW E;[V1]. We then conclude by Lemma B.4 and
Clause 11'.

o [E[(!aip)] = (low F' in E1[(! a,6)]).] By rule
FLow we havel' F4. . V' @ s, 7. By induction hy-
pothesisty [Vo] T4, p 00 E1[Vi], SO we conclude by
Lemma B.4 and Clause 12'.

O

We now state a crucial result of the paper: the relation
R 10, 1S @ SOt of “strong bisimulation”,

Proposition B.26 (Strong Bisimulation for Typable Low
Threads)
It M1 RE 00 M2 and M, ¢ Hriw and W+

({M™ ), Ty, 1) 25 ((M{™), T, 84), with (T, S1)

=FUF,low <T2,52> such that n is fresh for Ty if
n € dom(7] — T1) and a is fresh for Sy if a9 €
dom(S; — S1), then there existy, M} and S}, such that

WoF ({Mo™ ), Ts, So) 25 (Mg}, T4, S3) with
M{ ,R’%,low Mé and <T1I7 Si> _Flow <T2/a SQ>

Proof. We use Subject Reduction (Theorem B.5) to guar-
antee typability (with the same type) fat; g low and F,
which is a requirement for being in thEF ow Elation.
We also use the Strong Bisimulation for Low Terminating
Threads Lemma (Lemma B.15).

e [Clause 1'.] This case is excluded by assumption.

e [Clause 2'.] HereM; = M,. By Guaranteed Tran-
sitions (Lemma B.11) there exi%lg My and S, such

that W F ({M,"}, T2,52> —— ({My"7}, T4, S5)
with (T}, 8}y =FVF"low (T, 52>.

- [M} = M.] Thenwe have\l] R%,, = Mj, by
Clause 2’ and Subject Reduction (7Theorem B.5).

— [M}, # M;.] Then by Splitting Computations
(Lemma B.6) we have that\(** = ()) and we
have two possibilities:
(1) there exist® anda; ¢ such thatt” = [E],
M = E[Si(ap)], My = E[S2(a)],
(T1,81) = (T1,51) and (T3, 53) = (T»,S2).
Since Si(ary) #  Sa(arp), we have
I Zpup low. Therefore, M| R}, Mj,
by Lemma B.25 above.
(2) there existsE such that M| =
E[(allowed F’ then N; else Ny)], F' = [E],
and T1(m;) # Ta(m;) with (T7,5]) =
(Ty,S1) and (T3,S5) = (T,S2). Since
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Ti(mj) # To(m;), we havej £Zp low, and by
Lemma B.21M; € Hr, 10w, Which contradicts
our assumption.

e [Clause 3] Here we have M, =

(if My then M, else Mf) and Mo =
(if My then M; else Mf) with M, leélow M,
and My, M € Hpuon. We can assume that
M ¢ Hriow, Since otherwiseM,™ € Hr jow
by Composition of High Expressions (Lemma B.19).
Therefore, M| = (if M{ then M, else M) with

Wt <{M } T1751> —> <{Mlm7} T1’51>

use the induction hypothe3|s Clause 3’ and Subject
Reduction (Theorem B.5) to conclude.

[Clause 4'] HereM; = (M; N;) and M, =
(M3 Ny) with M RF low M, M, andMM, are syntac-
tically (F, low, 7)-high functions, andV,"?, N, €
Hriow. We can assume that/; can compute,
since otherwiseMlm 7€ MHrw by Composition
of High Expressions (Lemma B.19). Therefore,
M{ = (M} Ny) with W E ({M]"}, Ty, S1) S

({M]™},Ty,8;). We use the induction hypothesis,
Clause 4’ and Subject Reduction (Theorem B.5) to
conclude.

[Clause 5'.] HereM1 = (M1 Ny) and M, =
(Ma No) with My T3 ., M, M, and M, are syntac-
tically (F, low, j)-high functions, andV; RF tow Na.
We distinguish two sub-cases:

— [M, can compute.] In this case there existsg
performingthe transitiom + ({M{"},T1, S1)

= = ({M™},T},S}). We use Lemma B.15,

Subject Reduction (Theorem B.5) and Clause 5’
to conclude.

— [M, is a value.] Then by Remark B. 13/, €
Val. We can assume tha{;"’, N, ¢ Hp 10,
since otherwiseMl|"’ € HF low by Composi-
tion of High Expressions (Lemma B.19). Then,
N, can compute, and so there exiét such that

WE (N} Th, S) —> (N}, T, 51)
with M| = (M; Nj). We use the induction hy-

pothesis, Clause 5’ and Subject Reduction (The-
orem B.5) to conclude.

[Clause 6'.] HereM; = (M;; N) andM, = (Ma; N)
where M, R, tow My andN™ € Hp,i0n. We can
assume thaM 7 ¢ Hr 10w, SINCE otherW|se\/[1 i e
HE 10w DY Composition of High Expressions (Lemma
B.19). Therefore, we havi/] = (M7; N) with W +



M}, Ty, S1) % (M}, T}, S}). We use the otherwiseM," € Hp 1., by Composition of High

induction hypothesis, Clause 6’ and Subject Reduction Expressions (Lemma B.19). There are two cases to

(Theorem B.5) to conclude. consider:
e [Clause 7'.] HereM; = (My; N) and My = (My; N) - [JW_lmqan compuj’gg.k] Tkjelrrlwe havi/ -
with My T7.,,,, M. We distinguish two sub-cases: ({M;"7},T1,S1) — ({M,7},T7,87). We
_ ) L use Lemma B.15, Clause 11’ and Subject Reduc-
— [M; can compute.] In this case there exisfg tion (Theorem B.5) to conclude.

performing the transitioW - ({M["}, T, S1)

e me — [M; is a value butN; can compute.] Then
% ({M]™}, T}, S;). We use Lemma B.15, LM ! pute.

by Remark B.13,M, € Val. Then we have

Subject Reduction (Theorem B.5) and Clause 7’ W E ((N),T1, 1) N"k ANI™SY, T, 81,
to conclude. L _
_ , _ We conclude using induction hypothesis, Clause
— [M, is a value] ThenM; = N, F = 0, 11’ and Subject Reduction (Theorem B.5).
N™ = () and (17,81) = (T1,S51). By Re-
mark B.13,M, € Val. Then, we havéV | e [Clause 12'] HereM; = (flow F’in M) and
({MJY, Ty, S1) %} ({N™i}, T, S)). We M,y = (flow F’ 1I1_M2) with M, RJFUF’,low M. We
conclude using Lemma B.15 and Clause 2". can assume thatl, ™ ¢ Hrur 10w, Since otherwise
B M ¢ Hr0w and by Composition of High Ex-

. [Clause78’.] HereM, = (refng M;) and My = pressions (Lemma B.19)/,"" € Hp 0. Therefore
(vef; 0 Ma) WhereMl_E%Jow Mo, andl' Ar low. W e <{Mf”},T1,Sl> ]\;:/k <{M{mj},T1',Si> with
We canm?ssume thatl, > ¢ MR iow, Since other- F’ = F U F". By induction hypothesis, we have that
wise M7 € Hp,ow DY Composition of High Ex- . Nk o o
pressions (Lemma B.19). Thehi; can compute, and WE (M7}, 1o, 52) —= ({My "}, T3, 53), and
M| = (vef,g My) with W = ({M]"9}, Ty, Sy) NF—> that M{ R%, .. Mj and also(T7, Sj) =FVTtow
({M™},T1,S;). We use the induction hypothesis, (T3, 55). Notice that(Ty, 57) ="' (T3, 55). We
Subject Reduction (Theorem B.5) and Clause 8’ to use Subject Reduction (Theorem B.5) and Clause 12

o [Clause 9'.] HereM; = (! My) and M, = (! My) 0

whereM; RY; ,,,, M. We know thatM; can com-
pute, since otherwis&/,™’ € Hr ... Then, we have  B.2.4 Behavior of Sets of Typable Threads

—rm; N"k i ’
W E (M7}, Th, 51) I ({M7}, 17, 51). We We can now prove the main-result regarding Non-disclosure
use the induction hypothesis, Subject Reduction (The- for Networks:

orem B.5) and Clause 9’ to conclude.
_ _ Theorem B.27 (Soundness of Typing Non-disclosure for
e [Clause 10'] Here we havél; = (M;:= Ny) Networks.) Consider a pool of threadB. If forall M e
and M, = (M, := N») whereM; Ry, Ma, and P there existl', s and = such thatl’ ) M : s, 7, then P
N Ny € Hpi0w, and My, M, both have type  satisfies the Non-disclosure for Networks policy.

0 ref; ,,, for somed and! such thatl A low. We _
can assume thal/; can compute, since otherwise Proof. To conclude the proof of the Soundness Theorem, it

M € Hp10n by Composition of High Expressions remains to exhibit an appropriate bisimulation on pools of
(Lemma B.19). Thereforel/{ = (M] := N;) with threads.

W ({37, Ty, S1) % ({AL™Y, 77, S1). We The definition of R}, is inductively defined as follows:
use the induction hypothesis, Clause 10’ and Subject M™i € Hp jow M™i € Hp 10w
Reduction (Theorem B.5) to conclude. a {(M™i}y R, OR:. {M™}

e [Clause 11'.] Here we havél, = (M;:= N;) M, Rg),zow M, PiRL, Py QiRL, Qs

and M, = (M, := N,) where M TI?;,low Ms,, and c)
M., M> both have typ# ref; ,, for somef and! such

that! Zp low, and Ny Rf,,,, V2. We can assume  One can check that the relatiaef,, is alow-bisimulation,
that M, cannot be a redex, with/,, N; € Val, since using Lemma B.24, Strong Bisimulation for Typable Low

{M™} Ry, {M2"} PLUQ1 R, P2UQ:

low
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Threads (Proposition B.26), Subject Reduction (Theo- by case analysis on the transitiohi - ({M™},T,S)

rem B.5), and also Lemma B.2. The main result then fol- ~N"* N AT, T, S,
F

lows easily.
O

C. Confinement analysis (proofs)

C.1. Subject Reduction

In order to establish the soundness of the type system of

using Lemmas C.3 and C.4.
/] and that’ = ({M™}, T, S)
We start by observing that this

Suppose thad! = E[M
N k <{Ml'mj} T/ SI>
|mplles F' = FUJ[E], M = E[M'], N = N and
S’ = S’. We can assume, without loss of generality, that

M is the smallest in the sense that there isdl/, N
such thatt # [] andE[ ] = M for which we can write

F MY, T, S) S (M, T S,

Figure 4 we need a Subject Reduction result, stating that

types that are given to expressions are preserved by compu- By Lemma C.4, we havé + M :

tation. To prove it we follow the usual steps [?].

Remark C.1. If W € PseandI' - W : s, 7, then for all
flow policiesF’, we have that' - W : L, 7.

Lemma C.2.

1. fTF M : s,7 andz ¢ dom(T") thenT',z : o - M :

8, T.

2.0,z :0kF M :

8, T.

s,7andx ¢ fv(M) thenT - M :

Proof. By induction on the inference of the type judgment.

O
Lemma C.3(Substitution)
fl'e:0 W M : s,7and’ v W : o thenT F
{x — WM :s,7.
Proof. By induction on the inference df,z : 7 - M :

s, 0, and by case analysis on the last rule used in this typing

proof, using the previous lemma. O

Lemma C.4(Replacement)

If ' - E[M] : s, 7 is a valid judgment, then the proof gives
M atypingl' = M : 5,7 for somes and7 such thats < s.

In this case, I" - N : &, 7 withs < &, thenT" - E[N] :

s', T, for somes’ such thats < s'.

Proof. By induction on the structure df. O

Proposition C.5 (Subject Reduction) Consider a thread
M™i for which there existl’, s and 7 such that
L+ M:s,7. Then, itW + ({M™},T,S) %
({M'"™i},T",S"), there existss’ such thatl' - M’ : ¢, 7,
and wheres U W(T'(m;)) = s'. Furthermore,3s” such
thatU' = N : " unitands U W (T (ng)) < s”.

Proof. We consider the smalledt/ such that\ = E[M]
in the sense that there is rio, M, N such thatE #
[ and E[M] = M for which we can writeW

({M™3}, T, S) <{M’m },T7,S"). We then proceed
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miT 5,7 in the proof
of I' - E[M] : s,7, for somes and7. We proceed by

case analysis on the transitibi + ({M™i}, T, S) N

({M'™i}, T, 8"y, and prove that' - M’ : &,
s such that U W(T'(m;)) = 5.

7, for some

o [M = ((Az.M) V)]
Here we havell’ = {z — V}M By rule ApP,
havel' - (\z.M) : 4,7 — 6 andl' - V : 8", 7,
V\{here§u W(T(m;)) < §'. By ABs, thenl',z : 7 I
M : §,6, and by Remark C.1 we have - V : 7
Therefore, by Lemma C.3, we gEt- {2 — V}M :

Al A

§,6.

e [M = (if tt then Ny else Ny).]

Here we havell’ = N,;. By ConD, we have that
I'E Ny sy, 7, wheres U W(T'(m;)) < sq.

[M = (I‘efl,g V)]

Here we havé!’ = a; 9. By Loc,we hava - a : T,
0 ref;, which satisfies. < s.r, s.w <X T, L < s.tand

[ [M = (‘ al,g).]

Here we havell” = S(a; ¢). By assumption, we have
thatl' - S(a; ) : T, 0, which satisfies. < s.r, s.w <
Tandl <X standsUW(T'(m;)) X T.

e [M = (flow F’in V)]
Here we havel/’ = V. By rule FLow, we have that
'V : &, randby Remark C.1, we hatet V :
T,7, wh|ch satisfiesl. < s.r, sw < T, L < s.t and

e [M = (allowed F’ then N, else Ny)
F' C W(T(mj;))*]
Here we havell’ = N,. By ALLow, we have that
'+ Ny @ s¢, 7, wheres = sUs, —F'Us f UW (T'(m;))
< s; holds because; C (s; — F' UW (T (m;)))" =
(se UW(T'(my)))"

and



e [M = (allowed F’ then N, else Ny)
F' ¢ W(T(m;))"]

Here we havell’ = N;. By ALLow, we have that
' Ny :sp, 7, wheres U W(T'(m;)) =< s¢.

and

The proof for the cas#/ = (pz.W) is analogous to the one
for M = ((Az.M) V), while the proofs for the cased =
(if ff then N; else Ny) and M = (V; M) are analogous
to the one forM = (if #¢ then N, else N), and the ones
for M = (ajp:=V), M = (thread; M) is analogous
to the one forM = (ref; o V). By Lemma C.4, we can
conclude thal® - E[M’] : s', 7, for somes’ such thats U
W (T (m;)) < s'.

Now, if N™ #£ () (N™* is created), theAN : M =
E[(thread, N)]andN = N. By Lemma C.4, we havE +
(thread;, N) : 8, unit in the proof of' - E[(thread N)] :
s, , for somes, and#. By THR, we havel' - N : &, unit.
Therefores U W (T'(m;)) < 3. O

C.2. Confinement for Networks

Proposition C.6 (Meaning of the declassification effect)
Consider a threadV/™ for which there exist’, G, s and
7 suchthatl' - M : s, 7. If we haveW + ({M™i}, T, S)

NF’“ ({M'™}, T, 8"), thenF C s.

Proof. We use induction on the inferencelof- M : s, o,

by case analysis on the last rule used in this typing proof'al whenT"(m;) =

(we show only the most interesting cases).

e [FLOW.]

HereM = (flow F in N), and we havé& + N : 5,7

with s = 5 Y 3 ¥ F. There are two possibilities:
-[M=F andN can compute.] We havl/’ ~
({N},T, S) — {{N'},T",S"ywith F = F'U
F. By|nduct|on hypothesid;” C 5. Sinces’ C
s, thenF C s, and since’ C s, thenF C s.

—[M = FandN = V] Then we havel/ +

{{(flow Fin N)}, T, S} — ({V},T,5) with
F =(,soF C s holds vacuously

e [ALLOW.]

HereM = (allowed F then N; else Ny) and we have
I'F Ng:s,mandl = Ny 25, mwiths =35Y (st —
F) Y sy. There are two possibilities:
-[M=FC W( (m;))*.] Then we haveV +
(M, T, S) (N, T, Sywith FF =, soF C
s* holds vacuously.
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— [M = F ¢ A*.] Then we havéV - (M, T, S)
N (Np, T, S) with F = (), soF C s* holds
vacuously.

O

Theorem C.7(Soundness of Typing Confinement for Net-
works). Consider a fixed policy-mapping/, a pool of
threadsP and its corresponding position trackér, such
that for all M™i € P there existl', s and 7 satisfying
't M:s,7andW(T'(m;)) < s. Then the sepair(P, T')

is a set of operationally confined located threads.

Proof. We show that the set

C = {{d,M™) | 3T, s, T such that
't M:s,mands C W(T'(m;))*}
is a set of operationally confined threads.

Consider a paifd, M™7) € O for which we have a
transitonW + ({M™i}, T, S> {Mm™iy, T, 8",
By Proposition C.6 we have thdf C s C W(T'(m,)).
By Subject Reduction (Proposition C.5) we have there ex-
ists s’ such thatl' = M’ : &', 7 ands U W (T'(m;)) =< ¢,
i.e. s’ C (sU (W(T'(m;)))*, and that there exists’ such
thatl' F N : " unitands U W (T'(ny)) < s”. Note that if
N # (), thenT'(m;) = T'(nk), sos” C W(T'(m;))*. It
remains to prove that C W (1" (m;))*. The result is triv-
T'(m;), so we will only check the case

whereM = E[(goto d’)]. We then have that’(m;) = d’
ands C W(d'). By MIG we haves = s, so we conclude
thats’” C W (T"(m;)). O



