
Flow-policy awareness for distributed mobile code

Ana Almeida Matos
Instituto Superior Técnico de Lisboa and Instituto de Telecomunicações

ana.matos@ist.utl.pt

Abstract

Several programming constructs have recently been pro-
posed with the purpose of enabling the programmer to en-
code declassifying information flows within a program that
complies with information flow security policies. These
constructs may or may not incorporate some means for con-
trolling when, where, what, or by whom the declassifica-
tion can be set up. In the context of global computing,
other forms of controlling declassification that transcend
the power of a single declassification construct may turn
out to be desirable. In this paper we point out potential
unwanted behaviors that can arise in a context where pro-
grams that contain declassifying instructions can migrate
to computation domains with different security policies. We
propose programming language design techniques for tack-
ling such unwanted behaviors and prove soundness of those
techniques at the global computation level.

1. Introduction

The new possibilities opened by global computing have
brought information security issues to a new level of con-
cern. Indeed, such possibilities can just as well be exploited
by parties with hazardous intentions. Many attacks arise at
the application level, and can be tackled by means of pro-
gramming language design and analysis techniques, such as
static analysis and proof carrying code. For instance, con-
fidentiality can be violated by execution of programs that
reveal secret information. This kind of program behavior
can be controlled usinginformation flowanalyses [22], by
detecting dependencies in programs that could encode flows
of information from private to publicly available resources.

In the field of security, control must often be balanced
with flexibility for practical reasons, since models that are
prohibitively restrictive do not suit the real world-needs. In
information flow research, it has been a challenging prob-
lem to find an alternative to the classical non-interference
property [11] that is flexible enough to allow fordeclassi-
fication to take place in a controlled manner [26]. So far,

most solutions have been directed towards local computa-
tion scenarios, thus overlooking decentralization issuesthat
are inherent to distributed settings. Indeed, enforcementof
confidentiality in networks must deal with distributed secu-
rity policies, since differentcomputation domains(or sites)
follow different security orientations. For example, migrat-
ing programs that were conceived to comply to certain flow
policies don’t necessarily respect those of the computational
locations they might end up executing at. This problem
seems to be beyond the grasp of single declassification con-
structs that can restrict by whom, when, what, or where in
the program declassification can be performed [23], since
now the question is:in which context?

In this paper we show that the issue of enabling and con-
trolling flexible information flow policies in computations
that can spread out over sites that are governed by different
flow policies can be addressed at the programming language
level. We propose to remove some of the burden of restrict-
ing declassification away from the declassification instruc-
tion itself, and transfer it to new program constructs that
provide awareness about the flow policy of the context in
which it is running. Given the appropriate tools to predict
alternatives to the pieces of code that contain potentially
forbidden declassification operations, it becomes realistic
to write programs that can safely run under any flow policy.

Some security minded distributed network models have
been proposed with the purpose of controlling the migration
of code in between computation sites, such as by means of
programmable domains [4] and type systems [17]. These
ideas can be applied to the proof-carrying code model [20],
since it consists of a particular instance of boundary trans-
position control that performs type checks to incoming code
[12]. We propose to apply migration control techniques
to the problem of controlling declassification by preventing
programs from migrating to sites if they would potentially
violate that site’s flow policies. However, we fall short of
technical mechanisms that would allow, on one hand, for a
site to know what are the most flexible flow policies that a
program sets up for its own executions; on another hand,
for a program to know how flexible is the flow policy of the
context in which it is running.

Setting We follow the non-disclosure point of view of
information flow analysis presented in [1, 2]. Thenon-
disclosure propertyis a generalization of non-interference.
It uses information provided by the program semantics de-
scribing which flow policies are valid at different points of
the computation, to ensure that, at each step, all information
flows comply to the valid flow policy. In order to enable dy-
namic changes to the valid flow policy, the programming
language may be enriched with aflow declarationconstruct
(flow F in M) that simply declares the flow policy (F) that
is valid in its scope (M) within the program, while the se-
mantics of the language may convey information regarding
the flow policy that rules at each step. It is then easy to
set up more flexible flow policy environments for delimited
blocks of code, as for instance the part of a program that is
executed by authenticated users:

(if authenticatedthen (flow Fpermissivein M) else N)

In this example, the program declares that flows inM com-
ply to a flow policy that is extended (made more permissive)
by Fpermissive(theN branch is of course not given this flex-
ibility). In other words,M may contain declassifications
that comply toFpermissive.

Once the language is enriched with flow declarations
(or any other means for expressing declassification), some
mechanism for controlling the usage of that construct is de-
sirable. This is particularly relevant in distributed settings
with mobile code. For instance, a computation domaind
might want to impose a limit to the flexibility of the flow
declarations that are used within its programs, since so far
nothing prevents incoming code from containing:

(flow Fall is allowed in M)

In the above example, the flow declaration validates any in-
formation flow that might occur inM , regardless of what
is considered acceptable byd. This motivates the notion of
a domain’sallowed flow policy, which represents the flow
policy that should rule for all programs that are running at
a certain domain. We can then define the notion ofconfine-
ment with respect to a flow policyas a property of programs
that can only perform steps that comply to that allowed flow
policy. We will see that this property can be formalized by
making use of the information about the declared flow poli-
cies that is provided by the semantics.

At the moment that a program is written, it might
be hard to anticipate which flow policies will be im-
posed at execution time by the domains where the pro-
gram will run. In a distributed context with code mobil-
ity, the problem becomes more acute, since the computa-
tion site might changeduring execution, along with the al-
lowed flow policy that the program must comply to. In
order to provide programs with some awareness regard-
ing the flow policy that is ruling in the current compu-
tation domain, we introduce theallowed-condition, writ-
ten(allowed F then M else N), that tests whether the flow

policy F is allowed by the current domain and executes
branchesM or N accordingly. Programs can then offer al-
ternative behaviors to be taken in case the domains they end
up at do not allow declassifications of the kind they wished
to perform:

(allowed Fdisclosesecretthen M else plan B)

The allowed-condition brings no guarantees that the
“plan B” of the above program does not disclose just as
much as theM branch. However, as we will see right
ahead, misbehaving programs can be rejected by the do-
mains where they would like to execute, so it is in the inter-
est of the programmer to increase the chances that its pro-
gram will be allowed to execute, by adequately “protecting”
portions of code containing declassifications by appropriate
allowed-conditions.

In the spirit of the proof carrying code model, domains
can statically check incoming code against their own flow
policies, ideally assisted by certificates that are carriedby
the program, and then decide upon whether those programs
should be “let in”. A certificate could consist of informa-
tion about all the flow policies that are declared in the pro-
gram and donot appear within the “allowed” branch of an
allowed-condition that tests the declared flow policy. We
call this flow policy thedeclassification effectof the pro-
gram, and provide a type system for obtaining it. Then,
while the program

(allowed F1 then M else (flow F2 in N))

would have a declassification effect that includesF2 –
meaning that it should only be allowed to run in domains
whereF2 is allowed –, the program

(allowed F then (flow F in M) else N)

(assuming thatM andN do not contain any flow declara-
tions) would have an empty declassification effect – mean-
ing that it could be safely allowed to run in any domain.

In order to formalize these ideas, it is useful to consider
a concrete distributed language with code mobility, where
we use the declassification effect to control migration ac-
cording to the following rule: programs can only migrate
to a site if their declassification behaviors comply to that
site’s flow policy. We can then analyze the conditions under
which the programs of this distributed language comply to
a network level version of the information flow and confine-
ment properties.

Outline of the paper We start by introducing the lan-
guage and its operational semantics (Section 2). Two main
section follow, each presenting the security analysis for our
information flow property of Non-disclosure (Section 3)
and for the new Confinement property (Section 4). Each of
these sections start by formally defining the respective se-
curity properties (Subsections 3.1 and 4.1); a type system is

2

then presented, and its soundness is proved (Subsections 3.2
and 4.2). Finally we discuss related work (Section 5) and
conclude (Section 6). Due to space constraints, proofs are
omitted from the paper, but appear in detail in the Appendix.

2. Language

The language that we consider for the study of local com-
putations is a distributed imperative higher-orderλ-calculus
with reference and thread creation, where we include a flow
policy declaration construct (for directly manipulating flow
policies [1, 2]) and the new allowed flow policy tester con-
struct that branches according to whether a certain flow pol-
icy is allowed in the program’s computing context. We also
add a notion of computation domain, to which we associate
an allowed flow policy, and a code migration primitive. Pro-
grams computing in different domains are subjected to dif-
ferent allowed flow policies – this is what distinguishes lo-
cal computations from global computations, and is the main
novelty in this language. We opt for a rather simplistic
memory model, assuming memory to be shared by all pro-
grams and every computation domain, in a transparent form.
This will allow us to avoid synchronization issues that are
not central to this work (and that are already handled else-
where [1]). Nevertheless, as we will see in Subsection 2,
this assumption does not imply the loss of the model’s dis-
tributed nature, since the location in which programs com-
pute will have a direct impact on the results we study here.

Syntax Security annotations and typesare apparent in the
syntax of the language, though they do not play any role in
the operational semantics (they will be used at a later stage
of the analysis). Security levelsl, j, k are sets of principals,
which are ranged over byp, q ∈ Pri. They are associated
to references (and reference creators), representing the set
of principals that are allowed to read the information con-
tained in each reference. We also decorate references with
the type of the values that they can hold. The syntax of
typesτ, σ, θ is given later in Subsections 3.2 and 4.2. In
the following we may omit reference subscripts whenever
they are not relevant. A security level is also associated
to each thread, and appears as a subscript of thread names.
This level can be understood as the set of principals that are
allowed to know about the location of the thread in the net-
work. Flow policiesA, F, G are binary relations overPri.
A pair (p, q) ∈ F , most often writtenp ≺ q, is to be under-
stood as “information may flow from principalp to principal
q”, that is, more precisely, “everything that principalp is al-
lowed to read may also be read by principalq”. We denote,
as usual, byF ∗ the reflexive and transitive closure ofF .

The language ofthreads(defined in Figure 1) is based
on a call-by-valueλ-calculus extended with the impera-
tive constructs of ML, conditional branching and boolean

values (here the(%x.W) construct provides for recursive
values). Variablesx and referencesa, b, c are drawn from
two disjoint countable setsVar andRef , respectively. Ref-
erence names can be created at runtime. There are two
new kinds of names, given to threads (m, n) and to do-
mains (d), each drawn from two new disjoint countable sets
Dom 6= ∅ andNam. The new features are the flow dec-
laration and the allowed-condition. The flow declaration
construct is written(flow F in M), whereM is executed
in the context of the current flow policyextended withF ;
after termination the current flow policy is restored, that
is, the scope ofF is M . The allowed-condition is simi-
lar to a standard boolean condition, with the difference that
in (allowed F then Nt else Nf) the branchesNt or Nf are
executed according to whether or notF is allowed by the
site’s allowed flow policy. The thread creator(threadl M)
spawns a threadM , to which a name and the security levell
is given, and returns(); the new thread is to be executed con-
currently. The meaning of the migration construct(goto d),
whered is a domain name is that the thread that executes
the migration operation should migrate to the domaind.

Networksare flat juxtapositions of domains, each con-
taining a store and a pool of threads, which are subjected
to the flow policy of the domain. They are in fact just a
collection of references, threads that are running in paral-
lel, and the flow policies allowed by each domain. Threads
run concurrently inpools P : (Nam × 2Pri) → Exp,
which are mappings from decorated thread names to ex-
pressions (they can also be seen as sets of threads).Stores
S : (Ref × 2Pri × Typ) → Val map decorated reference
names to values. To keep track of the locations of threads it
suffices to maintain a mapping from thread names to do-
main names. This is the purpose of theposition-tracker
T : (Nam × 2Pri) → Dom, which is a mapping from a
finite set of decorated thread names to domain names. The
pool P containing all the threads in the network, the map-
ping T that keeps track of their positions, and the store
S containing all the references in the network, formcon-
figurations〈P, T, S〉, over which the evaluation relation is
defined in the next subsection. The flow policies that are
allowed by each domain are kept by thepolicy-mapping
W : Dom → 2Pri×Pri from domain names to flow policies,
which is considered fixed in this model.

Operational semantics We now define the semantics of
the language as a small step operational semantics on con-
figurations. The call-by-value evaluation order can be con-
veniently specified by writing expressions usingevaluation
contexts. Intuitively, expressions that are placed in such
contexts are to be executed first. We writeE[M] to denote
an expression where the subexpressionM is placed in the
evaluation contextE, obtained by replacing the occurrence
of [] in E by M .

3

Variables x, y ∈ Var Thread Names m, n ∈ Nam

Reference Namesa, b, c ∈ Ref Domain Names d ∈ Dom

Values V ∈ Val ::= () | x | al,θ | (λx.M) | tt | ff

Pseudo-values W ∈ Pse ::= V | (%x.W)

Expressions M, N ∈ Exp ::= W | (M N) | (M ; N) | (if M then Nt else Nf) | (refl,θ M) | (! N) | (M := N) |
(threadl M) | (goto d) | (flow F in M) | (allowed F then Nt else Nf)

Threads ::= Mmj (∈ Exp × Nam × 2Pri)

Figure 1. Syntax of Threads

Evaluation Contexts E ::= [] | (flow F in E) |

(E N) | (V E) | (E; N) | (refl,θ E) | (! E) |

(E := N) | (V := E) | (if E then Nt else Nf)

The analysis of whether the information flows that occur
in M are to be allowed depends on the flow policies that
are declared in the evaluation context whereM is executed.
We denote bydEe the flow policy that is permitted by the
evaluation contextE. It collects all the flow policies that are
declared using flow declarations into one single flow policy:

Definition 2.1 (Flow Policy Declared by an Evaluation
Context). Theflow policy declared by the evaluation con-
textE is given bydEe where:

d[]e = ∅, d(flow F in E)e = F ∪ dEe,
dE′[E]e = dEe, if E′ does not contain flow declarations

Some basic notations and conventions are useful for
defining transitions on configurations. Given a configu-
ration 〈P, T, S〉, we call the pair〈T, S〉 the state of the
configurations. We definedom(S) as the set of decorated
reference names that are mapped byS; similarly, the sets
dom(W), dom(P) anddom(T), are the sets of domains
and decorated names of threads that are mapped byW , P
andT . We say that a thread or reference name is fresh inT
or S if it does not occur, with any subscript, indom(T) or
dom(S), respectively. We denote bytn(P) andrn(P) the
set of decorated thread and reference names, respectively,
that occur in the expressions ofP (this notation is extended
in the obvious way to expressions). We letfv(M) be the
set of variables occurring free inM . We restrict our at-
tention to well formed configurations〈P, T, S〉 satisfying
the following additional conditions for memories, values
stored in memories, and thread names:rn(P) ⊆ dom(S);
for any al,θ ∈ dom(S) we havern(S(al,θ)) ⊆ dom(S)
dom(P) ⊆ dom(T); tn(dom(S)) ⊆ dom(T); all threads
in a configuration have distinct names, and also all occur-
rences of a name in a configuration are decorated in the
same way. We denote by{x 7→ W}M the capture-avoiding
substitution ofW for the free occurrences ofx in M . The
operation of adding or updating the image of an objectz to
z′ in a mappingZ is denoted[z := z′]Z.

The transitions of oursmall step semanticsare defined in
Figure 2. In the first group of rules, corresponding to local
computations, the ‘A `’ turnstile makes explicit the allowed
flow policy A of the site where the computations are taking
place. The semantics of local evaluation is embedded in the
distributed language, by means of the last two rules in Fig-
ure 2. This is formalized in the former rule by specifying the
local flow policyA asW (T (mj)), whereT (mj) represents
the location of the threadmj that is being considered. The
last rule establishes that the execution of a pool of threadsis
compositional (up to the expected restriction on the choice
of new names). The semantics of global computations intro-
duces the rule for thread creation and the rule for migration,
which depends on the type system of Section 41. Detailed
explanations on the meaning of the typing judgment in its
side condition are postponed to Subsection 4.2. For now, it
is enough to know thats represents an approximation of the
flow policies that are used by the typed expression and are
not protected (in the sense explained in the introduction) by
an appropriate allowed-condition.

The labeled transition rules of our semantics are deco-
rated with the flow policy declared by the evaluation con-
text where they are performed. Most of the transitions do
not depend on the flow labelF that decorates them. In par-
ticular, the evaluation of(flow F in M) simply consists in
the evaluation ofM , annotated with a flow policy that com-
prises (in the sense of set inclusion)F . The lifespan of the
flow declaration terminates when the expressionM that is
being evaluated terminates (that is,M becomes a value).
The flow policy that decorates the transition steps is used
only by the rules for(allowed F then Nt else Nf), whose
semantics is similar to the conditional branching, but where
the choice of the branch depends on whetherF is allowed
to be declared or not.

The allowed flow policyA of a site represents a restric-
tion on the flow policies that can be set up by programs

1A similar rule appears in [12]. The side condition represents the stan-
dard theoretical requirement of checking incoming code before allowing it
to execute in a given machine. It abstracts away from the details of how
the migration control is implemented.

4

A ` 〈E[((λx.M) V)], S〉 −−→
dEe

〈E[{x 7→ V }M], S〉

A ` 〈E[(if tt then Nt else Nf)], S〉 −−→
dEe

〈E[Nt], S〉

A ` 〈E[(if ff then Nt else Nf)], S〉 −−→
dEe

〈E[Nf], S〉

A ` 〈E[(allowed F then Nt else Nf)], S〉 −−→
dEe

〈E[Nt], S〉, whereF ⊆ A∗

A ` 〈E[(allowed F then Nt else Nf)], S〉 −−→
dEe

〈E[Nf], S〉, whereF 6⊆ A∗

A ` 〈E[(V ; N)], S〉 −−→
dEe

〈E[N], S〉

A ` 〈E[(%x.W)], S〉 −−→
dEe

〈E[({x 7→ (%x.W)} W)], S〉

A ` 〈E[(flow F in V)], S〉 −−→
dEe

〈E[V], S〉

A ` 〈E[(! al,θ)], S〉 −−→
dEe

〈E[V], S〉, whereS(al,θ) = V

A ` 〈E[(al,θ := V)], S〉 −−→
dEe

〈E[()], [al,θ := V]S〉

A ` 〈E[(refl,θ V)], S〉 −−→
dEe

〈E[al,θ], [al,θ := V]S〉, a fresh inS

W ` 〈{E[(threadl N)]mj}, T, S〉 −−→
dEe

〈{E[()]mj , Nnk}, [nk := T (mj)]T, S〉, wheren fresh inT

W ` 〈{E[(goto d)]mj }, T, S〉 −−→
dEe

〈{E[()]mj }, [mj := d]T, S〉, where Γ ` E[()] : s, τ and s ⊆ W (d)∗

W (T (mj)) ` 〈M, S〉 −→
F

〈M ′, S′〉

W ` 〈{Mmj }, T, S〉 −→
F

〈{M ′mj }, T ′, S′〉

W ` 〈P, T, S〉 −→
F

〈P ′, T ′, S′〉 〈P ∪ Q,T, S〉 is well formed

W ` 〈P ∪ Q, T, S〉 −→
F

〈P ′ ∪ Q, T ′, S′〉

Figure 2. Operational Semantics. See Figure 4 for the side co ndition of the migration rule.

running in that site. At the level of the semantics, the site’s
allowed flow policyA is used to determine the behavior of
the allowed-condition, which tests whetherF is allowed by
A, and can safely set up a flow declaration forF in its “al-
lowed” branch. A typical usage of the construct could be:

(allowed {H ≺ L} then (flow {H ≺ L} in (xL := (! yH)))
else plan B)

(1)
The allowed flow policy is also used at migration time, to
determine whether or not a migration instruction may be
consummated. The idea is that a thread can only migrate to
another domain if it respects its allowed flow policy. E.g.,
as will become clear in Subsection 4.2, the configuration

〈{E[((goto d); (flow F in M))]
mj}, T, S〉 (2)

can only perform an execution step ifW (d) allows forF ;
otherwise it gets stuck. Notice that the flow declaration
does not imply checks to the allowed flow policy of the site.
Here we preserve the original semantics of the flow declara-
tion [2] as a construct that does not change the behavior of
programs. The functionality of inspecting the allowed flow
policy is thus restricted to the allowed-condition2.

Thread names are used in three situations: When a new
thread is created, its fresh name is added to the position-

2Besides avoiding the computational cost of continuously checking the
allowed flow policy of the current domain, this design decision avoids
some redundancy at the level of the semantics design. Here wewish to sep-
arate the enabling vs. controlling dimensions of declassification, and leave
it to the security analysis mechanism to match flow declarations against
the allowed-conditions of the context where they appear.

tracker, associated to the parent domain. When the(goto d)
statement is executed by a threadm, the position ofm in
the position-tracker is updated tod. Thread names are also
(implicitly) used when an allowed-condition is performed:
the tested flow policy is compared to the allowed flow policy
of the site where that particular thread is executing.

Distribution According to the chosen semantics, deref-
erencing and assigning to a reference can be done by all
threads, regardless of their position in the network. One
may wonder whether it is reasonable to consider a system
with a shared global state as distributed. We point out that
in this model, by associating different allowed flow policies
to different computation domains, where programs have the
power to test the allowed flow policy of the site they are lo-
cated at, the behavior of a program fragment may differ on
different machines. As an example, the thread

(allowed F then (yL := 1) else (yL := 2))mj (3)

running in a network〈P, T, S〉 such thatW (d1) = F1 and
W (d2) = F2, whereF ⊆ F ∗

2 but F 6⊆ F ∗
2 . The thread

will perform different assignments depending on whether
T (mj) = d1 or T (mj) = d2. In Subsection 3.1 we will
see that their behavior is distinguishable by the information
flow bisimulation relation we are interested in this paper.
In other words, the network does exhibit a distributed be-
havior. For a study of a similar model with distributed and
mobile references, see [1].

5

3. Information flow analysis

In this section we start by briefly defining the security
property of Non-disclosure for Networks, the underlying
information flow policy that this work is based on (we re-
fer the reader to [1] for further explanations). We will see
that a new form of migration leaks appears due to the new
allowed-condition primitive that was introduced in our lan-
guage. We then present a type system for enforcing non-
disclosure, and state its soundness.

3.1. Non-Disclosure for Networks

The study of confidentiality traditionally relies on a lat-
tice of security levels [10], corresponding to security clear-
ances that can be associated to information containers in
a programming language. Here, as in [2], we will use a
more general structure, that of a pre-lattice (a preordered
set such that any two elements have a least upper-bound
and a greatest lower-bound), that is sufficient and conve-
nient for defining a dynamic flow relation that accounts for
runtime changes in the flow policy of a program. More con-
cretely, our security pre-lattices are derived from a security
lattice where security levels are sets of principals represent-
ing read-access rights, partially ordered by the reverse in-
clusion relation, which indicates allowed flows of informa-
tion: if l1 ⊇ l2 then information in a referenceal1 may be
transferred tobl2 , since the principals allowed to read this
value fromb were already allowed to read it froma. Flow
policies, which are binary relations between principals, then
represent additional directions in which information is al-
lowed to flow. This leads to the underlyingpreorder on

security levels, given byl1 �F l2
def
⇔ (l1 ↑F) ⊇ (l2 ↑F),

where theF -upward closureof a security levell, defined
asl ↑F = {q | ∃p ∈ l. p F ∗ q} contains all the principals
that are allowed by the policyF to read the contents of a
reference labeledl. We choosel1 fF l2 = l1 ∪ l2 and
l1 gF l2 = (l1 ↑F) ∩ (l2 ↑F) as meet and join operations,
from which> = ∅ and⊥ = Pri. Notice that�F extends⊇
in the sense that�F is larger than⊇ and that�∅ = ⊇.

Equipped with a flow relation between security levels,
we can define the notions of low part of a state and of low-
equality between states with respect to a flow policyF and
security levell. Intuitively, two states are said to be “low-
equal” if they have the same “low-domain”, and if they give
the same values to all objects (in this case, references and
threads) that are labeled with “low” security levels.

Definition 3.1 (Low-Equality). The low-equality between
states〈T1, S1〉 and〈T2, S2〉 with respect to a flow policyF
and a security levell is given by

〈T1, S1〉 =F,l 〈T2, S2〉
def
⇔ T1 �F,l= T2 �F,l and

S1 �F,l= S2 �F,l

where: T �F,l def
= {(nk, d) | (nk, d) ∈ T & k �F l}

S �F,l def
= {(ak,θ, V) | (ak,θ, V) ∈ S & k �F l}

This relation is transitive, reflexive and symmetric.
Given that we are considering a concurrent (and dis-

tributed) setting, it is natural to formulate our information
flow property in terms of a bisimulation [5,24]. Our bisim-
ulation, which is based on the small-step semantics defined
in Section 2, relates two pools of threads if they show the
same behavior on the low part of two states. In the follow-
ing we denote by−→∗ the reflexive and transitive closure of

the union of the transitions−→
F

, for all F .

Definition 3.2 (≈l). An l-bisimulation is a symmetric rela-
tion R on sets of threads such that, for allT1, S1, T2, S2:

P1 R P2 andW ` 〈P1, T1, S1〉 −→
F

〈P ′
1, T

′
1, S

′
1〉 and

〈T1, S1〉 =F,l 〈T2, S2〉 implies

∃P ′
2, T

′
2, S

′
2 . W ` 〈P2, T2, S2〉 −→

∗ 〈P ′
2, T

′
2, S

′
2〉 and

〈T ′
1, S

′
1〉 =∅,l 〈T ′

2, S
′
2〉 andP ′

1 R P ′
2 when

(dom(S1
′) − dom(S1)) ∩ dom(S2) = ∅ and:

(dom(T1
′) − dom(T1)) ∩ dom(T2) = ∅

The largestl-bisimulation3 is denoted by≈l.

The above bisimulation potentially relates more pro-
grams than one for Non-interference thanks to the stronger
premiseS1 =F,l S2. By starting with pairs of memories
that are low-equal “to a greater extent”, i.e. that coincidein
a larger portion of the memory, the condition on the behav-
ior of the programP2 becomes weaker. The bisimulation re-
lation could have been parameterized by an additional flow
policy G, which would represent the global flow policy that
is assumed to hold everywhere by default. In this paper we
chose to omit this parameter by fixingG = ∅, for notational
clarity, though all the results can be easily extended accord-
ingly. For simplicity of the bisimulation definition, we are
also not concerned with the fact that this definition can be
considered somewhat restrictive in what respects changes in
references that are created at run-time.

Note that the relation≈l is not reflexive. For instance,
the insecure expression(vB := (! uA)) is not bisimilar to
itself if A 6�F B. In fact, if a program is shown to be
bisimilar to itself, one can conclude that the high part of
the state has not interfered with the low part, i.e., no secu-
rity leak has occurred. This motivates the definition of our
security property:

Definition 3.3 (Non-disclosure for Networks). A pool of
threadsP satisfies the Non-disclosure for Networks policy
if it satisfiesP ≈l P for all security levelsl.

3Note that for anyl there is anl-bisimulation, like for instance the
set of pairs of named values. Furthermore, the union of a family of l-
bisimulations is anl-bisimulation, which is the largestl-bisimulation.

6

Intuitively, the above definition requires information
flows occurring at any computation step that can be per-
formed by some thread in a network, to comply with the
flow policy that is declared by the context where the com-
mand is executed.

Migration leaks We are considering a simplistic memory
model where all of the network’s memory is accessible at all
times by every process in the network. With this assumption
we avoidmigration leaksthat derive from synchronization
behaviors on memory accesses [1]. However, in our set-
ting, migration leaks can be encoded nonetheless. The idea
is that now a program can reveal information about the po-
sition of a thread in a network by performing tests on the
flow policy that is allowed by that site:

(if (! xH) then (goto d1) else (goto d2)) ;
(allowed F then (yL := 1) else (yL := 2))

(4)

In this example, the thread will migrate to domainsd1 or
d2 depending on the tested high value; then, if these do-
mains have different allowed flow policies, different low-
assignments are performed, thus revealing high level infor-
mation. Therefore, the program is insecure with respect to
Non-disclosure for Networks.

The fact that synchronization issues that are typical of
distributed settings appear in spite of the state being glob-
ally shared allows us to make the point that migration leaks
are not specific to distributed memory models. In fact, they
can occur whenever the semantics or behavior of a program
fragment differs on different machines.

3.2. Type System

We now present a type and effect system that accepts
programs that satisfy Non-disclosure for Networks, as de-
fined in Subsection 3.1. The judgments of the type and ef-
fect system, presented in Figure 3, have the form

Γ `j
F M : s, τ

meaning that the expressionM is typable with typeτ and
security effects in the typing contextΓ : Var → Typ, which
assigns types to variables. The turnstile has two parameters:
the flow policydeclared by the contextF , represents the one
that is valid in the evaluation context in which the expres-
sion M is typed, and contributes to the meaning of oper-
ations and relations on security levels; the security levelj
represents the confidentiality level associated to the thread
that the expressionM is part of, which is the confidentiality
level of the position of that thread in the network.

The security effects is composed of three security levels
that are referred to bys.r, s.w ands.t, and can be under-
stood as follows:s.r is thereading effect, an upper-bound
on the security levels of the references that are read byM ;
s.w is thewriting effect, a lower bound on the references

that are written byM ; s.t is thetermination effect, an upper
bound on the level of the references on which the termi-
nation of expressionM might depend. According to these
intuitions, in the type system the reading and termination
levels are composed in a covariant way, whereas the writing
level is contravariant.

Types have the following syntax (t is a type variable):

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl | τ
s

−−→
F,j

σ

Typable expressions that reduce to() have typeunit, and
those that reduce to booleans have typebool. Typable ex-
pressions that reduce to a reference which points to values
of type θ and has security levell have the reference type
θ refl. Here the security levell is used to determine the
effects of expressions that handle references. Typable ex-
pressions that reduce to a function that takes a parameter
of type τ , that returns an expression of typeσ, and with a
latent [15] effects, flow policy F and security levelj have
the function typeτ

s
−−→
F,j

σ. The latent effect is the security

effect of the body of the function, while the latent flow pol-
icy is the one assumed to hold when the function is applied
to an argument, and the latent security levelj is that of the
thread containing the expression.

We use a (join) pre-semilattice on security effects, that is
obtained from the pointwise composition of the pre-lattices
of the security effects. More precisely:

s �F s′
def
⇔ s.r �F s′.r & s′.w �F s.w &s.t �F s′.t

s gF s′
def
⇔ 〈s.r gF s′.r, s.w fF s′.w, s.t gF s′.t〉

⊥ = 〈Pri, ∅, Pri〉

We use some abbreviations to alleviate the notation of
the typing judgments and operations, namely we write
Γ ` M : τ whenΓ `j

F M : 〈⊥,>,⊥〉, τ , which is mainly
used when typing (pseudo)-values, and we writes g s′

whens g∅ s′, which is used when constructing the secu-
rity effects of the typed expressions.

Our type and effect system applies restrictions to pro-
grams in order to enforce compliance of all information
flows to the flow relation that is parameterized with the cur-
rent flow policy. This is achieved by conditions of the kind
“�F ” in the premises of the typing rules, and by the up-
date of the security effects in the conclusions. Apart from
the parameterization of the flow relation with the current
flow policy, these are fairly standard in information flow
type system and enforce syntactic rules of the kind “no low
writes should depend on high reads”, both with respect to
the values that are read, and to termination behaviors that
might be derived. Notice that the FLOW rule types the body
of the flow declaration under a more permissive flow policy.

The extra conditions that are introduced in order to deal
with new forms of migration leaks that appear in our dis-
tributed setting (such as Example 4) deserve further atten-
tion: the security levelj that is associated to each thread,

7

[N IL] Γ ` () : unit [BOOLT] Γ ` tt : bool [BOOLF] Γ ` ff : bool [L OC] Γ ` al,θ : θ refl

[VAR] Γ, x : τ ` x : τ [A BS]
Γ, x : τ `j

F M : s, σ

Γ ` (λx.M) : τ
s

−−→
F,j

σ
[REC]

Γ, x : τ `j
F W : s, τ

Γ ` (%x.W) : τ

[FLOW]
Γ `j

F∪F ′ N : s, τ

Γ `j

F (flow F ′ in N) : s, τ
[A LLOW]

Γ `j

F Nt : st, τ

Γ `j
F Nf : sf , τ

j �F st.w, sf .w

Γ `j

F (allowed F ′ then Nt else Nf) : st g sf g 〈⊥, >, j〉, τ

[REF]
Γ `j

F M : s, θ s.r, s.t �F l

Γ `j

F (refl,θ M) : s g 〈⊥, l,⊥〉, θ refl

[DER]
Γ `j

F M : s, θ refl

Γ `j

F (! M) : s g 〈l,>,⊥〉, θ

[A SS]
Γ `j

F M : s, θ refl Γ `j
F N : s′, θ

s.t �F s′.w

s.r, s′.r, s.t, s′.t �F l

Γ `j
F (M := N) : s g s′ g 〈⊥, l,⊥〉, unit

[COND]
Γ `j

F M : s, bool
Γ `j

F Nt : st, τ

Γ `j
F Nf : sf , τ

s.r, s.t �F st.w, sf .w

Γ `j
F (if M then Nt else Nf) : s g st g sf g 〈⊥,>, s.r〉, τ

[SEQ]
Γ `j

F M : s, τ Γ `j

F N : s′, σ s.t �F s′.w

Γ `j
F (M ; N) : s g s′, σ

[A PP]
Γ `j

F M : s, τ
s′

−−→
F,j

σ Γ `j
F N : s′′, τ

s.t �F s′′.w

s.r, s′′.r, s.t, s′′.t �F s′.w

Γ `j

F (M N) : s g s′ g s′′ g 〈⊥,>, s.r g s′′.r〉, σ

[THR]
j �F l Γ `l

∅ M : s, unit

Γ `j

F (threadl M) : 〈⊥, j f s.w,⊥〉, unit
[M IG] Γ `j

F (goto d) : 〈⊥, j,⊥〉, unit

Figure 3. Type and Effect System for Non-disclosure for Netw orks

and represents the confidentiality level of the position of the
thread in the network is used to update the writing effect in
the thread creation and migration rules, as well as the ter-
mination effect in the allowed-condition rule; on the other
hand, it is constrained not to “precede low writes” in rule
ALLOW, and to be a lower bound of runtime threads in rule
THR. We refer the reader to [1] for further explanations on
the remaining conditions.

One can prove a subject reduction result stating that the
type of a thread is preserved by reduction, while its effects
“weaken”. When an expression executes a computation
step, some of its effects may be performed by reading, up-
dating or creating a reference or by creating or migrating a
thread, while some may also be discarded when a branch
in a conditional expression is taken. This result can then
be used to verify that the the proposed type system ensures
the non-disclosure property, i.e. that it constrains the us-
age of the new constructs introduced in this language in or-
der to prevent them from encoding information leaks. In
fact, security of expressions with respect to Non-disclosure
is guaranteed by the type system:

Theorem 3.4 (Soundness for Non-disclosure for Net-
works.). Consider a pool of threadsP . If for all Mmj ∈ P
there existΓ, s andτ such thatΓ `j

∅ M : s, τ , thenP satis-

fies the Non-disclosure for Networks policy.

Notice that our soundness result for non-disclosure is
compositional, in the sense that it is enough to verify the
typability of each thread separately in order to ensure non-
disclosure for the whole network.

4. Confinement analysis

In this section we formally define Operational Confine-
ment for Networks, a new security property that specifies
the restricted usage of declassification instructions. We will
present a simple type system for calculating the declassi-
fication effect of programs, which can be used by the se-
mantics of the language to control migration between sites.
We prove the soundness of the proposed migration control
mechanism, and discuss other alternative approaches.

4.1. Operational Confinement

Here we will deal with relations between flow policies,
which leads us to define a (meet) pre-semilattice of flow
policies. We introduce thepreorder on flow policies�, thus
overloading the notation for the flow relations on security

8

levels. The meaning of relating two flow policies as inF1 �
F2 is thatF1 is more permissive thanF2, in the sense that
F1 encodes all the information flows that are enabled byF2:

F1 � F2
def
⇔ F2 ⊆ F ∗

1

Where the meet operation is given byF1 f F2 = F1 ∪ F2.
Consequently, we have> = ∅.

We now define operational confinement with respect to
an allowed flow policy, and justify the chosen formalization.
The property is formulated abstractly for any distributed
model that includes the concept of an allowed flow policy
of a site, and whose semantics is decorated with the flow
policies that are set up by each transition.

In light of the semantics of our flow declarations, we can
predict which flow policies are declared by a program at
runtime by observing the flow policy that decorates each of
the possible steps it might take. Then, confinement to an
allowed policyA means that every step is decorated with a
flow policy F that is stricter thanA:

Definition 4.1 (OperationallyA-Confined Threads). Given
a fixed policy-mappingW , a setC of threads is said to be
a set of operationallyA-confined threads if the following
holds for anyMmj ∈ C, for all T, S:

W ` 〈{Mmj }, T, S〉 −→
F

〈{M ′mj }, T ′, S′〉 implies

A � F andM ′mj ∈ C and
W ` 〈{Mmj }, T, S〉 −→

F
〈{M ′mj , N ′nk}, T ′, S′〉 implies:

A � F andM ′mj , N ′nk ∈ C

We say that a threadMmj is operationallyA-confined if
it belongs to the largest set of operationallyA-confined
threads4.

OperationalA-confinement is useful from the point of
view of a class of sites whose allowed flow policies are
weaker thanA. However, during global computations, the
location of a program is not fixed, nor is the allowed flow
policy that the program should comply to. This means that
the notion of operational confinement to a single flow policy
does not speak of compliance to the flow policies of all sites
where each program might execute. Consider for instance

(allowed F then (flow F in M1) else M2) (5)

where the flow declaration of the policyF is executed only
if F has been tested as being allowed by the domain the
program is located at. Assuming there are no flow declara-
tions inM1 andM2, for every allowed flow policyA, this
program is operationallyA-confined. However, in a slight
variation of the program where we introduce migration

(allowed F then ((goto d); (flow F in M1)) else M2)
(6)

the continuation of the program that can migrate tod is not
operationallyF -confined. It would then be convenient to

4The largest of these sets exists, for analogous reasons to Footnote 3.

formulate a more general notion of operational confinement
that refers to the allowed flow policies of the sites where
each part of the program actually executes.

The following confinement property is set up on pairs
that carry information about the location of each thread.
The allowed flow policy of the current location of the thread
is used to place a restriction on the flow policies that deco-
rate the transitions, step-by-step.

Definition 4.2 (Operationally Confined Located Threads).
Given a fixed policy-mappingW , a setC of pairs〈d, Mmj 〉
is said to be a set ofoperationally confined located threads
if the following holds for any〈d, Mmj 〉 ∈ C, for all T, S:

W ` 〈{Mmj }, T, S〉 −→
F

〈{M ′mj }, T ′, S′〉 implies

W (T (mj)) � F and〈T ′(mj), M
′mj 〉 ∈ C and

W ` 〈{Mmj }, T, S〉 −→
F

〈{M ′mj , N ′nk}, T ′, S′〉 implies

W (T (mj)) � F and〈T ′(mj), M
′mj 〉, 〈T ′(nk), Nnk 〉 ∈ C

when:
T (mj) = d

We say that a located thread〈d, Mmj 〉 is operationally con-
fined if it belongs to the largest set of operationally confined
threads5.

Intuitively, operational confinement means that for every
execution step that is performed by a program at a certain
site, the declared flow policy always complies to that sites
allowed flow policy. We will return to Example 6 and its
security analysis in Subsection 4.2, at the point where the
semantics of migration can be fully understood.

From the definition of operational confinement of indi-
vidual threads, we can derive a notion of network confine-
ment by obtaining, from a pool of threadsP and its corre-
sponding position-trackerT , the set:

pair(P, T)
def
= {〈d, Mmj 〉 | Mmj ∈ P andT (mj) = d}

A network is said to be operationally confined if all of the
pairs of threads and their location are operationally confined
in the sense of Definition 4.2.

4.2. Type System

We now present a type and effect system that constructs
a declassification effect that can be used to enforce Confine-
ment (as defined in Subsection 4.1). The judgments of the
type and effect system of Figure 4 are a lighter version of
those that were used in Subsection 3.2. They have the form

Γ ` M : s, τ

meaning that the expressionM is typable with typeτ and
security effects in the typing contextΓ : Var → Typ, which
assigns types to variables.

5The largest of these sets exists, for analogous reasons to Footnote 3.

9

[FLOW]
Γ ` N : s, τ

Γ ` (flow F ′ in N) : s ∪ F ′, τ
[A LLOW]

Γ ` Nt : st, τ Γ ` Nf : sf , τ

Γ ` (allowed F ′ then Nt else Nf) : st − F ′ f sf , τ

Figure 4. Fragment of the Type and Effect System for Calculat ing the Declassification Effect

Here the security effects corresponds to thedeclassifi-
cation effect: a lower bound to the flow policies that are
declared in the typed expression, excluding those that are
positively tested by an allowed-condition. Types have the
following syntax (t is a type variable):

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl | τ
s
−→ σ

The meanings are analogous to those of Subsection 3.2.
We also use a similar abbreviation when typing (pseudo)-
values, namely we writeΓ ` M : τ whenΓ ` M : >, τ .

In Figure 4 we only exhibit the typing rules that are rel-
evant to the construction of the declassification effect. The
omitted rules are a simplified version of those that appear
in Figure 3, where typing judgments have no parameters,
and the updates of the security effects as well as all side
conditions involving�F are removed. The meet operator
f is used instead ofg because the declassification effect is
contravariant with respect to the effects of Subsection 3.2.

Our type and effect system accurately constructs the de-
classification effect of the program, which allows to test
confinement of all flow declarations with respect to any al-
lowed flow policy. The new effect is updated in rule FLOW,
each time a flow declaration is performed, and “grows” as
the declassification effects of subterms are met (by union)
in order to form that of the parent command. An exception
appears in rule ALLOW, where the declassification effect of
the “allowed” branch is not used entirely: the part that has
been tested by the allowed-condition is omitted. The intu-
ition is that the part that is removed (say,F) is of no concern
since in practice the allowed branch will only be executed
if F is allowed.

As we have mentioned, the declassification effect should
give information about the potential flow policy environ-
ments that are set up by the program. It is easy to see that
the proposed type system provides a rather naive solution
to this problem, since it does not take into consideration the
migration instructions that appear in the code. This means
that it might over-approximate the declassification effectby
counting in flow declarations that are not relevant to the site
where the program is arriving.

Here we are not concerned with the precision of the
type system, but rather with putting forward its idea. As
we will see ahead in Subsection 4.2, its imprecisions can
be overcome by good programming practices, since re-
jection of programs can be avoided by proper usage of
the allowed-condition construct. In spite of the simplic-

ity of the type system, notice that it does take that ef-
fort into account when building the declassification effect.
In fact, when a part of the program is “protected” by an
(allowed F then M else N) construct, some of the infor-
mation in the declassification effect can be discarded. By
hiding the tested flow policy from the declassification effect
of the “allowed” branch. As a result, programs contain-
ing flow declarations that are too permissive might still be
authorized to execute in a certain domain, as long as they
occur in the “allowed” branch of our new construct, since
as we know (by its semantics), it will never be executed.

Soundness We start by stating that the type of a thread is
preserved by reduction, while its effects “weaken”. When
an expression executes a computation step, some of its ef-
fects may be performed by terminating computations within
a flow declaration, or may also be discarded when a branch
in a conditional expression is taken.

Proposition 4.3 (Subject Reduction). Consider a fixed
policy-mappingW and a threadMmj for which there exist
Γ, F , s andτ such thatΓ ` M : s, τ .

• If W ` 〈{Mmj}, T, S〉 −→
F ′

〈{M ′mj}, T ′, S′〉, then

there existss′ such thatΓ ` M ′ : s′, τ , and wheres ∪
W (T (mj)) � s′.

• If W ` 〈{Mmj}, T, S〉 −→
F ′

〈{M ′mj , Nnk}, T ′, S′〉,

then there existss′, s′′ such thatΓ ` M ′ : s′, τ and
Γ ` N : s′′, unit, and wheres ∪ W (T (mj)) � s′

ands ∪ W (T (nk)) � s′′.

We will now verify that our migration control mecha-
nism ensures the confinement property, i.e. that policies that
are declared by flow declarations never violate the allowed
flow policy of the domain where they are performed. To
this end, we will see that the declassification effect can be
used for enforcing operational confinement: if a program is
typable with a declassification effects, and if it performs an
execution step in a context that enforces a flow policyF ,
thenF is allowed bys, meaning that the actual flow policy
that was ruling for that step is stricter than the declassifica-
tion effect. To formalize this result, we use the notion of
operational confinement with respect to a flow policy:

Proposition 4.4(Meaning of the declassification effect).
If for a threadMmj there existΓ, G, s and τ such that
Γ ` M : s, τ , thenMmj is operationallys-confined.

10

According to the above result, a site can trust that declas-
sifications performed by an incoming thread are not more
permissive than what is declared in the type. Programs
whose declassification effect cannot guarantee respect for
the allowed flow policy of the site can then be treated as
insecure by that site – in our model, they are simply forbid-
den to enter. This migration control mechanism allows us
to formulate a network level soundness result, stating that
typable programs can roam over the network with the guar-
antee that they will not violate the allowed flow policy of
the sites where they execute:

Theorem 4.5(Soundness of Typing Confinement for Net-
works). Consider a fixed policy-mappingW , a pool of
threadsP and its corresponding position trackerT , such
that for all Mmj ∈ P there existΓ, s and τ satisfying
Γ ` M : s, τ andW (T (mj)) � s. Then the setpair(P, T)
is a set of operationally confined located threads.

The above result might seem somewhat surprising at
first, given that in the typing rule of the allowed construct,
the flow policy that is being tested is subtracted from the
declassification effect of the allowed branch. Notice how-
ever that the allowed branch will only be taken if the tested
flow policy is allowed (byG) in the first place. This means
that the part of the declassification effect of the allowed
branch that is omitted is known to be allowed byG. To
illustrate this idea, consider again Example 1, which has an
empty declassification effect (and is therefore syntactically
G-confined, for allG); its transitions can however be deco-
rated with the flow policy{H ≺ L} in case the first branch
is taken, which in turn can only happen if{H ≺ L} ⊆ G∗.

Migration control The proposed method for enforcing
operational confinement combines a static analysis tech-
nique for calculating the declassification effect of a program
with a migration control technique that is built into the se-
mantics of the language. Our analysis technique does not
offer a safety result, guaranteeing that programs never “get
stuck”. In fact, it can happen that a thread is blocked at the
point of performing a migration instruction, for the reason
that it contains code that is not allowed to execute in the
destination domain. Let us reconsider Example 6:

(allowed F then ((goto d); (flow F in M1)) else M2)

According to the type system of Figure 4, the declassifica-
tion effect of the continuation((goto d); (flow F in M1))
includesF . This means that the migration instruction will
be performed only in the case that the allowed flow policy
of d allows for F ; otherwise, the program will get stuck.
We notice, however, that in order to avoid this situation, the
program might have better been written

((goto d); (allowed F then (flow F in M1) else M2))

so that the flow declaration ofF would not contribute
to weaken the declassification effect of the continuation
(allowed F then (flow F in M1) else M2).

Here we follow the spirit of the proof carrying code
scenario: The typing procedure provides enough informa-
tion for a machine to decide whether the incoming program
should be free to run in it or not. When using the type sys-
tem to construct a declassification effect, we provide a way
to build a certificate for the program, that can be analyzed
at any time and place to conclude about whether a program
should be allowed to execute or not. In case the certificate
is not trusted, programs could also be statically checked to
be “flow declaration safe”.

5. Related work

Mantel and Sabelfeld [16] approach the study of infor-
mation flow in a distributed setting by providing a type
system for preserving confidentiality for different kinds of
channels established over a publicly observable medium,
but where interaction between domains is restricted to the
exchange of values (no code mobility). Sharing our un-
derlying aim of studying the distribution of code under de-
centralized security policies, Zdancewicet al. [27] study
the secure partitioning of programs into a distributed sys-
tem of potentially corrupted hosts and of principals. Crafa,
Bugliesi and Castagna study non-interference for a purely
functional distributed and mobile calculus [9], where no de-
classification mechanisms are contemplated. The work that
is closest to ours is [1], which studies insecure information
flows that are introduced by mobility in the context of a dis-
tributed language with states. Declassification is presentin
the language by means of flow declarations. In the compu-
tation model that is considered, threads own references that
move along with them during migration; this setting also
gives rise tomigration leaks.

In a recent survey [23], Sabelfeld and Sands examine
the literature regarding the subject of declassification, and
observe that declassification can be controlled according to
four main orthogonal goals as to:what information should
be released [14, 21],whenit should be allowed to happen
[8], who should be authorized to use it [19], andwherein
the program it can be stated [2,7]; these dimensions can also
be combined [3]. Most of the overviewed approaches im-
plicitly assume local settings, where the computation plat-
form enforces fixed policies. Furthermore, the tools that are
provided for controlling the usage of declassification op-
erations are restricted to the declassifying operations them-
selves, as opposed to the techniques that are proposed in this
paper: both the allowed-construct and restricted version of
migration are external to the flow declaration construct.

Previous works have studied forms of dynamic flow pol-
icy testing in settings where distribution and mobility are

11

not explicitly dealt with. In [28] and [25], testing is per-
formed over security labels, while the underlying security
lattice remains fixed. Closer to ours is the work by Hicks
et al. [13], where the global flow policy can be updated and
tested. However, the language that is considered is local
and sequential, and updates to the global flow policy are not
meant as declassification operations. Furthermore, the se-
curity property does not deal with updates, but rather with
what happens in between them. In [6] access control and
declassification are combined in order to make sure that a
program can only declassify information that it has the right
to read, by using access control primitives for controlling
the access level of programs that perform declassifications.

6. Conclusions and Future Work

The issue of controlling information flow in global com-
puting is attracting increased attention Here we have mo-
tivated the need for controlling the usage of declassifying
instructions in a global computing context by pointing out
that programs that were conceived to comply to certain flow
policies don’t necessarily respect those of the computational
locations they might end up executing at. We have ad-
dressed this issue, by providing techniques for ensuring that
a thread can only migrate to a site if it complies to its al-
lowed flow policy. More concretely, the technical contribu-
tions of this paper are the following:

• A new programming construct
(allowed F then M else N) that tests the flexibility
of the allowed flow policyimposed by the domain where
it is currently located and can act accordingly. This is a
first step towards programming in contexts where domains
can change their allowed flow policies dynamically. In the
presence of code mobility, theallowed constructprovides
useful expressibility for programming alternative behaviors
that a program can have, should it end up in a site where
certain declassification operations are not permitted.

• A new security property we callconfinement to a flow
policy, that ensures programs will respect certain flow poli-
cies, regardless of the declassification operations they might
contain. This property is formulated at the network level,
by considering distributed flow policies and the location of
programs at runtime.

• A new form of security effect that can be associated
to a program, containing information about the declassify-
ing environments that can potentially be established by that
program. We call it thedeclassification effect, and it is flexi-
ble enough to allow programs containing operations that are
forbidden at certain sites to be considered secure neverthe-
less, as long as these operations are protected by an appro-
priateallowedconstruct. We show that the declassification
effect can be easily constructed by means of a simple type
and effect system. This information is useful when setting

up a migration control mechanism for deciding whether or
not programs should be allowed to execute at each site.

• The identification of a new form ofmigration leaksthat
can be encoded in a distributed language with code mobility
by means of the new allowed construct. These do not result
from memory synchronization issues, but reflect instead the
new possibilities of accessing information about the loca-
tion of programs in the network. We show how these mi-
gration leaks can be controlled by means of a type system
that enforces the non-disclosure policy, for a distributedlan-
guage with code mobility containing the allowed construct.

One could also mention the dual problem, that informa-
tion that is carried by programs into sites with more permis-
sive flow policies becomes vulnerable. In order to tackle
this problem, one could consider a model where references
can move along with threads [1]. We leave this research
direction for future work. Nevertheless, we believe that
the allowed-condition construct that was introduced here
can play an important role in the solution, since it enables
threads to inspect the allowed flow policy of a site, accord-
ing to which they can decide whether to remain there or to
migrate away.

When considering a strictly distributed memory model
(where accesses to remote references are restricted), mem-
ory synchronization issues can lead to migration leaks as
was shown in [1]. However, this paper shows that migra-
tion leaks do not exclusively depend on the memory model.
In fact, even while assuming transparent remote accesses to
references, a new form of migration leaks appear as a result
of introducing our new program construction for inspecting
the site’s flow policies. This motivates a better understand-
ing of migration leaks in global computations.

Similarly to the Decentralized Label Model (DLM) [18],
the (pre)-lattices of security levels that were consideredhere
are based on the notion of principal, which can be seen
as the underlying entity that holds read and write capabil-
ities, and for which confidentiality is designed. The DLM
model adds another dimension to it, by endowing principals
with ownership capabilities. Another direction in which the
model for attributing security labels to resources could be
made more expressive would be by considering a connec-
tion between locations and principals.

The network model we studied in this paper assumes that
the allowed flow policy of each domain is constant in time.
It would be interesting to generalize the model in order to
account for dynamic changes in these policies. However,
combining this more general scenario with the allowed-
condition would lead to inconsistencies, since the policies
could potentially change after the branch of the allowed-
condition had been chosen. This motivates the study of
other alternatives to the allowed-condition for inspecting the
currentallowed flow policy of the context.

12

References

[1] A. Almeida Matos. Typing Secure Information Flow: De-
classification and Mobility. PhD thesis,École Nationale
Supérieure des Mines de Paris, 2006.

[2] A. Almeida Matos and G. Boudol. On declassification and
the non-disclosure policy. InCSFW’05: 18th IEEE Com-
puter Security Foundations Workshop, pages 226–240. IEEE
Computer Society, 2005.

[3] G. Barthe, S. Cavadini, and T. Rezk. Tractable enforcement
of declassification policies. InCSF, pages 83–97. IEEE
Computer Society, 2008.

[4] G. Boudol. A generic membrane model. In C. Priami and
P. Quaglia, editors,GC’04: IST/FET International Work-
shop on Global Computing, volume 3267 ofLecture Notes
in Computer Science, pages 208–222. Springer, 2005.

[5] G. Boudol and I. Castellani. Noninterference for concurrent
programs and thread systems.Theoretical Computer Sci-
ence, 281(1–2):109–130, 2002.

[6] G. Boudol and M. Kolundzija. Access Control and Declassi-
fication. InComputer Network Security, volume 1 ofCCIS,
pages 85–98. Springer-Verlag, 2007.

[7] N. Broberg and D. Sands. Flow locks: Towards a core calcu-
lus for dynamic flow policies. InProgramming Languages
and Systems. 15th European Symposium on Programming,
ESOP 2006, volume 3924 ofLecture Notes in Computer Sci-
ence. Springer Verlag, 2006.

[8] S. Chong and A. C. Myers. Security policies for downgrad-
ing. In Proceedings of the 11th ACM conference on Com-
puter and communications security. ACM Press, 2004.

[9] S. Crafa, M. Bugliesi, and G. Castagna. Information flow se-
curity for boxed ambients. In V. Sassone, editor,F-WAN’02:
Workshop on Foundations of Wide Area Network Comput-
ing, volume 66 ofElectronic Notes in Theoretical Computer
Science, pages 76–97. Elsevier, 2002.

[10] D. E. Denning. A lattice model of secure information flow.
19(5):236–243, 1976.

[11] J. A. Goguen and J. Meseguer. Security policies and security
models. InProceedings of the 1982 IEEE Symposium on
Security and Privacy, pages 11–20. IEEE Computer Society,
1982.

[12] D. Gorla, M. Hennessy, and V. Sassone. Security policies as
membranes in systems for global computing. InFoundations
of Global Ubiquitous Computing, FGUC 2004, ENTCS,
pages 23–42. Elsevier, 2005.

[13] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic up-
dating of information-flow policies. InWorkshop on Foun-
dations of Computer Security, pages 7–18, 2005.

[14] P. Li and S. Zdancewic. Downgrading policies and re-
laxed noninterference. InProceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages. ACM Press, 2005.

[15] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. InPOPL’88: 15th ACM symposium on Principles of
programming languages, pages 47–57. ACM Press, 1988.

[16] H. Mantel and A. Sabelfeld. A unifying approach to the
security of distributed and multi-threaded programs.Journal
of Computer Security, 11(4):615–676, 2003.

[17] F. Martins and V. Vasconcelos. History-based access control
for distributed processes. InProceedings of TGC’05, LNCS.
Springer-Verlag, 2005.

[18] A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. In19th IEEE Computer Society
Symposium on Security and Privacy, pages 186–197. IEEE
Computer Society, 1998.

[19] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
robust declassification and qualified robustness.J. Comput.
Secur., 14(2):157–196, 2006.

[20] G. C. Necula. Proof-carrying code. InPOPL ’97: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 106–119, New
York, NY, USA, 1997. ACM.

[21] A. Sabelfeld and A. Myers. A model for delimited informa-
tion release. InInternational Symposium on Software Secu-
rity (ISSS’03), volume 3233 ofLecture Notes in Computer
Science. Springer-Verlag, 2004.

[22] A. Sabelfeld and A. C. Myers. Language-based information-
flow security.IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, 2003.

[23] A. Sabelfeld and D. Sands. Dimensions and principles of
declassification. InCSFW’05: 18th IEEE Computer Secu-
rity Foundations Workshop, pages 255–269. IEEE Computer
Society, 2005.

[24] G. Smith. A new type system for secure information flow.
In CSFW’01: 14th IEEE Computer Security Foundations
Workshop, pages 115–125. IEEE Computer Society, 2001.

[25] S. Tse and S. Zdancewic. Run-time principals in
information-flow type systems. InIEEE 2004 Symposium
on Security and Privacy, pages 179–193. IEEE Computer
Society Press, 2004.

[26] S. Zdancewic. Challenges for information-flow security. In
1st International Workshop on the Programming Language
Interference and Dependence (PLID’04), 2004.

[27] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Se-
cure program partitioning.ACM Transactions on Computer
Systems, 20(3):283–328, 2002.

[28] L. Zheng and A. Myers. Dynamic security labels and non-
interference. InIn Proc. 2nd Workshop on Formal As-
pects in Security and Trust, IFIP TC1 WG1.7, pages 27–40.
Springer, 2004.

13

A. Notations

For notational convenience, in this appendix we repre-
sent transitions that refer to pools of single threads in a
slightly different way. When a step is performed by a single
thread while no new thread is created

W ` 〈{Mmj}, T, S〉 −→
F

〈{M ′mj}, T ′, S′〉

here we write:

W ` 〈{Mmj}, T, S〉
()
−→
F

〈{M ′mj}, T ′, S′〉

When the step represents the creation of a new thread

W ` 〈{Mmj}, T, S〉 −→
F

〈{M ′mj , Nnk}, T ′, S′〉

here we write

W ` 〈{Mmj}, T, S〉
Nnk

−−−→
F

〈{M ′mj}, T ′, S′〉

Furthermore, we may represent all transitions of single
threads by

W ` 〈{Mmj}, T, S〉
Nnk

−−−→
F

〈{M ′mj}, T ′, S′〉

whereNnk represents the dummy thread() in case no new
thread is created.

B. Information flow analysis (proofs)

B.1. Subject Reduction

In order to establish the soundness of the type system of
Figure 3 we need a Subject Reduction result, stating that
types that are given to expressions are preserved by compu-
tation. To prove it we follow the usual steps [?].

Remark B.1. If W ∈ Pse andΓ `j
F W : s, τ , then for all

flow policiesF ′, we have thatΓ `j
F ′ W : 〈⊥,>,⊥〉, τ .

Lemma B.2.

1. If Γ `j
F M : s, τ andx /∈ dom(Γ) thenΓ, x : σ `j

F

M : s, τ .

2. If Γ, x : σ `j
F M : s, τ andx /∈ fv(M) thenΓ `j

F

M : s, τ .

Proof. By induction on the inference of the type judgment.

Lemma B.3 (Substitution).
If Γ, x : σ `j

F M : s, τ and Γ ` W : σ then Γ `j
F

{x 7→ W}M : s, τ .

Proof. By induction on the inference ofΓ, x : τ `j
F M :

s, σ, and by case analysis on the last rule used in this typing
proof, using the previous lemma.

Lemma B.4 (Replacement).
If Γ `j

F E[M] : s, τ is a valid judgment, then the proof
givesM a typingΓ `j

F∪dEe M : s̄, τ̄ for somes̄ and τ̄

such that̄s.r � s.r, s.w � s̄.w and s̄.t � s.t. In this case,
if Γ `j

F∪dEe N : s̄′, τ̄ with s̄′.r � s̄.r, s̄.w � s̄′.w and

s̄′.t � s̄.t, thenΓ `j
F E[N] : s′, τ , for somes′ such that

s′.r � s.r, s.w � s′.w ands′.t � s.t.

Proof. By induction on the structure ofE.

Proposition B.5 (Subject Reduction). Consider a thread
Mmj for which there existΓ, F , s and τ such that

Γ `j
F M : s, τ . Then, if W ` 〈{Mmj}, T, S〉

Nnk

−−−→
F ′

〈{M ′mj}, T ′, S′〉, there existss′ such thatΓ `j
F M ′ : s′, τ ,

and wheres′.r � s.r, s.w � s′.w ands′.t � s.t. Further-
more,∃s′′ such thatΓ `k

∅ N : s′′, unit ands.w � s′′.w.

Proof. We consider the smallest̄M such thatM = Ē[M̄]
in the sense that there is nôE, M̂ , N̂ such thatÊ 6=
[] and Ê[M̂] = M̄ for which we can writeW `

〈{M̂mj}, T, S〉
N̂nk

−−−→
F̂

〈{M̂ ′mj}, T ′, S′〉. We then proceed

by case analysis on the transitionW ` 〈{M̄mj}, T, S〉
N̄nk

−−−→
F̄

〈{M̄ ′mj}, T ′, S′〉, using Lemmas B.3 and B.4.

Suppose thatM = Ē[M̄] and thatW ` 〈{M̄mj}, T, S〉
N̄nk

−−−→
F̄

〈{M̄ ′mj}, T ′, S̄′〉. We start by observing that this

implies F ′ = F̄ ∪ dĒe, M ′ = Ē[M̄ ′], N̄ = N and
S̄′ = S′. We can assume, without loss of generality, that
M̄ is the smallest in the sense that there is noÊ, M̂ , N̂
such that̂E 6= [] andÊ[M̂] = M̄ for which we can write

W ` 〈{M̂mj}, T, S〉
N̂nk

−−−→
F̂

〈{M̂ ′mj}, T ′, S′〉.

By Lemma B.4, we haveΓ `j

F∪dĒe
M̄ : s̄, τ̄ in the proof

of Γ `j
F Ē[M̄] : s, τ , for somes̄ and τ̄ . We proceed by

case analysis on the transitionW ` 〈{M̄mj}, T, S〉
N̄nk

−−−→
F̄

〈{M̄ ′mj}, T ′, S′〉, and prove thatΓ `j

F∪dĒe
M̄ ′ : s̄′, τ̄ , for

somes̄′ such that̄s′.r � s̄.r, s̄.w � s̄′.w ands̄′.t � s̄.t.

• [M̄ = ((λx.M̂) V).]

Here we haveM̄ ′ = {x 7→ V }M̂ . By rule APP,

we haveΓ `j

F∪dĒe
(λx.M̂) : ŝ, τ̂

ŝ′

−−−−−→
F∪dĒe,j

σ̂ and

Γ `j

F∪dĒe
V : ŝ′′, τ̂ , wherês′.r � s̄.r, s̄.w � ŝ′.w and

ŝ′.t � s̄.t. By ABS, thenΓ, x : τ̂ `j

F∪dĒe
M̂ : ŝ′, σ̂,

and by Remark B.1 we haveΓ ` V : τ̂ . Therefore, by
Lemma B.3, we getΓ `j

F∪dĒe
{x 7→ V }M̂ : ŝ′, σ̂.

14

• [M̄ = (if tt then Nt else Nf).]

Here we haveM̄ ′ = Nt. By COND, we have that
Γ `j

F∪dĒe
Nt : st, τ̄ , wherest.r � s̄.r, s̄.w � st.w

andst.t � s̄.t.

• [M̄ = (ref l,θ V).]

Here we haveM̄ ′ = al,θ. By LOC, we haveΓ `j

F∪dĒe

a : 〈⊥,>,⊥〉, θ ref l, which satisfies⊥ � s.r, s.w �
> and⊥ � s.t.

• [M̄ = (! al,θ).]

Here we haveM̄ ′ = S(al,θ). By assumption, we have
thatΓ `j

F∪dĒe
S(al,θ) : 〈⊥,>,⊥〉, θ, which satisfies

⊥ � s.r, s.w � > and⊥ � s.t.

• [M̄ = (flow F ′ in V).]

Here we haveM̄ ′ = V . By rule FLOW, we have that
Γ `j

F∪dĒe∪F ′
V : ŝ′, τ and by Remark B.1, we have

Γ `j

F∪dĒe
V : 〈⊥,>,⊥〉, τ̄ , which satisfies⊥ � s.r,

s.w � > and⊥ � s.t.

• [M̄ = (allowed F ′ then Nt else Nf) and
F ′ ⊆ W (T (mj))

∗.]

Here we haveM̄ ′ = Nt. By ALLOW, we have that
Γ `j

F∪dĒe
Nt : st, τ̄ , wherest.r � s̄.r, s̄.w � st.w

andst.t � s̄.t.

• [M̄ = (allowed F ′ then Nt else Nf) and
F ′ 6⊆ W (T (mj))

∗.]

Here we haveM̄ ′ = Nf . By ALLOW, we have that
Γ `j

F∪dĒe
Nf : sf , τ̄ , wheresf .r � s̄.r, s̄.w � sf .w

andsf .t � s̄.t.

The proof for the casēM = (%x.W) is analogous to the one
for M̄ = ((λx.M̂) V), while the proofs for the cases̄M =
(if ff then Nt else Nf) andM̄ = (V ; M̂) are analogous to
the one forM̄ = (if tt then Nt else Nf), and the ones for
M̄ = (al,θ := V), M̄ = (threadl M̂) is analogous to the
one forM̄ = (ref l,θ V). By Lemma B.4, we can conclude
thatΓ `j

F Ē[M̄ ′] : s′, τ , for somes′ such thats′.r � s.r,
s.w � s′.w ands′.t � s.t.

Now, if Nnk 6= () (Nnk is created), then∃N̂ : M =
Ē[(threadk N̂)] and N̄ = N̂ . By Lemma B.4, we have
Γ `j

F∪dĒe
(threadk N̂) : ŝ, unit in the proof ofΓ `j

F

Ē[(thread N̂)] : s, τ , for someŝ, and τ̂ . By THR, we
haveΓ `k

∅ N̂ : ŝ, unit, whereŝ = 〈⊥, s.w,⊥〉. Therefore,
ŝ.r � s.r, s.w � ŝ.w andŝ.t � s.t.

B.2. Non-disclosure for Networks

We now present the main steps for proving soundness of
the type system of Figure 3 with respect to the notion of
security of Definition 3.4.

B.2.1 Basic Properties

Properties of the Semantics One can prove that the se-
mantics preserves the conditions for well-formedness, and
that a configuration with a single expression has at most one
transition, up to the choice of new names.

The following result states that, if the evaluation of a
threadMmj differs in the context of two distinct states
while not creating two distinct reference names or thread
names, this is because eitherMmj is performing a derefer-
encing operation, which yields different results depending
on the memory, or becauseMmj is testing the allowed pol-
icy.

Lemma B.6 (Splitting Computations).

If we have that W ` 〈{Mmj}, T1, S1〉
Nnk

−−−→
F

〈{M1
′mj}, T ′

1, S
′
1〉 and also thatW ` 〈{Mmj}, T2, S2〉

N ′nk

−−−→
F ′

〈{M2
′mj}, T ′

2, S
′
2〉 with M1

′mj 6= M2
′mj and

dom(T ′
2 − T2) = dom(T ′

1 − T1), dom(S′
2 − S2) =

dom(S′
1 − S1), thenNnk = () = N ′nk and either:

• there existE andal,θ such thatF = dEe = F ′, M =
E[(! al,θ)], andM ′ = E[S1(al,θ)], M ′′ = E[S2(al,θ)]
with 〈T ′

1, S
′
1〉 = 〈T1, S1〉 and〈T ′

2, S
′
2〉 = 〈T2, S2〉, or

• there existE and F̄ such thatF = dEe = F̄ , M =
E[(allowed F ′ then Nt else Nf)], and T1(mj) 6=
T2(mj) with 〈T ′

1, S
′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 =

〈T2, S2〉, or.

Proof. Note that the only rules that depend on the
state are those for the reduction ofE[(! al,θ)] and
of E[(allowed F ′ then Nt else Nf)]. By case analy-

sis on the transitionW ` 〈{Mmj}, T1, S1〉
Nnk

−−−→
F

〈{M1
′mj}, T ′

1, S
′
1〉.

Effects

Lemma B.7 (Update of Effects).

1. If Γ `j
F E[(! nk.ul,θ)] : s, τ thenl � s.r.

2. If Γ `j
F E[(nk.ul,θ := V)] : s, τ , thens.w � l.

3. If Γ `j
F E[(refl,θ V)] : s, τ , thens.w � l.

4. If Γ `j
F E[(goto d)] : s, τ , thens.w � j.

5. If Γ `j
F E[(allowed F then Nt else Nf)] : s, τ , then

j � s.t.

Proof. By induction on the structure ofE.

15

High Expressions We can identify a class of threads that
have the property of never performing any change in the
“low” part of the memory. These are classified as being
“high” according to their behavior6:

Definition B.8 (Operationally High Threads). A setH of
threads is said to be a set ofoperationally(F, l)-high
threadsif the following holds for anyMmj ∈ H:

W ` 〈{Mmj}, T, S〉
Nnk

−−−→
F ′

〈{M ′mj}, T ′, S′〉 implies

〈T, S〉 =F,l 〈T ′, S′〉 and bothM ′mj , Nnk ∈ H

The largest set of operationally(F, l)-high threads is de-
noted byHF,l. We then say that a threadMmj is opera-
tionally (F, l)-high, if Mmj ∈ HF,l.

Remark that for anyF andl there exists a set of opera-
tionally (F, l)-high threads, like for instance{V mj | V ∈
Val}. Furthermore, the union of a family of sets of opera-
tionally (F, l)-high threads is a set of operationally(F, l)-
high threads. Notice that ifF ′ ⊆ F , then any operationally
(F, l)-high thread is also operationally(F ′, l)-high.

Some expressions can be easily classified as “high” by
the type system, which only considers their syntax. These
cannot perform changes to the “low” memory simply be-
cause their code does not contain any instruction that could
perform them. Since the writing effect is intended to be a
lower bound to the level of the references that the expres-
sion can create or assign to, expressions with a high writing
effect can be said to besyntactically high:

Definition B.9 (Syntactically High Expressions). An ex-
pressionM is syntactically (F, l, j)-high if there exists
Γ, A, s, τ such thatΓ `j

F M : s, τ with s.w 6�F l. The ex-
pressionM is asyntactically(F, l, j)-high functionif there
existsΓ, s, τ such thatΓ ` M : τ

s
−−→
F,j

σ with s.w 6�F l.

We can now state that syntactically high expressions
have an operationally high behavior.

Lemma B.10 (High Expressions). If M is a syntactically
(F, l, j)-high expression, thenMmj is an operationally
(F, l)-high thread.

Proof. We show that ifM is syntactically(F, l, j)-high,
that is if there existsΓ, s, τ such that Γ `j

F M : s, τ

with s.w 6�F l, and W ` 〈{Mmj}, T, S〉
Nnk

−−−→
F ′

〈{M ′mj}, T ′, S′〉 thenS′ =F,l S. This is enough since,
by Subject Reduction (Theorem B.5), bothM ′ is syntac-
tically (F, l, j)-high andN is syntactically(F, l, k)-high.

6The notion of “operationally high thread” that we define hereshould
not not be confused with the notion of “high thread”. The former refers to
the security level that is associated with a thread, while the latter refers to
the changes that the thread performs on the state.

We proceed by cases on the proof of the transitionW `

〈{Mmj}, T, S〉
Nnk

−−−→
F ′

〈{M ′mj}, T ′, S′〉. The lemma is triv-

ial in all the cases where〈T, S〉 = 〈T ′, S′〉.

• [M = E[(al̄,θ̄ := V)].] Here S′ = [al̄,θ̄ := V]S

and sos.w � l̄ by Lemma B.7. This implies̄l 6�F l,
henceS′ =F,l S.

• [M = E[(goto d)].] Here T ′ = [mj := d]T and
alsos.w � j by Lemma B.7. This impliesj 6�F l,
henceT ′ =F,l T .

The proof of the caseM = E[(refl,θ V)] is analogous to
the proof forM = E[(al,θ := V)], while the proof for the
caseM = E[(threadl M0)] is analogous to the one for
M = E[(goto d)].

B.2.2 Behavior of “Low”-Terminating Expressions

Recall that, according to the intended meaning of the ter-
mination effect, the termination or non-termination of ex-
pressions with low termination effect should only depend
on the low part of the state. In other words, two computa-
tions of a same thread running under two “low”-equal states
should either both terminate or both diverge. In particular,
this implies that termination-behavior of these expressions
cannot be used to leak “high” information when composed
with other expressions (via termination leaks).

The ability of a thread containing a migrating instruction
to compute depends on whether it is typable with a declas-
sification effect that complies to the allowed flow policy of
the destination site. The following guaranteed-transition re-
sult holds for low-equal states.

Lemma B.11(Guaranteed Transitions). Consider a thread
Mmj that is typable forF . If W ` 〈{Mmj}, T1, S1〉
N

n̄
k̄

−−−→
F

〈{M ′
1
mj}, T ′

1, S
′
1〉 such thatn̄k̄ is fresh for T2 if

n̄k̄ ∈ dom(T ′
1 − T1) and a is fresh for S2 if al,θ ∈

dom(S′
1−S1) and for someF ′ we have〈T1, S1〉 =F∪F ′,low

〈T2, S2〉, then there existM ′
2, T ′

2 and S′
2 such that

W ` 〈{Mmj}, T2, S2〉
N

n̄
k̄

−−−→
F

〈{M ′
2
mj}, T ′

2, S
′
2〉 with

〈T ′
1, S

′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

Proof. By case analysis on the proof ofW `

〈{Mmj}, T1, S1〉
N

n̄
k̄

−−−→
F

〈{M ′
1
mj}, T ′

1, S
′
1〉. In most cases,

this transition does not modify or depend on the state
〈T1, S1〉, and we may letM ′

2 = M ′
1 and 〈T ′

2, S
′
2〉 =

〈T2, S2〉.

• [M = E[(ref l,θ V)].] Here M ′ = E[al,θ],
F = dEe, N n̄k̄ = (), T ′

1 = T1 and S′
1 =

S1 ∪ {al,θ 7→ V }. Since a is fresh for S2,

16

we also have thatW ` 〈{Mmj}, T2, S2〉
N

n̄
k̄

−−−→
F

〈{M ′
1
mj}, T2, S

′
2 ∪ {al,θ 7→ V }〉.

• [M = E[(! al,θ)].] Here M ′ = E[S1(al,θ)],
F = dEe, N n̄k̄ = (), and 〈T ′

1, S
′
1〉 =

〈T1, S1〉. We haveW ` 〈{Mmj}, T2, S2〉
N

n̄
k̄

−−−→
F

〈{E[S2(al,θ)]
mj}, T2, S2〉.

• [M = E[(al,θ := V)].] then M ′ = E[()], F =
dEe, N n̄k̄ = (), T ′

1 = T1 and S′
1 = [al,θ :=

V]S1. We have W ` 〈{Mmj}, T2, S2〉
N

n̄
k̄

−−−→
F

〈{E[()]
mj}, T2, [al,θ := V]S2〉.

• [M = E[(threadk̄ M̄)].] HereM ′ = E[()], F = ∅,
N n̄k̄ = M̄ n̄k̄ , T ′

1 = T1 ∪ {n̄k̄ 7→ T1(mj)}, andS′
1 =

S1. Sincen is fresh forT2, W ` 〈{Mmj}, T2, S2〉
N

n̄
k̄

−−−→
F

〈{E[()]
mj}, T2 ∪ {n̄k̄ 7→ T2(mj)}, S2〉. No-

tice that T1 ∪ {n̄k̄ 7→ T1(mj)} =F∪F ′,low

T2 ∪ {n̄k̄ 7→ T2(mj)}, becauseT1 =F∪F ′,low T2 and
if l �F∪F ′ low , then by the conditionj �F∪F ′ l in
rule THR alsoj �F∪F ′ low , in which caseT1(mj) =
T2(mj).

• [M = E[(goto d′)].] Then M ′ = E[()], F =
∅, N n̄k̄ = (), T ′

1 = [mj := d′]T1 and S′
1 =

S1. This means thatΓ `j

∅ E[()] : s, τ . There-

fore, we also haveW ` 〈{Mmj}, T2, S2〉
N

n̄
k̄

−−−→
F

〈{E[()]mj}, [mj := d′]T2, S2〉.

We aim at proving that any typable threadMmj that has
a low-termination effect always presents the same behav-
ior according to astrongbisimulation on low-equal states:
if two continuationsMmj

1 andM
mj

2 of Mmj are related,
and if M

mj

1 can perform an execution step over a certain
state, thenMmj

2 can perform the same low changes to any
low-equal state in precisely one step, while the two result-
ing continuations are still related. This implies that any two
computations ofMmj under low-equal states should have
the same “length”, and in particular they are either both
finite or both infinite. To this end, we design a reflexive
binary relation on expressions with low-termination effects
that is closed under the transitions of Guaranteed Transi-
tions (Lemma B.11).

The definition ofT j
F,low is given in Figure 5. Notice that

it is a symmetric relation. In order to ensure that expressions
that are related byT j

F,low perform the same changes to the
low memory, its definition requires that the references that
are created or written using (potentially) different values are
high.

Definition B.12 (T j
F,low). We have thatM1 T j

F,low M2 if

Γ `j
F M1 : s1, τ andΓ `j

F M2 : s2, τ for someΓ, A,s1, s2

and τ with s1.t �F low ands2.t �F low and one of the
following holds:

• [Clause 1.]M1 andM2 are both values, or

• [Clause 2.]M1 = M2, or

• [Clause 3.] M1 = (M̄1; N̄) and M2 = (M̄2; N̄)
whereM̄1 T j

F,low M̄2, or

• [Clause 4.]M1 = (ref l,θ M̄1) andM2 = (ref l,θ M̄2)

whereM̄1 T j
F,low M̄2, andl 6�F low, or

• [Clause 5.] M1 = (! M̄1) andM2 = (! M̄2) where
M̄1 T

j
F,low M̄2, or

• [Clause 6.] M1 = (M̄1 := N̄1) and M2 =
(M̄2 := N̄2) with M̄1 T j

F,low M̄2, and N̄1 T j
F,low N̄2,

and M̄1, M̄2 both have typeθ refl for someθ and l
such thatl 6�F low, or

• [Clause 7.] M1 = (flow F ′ in M̄1) and M2 =
(flow F ′ in M̄2) with M̄1 T

j
F∪F ′,low M̄2.

Figure 5. The relation T j
F,low

17

Remark B.13. If for some j, F and low we have
M1 T

j
F,low M2 andM1 ∈ Val, thenM2 ∈ Val.

From the following lemma one can conclude that the re-
lation T

mj

F,low relates the possible outcomes of expressions
that are typable with a low termination effect, and that per-
form a high read over low-equal memories.

Lemma B.14. If there existΓ, s, τ such thatΓ `j
F

E[(! al,θ)] : s, τ with s.t �F low and l 6�F∪dEe low , then
for any valuesV0, V1 ∈ Val such thatΓ ` Vi : θ we have
E[V0] T

j
F,low E[V1].

Proof. By induction on the structure ofE.

• [E[(! al,θ)] = (! al,θ).] We haveV0 T j
F,low V1 by

Clause 1.

• [E[(! al,θ)] = (E1[(! al,θ)] M).] By A PPwe have

Γ `j
F E1[(! al,θ)] : s̄, τ̄

s̄′

−−→
F,j

σ̄ with s̄.r � s.t. By

Lemma B.7, we havel � s̄.r. Thereforel �F s.t,
which contradicts the assumption that boths.t �F low

andl 6�F∪E low hold.

• [E[(! al,θ)] = (V E1[(! al,θ)]).] By rule APP we
haveΓ `j

F E1[(! al,θ)] : s̄′′, τ̄ with s̄′′.r � s.t. By
Lemma B.7, we havel � s̄′′.r. Thereforel �F s.t,
which contradicts the assumption that boths.t �F low

andl 6�F∪E low hold.

• [E[(! al,θ)] = (if E1[(! al,θ)] then Mt else Mf).]
By COND we have thatΓ `j

F E1[(! al,θ)] : s̄, bool

with s̄.r � s.t. By Lemma B.7, we havel � s̄.r.
Thereforel �F s.t, which contradicts the assumption
that boths.t �F low andl 6�F∪E low hold.

• [E[(! al,θ)] = (E1[(! al,θ)]; M).] By SEQ we have
Γ `j

F E1[(! al,θ)] : s̄, τ̄ with s̄.t �F s.t. There-
fore s̄.t �F low , and sincel 6�F∪E low implies
l 6�F∪E1

low , then by induction hypothesis we have
E1[V0] T

j
F,low E1[V1]. By Lemma B.4 and Clause 3

we can conclude.

• [E[(! al,θ)] = (ref l′,θ′ E1[(! al,θ)]).] By rule REF

we have thatΓ `j
F E1[(! al,θ)] : s̄, τ̄ with s̄.r =

s.r �F l′ and s̄.t = s.t. Thereforēs.t �F low , and
sincel 6�F∪E low implies l 6�F∪E1

low , then by in-
duction hypothesis we haveE1[V0] T

j
F,low E1[V1]. By

Lemma B.7 we havel � s.r, sos.r 6�F low . There-
fore, l′ 6�F low , and we conclude by Lemma B.4 and
Clause 4.

• [E[(! al,θ)] = (! E1[al,θ]).] By rule DER we have
Γ `j

F E1[(! al,θ)] : s̄, τ̄ with s̄.t �F s.t. There-
fore s̄.t �F low , and sincel 6�F∪E low im-
plies l 6�F∪E1

low , then by induction hypothesis

E1[V0] T
j

F,low E1[V1]. We conclude by Lemma B.4
and Clause 5.

• [E[(! al,θ)] = (E1[(! al,θ)] := M).] By rule ASS

we have thatΓ `j
F E1[al,θ] : s̄, θ̄ ref l̄,n̄k

with s̄.t �F

s.t and s̄.r �F l̄. Therefores̄.t �F low , and since
l 6�F∪E low implies l 6�F∪E1

low , then by induction
hypothesisE1[V0] T

j
F,low E1[V1]. On the other hand,

by Clause 2 we haveM T j
F,low M . By Lemma B.7

we havel � s̄.r, so l �F l̄. Then, we must have
l̄ 6�F low , since otherwisel �F∪E low . Therefore,
we conclude by Lemma B.4 and Clause 6.

• [E[(! al,θ)] = (V := E1[(! al,θ)]).] By rule ASS

we have thatΓ `j
F V : s̄, θ̄ ref l̄,n̄k

, and Γ `j
F

E1[al,θ] : s̄′, θ with s̄′.t �F s.t and s̄′.r �F l̄.
Therefores̄′.t �F low , and sincel 6�F∪E low im-
plies l 6�F∪E1

low , then by induction hypothesis
E1[V0] T

j
F,low E1[V1]. On the other hand, by Clause 2

we haveV T j
F,low V . By Lemma B.7 we havel � s̄′.r,

so l �F l̄. Then, we must havēl 6�F low , since oth-
erwisel �F∪E low . We then conclude by Lemma B.4
and Clause 6.

• [E[(! al,θ)] = (flow F ′ in E1[(! al,θ)]).] By rule
FLOW we haveΓ `j

F∪F ′ V : s, τ . By induction hy-
pothesisE1[V0] T

j
F∪F ′,low E1[V1], so we conclude by

Lemma B.4 and Clause 7. Therefores̄.t �F low , and
sincel 6�F∪E low implies l 6�F∪E1

low , then by in-
duction hypothesis we haveE1[V0] T

j
F,low E1[V1]. By

Lemma B.4 and Clause 8 we can conclude.

We can now prove thatT mj

F,low behaves as a kind of
“strong bisimulation”:

Proposition B.15 (Strong Bisimulation for Low-Termina-
tion).
If we haveM1 T

mj

F,low M2 and alsoW ` 〈{M1
mj}, T1, S1〉

N
n̄

k̄

−−−→
F ′

〈{M ′
1
mj}, T ′

1, S
′
1〉, with 〈T1, S1〉 =F∪F ′,low 〈T2, S2〉

such thatn is fresh forT2 if n̄k̄ ∈ dom(T ′
1 − T1) and a

is fresh forS2 if al,θ ∈ dom(S′
1 − S1), then there exist

T ′
2, M ′

2 and S′
2 such thatW ` 〈{M2

mj}, T2, S2〉
N

n̄
k̄

−−−→
F ′

〈{M ′
2
mj}, T ′

2, S
′
2〉 with M ′

1 T
mj

F,low M ′
2 and〈T ′

1, S
′
1〉 =F,low

〈T ′
2, S

′
2〉.

Proof. In the following, we use Subject Reduction (Theo-
rem B.5) to guarantee that the termination effect of the ex-
pressions resulting fromM1 andM2 is still low with respect
to low andF . This, as well as typability (with the same
type) formj , low andF , is a requirement for being in the
T

mj

F,low relation.

18

• [Clause 1.] This case is not possible.

• [Clause 2.] HereM1 = M2. By Guaranteed Transi-
tions (Lemma B.11) there existT ′

2, M ′
2 andS′

2 such

that W ` 〈{M
mj

2 }, T2, S2〉
N

n̄
k̄

−−−→
F ′

〈{M
′mj

2 }, T ′
2, S

′
2〉

with 〈T ′
1, S

′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

– [M ′
2

= M ′
1
.] Then we haveM ′

1 T
mj

F,low M ′
2, by

Clause 2 and Subject Reduction (Theorem B.5).

– [M ′
2

6= M ′
1
.] Then by Splitting Computations

(Lemma B.6) (N n̄k̄ = ()) and we have two
possibilities:
(1) there existE and al,θ such thatM ′

1 =
E[S1(al,θ)], F ′ = dEe, M ′

2 = E[S2(al,θ)],
〈T ′

1, S
′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 = 〈T2, S2〉.

Since S1(al,θ) 6= S2(al,θ), we have
l 6�F∪F ′ low . Therefore,M ′

1 T
mj

F,low M ′
2,

by Lemma B.14 above.
(2) there exists E such that M ′

1 =
E[(allowed F ′ then Nt else Nf)], F ′ = dEe,
andT1(mj) 6= T2(mj) with 〈T ′

1, S
′
1〉 = 〈T1, S1〉

and 〈T ′
2, S

′
2〉 = 〈T2, S2〉. Since T1(mj) 6=

T2(mj), we havej 6�F low , and by Lemma B.7
we haves.t 6�F low , which contradicts the
assumption.

• [Clause 3.] HereM1 = (M̄1; N̄) andM2 = (M̄2; N̄)
whereM̄1 T

mj

F,low M̄2. Then either:

– [M̄1 can compute.] In this case we haveM ′
1 =

(M̄ ′
1; N̄) with W ` 〈{M̄

mj

1 }, T1, S1〉
N

n̄
k̄

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use the induction hypoth-

esis, Clause 3 and Subject Reduction (Theorem
B.5) to conclude.

– [M̄1 is a value.] In this caseM ′
1 = N̄ and

F ′ = ∅, N n̄k̄ = () and 〈T ′
1, S

′
1〉 = 〈T1, S1〉.

We haveM̄2 ∈ Val by Remark B.13, hence

W ` 〈{M2
mj}, T2, S2〉

N
n̄

k̄

−−−→
F ′

〈{N̄mj}, T2, S2〉,

and we conclude using Clause 2 and Subject Re-
duction (Theorem B.5).

• [Clause 4.] HereM1 = (ref l,θ M̄1) and M2 =
(refl,θ M̄2) whereM̄1 T

mj

F,low M̄2, and l 6�F low .
There are two cases.

– [M̄1 can compute.] In this case we haveM ′
1 =

(ref l,θ M̄1) with W ` 〈{M̄
mj

1 }, T1, S1〉
N

n̄
k̄

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use the induction hy-

pothesis, Subject Reduction (Theorem B.5) and
Clause 4 to conclude.

– [M̄1 is a value.] In this caseM ′
1 = al,θ, with a

fresh forS1, F ′ = ∅, N n̄k̄ = () and〈T ′
1, S

′
1〉 =

〈T2, S1 ∪ {al,θ 7→ M̄1}〉 (and thereforea is also
fresh forS2). ThenM̄2 ∈ Val by Remark B.13,

and thereforeW ` 〈{M2
mj}, T2, S2〉

N
n̄

k̄

−−−→
F ′

〈{al,θ
mj}, T ′

2, S2 ∪ {al,θ 7→ M̄2}〉. If we let
S′

2 = S2 ∪ {al,θ 7→ M̄2} then〈T ′
1, S

′
1〉 =F,low

〈T ′
2, S

′
2〉 since l 6�F low . We conclude using

Clause 1 and Subject Reduction (Theorem B.5).

• [Clause 5.] HereM1 = (! M̄1) andM2 = (! M̄2)
whereM̄1 T

mj

F,low M̄2. We distinguish two sub-cases.

– [M̄1 can compute.] In this caseW `

〈{M̄
mj

1 }, T1, S1〉
N

n̄
k̄

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We

use the induction hypothesis, Subject Reduction
(Theorem B.5) and Clause 5 to conclude.

– [M̄1 is a value.] ThenM̄1 = al,θ andM ′
1 ∈ Val,

〈T ′
1, S

′
1〉 = 〈T1, S1〉, F ′ = ∅ and N n̄k̄ = ().

By Remark B.13,M̄2 ∈ Val, and sinceM1

and M2 have the same type, it must be a ref-
erenceal′,θ. Then, W ` 〈{M2

mj}, T2, S2〉
N

n̄
k̄

−−−→
F ′

〈{M2
′mj}, T2, S2〉 with M2

′ ∈ Val, and

we conclude using Clause 1 and Subject Reduc-
tion (Theorem B.5).

• [Clause 6.] Here we haveM1 = (M̄1 := N̄1)
and M2 = (M̄2 := N̄2) whereM̄1 T

mj

F,low M̄2 and
N̄1 T

mj

F,low N̄2, andM̄1, M̄2 both have typeθ refl,nk

for someθ andl such thatl 6�F low . We distinguish
three sub-cases.

– [M̄1 can compute.] In this caseW `

〈{M̄
mj

1 }, T1, S1〉
N

n̄
k̄

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We

use the induction hypothesis, Subject Reduction
(Theorem B.5) and Clause 6 to conclude.

– [M̄1 is value, butN̄1 can compute.] In this

case we have thatW ` 〈{N̄
mj

1 }, T1, S1〉
N

n̄
k̄

−−−→
F ′

〈{N̄
′mj

1 }, T ′
1, S

′
1〉. By Remark B.13 alsoM̄2 ∈

Val. We use the induction hypothesis, Subject
Reduction (Theorem B.5) and Clause 6 to con-
clude.

– [M̄1 and M̄1 are values.] ThenM̄1 = al,θ

andM ′
1 = (), 〈T ′

1, S
′
1〉 = 〈T1, {V 7→ M̄1}S1〉,

F ′ = ∅ and N n̄k̄ = (). By Remark B.13,
also M̄2, N̄2 ∈ Val, and sinceM̄1 and M̄2

have the same type,̄M2 must be a reference

al′,θ′ . Then, W ` 〈{M2
mj}, T2, S2〉

N
n̄

k̄

−−−→
F ′

〈{M2
′mj}, T2, {V ′ 7→ M̄2}S2〉 with M̄ ′

2 ∈

19

Val. Since l 6�F low , then we know that
{V 7→ M̄1}S1 =F∪F ′,low {V ′ 7→ M̄2}S2. We
conclude using Clause 1 and Subject Reduction
(Theorem B.5).

• [Clause 7.] Here we haveM1 = (flow F̄ in M̄1) and
M2 = (flow F̄ in M̄2) andM̄1 T

mj

F∪F̄ ,low
M̄2. There

are two cases.

– [M̄1 can compute.] In this caseW `

〈{M̄
mj

1 }, T1, S1〉
N

n̄
k̄

−−−→
F ′′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉 with

F ′ = F̄ ∪F ′′. By induction hypothesis, we have

W ` 〈{M̄
mj

2 }, T2, S2〉
N

n̄
k̄

−−−→
F ′′

〈{M̄
′mj

2 }, T ′
2, S

′
2〉,

and M ′
1 T

mj

F∪F̄ ,low
M ′

2 and 〈T ′
1, S

′
1〉 =F∪F̄ ,low

〈T ′
2, S

′
2〉. Notice that〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉.

We use Subject Reduction (Theorem B.5) and
Clause 7 to conclude.

– [M̄1 is a value.] In this caseM ′
1 = M̄1,

F ′ = ∅, N n̄k̄ = () and 〈T ′
1, S

′
1〉 = 〈T1, S1〉.

ThenM̄2 ∈ Val by Remark B.13, and soW `

〈{M2
mj}, T2, S2〉

N
n̄

k̄

−−−→
F ′

〈{M̄
mj

2 }, T2, S2〉. We

conclude using Clause 1 and Subject Reduction
(Theorem B.5).

We have seen in Remark B.13 that when two expressions
are related byT j

F,low and one of them is a value, then the
other one is also a value. From a semantical point of view,
when an expression has reached a value it means that it has
successfully completed its computation. We will now see
that when two expressions are related byT j

F,low and one
of them is unable toresolveinto a value, in any sequence
of unrelated computation steps, then the other one is also
unable to do so. We shall use the notion ofderivative of an
expressionM :

Definition B.16 (Derivative of an Expression). We say that
an expressionM ′ is a derivativeof an expressionM if and
only if

• M ′ = M , or

• there exist two states〈T1, S1〉 and 〈T ′
1, S

′
1〉 and a

derivativeM ′′ of M such that, for someW , F , Nnk :

W ` 〈M ′′, T1, S1〉
Nnk

−−−→
F

〈M ′, T ′
1, S

′
1〉

Definition B.17 (Non-resolvable Expressions). We say that
an expressionM is non-resolvable, denotedM†, if there is
no derivativeM ′ of M such thatM ′ ∈ Val.

Lemma B.18. If for someF , low and j we have that
M T j

F,low N andM†, thenN†.

Proof. Let us suppose that¬N†. That means that there ex-
ists a finite number of states〈T1, S1〉, . . . , 〈Tn, Sn〉, and
〈T ′

1, S
′
1〉, . . . ,〈T ′

n, S′
n〉 and of expressionsN1, . . . ,Nn such

that

W ` 〈{N}, T1, S1〉 −→ 〈{N1}, T ′
1, S

′
1〉 and

W ` 〈{N1}, T2, S2〉 −→ 〈{N2}, T
′
2, S

′
2〉 and

...
W ` 〈{Nn−1}, Tn, Sn〉 −→ 〈{Nn}, T ′

n, S′
n〉

and such thatNn ∈ Val. By Strong Bisimulation for Low-
Terminating Threads (Proposition B.15), we have that there
exists a finite number of states〈T̄ ′

1, S̄
′
1〉, . . . , 〈T̄ ′

n, S̄′
n〉 and

of expressionsM̄1, . . . ,M̄n such that

W ` 〈{M}, T1, S1〉 −→ 〈{M1}, T̄
′
1, S̄

′
1〉 and

W ` 〈{M1}, T2, S2〉 −→ 〈{M2}, T̄ ′
2, S̄

′
2〉 and

...
W ` 〈{Mn−1}, Tn, Sn〉 −→ 〈{Mn}, T̄ ′

n, S̄′
n〉

such that:

M1 T j
F,low N̄1, and . . . , andMn T j

F,low N̄n

By Remark B.13, we then have thatMn ∈ Val. SinceMn

is a derivative ofM , we conclude that¬M†.

The following lemma deduces operational “highness” of
threads from that of its subexpressions.

Lemma B.19(Composition of High Expressions). Suppose
thatMmj is typable inF . Then:

1. If M = (M1 M2) and M1 is a syntactically
(F, low , j)-high function and either

• M1† andM1
mj ∈ HF,low , or

• M1
mj , M2

mj ∈ HF,low ,

thenMmj ∈ HF,low .

2. If M = (if M1 then Mt else Mf) and
M1

mj , Mt
mj , Mf

mj ∈ HF,low , thenMmj ∈ HF,low .

3. If M = (ref l,θ M1) and l 6�F low and M1
mj ∈

HF,low , thenMmj ∈ HF,low .

4. If M = (M1; M2) and either

• M1† andM1
mj ∈ HF,low , or

• M1
mj , M2

mj ∈ HF,low ,

thenMmj ∈ HF,low .

5. If M = (M1 := M2) andM1 has typeθ refl,nk
with

l 6�F low and either

20

• M1† andM1
mj ∈ HF,low , or

• M1
mj , M2

mj ∈ HF,low ,

thenMmj ∈ HF,low .

6. If M = (flow F in M1) and M1
mj ∈ HF,low , then

Mmj ∈ HF,low .

7. If M = (allowed F then Mt else Mf) and
Mt

mj , Mf
mj ∈ HF,low , thenMmj ∈ HF,low .

Proof. We give the proof for the case whereM = (M1 M2)
and M1 is a syntactically(F, low , j)-high function. The
other cases are analogous or simpler.

• [M1† and M1

mj ∈ HF,low .] Let F be a set
of threads that includesHF,low , and that contains
the threads(M1 M2)

mj provided that they are ty-
pable in F , and satisfyM1 /∈ Val and M

mj

1 ∈
F and M1 is a (F, low , j)-high function. Assume
that an applicationM = (M1 M2) such thatM1†
and M1

mj ∈ HF,low performs the transitionW `

〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉. We show that

this impliesM ′mj , Nnk ∈ F and 〈T ′, S′〉 =F,low

〈T ′, S′〉.

SinceM1 is non-resolvable,M1 cannot be a value,
and sinceM can compute, then alsoM1 can com-
pute. We then haveM ′ = (M ′

1 M2) with W `

〈M1
mj , T, S〉

Nnk

−−−→
F ′

〈M ′
1
mj , T ′, S′〉. SinceM1

mj

∈ HF,low , then alsoM
′mj

1 , Nnk ∈ HF,low , thus
M

′mj

1 , Nnk ∈ F , and〈T ′, S′〉 =F,low 〈T ′, S′〉. By
Subject Reduction (Theorem B.5),M ′

1 is a (F, low)-
high function, and sinceM1† thenM ′

1 /∈ Val. Hence
M ′mj ∈ F .

• [M1

mj , M2

mj ∈ HF,low .] Let F be a set of
pools of threads that includesHF,low , and that con-
tains threads(M1 M2)

mj provided they are typable
in F and satisfyM

mj

1 , M
mj

2 ∈ F and M1 is a
(F, low , j)-high function. Assume that such an appli-
cationM = (M1 M2) performs the transitionW `

〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉. We show that

this impliesM ′mj , Nnk ∈ F and 〈T ′, S′〉 =F,low

〈T ′, S′〉.

– [M1 andM2 are values.] ThenM1 = (λx.M̄1),
M ′ = {x 7→ M2}M̄1 andN ′ = (), 〈T ′, S′〉 =
〈T, S〉. SinceM1 is a (F, low , j)-high function,
then by ABS M̄1 is syntactically (F, low , j)-
high, and by Substitution (Lemma B.3), also
M ′ is syntactically(F, low , j)-high. Therefore,
by High Expressions (Lemma B.10),M ′mj ∈
HF,low .

– [M1 can compute.] ThenM ′ = (M ′
1 M2) with

W ` 〈M1
mj , T, S〉

Nnk

−−−→
F ′

〈M ′
1
mj , T ′, S′〉. Since

M1
mj ∈ HF,low , then alsoM ′mj

1 , Nnk ∈ F and
〈T ′, S′〉 =F,low 〈T ′, S′〉. By Subject Reduction
(Theorem B.5)M ′

1 is a (F, low)-high function.
HenceM ′ ∈ F .

– [M1 is a value butM2 can compute.] Then we
haveM ′ = (M1 M ′

2) with W ` 〈M2
mj , T, S〉

Nnk

−−−→
F ′

〈M ′
2
mj , T ′, S′〉. Since M2

mj , Nnk ∈

HF,low , then also M
′mj

2 , Nnk ∈ F and
〈T ′, S′〉 =F,low 〈T ′, S′〉. HenceM ′ ∈ F .

Lemma B.20. If for some j, F and low we have that
M1 T

j
F,low M2 andM1 ∈ HF,low , thenM2 ∈ HF,low .

Proof. By induction on the definition ofM1 T j
F,low M2.

• [Clause 1.] Direct.

• [Clause 2.] Direct.

• [Clause 3.] HereM1 = (M̄1; N̄) and M2 =
(M̄2; N̄) with M̄1 T j

F,low M̄2. Clearly we have that
M̄1 ∈ HF,low , so by induction hypothesis, alsōM2 ∈
HF,low . We distinguish two sub-cases:

– [N̄ ∈ HF,low .] Then, M̄2, N̄ ∈ HF,low .
Therefore, by Composition of High Expressions
(Lemma B.19) we have thatM2 ∈ HF,low .

– [N̄ /∈ HF,low .] ThenM̄1†, and by Lemma B.18
alsoM̄2†. Therefore, by Composition of High
Expressions (Lemma B.19) we have thatM2 ∈
HF,low .

• [Clause 4.] HereM1 = (ref l,θ M̄1) and M2 =

(refl,θ M̄2) whereM̄1 T j
F,low M̄2, and l 6�F low .

Clearly we have thatM̄1 ∈ HF,low , so by induction
hypothesis alsoM̄2 ∈ HF,low . Therefore, by Compo-
sition of High Expressions (Lemma B.19) we have that
M2 ∈ HF,low .

• [Clause 5.] HereM1 = (! M̄1) andM2 = (! M̄2)
whereM̄1 T j

F,low M̄2. Clearly we have thatM̄1 ∈

HF,low , so by induction hypothesis alsōM2 ∈ HF,low .
This implies thatM̄2 ∈ HF,low .

• [Clause 6.] Here we haveM1 = (M̄1 := N̄1)
and M2 = (M̄2 := N̄2) whereM̄1 T j

F,low M̄2, and
M̄1, M̄2 both have typeθ refl for someθ and l such
that l 6�F low , andN̄1 T j

F,low N̄2. Clearly we have
that M̄1 ∈ HF,low , so by induction hypothesis also
M̄2 ∈ HF,low . We distinguish two sub-cases:

21

– [N̄2 ∈ HF,low .] Then, M̄2, N̄2 ∈ HF,low

whereM̄2 has typeθ refl,nk
for someθ and l

such thatl 6�F low . Therefore, by Composition
of High Expressions (Lemma B.19) we have that
M2 ∈ HF,low .

– [N̄2 /∈ HF,low .] Then M̄1†, and by
Lemma B.18 alsoM̄2†. Therefore, since
M̄2 has typeθ refl,nk

for someθ andl such that
l 6�F low , by Composition of High Expressions
(Lemma B.19) we have thatM2 ∈ HF,low .

• [Clause 7.] Here we haveM1 = (flow F ′ in M̄1)
andM2 = (flow F ′ in M̄2) with M̄1 T j

F∪F ′,low M̄2.
Clearly we have thatM̄1 ∈ HF,low , so by induction
hypothesis alsoM̄2 ∈ HF,low . Therefore, by Compo-
sition of High Expressions (Lemma B.19) we have that
M2 ∈ HF,low .

B.2.3 Behavior of Typable Low Expressions

In this second phase of the proof, we consider the general
case of threads that are typable with any termination level.
As in the previous sub-subsection, we show that a typable
expression behaves as a strong bisimulation, provided that
it is operationally low. For this purpose, we make use of the
properties identified for the class of low-terminating expres-
sions by allowing only these to be followed by low-writes.
Conversely, high-terminating expressions can only be fol-
lowed by high-expressions (see Definitions B.8 and B.9).

Lemma B.21 (High Threads might Split). Consider
a thread Mmj for which there existΓ, F , s and
τ such that Γ `j

F M : s, τ and suppose thatM =
E[(allowed F ′ then Nt else Nf)] with j 6�F low . Then
Mmj ∈ HF,low .

Proof. By induction on the structure ofE, using
Lemma B.7 and Lemma B.10 and Lemma B.7. Consider
M = E[M0], whereM0 = (allowed F ′ then Nt else Nf).

• [E[M0] = M0.] Then, using rule ALLOW, we
have thatΓ `j

F (allowed F ′ then Nt else Nf) : s, τ

where Γ `j
F Nt : st, τ , Γ `j

F Nf : sf , τ and
j �F st.w, sf .w. This meansst.w, sf .w 6�F low ,
so by Lemma B.10, thenNt

mj , Nf
mj ∈ HF,low .

By Composition of High Expressions (Lemma B.19),
Mmj ∈ HF,low .

• [E[M0] = (E1[M0] M1).] Then by rule APP we

have thatΓ `j
F E1[M0] : s1, τ1

s′

1−−→
F,j

σ1 andΓ `j
F

M1 : s′′1 , τ1 with s1.r �F s′1.w ands1.r �F s′′1 .w.
By Lemma B.7 we havej � s1.t, which implies that

j �F s1.t and s1.t 6�F low . Therefore,E1[M0]
is a syntactically(F, low , j)-high function andM1 is
(F, low , j)-high. By High Expressions (Lemma B.10)
we haveM1

mj ∈ HF,low . By induction hypothesis
E1[M0]

mj ∈ HF,low . Then, by Composition of High
Expressions (Lemma B.19),Mmj ∈ HF,low .

• [E[M0] = (V E1[M0]).] Then by APP we have

Γ `j
F V : s1, τ1

s′

1−−→
F,j

σ1 andΓ `j
F E1[M0] : s′′1 , τ1

with s′′1 .t �F s′1.w ands′1.t �F s′′1 .w. By Lemma B.7
we havej � s′′1 .t, which implies thatj �F s′′1 .t
and s′′1 .t 6�F low , and sos′1.w 6�F low . There-
fore, s′1.w 6�F low , ands′′1 .w 6�F low , which means
thatV is a syntactically(F, low , j)-high function and
E1[M0] is (F, low , j)-high. By induction hypothesis
E1[M0]

mj ∈ HF,low . Then, by Composition of High
Expressions (Lemma B.19),Mmj ∈ HF,low .

• [E[M0] = (if E1[M0] then Mt else Mf).] Then
by rule COND we have thatΓ `j

F E1[M0] : s1, bool,
andΓ `j

F Mt : s′1, τ1 andΓ `j
F Mf : s′′1 , τ1 with

s1.t �F s′1.w, s′1.w. By Lemma B.7 we havej � s1.t,
which implies thatj �F s1.t and s1.t 6�F low .
Therefore,s′1.w, s′1.w 6�F low , so by High Expres-
sions (Lemma B.10) we haveMt

mj , Mt
mj ∈ HF,low .

By induction hypothesisE1[M0]
mj ∈ HF,low . Then,

by Composition of High Expressions (Lemma B.19),
Mmj ∈ HF,low .

• [E[M0] = (E1[M0]; M1).] Then by SEQ we have
that Γ `j

F E1[M0] : s1, τ1 andΓ `j
F M1 : s′1, τ

′
1

with s1.t �F s′1.w. By Lemma B.7 we havej � s1.t,
which implies thatj �F s1.t ands1.t 6�F low . There-
fore,s′1.w 6�F low , and by High Expressions (Lemma
B.10) we haveM1

mj ∈ HF,low . By induction hypoth-
esisE1[M0]

mj ∈ HF,low . Then, by Composition of
High Expressions (Lemma B.19),Mmj ∈ HF,low .

• [E[M0] = (ref l,θ E1[M0]).] Then by REF we have
that Γ `j

F E1[M0] : s1, θ with s1.t �F l. By
Lemma B.7 we havej � s1.t, which implies that
j �F s1.t ands1.t 6�F low . Therefore,l 6�F low , and
by induction hypothesisE1[M0]

mj ∈ HF,low . Then,
by Composition of High Expressions (Lemma B.19),
Mmj ∈ HF,low .

• [E[M0] = (! E1[M0]).] Easy, by induction hypoth-
esis.

• [E[M0] = (E1[M0] := M1).] Then by ASS we
have thatΓ `j

F E1[M0] : s1, θ ref l̄ and Γ `j
F

M1 : s′1, τ1 with s1.t �F s′1.w ands1.t �F l̄. By
Lemma B.7 we havej � s1.t, which implies that
j �F s1.t ands1.t 6�F low . Therefore,̄l 6�F low and

22

s′1.w 6�F low . Hence, by High Expressions (Lemma
B.10) we haveM1

mj ∈ HF,low . By induction hypoth-
esisE1[M0]

mj ∈ HF,low . Then, by Composition of
High Expressions (Lemma B.19),Mmj ∈ HF,low .

• [E[M0] = (V := E1[M0]).] Then by ASSwe have
Γ `j

F V : s1, θ ref l̄,nk̄
andΓ `j

F E1[M0] : s′1, τ1 with
s′1.t �F l̄. By Lemma B.7 we havej � s′1.t, which
implies thatj �F s′1.t ands′1.t 6�F low . Therefore,
l̄ 6�F low , and by induction hypothesisE1[M0]

mj ∈
HF,low . Then, by Composition of High Expressions
(Lemma B.19),Mmj ∈ HF,low .

• [E[M0] = (flow F ′ in E1[M0]).] Then by
rule FLOW we haveΓ `j

F∪F ′ E1[M0] : s1, τ1. By
induction hypothesisE1[M0]

mj ∈ HF∪F ′,low , which
impliesE1[M0]

mj ∈ HF,low . Then, by Composition
of High Expressions (Lemma B.19), we conclude that
Mmj ∈ HF,low .

• [E[M0] = (flow E1[M0] in M1).] Then by FLOW

we have thatΓ `j
F E1[M0] : s1, flowF̄ andΓ `j

F∪F̄

M1 : s′1, τ1 with s1.t �F s′1.w. By Lemma B.7
we havej � s1.t, which implies thatj �F s1.t
ands1.t 6�F low . Therefore,s′1.w 6�F low , and by
High Expressions (Lemma B.10) we haveM1

mj ∈
HF∪F̄ ,low . By induction hypothesisE1[M0]

mj ∈
HF,low . Then, by Composition of High Expressions
(Lemma B.19),Mmj ∈ HF,low .

We now design a binary relation on expressions that uses
T j

F,low to ensure that high-terminating expressions are al-
ways followed by operationally high ones. The definition
of Rj

G,F,low , abbreviatedRj
F,low when the global flow pol-

icy is G, is given in Figure 6. The flow policyF is assumed
to containG. Notice that it is a symmetric relation. In order
to ensure that expressions that are related byRj

F,low per-
form the same changes to the low memory, its definition
requires that the references that are created or written using
(potentially) different values are high, and that the body of
the functions that are applied are syntactically high.

Remark B.23. If M1 T
j

F,low M2, thenM1 R
j
F,low M2.

The above remark is used to prove the following lemma.

Lemma B.24. If for some j, F and low we have that
M1 R

j
F,low M2 andM1 ∈ HF,low , thenM2 ∈ HF,low .

Proof. By induction on the definition ofM1 Rj
F,low M2,

using Lemma B.20.

We have seen in Splitting Computations (Lemma B.6)
that two computations of the same expression can split only

Definition B.22 (Rj
F,low). We have thatM1 Rj

F,low M2 if

Γ `j
F M1 : s1, τ and Γ `j

F M2 : s2, τ for someΓ, s1, s2

andτ and one of the following holds:

• [Clause 1’.] M1
mj , M2

mj ∈ HF,low , or

• [Clause 2’.] M1 = M2, or

• [Clause 3’.] M1 = (if M̄1 then N̄t else N̄f) and
M2 = (if M̄2 then N̄t else N̄f) with M̄1 Rj

F,low M̄2,

andN̄t
mj , M̄f

mj ∈ HF,low , or

• [Clause 4’.] M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2)
with M̄1 Rj

F,low M̄2, andN̄
mj

1 , N̄
mj

2 ∈ HF,low , and
M̄1, M̄2 are syntactically(F, low , j)-high functions,
or

• [Clause 5’.] M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2)
with M̄1 T j

F,low M̄2, andN̄1 Rj
F,low N̄2, andM̄1, M̄2

are syntactically(F, low , j)-high functions, or

• [Clause 6’.] M1 = (M̄1; N̄) andM2 = (M̄2; N̄) with
M̄1 R

j
F,low M̄2, andN̄mj ∈ HF,low , or

• [Clause 7’.] M1 = (M̄1; N̄) andM2 = (M̄2; N̄) with
M̄1 T

j
F,low M̄2, or

• [Clause 8’.] M1 = (refl,θ M̄1) andM2 = (ref l,θ M̄2)

with M̄1 R
j
F,low M̄2, andl 6�F low , or

• [Clause 9’.] M1 = (! M̄1) and M2 = (! M̄2) with
M̄1 R

j
F,low M̄2, or

• [Clause 10’.] M1 = (M̄1 := N̄1) and M2 =
(M̄2 := N̄2) with M̄1 Rj

F,low M̄2, andN̄
mj

1 , N̄
mj

2 ∈

HF,low , andM̄1, M̄2 both have typeθ refl,nk
for some

θ andl such thatl 6�F low , or

• [Clause 11’.] M1 = (M̄1 := N̄1) and M2 =
(M̄2 := N̄2) with M̄1 T j

F,low M̄2, andN̄1 Rj
F,low N̄2,

andM̄1, M̄2 both have typeθ ref l,nk
for someθ andl

such thatl 6�F low , or

• [Clause 12’.] M1 = (flow F ′ in M̄1) and M2 =
(flow F ′ in M̄2) with M̄1 R

j
F∪F ′,low M̄2.

Figure 6. The relation Rj
F,low

23

if the expression is about to read a reference that is given
different values by the memories in which they compute.
In Lemma B.25 we saw that the relationT j

F,low relates the
possible outcomes of expressions that are typable with a low
termination effect. Finally, from the following lemma one
can conclude that the above relationRj

F,low relates the pos-
sible outcomes of typable expressions in general.

Lemma B.25. If there existΓ, A, s, τ such thatΓ `j
F

E[(! al,θ)] : s, τ with l 6�F∪dEe low , then for any val-
ues V0, V1 ∈ Val such that Γ ` Vi : θ we have
E[V0] R

j
F,low E[V1].

Proof. By induction on the structure ofE using
Lemma B.4, Lemma B.14, Lemma B.10.

• [E[(! al,θ)] = (! al,θ).] We haveV0 Rj
F,low V1 by

Clause 1’.

• [E[(! al,θ)] = (E1[(! al,θ)] M).] By rule APP we

haveΓ `j
F E1[(! al,θ)] : s̄, τ̄

s̄′

−−→
F,j

σ̄ andΓ `j
F M :

s̄′′, τ̄ with s̄.r �F s̄′.w and s̄.t �F s̄′′.w. By
Lemma B.7, we havel � s̄.r. Thereforel �F s̄′.w.
Since by hypothesisl 6�F∪dE1e low (thereforel 6�F

low), thens̄′.w 6�F low , that isE1[(! al,θ)] is a syn-
tactically (F, low , j)-high function. By Lemma B.4,
the same holds forE1[V0] andE1[V1]. By induction
hypothesis we conclude thatE1[V0] R

j
F,low E1[V1].

– [s̄.t 6�F low .] Then s̄′′.w 6�F low (and also
s̄′′.w 6� low) so by High Expressions (Lemma
B.10) we haveMmj ∈ HF,low . Therefore, we
concludeE[V0] R

j
F,low E[V1] by Clause 4’ and

Lemma B.4.

– [s̄.t �F low .] Then by Lemma B.14 we have
E1[V0] T

j
F,low E1[V1]. SinceM Rj

F,low M by

Clause 2’, we conclude thatE[V0] R
j
F,low E[V1]

by Clause 5’ and Lemma B.4.

• [E[(! al,θ)] = (V E1[(! al,θ)]).] By rule APP we

have thatΓ `j
F V : s̄, τ̄

s̄′

−−→
F,j

σ̄ andΓ `j
F E1[(! al,θ)] :

s̄′′, τ̄ with s̄′′.r �F s̄′.w. By Lemma B.7, we have
l � s̄′′.r, and sol �F s̄′.w. Since by hypothesis
l 6�F∪dE1e low (thereforel 6�F low), thens̄′.w 6�F

low , that isV is a syntactically(F, low , j)-high func-
tion. By Clause 1 we haveV T j

F,low V . By induc-

tion hypothesisE1[V0] R
j
F,low E1[V1]. Therefore we

conclude thatE[V0] R
j
F,low E[V1] by Clause 5’ and

Lemma B.4.

• [E[(! al,θ)] = (if E1[(! al,θ)] then Mt else Mf).]
By COND we have thatΓ `j

F E1[(! al,θ)] : s̄, bool,
and Γ `j

F Mt : s̄t, τ̄ and Γ `j
F Mf : s̄f , τ̄ with

s̄.r �F s̄t.w, s̄f .w. By Lemma B.7, we have
l � s̄.r and sol �F s̄t.w, s̄f .w. Since by hypoth-
esis l 6�F∪dE1e low (therefore l 6�F low), then
s̄t.w 6�F low and s̄f .w 6�F low . This implies that
Mt

mj , Mf
mj ∈ HF,low . By induction hypothesis

E1[V0] R
j
F,low E1[V1]. Therefore we conclude that

E[V0] R
j
F,low E[V1] by Clause 3’ and Lemma B.4.

• [E[(! al,θ)] = (E1[(! al,θ)]; M).] By SEQ we have
Γ `j

F E1[(! al,θ)] : s̄, τ̄ andΓ `j
F M : s̄′, τ̄ ′ with

s̄.t �F s̄′.w.

– [s̄.t 6�F low .] Then s̄′.w 6�F low so by High
Expressions (Lemma B.10) we haveMmj ∈
HF,low . By induction hypothesisE1[V0] R

j
F,low

E1[V1]. Then,E[V0] R
j
F,low E[V1] by Clause 6’

and Lemma B.4.

– [s̄.t �F low .] Then by Lemma B.14 we have
E1[V0] T

j
F,low E1[V1]. Therefore, we conclude

using Clause 7’ and Lemma B.4.

• [E[(! al,θ)] = (ref l̄,θ̄ E1[(! al,θ)]).] By REF we

haveΓ `j
F E1[(! al,θ)] : s̄, τ̄ with s̄.r = s.r �F l̄

and s̄.t = s.t. Therefore, sincel 6�F∪E low im-
plies l 6�F∪E1

low , then by induction hypothesis we
haveE1[V0] R

j
F,low E1[V1]. By Lemma B.7 we have

l � s.r, sos.r 6�F low . Therefore,̄l 6�F low , and we
conclude by Lemma B.4 and Clause 8’.

• [E[(! al,θ)] = (! E1[(! al,θ)]).] By rule DER we
haveΓ `j

F E1[(! al,θ)] : s̄, τ̄ . By induction hypothe-
sisE1[V0] T

j
F,low E1[V1]. We conclude by Lemma B.4

and Clause 9’.

• [E[(! al,θ)] = (E1[(! al,θ)] := M).] By rule ASS

we have thatΓ `j
F E1[al,θ] : s̄, θ̄ ref l̄,n̄k

with s̄.r �F l̄
ands̄.t �F s̄′.w. By Lemma B.7 we havel � s.r, so
s.r 6�F low and sōl 6�F low .

– [s̄.t 6�F low .] Then s̄′.w 6�F low so by High
Expressions (Lemma B.10) we haveMmj ∈
HF,low . By induction hypothesisE1[V0] R

j
F,low

E1[V1]. Then,E[V0] R
j
F,low E[V1] by Clause 10’

and Lemma B.4.

– [s̄.t �F low .] Then by Lemma B.14 we have
E1[V0] T

j
F,low E1[V1]. Therefore, we conclude

using Lemma B.4, Clause 11’ and Clause 2’ (re-
gardingM).

• [E[(! al,θ)] = (V := E1[(! al,θ)]).] By rule ASS

we have thatΓ `j
F V : s̄, θ̄ ref l̄,n̄k

, Γ `j
F E1[al,θ] :

s̄′, θ with s̄′.r �F l̄. By Lemma B.7 we havel �
s̄′.r, so l �F l̄. Then, we must havēl 6�F low ,

24

since otherwisel �F∪E low . By Clause 1 we have
thatV T j

F,low V , and by induction hypothesisE1[V0]

Rj
F,low E1[V1]. We then conclude by Lemma B.4 and

Clause 11’.

• [E[(! al,θ)] = (flow F ′ in E1[(! al,θ)]).] By rule
FLOW we haveΓ `j

F∪F ′ V : s, τ . By induction hy-
pothesisE1[V0] T

j
F∪F ′,low E1[V1], so we conclude by

Lemma B.4 and Clause 12’.

We now state a crucial result of the paper: the relation
Rj

F,low is a sort of “strong bisimulation”.

Proposition B.26 (Strong Bisimulation for Typable Low
Threads).
If M1 Rj

F,low M2 and M1 /∈ HF,low and W `

〈{M1
mj}, T1, S1〉

Nnk

−−−→
F ′

〈{M ′
1
mj}, T ′

1, S
′
1〉, with 〈T1, S1〉

=F∪F ′,low 〈T2, S2〉 such that n is fresh for T2 if
n ∈ dom(T ′

1 − T1) and a is fresh for S2 if al,θ ∈
dom(S′

1 − S1), then there existT ′
2, M ′

2 and S′
2 such that

W ` 〈{M2
mj}, T2, S2〉

Nnk

−−−→
F ′

〈{M ′
2
mj}, T ′

2, S
′
2〉 with

M ′
1 R

j
F,low M ′

2 and〈T ′
1, S

′
1〉 =F,low 〈T ′

2, S
′
2〉.

Proof. We use Subject Reduction (Theorem B.5) to guar-
antee typability (with the same type) formj , low andF ,
which is a requirement for being in theRj

F,low relation.
We also use the Strong Bisimulation for Low Terminating
Threads Lemma (Lemma B.15).

• [Clause 1’.] This case is excluded by assumption.

• [Clause 2’.] HereM1 = M2. By Guaranteed Tran-
sitions (Lemma B.11) there existT ′

2, M ′
2 andS′

2 such

that W ` 〈{M
mj

2 }, T2, S2〉
Nnk

−−−→
F ′

〈{M
′mj

2 }, T ′
2, S

′
2〉

with 〈T ′
1, S

′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

– [M ′
2

= M ′
1
.] Then we haveM ′

1 R
j
F,low M ′

2, by
Clause 2’ and Subject Reduction (Theorem B.5).

– [M ′
2

6= M ′
1
.] Then by Splitting Computations

(Lemma B.6) we have that (Nnk = ()) and we
have two possibilities:
(1) there existsE andal,θ such thatF ′ = dEe,
M ′

1 = E[S1(al,θ)], M ′
2 = E[S2(al,θ)],

〈T ′
1, S

′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 = 〈T2, S2〉.

Since S1(al,θ) 6= S2(al,θ), we have
l 6�F∪F ′ low . Therefore,M ′

1 Rj
F,low M ′

2,
by Lemma B.25 above.
(2) there exists E such that M ′

1 =
E[(allowed F ′ then Nt else Nf)], F ′ = dEe,
and T1(mj) 6= T2(mj) with 〈T ′

1, S
′
1〉 =

〈T1, S1〉 and 〈T ′
2, S

′
2〉 = 〈T2, S2〉. Since

T1(mj) 6= T2(mj), we havej 6�F low , and by
Lemma B.21M1 ∈ HF,low , which contradicts
our assumption.

• [Clause 3’.] Here we have M1 =
(if M̄1 then M̄t else M̄f) and M2 =

(if M̄2 then M̄t else M̄f) with M̄1 Rj
F,low M̄2

and M̄
mj

t , M̄
mj

f ∈ HF,low . We can assume that
M̄

mj

1 /∈ HF,low , since otherwiseMmj

1 ∈ HF,low

by Composition of High Expressions (Lemma B.19).
Therefore, M ′

1 = (if M̄ ′
1 then M̄t else M̄f) with

W ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We

use the induction hypothesis, Clause 3’ and Subject
Reduction (Theorem B.5) to conclude.

• [Clause 4’.] HereM1 = (M̄1 N̄1) and M2 =
(M̄2 N̄2) with M̄1 R

j
F,low M̄2, M̄1 andM̄2 are syntac-

tically (F, low , j)-high functions, andN̄mj

1 , N̄
mj

2 ∈
HF,low . We can assume that̄M1 can compute,
since otherwiseMmj

1 ∈ HF,low by Composition
of High Expressions (Lemma B.19). Therefore,

M ′
1 = (M̄ ′

1 N̄1) with W ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use the induction hypothesis,

Clause 4’ and Subject Reduction (Theorem B.5) to
conclude.

• [Clause 5’.] HereM1 = (M̄1 N̄1) and M2 =
(M̄2 N̄2) with M̄1 T

j
F,low M̄2, M̄1 andM̄2 are syntac-

tically (F, low , j)-high functions, and̄N1 Rj
F,low N̄2.

We distinguish two sub-cases:

– [M̄1 can compute.] In this case there existsM̄ ′
1

performing the transitionW ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use Lemma B.15,

Subject Reduction (Theorem B.5) and Clause 5’
to conclude.

– [M̄1 is a value.] Then by Remark B.13,̄M2 ∈
Val. We can assume that̄N

mj

1 , N̄
mj

2 /∈ HF,low ,
since otherwiseMmj

1 ∈ HF,low by Composi-
tion of High Expressions (Lemma B.19). Then,
N̄1 can compute, and so there existN̄ ′

1 such that

W ` 〈{N̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{N̄
′mj

1 }, T ′
1, S

′
1〉

with M ′
1 = (M̄1 N̄ ′

1). We use the induction hy-
pothesis, Clause 5’ and Subject Reduction (The-
orem B.5) to conclude.

• [Clause 6’.] HereM1 = (M̄1; N̄) andM2 = (M̄2; N̄)
whereM̄1 Rj

F,low M̄2 andN̄mj ∈ HF,low . We can
assume that̄Mmj

1 /∈ HF,low , since otherwiseMmj

1 ∈
HF,low by Composition of High Expressions (Lemma
B.19). Therefore, we haveM ′

1 = (M̄ ′
1; N̄) with W `

25

〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use the

induction hypothesis, Clause 6’ and Subject Reduction
(Theorem B.5) to conclude.

• [Clause 7’.] HereM1 = (M̄1; N̄) andM2 = (M̄2; N̄)
with M̄1 T j

F,low M̄2. We distinguish two sub-cases:

– [M̄1 can compute.] In this case there existsM̄ ′
1

performing the transitionW ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use Lemma B.15,

Subject Reduction (Theorem B.5) and Clause 7’
to conclude.

– [M̄1 is a value.] ThenM ′
1 = N̄ , F = ∅,

Nnk = () and 〈T ′
1, S

′
1〉 = 〈T1, S1〉. By Re-

mark B.13,M̄2 ∈ Val. Then, we haveW `

〈{M
mj

2 }, T1, S1〉
Nnk

−−−→
F ′

〈{N̄mj}, T ′
1, S

′
1〉. We

conclude using Lemma B.15 and Clause 2’.

• [Clause 8’.] HereM1 = (ref l,θ M̄1) and M2 =

(refl,θ M̄2) whereM̄1 Rj
F,low M̄2, and l 6�F low .

We can assume that̄Mmj

1 /∈ HF,low , since other-
wise M

mj

1 ∈ HF,low by Composition of High Ex-
pressions (Lemma B.19). Then,̄M1 can compute, and

M ′
1 = (refl,θ M̄1) with W ` 〈{M̄

mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We use the induction hypothesis,

Subject Reduction (Theorem B.5) and Clause 8’ to
conclude.

• [Clause 9’.] HereM1 = (! M̄1) andM2 = (! M̄2)
whereM̄1 Rj

F,low M̄2. We know thatM̄1 can com-
pute, since otherwiseM1

mj ∈ HF,low . Then, we have

W ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We

use the induction hypothesis, Subject Reduction (The-
orem B.5) and Clause 9’ to conclude.

• [Clause 10’.] Here we haveM1 = (M̄1 := N̄1)
andM2 = (M̄2 := N̄2) whereM̄1 Rj

F,low M̄2, and
N̄

mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type
θ refl,nk

for someθ and l such thatl 6�F low . We
can assume that̄M1 can compute, since otherwise
M

mj

1 ∈ HF,low by Composition of High Expressions
(Lemma B.19). Therefore,M ′

1 = (M̄ ′
1 := N̄1) with

W ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We

use the induction hypothesis, Clause 10’ and Subject
Reduction (Theorem B.5) to conclude.

• [Clause 11’.] Here we haveM1 = (M̄1 := N̄1)
and M2 = (M̄2 := N̄2) whereM̄1 T j

F,low M̄2, and
M̄1, M̄2 both have typeθ refl,nk

for someθ andl such
that l 6�F low , andN̄1 Rj

F,low N̄2. We can assume
thatM1 cannot be a redex, with̄M1, N̄1 ∈ Val, since

otherwiseM
mj

1 ∈ HF,low by Composition of High
Expressions (Lemma B.19). There are two cases to
consider:

– [M̄1 can compute.] Then we haveW `

〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉. We

use Lemma B.15, Clause 11’ and Subject Reduc-
tion (Theorem B.5) to conclude.

– [M̄1 is a value butN̄1 can compute.] Then
by Remark B.13,M̄2 ∈ Val. Then we have

W ` 〈{N̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′

〈{N̄
′mj

1 }, T ′
1, S

′
1〉.

We conclude using induction hypothesis, Clause
11’ and Subject Reduction (Theorem B.5).

• [Clause 12’.] HereM1 = (flow F ′ in M̄1) and
M2 = (flow F ′ in M̄2) with M̄1 Rj

F∪F ′,low M̄2. We
can assume that̄Mmj

1 /∈ HF∪F ′,low , since otherwise
M̄

mj

1 /∈ HF,low and by Composition of High Ex-
pressions (Lemma B.19)Mmj

1 ∈ HF,low . Therefore

W ` 〈{M̄
mj

1 }, T1, S1〉
Nnk

−−−→
F ′′

〈{M̄
′mj

1 }, T ′
1, S

′
1〉 with

F ′ = F̄ ∪ F ′′. By induction hypothesis, we have that

W ` 〈{M̄
mj

2 }, T2, S2〉
Nnk

−−−→
F ′′

〈{M̄
′mj

2 }, T ′
2, S

′
2〉, and

that M ′
1 Rj

F∪F̄ ,low
M ′

2 and also〈T ′
1, S

′
1〉 =F∪F̄ ,low

〈T ′
2, S

′
2〉. Notice that〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉. We

use Subject Reduction (Theorem B.5) and Clause 12’
to conclude.

B.2.4 Behavior of Sets of Typable Threads

We can now prove the main-result regarding Non-disclosure
for Networks:

Theorem B.27 (Soundness of Typing Non-disclosure for
Networks.). Consider a pool of threadsP . If for all Mmj ∈
P there existΓ, s and τ such thatΓ `j

∅ M : s, τ , thenP
satisfies the Non-disclosure for Networks policy.

Proof. To conclude the proof of the Soundness Theorem, it
remains to exhibit an appropriate bisimulation on pools of
threads.

The definition ofR?
low

is inductively defined as follows:

a)
Mmj ∈ H∅,low

{Mmj} R?
low

∅
b)

Mmj ∈ H∅,low

∅ R?
low

{Mmj}

c)
M1 R

j

∅,low
M2

{M1
mj} R?

low
{M2

mj}
d)

P1 R?
low

P2 Q1 R
?
low

Q2

P1 ∪ Q1 R?
low

P2 ∪ Q2

One can check that the relationR?
low

is alow -bisimulation,
using Lemma B.24, Strong Bisimulation for Typable Low

26

Threads (Proposition B.26), Subject Reduction (Theo-
rem B.5), and also Lemma B.2. The main result then fol-
lows easily.

C. Confinement analysis (proofs)

C.1. Subject Reduction

In order to establish the soundness of the type system of
Figure 4 we need a Subject Reduction result, stating that
types that are given to expressions are preserved by compu-
tation. To prove it we follow the usual steps [?].

Remark C.1. If W ∈ Pse andΓ ` W : s, τ , then for all
flow policiesF ′, we have thatΓ ` W : ⊥, τ .

Lemma C.2.

1. If Γ ` M : s, τ andx /∈ dom(Γ) thenΓ, x : σ ` M :
s, τ .

2. If Γ, x : σ ` M : s, τ andx /∈ fv(M) thenΓ ` M :
s, τ .

Proof. By induction on the inference of the type judgment.

Lemma C.3 (Substitution).
If Γ, x : σ ` M : s, τ and Γ ` W : σ then Γ `
{x 7→ W}M : s, τ .

Proof. By induction on the inference ofΓ, x : τ ` M :
s, σ, and by case analysis on the last rule used in this typing
proof, using the previous lemma.

Lemma C.4 (Replacement).
If Γ ` E[M] : s, τ is a valid judgment, then the proof gives
M a typingΓ ` M : s̄, τ̄ for somēs and τ̄ such thats � s̄.
In this case, ifΓ ` N : s̄′, τ̄ with s̄ � s̄′, thenΓ ` E[N] :
s′, τ , for somes′ such thats � s′.

Proof. By induction on the structure ofE.

Proposition C.5 (Subject Reduction). Consider a thread
Mmj for which there existΓ, s and τ such that

Γ ` M : s, τ . Then, if W ` 〈{Mmj}, T, S〉
Nnk

−−−→
F ′

〈{M ′mj}, T ′, S′〉, there existss′ such thatΓ ` M ′ : s′, τ ,
and wheres ∪ W (T (mj)) � s′. Furthermore,∃s′′ such
thatΓ ` N : s′′, unit ands ∪ W (T (nk)) � s′′.

Proof. We consider the smallest̄M such thatM = Ē[M̄]
in the sense that there is nôE, M̂ , N̂ such thatÊ 6=
[] and Ê[M̂] = M̄ for which we can writeW `

〈{M̂mj}, T, S〉
N̂nk

−−−→
F̂

〈{M̂ ′mj}, T ′, S′〉. We then proceed

by case analysis on the transitionW ` 〈{M̄mj}, T, S〉
N̄nk

−−−→
F̄

〈{M̄ ′mj}, T ′, S′〉, using Lemmas C.3 and C.4.

Suppose thatM = Ē[M̄] and thatW ` 〈{M̄mj}, T, S〉
N̄nk

−−−→
F̄

〈{M̄ ′mj}, T ′, S̄′〉. We start by observing that this

implies F ′ = F̄ ∪ dĒe, M ′ = Ē[M̄ ′], N̄ = N and
S̄′ = S′. We can assume, without loss of generality, that
M̄ is the smallest in the sense that there is noÊ, M̂ , N̂
such that̂E 6= [] andÊ[M̂] = M̄ for which we can write

W ` 〈{M̂mj}, T, S〉
N̂nk

−−−→
F̂

〈{M̂ ′mj}, T ′, S′〉.

By Lemma C.4, we haveΓ ` M̄ : s̄, τ̄ in the proof
of Γ ` Ē[M̄] : s, τ , for somes̄ and τ̄ . We proceed by

case analysis on the transitionW ` 〈{M̄mj}, T, S〉
N̄nk

−−−→
F̄

〈{M̄ ′mj}, T ′, S′〉, and prove thatΓ ` M̄ ′ : s̄′, τ̄ , for some
s̄′ such that̄s ∪ W (T (mj)) � s̄′.

• [M̄ = ((λx.M̂) V).]

Here we haveM̄ ′ = {x 7→ V }M̂ . By rule APP, we

haveΓ ` (λx.M̂) : ŝ, τ̂
ŝ′

−→ σ̂ andΓ ` V : ŝ′′, τ̂ ,

wheres̄ ∪ W (T (mj)) � ŝ′. By ABS, thenΓ, x : τ̂ `

M̂ : ŝ′, σ̂, and by Remark C.1 we haveΓ ` V : τ̂ .
Therefore, by Lemma C.3, we getΓ ` {x 7→ V }M̂ :
ŝ′, σ̂.

• [M̄ = (if tt then Nt else Nf).]

Here we haveM̄ ′ = Nt. By COND, we have that
Γ ` Nt : st, τ̄ , wheres̄ ∪ W (T (mj)) � st.

• [M̄ = (ref l,θ V).]

Here we haveM̄ ′ = al,θ. By LOC, we haveΓ ` a : >,
θ refl, which satisfies⊥ � s.r, s.w � >, ⊥ � s.t and
s ∪ W (T (mj)) � >.

• [M̄ = (! al,θ).]

Here we haveM̄ ′ = S(al,θ). By assumption, we have
thatΓ ` S(al,θ) :>, θ, which satisfies⊥ � s.r, s.w �
> and⊥ � s.t ands ∪ W (T (mj)) � >.

• [M̄ = (flow F ′ in V).]

Here we haveM̄ ′ = V . By rule FLOW, we have that
Γ ` V : ŝ′, τ and by Remark C.1, we haveΓ ` V :
>, τ̄ , which satisfies⊥ � s.r, s.w � >, ⊥ � s.t and
s ∪ W (T (mj)) � >.

• [M̄ = (allowed F ′ then Nt else Nf) and
F ′ ⊆ W (T (mj))

∗.]

Here we haveM̄ ′ = Nt. By ALLOW, we have that
Γ ` Nt : st, τ̄ , wheres̄ = s∪st−F ′∪sf∪W (T (mj))
� st holds becausest ⊆ (st − F ′ ∪ W (T (mj)))

∗
=

(st ∪ W (T (mj)))
∗
.

27

• [M̄ = (allowed F ′ then Nt else Nf) and
F ′ 6⊆ W (T (mj))

∗.]

Here we haveM̄ ′ = Nf . By ALLOW, we have that
Γ ` Nf : sf , τ̄ , wheres̄ ∪ W (T (mj)) � st.

The proof for the casēM = (%x.W) is analogous to the one
for M̄ = ((λx.M̂) V), while the proofs for the cases̄M =
(if ff then Nt else Nf) and M̄ = (V ; M̂) are analogous
to the one forM̄ = (if tt then Nt else Nf), and the ones
for M̄ = (al,θ := V), M̄ = (threadl M̂) is analogous
to the one forM̄ = (ref l,θ V). By Lemma C.4, we can
conclude thatΓ ` Ē[M̄ ′] : s′, τ , for somes′ such thats ∪
W (T (mj)) � s′.

Now, if Nnk 6= () (Nnk is created), then∃N̂ : M =
Ē[(threadk N̂)] andN̄ = N̂ . By Lemma C.4, we haveΓ `
(threadk N̂) : ŝ, unit in the proof ofΓ ` Ē[(thread N̂)] :
s, τ , for someŝ, andτ̂ . By THR, we haveΓ ` N̂ : ŝ, unit.
Therefore,s ∪ W (T (mj)) � ŝ.

C.2. Confinement for Networks

Proposition C.6 (Meaning of the declassification effect).
Consider a threadMmj for which there existΓ, G, s and
τ such thatΓ ` M : s, τ . If we haveW ` 〈{Mmj}, T, S〉
Nnk

−−−→
F

〈{M ′mj}, T ′, S′〉, thenF ⊆ s.

Proof. We use induction on the inference ofΓ ` M : s, σ,
by case analysis on the last rule used in this typing proof
(we show only the most interesting cases).

• [FLOW.]

HereM = (flow F̄ in N̄), and we haveΓ ` N̄ : s̄′, τ
with s = s̄ g s̄′ g F̄ . There are two possibilities:

– [M = F̄ andN̄ can compute.] We haveW `

〈{N̄}, T, S〉
Nnk

−−−→
F̄ ′

〈{N̄ ′}, T ′, S′〉 with F = F̄ ′∪

F̄ . By induction hypothesis,̄F ′ ⊆ s̄′. Sinces̄′ ⊆
s, thenF̄ ⊆ s, and sinceF̄ ′ ⊆ s, thenF ⊆ s.

– [M = F̄ and N̄ = V .] Then we haveW `

〈{(flow F̄ in N̄)}, T, S〉
Nnk

−−−→
F

〈{V }, T, S〉 with

F = ∅, soF ⊆ s holds vacuously.

• [A LLOW.]

HereM = (allowed F̄ then Nt else Nf) and we have
Γ ` Nt : s̄t, τ andΓ ` Nf : s̄f , τ with s = s̄ g (st −
F̄) g sf . There are two possibilities:

– [M̄ = F̄ ⊆ W (T (mj))
∗.] Then we haveW `

〈M, T, S〉
Nnk

−−−→
F

〈Nt, T, S〉 with F = ∅, soF ⊆

s∗ holds vacuously.

– [M̄ = F̄ 6⊆ A∗.] Then we haveW ` 〈M, T, S〉
Nnk

−−−→
F

〈Nf , T, S〉 with F = ∅, soF ⊆ s∗ holds

vacuously.

Theorem C.7(Soundness of Typing Confinement for Net-
works). Consider a fixed policy-mappingW , a pool of
threadsP and its corresponding position trackerT , such
that for all Mmj ∈ P there existΓ, s and τ satisfying
Γ ` M : s, τ andW (T (mj)) � s. Then the setpair(P, T)
is a set of operationally confined located threads.

Proof. We show that the set

C = {〈d, Mmj 〉 | ∃Γ, s, τ such that
Γ ` M : s, τ ands ⊆ W (T (mj))

∗}

is a set of operationally confined threads.
Consider a pair〈d, Mmj 〉 ∈ C, for which we have a

transitionW ` 〈{Mmj}, T, S〉
Nnk

−−−→
F

〈{M ′mj}, T ′, S′〉.

By Proposition C.6 we have thatF ⊆ s ⊆ W (T (mj)).
By Subject Reduction (Proposition C.5) we have there ex-
ists s′ such thatΓ ` M ′ : s′, τ ands ∪ W (T (mj)) � s′,
i.e. s′ ⊆ (s ∪ (W (T (mj)))

∗, and that there existss′′ such
thatΓ ` N : s′′, unit ands∪W (T (nk)) � s′′. Note that if
N 6= (), thenT (mj) = T ′(nk), sos′′ ⊆ W (T (mj))

∗. It
remains to prove thats′ ⊆ W (T ′(mj))

∗. The result is triv-
ial whenT ′(mj) = T (mj), so we will only check the case
whereM = E[(goto d′)]. We then have thatT ′(mj) = d′

ands ⊆ W (d′). By M IG we haves = s′, so we conclude
thats′ ⊆ W (T ′(mj)).

28

