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Abstract. This paper addresses the issue of confidentiality and declas-
sification for global computing in a language-based security perspective.
The purpose is to deal with new forms of security leaks, which we call
migration leaks, introduced by code mobility. We present a generalization
of the non-disclosure policy [AB05] to networks, and a type and effect
system for enforcing it. We consider an imperative higher-order lambda-
calculus with concurrent threads and a flow declaration construct, en-
riched with a notion of domain and a standard migration primitive.

1 Introduction

Protecting confidentiality of data is a concern of particular relevance in a global
computing context. When information and programs move throughout networks,
they become exposed to users with different interests and responsibilities. This
motivates the search for practical mechanisms that enforce respect for confiden-
tiality of information, while minimizing the need to rely on mutual trust. Access
control is important, but it is not enough, since it is not concerned with how
information may flow between the different parts of a system. Surprisingly, very
little research has been done on the control of information flow in networks. In
fact, to the best of our knowledge, this work is the first to address the problem
in an imperative setting where mobility of resources plays an explicit role.

This paper is about ensuring confidentiality in networks. More specifically,
it is about controlling information flows between subjects that have been given
different security clearances, in the context of a distributed setting with code
mobility. Clearly, in such a setting, one cannot assume resources to be accessible
by all programs at all times. In fact, a network can be seen as a collection of
sites where conditions for computation to occur are not guaranteed by one site
alone. Could these failures be exploited as covert information flow channels? The
answer is Yes. New security leaks, that we call migration leaks, arise from the
fact that execution or suspension of programs now depend on the position of
resources over the network, which may in turn depend on secret information.

We take a language based approach [SM03], which means that we restrict
our concern to information leaks occurring within computations of programs of a
given language. These can be statically prevented by means of a type and effect
system [VSI96, LG88], thus allowing rejection of insecure programs before exe-
cution. As is standard, we attribute security levels to the objects of our language
(memory addresses), and have them organized into a lattice [Den76]. Since con-
fidentiality is the issue, these levels indicate to which subjects the contents of an
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object are allowed to be disclosed. Consequently, during computation, informa-
tion contained in objects of “high” security level (let us call them “high objects”)
should never influence objects of lower or incomparable level. This policy has
been widely studied and is commonly referred to as non-interference [GM82]. In
a more general setting, where the security lattice may vary within a program,
non-disclosure [AB05] can be used instead.

We consider a calculus for mobility where the notion of location of a program
and of a resource has an impact in computations: resources and programs are
distributed over computation sites – or domains – and can change position during
execution; accesses to a resource can only be performed by a program that
is located at the same site; remote accesses are suspended until the resources
become available. The language of local computations is an imperative λ-calculus
with concurrent threads, to which we add a standard migration primitive. We
include a flow declaration construct [AB05] for providing the programmer with
means to declassify information, that is to explicitly allow certain information
leaks to occur in a controlled way (find overviews in [AB05, SS05]). We show that
mobility and declassification can be safely combined provided that migrating
threads compute according to declared flow policies.

The security properties we have at hand, designed for local computations
where the notion of locality does not play a crucial role, are not suitable for
treating information flows in a distributed setting with code mobility. In fact,
since the location of resources in a network can be itself a source of information
leaks, the notion of safe program must take this into account. For this purpose,
we extend the usual undistinguishability relation for memories to states that
track the positions of programs in a network. Furthermore, it is not reasonable
to assume a global security policy that all threads comply to. Admitting that
each program has its own security policy raises problems in ensuring that the
threads who share resources respect one another’s flow policies. For instance,
when should one allow “low level” information to be accessed by “high level”
readers, if the assignment of the levels ‘low’ and ‘high’ were based on different
criteria? It turns out that, if the security levels are sets of principals, there is a
“minimum” security policy that every thread must satisfy, and which we use to
conveniently approximate the “intersection” of security policies in any network.

The paper is organized as follows: In the next section we define a distributed
calculus with code and resource mobility. In Section 3 we formulate a non-
disclosure property that is suitable for a decentralized setting. In Section 4 we
develop a type and effect system that only accepts programs satisfying such a
property. Finally, we comment on related work and conclude.

2 The Calculus

The design of network models is a whole research area in itself, and there ex-
ists a wide spectrum of calculi that focus on different aspects of mobility (see
[BCGL02]). We are interested in a general and simple framework that addresses
the unreliable nature of resource access in networks, as well as trust concerns
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that are raised when computational entities follow different security orientations.
We then consider a distributed ML-like core language where domains in a net-
work can communicate with each other via mobile threads, in general composed
of programs and memory, yet enriched with a flow declaration construct.

In this section we define the syntax and semantics for the calculus at the
local and network level. Very briefly, a network consists of a number of domains,
places where local computations occur independently. Threads may execute con-
currently inside domains, create other threads, and migrate into another domain.
They can own and create a store that associates values to references, which are
addresses to memory containers. These stores move together with the thread
they belong to, which means that threads and local references are, at all times,
located in the same domain. However, a thread need not own a reference in order
to access it. Read and write operations on references may be performed if and
only if the corresponding memory location is present in the domain (otherwise
they are implicitly suspended).

2.1 Syntax

In order to define the syntax of the language we need to introduce the notions of
security level and of flow policy (they are fully explained in Section 3). Security
levels j, k, l are sets of principals (ranged over by p, q ∈ P). They are apparent
in the syntax as they are assigned to references (and reference creators, not to
values) and threads (and thread creators). The security level of a reference is to
be understood as the set of principals that are allowed to read the information
contained in that reference. The security level of a thread is the set of principals
that can have information about the location of the thread. We use flow policies
as in [AB05] for defining a flow declaration construct that enables downgrading
computations by encapsulating expressions in a context allowed by the security
policy. For now it is enough to know that a flow policy (ranged over by F, G) is
a binary relation over P , where a pair (p, q) ∈ F is denoted p ≺ q, and is to be
understood as “whatever p can read, q can also read”.

Names are given to domains (d ∈ D), threads (m, n ∈ N ) and references (a),
which we also call addresses. References are lexically associated to the threads
that create them: they are of the form m.u, n.u, where u is an identifier given
by the thread. Thread and reference names can be created at runtime. We add
annotations (subscripts) to names: references carry their security level and the
type of the values that they can hold (the syntax of types will be defined later, in
Section 4), while thread names carry their security level. In the following we may
omit these subscripts whenever they are not relevant, following the convention
that the same name has always the same subscript.

Threads are named expressions (Mmj ), where the syntax of M is given by:

Expressions M, N ::= V | x | (M N) | (if M then N1 else N2)
| (M ; N) | (ref l,θ M) | (? N) | (M :=? N) | (�xV )
| (threadl M) | (goto d) | (flow F in M)

Values V, W ::= () | mj .ul,θ | (λx.M) | tt | ff
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The language of expressions is an imperative higher-order λ-calculus with thread
creation (threadl M), migration (goto d) and a flow declaration (flow F in M).
The commands (? N) and (M :=? N) correspond to the dereferencing and as-
signment operations on references, respectively. The different notation is due
to the fact that these operations can potentially suspend. The notation follows
[Bou04], though here we shall not consider any form of reaction to suspension.
The construct (�xV ), where x is binded in V , is used to express recursive values.

We define stores S that map references to values, and pools (sets) P of threads
(named expressions) that run concurrently. These two sets are part of domains
d[P, S ], which in turn form networks whose syntax is given by:

Networks X, Y . . . ::= d[P, S ] | X ‖ Y

Networks are flat juxtapositions of domains, whose names are assumed to be
distinct, and where references are assumed to be located in the same domain as
the thread that owns them. Notice that networks are in fact just a collection of
threads and owned references that are running in parallel, and whose executions
depend on their relative location. To keep track of the locations of threads and
references it suffices to maintain a mapping from thread names to domain names.

2.2 Semantics

Given a set D of domain names in a network, and assuming that all threads in a
configuration have distinct names, the semantics of the language is operationally
defined as a transition system between configurations of the form 〈T, P, S〉 rep-
resenting network d1[P1, S1 ] ‖ · · · ‖ dn[Pn, Sn ] where:

T is a function from thread names with security level to the domains where they
appear, given by T = {ml �→ d1|Mml ∈ P1} ∪ · · · ∪ {ml �→ dn|Mml ∈ Pn}.

P and S are the (disjoint) unions of all the thread pools, respectively stores,
that exist in the network, that is P = P1 ∪ · · · ∪ Pn and S = S1 ∪ · · · ∪ Sn.

We call the pair (T, S) the state of the configuration. We define dom(T ), dom(P )
and dom(S) as the sets of decorated names of threads and references that are
mapped by T , P and S, respectively. We say that a thread or reference name is
fresh in T or S if it does not occur, with any subscript, in dom(T ) or dom(S),
respectively. We denote by tn(P ) and rn(P ) the set of decorated thread and
reference names, respectively, that occur in the expressions of P (this notation
is extended in the obvious way to expressions). Furthermore, we overload tn and
define, for a set R of reference names, the set tn(R) of thread names that are
prefixes of some name in R.

We restrict our attention to well formed configurations 〈T, P, S〉 satisfying the
condition for memories dom(S) ⊇ rn(P ), a similar condition for the values stored
in memories obeying al,θ ∈ dom(S) implies dom(S) ⊇ rn(S(al,θ)), and the cor-
responding one for thread names dom(T ) ⊇ dom(P ) and dom(T ) ⊇ tn(dom(S)).
We denote by {x �→ W}M the capture avoiding substitution of W for the free
occurrences of x in M . The operation of updating the image of an object zo to
zi in a mapping Z is denoted Z[zo := zi].
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In order to define the operational semantics, it is useful to write expressions
using evaluation contexts. Intuitively, the expressions that are placed in such
contexts are to be executed first.

Contexts E ::= [] | (E N) | (V E) | (if E then M else N) | (E; N)

| (refl,θ E) | (? E) | (E :=? N) | (V :=? E) | (flow F in E)

Evaluation is not allowed under threads that have not yet been created. We
denote by 
E� the flow policy that is permitted by the context E. It collects all
the flow policies that are declared using flow declaration constructs into one:

�[]� = ∅, �(flow F in E)� = F ∪ �E�,
�E′[E]� = �E�, if E′ does not contain flow declarations

The transitions of our (small step) semantics are defined between configurations,
and are decorated with the flow policy of the context that is relevant to the
expression being evaluated (it will be used later to formulate the non-disclosure
property). We omit the set-brackets for singletons. We start by defining the
transitions of a single thread.

The evaluation of expressions might depend on and change the store, the
position of references in the network, and the name of the thread of which they
are part. However, there are rules that depend only on the expression itself.

〈T, E[((λx.M) V )]mj , S〉 ()−−→
�E�

〈T, E[{x 	→ V }M ]mj , S〉

〈T, E[(if tt then N1 else N2)]
mj , S〉 ()−−→

�E�
〈T, E[N1]

mj , S〉

〈T, E[(if ff then N1 else N2)]
mj , S〉 ()−−→

�E�
〈T, E[N2]

mj , S〉

〈T, E[(V ; N)]mj , S〉 ()−−→
�E�

〈T, E[N ]mj , S〉

〈T, E[(�xW )]mj , S〉 ()−−→
�E�

〈T, E[({x 	→ (�xW )} W )]mj , S〉

〈T, E[(flow F in V )]mj , S〉 ()−−→
�E�

〈T, E[V ]mj , S〉

The name of the thread is relevant to the rules that handle references: when
a reference is created, it is named after the parent thread. Accesses to references
can only be performed within the same domain.

〈T, E[(ref l,θ V )]mj , S〉 ()−−→
�E�

〈T, E[mj .ul,θ]
mj , S ∪ {mj .ul,θ 	→ V }〉, if m.u fresh in S

〈T, E[(? nk.ul,θ)]
mj , S〉 ()−−→

�E�
〈T, E[V ]mj , S〉, if T (nk) = T (mj) & S(nk.ul,θ) = V

〈T, E[(nk.ul,θ :=? V )]mj , S〉 ()−−→
�E�

〈T, E[()]mj , S[nk.ul,θ := V ]〉, if T (nk) = T (mj)

Fresh names are arbitrarily attributed to threads when they are created. The
(goto d) statement is used for sending the executing thread to a domain named d
(subjective migration). By simply changing the domain that is associated to the
migrating thread’s name, both the thread and associated store are subtracted
from the emitting domain and integrated into the destination domain.

〈T, {E[(threadl N)]mj}, S〉 Nnl−−−→
�E�

〈T ∪ {nl 	→ T (mj)}, {E[()]mj }, S〉, if n fresh in T

〈T, {E[goto d]mj }, S〉 ()−−→
�E�

〈T [mj := d], {E[()]}, S〉
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Finally, the execution of threads in a network is compositional. The following
three rules gather the threads that are spawned into a pool of threads.

〈T, Mmj , S〉 ()−−→
�E�

〈T ′, M ′mj , S′〉
〈T, Mmj , S〉 −−→

�E�
〈T ′, M ′mj , S′〉

〈T, Mmj , S〉 Nnl−−−→
�E�

〈T ′, M ′mj , S′〉 if Nnl 
= ()

〈T, Mmj , S〉 −−→
�E�

〈T ′, {M ′mj , Nnl}, S′〉
〈T, P, S〉 −−→

�E�
〈T ′, P ′, S′〉 〈T, P ∪ Q,S〉 is well formed

〈T, P ∪ Q, S〉 −−→
�E�

〈T ′, P ′ ∪ Q,S′〉

One can prove that the above rules preserve well-formedness of configurations,
and that the language of expressions is deterministic up to choice of new names.

3 Decentralized Non-disclosure Policies

We begin this section with the definition of an extended flow relation. A discus-
sion on the implementation and meaning of multiple flow policies follows. We
then define the non-disclosure policy for networks and prove soundness of our
type system with respect to that property.

3.1 From Flow Relations to Security Lattices

We have mentioned that security levels are sets of principals representing read-
access rights to references. Our aim is to insure that information contained in a
reference al1 (omitting the type annotation) does not leak to another reference
bl2 that gives a read access to an unauthorized principal p, i.e., such that p ∈ l2
but p /∈ l1. Reverse inclusion defines the allowed flows between security levels,
allowing information to flow from level l1 to level l2 if and only if l1 ⊇ l2.

Given a security level l and a flow policy F , the upward closure of l w.r.t.
F is the set {p | ∃q ∈ l . (q, p) ∈ F} and is denoted by l ↑F . Now denoting the
reflexive and transitive closure of F by F ∗, we can derive (as in [ML98, AB05])
a more permissive flow relation:

l1 �F l2
def⇔ ∀q ∈ l2.∃p ∈ l1 . p F ∗ q ⇔ (l1 ↑F ) ⊇ (l2 ↑F )

This relation defines a lattice of security levels, where meet (�F ) and join (�F )
are given respectively by the union of the security levels and intersection of their
upward closures with respect to F :

l1 �F l2 = l1 ∪ l2 l1 �F l2 = (l1 ↑F ) ∩ (l2 ↑F )

Notice that �F extends ⊇ in the sense that �F is larger than ⊇ and that
�∅ =⊇. We will use this mechanism of extending the flow relation with a flow
policy F in the following way: the information flows that are allowed to occur
in an expression M placed in a context E[] must satisfy the flow relation ��E�.
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3.2 The Non-disclosure Policy

In this section we define the non-disclosure policy for networks, which is based
on a notion of bisimulation for sets of threads P with respect to a “low” security
level. As usual, the bisimulation expresses the requirement that P1 and P2 are
to be related if, when running over memories that coincide in their low part,
they perform the same low changes. Then, if P is shown to be bisimilar to itself,
one can conclude that the high part of the memory has not interfered with the
low part, i.e., no security leak has occurred. Using the flow policies that were
presented earlier, the notion of “being low” can be extended as in [AB05], thus
weakening the condition on the behavior of the threads.

As we will see in Section 4, the position of a thread in the network can reveal
information about the values in the memory. For this reason, we must use a
notion of “low-equality” that is extended to states 〈T, S〉. The intuition is that
a thread can access a reference if and only if it is located at the same domain
as the thread that owns it. Threads that own low references can then be seen as
“low threads”. We are interested in states where low threads are co-located. Low-
equality on states is defined pointwise, for a security level l that is considered as
low:

S1 =F,l S2
def⇔ ∀ak,θ ∈ dom(S1) ∪ dom(S2) . k �F l ⇒

ak,θ ∈ dom(S1) ∩ dom(S2) & S1(ak,θ) = S2(ak,θ)

T1 =F,l T2
def⇔ ∀nk ∈ dom(T1) ∪ dom(T2) . k �F l ⇒

nk ∈ dom(T1) ∩ dom(T2) & T1(nk) = T2(nk)

We say that two states are low-equal if they coincide in their low part (including
their domains). This relation is transitive, reflexive and symmetric.

Now we define a bisimulation for networks, which can be used to relate net-
works with the same behavior over low parts of the states. In the following we
denote by � the reflexive closure of the union of the transitions −→

F
, for all F .

Definition 1 (l-Bisimulation and ≈l). Given a security level l, we define an
l-bisimulation as a symmetric relation R on sets of threads such that

P1 R P2 & 〈T1, P1, S1〉 −→
F

〈T ′
1, P

′
1, S

′
1〉 & 〈T1, S1〉 =F,l 〈T2, S2〉 & (∗) implies:

∃T ′
2, P

′
2, S

′
2 : 〈T2, P2, S2〉 � 〈T ′

2, P
′
2, S

′
2〉 & 〈T ′

1, S
′
1〉 =∅,l 〈T ′

2, S
′
2〉 & P ′

1 R P ′
2

where (∗) = dom(S1
′ − S1) ∩ dom(S2) = ∅ and dom(T1

′ − T1) ∩ dom(T2) = ∅.
The relation ≈l is the greatest l-bisimulation.

Intuitively, our security property states that, at each computation step per-
formed by some thread in a network, the information flow that occurs respects
the basic flow relation (empty flow policy), extended with the flow policy (F )
that is declared by the context where the command is executed.

Definition 2 (Non-disclosure for Networks). A set P of threads satisfies
the non-disclosure policy if it satisfies P ≈l P for all security levels l.

The non-disclosure definition differs from that of [AB05] in two points: first, the
position of the low threads is treated as “low information”; second, for being
independent from a single flow policy – as we have seen, each thread in the
network may have its own flow policy.
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4 The Type and Effect System

The type and effect system that we present here selects secure threads by ensur-
ing the compliance of all information flows to the flow relation that rules in each
point of the program. To achieve this, it constructively determines the effects of
each expression, which contain information on the security levels of the refer-
ences that the expression reads and writes, as well as the level of the references
on which termination or non-termination of the computations might depend.

A key observation is that non-termination of a computation might arise from
an attempt to access a foreign reference. In order to distinguish the threads that
own each expression and reference, we associate unique identifiers m̄, n̄ ∈ N̄ to
names of already existing threads, as well as to the unknown thread name ‘?’
for those that are created at runtime. It should be clear that information on
which the position of a thread n might depend can leak to another that simply
attempts to access one of n’s references. For this reason, we associate to each
thread a security level representing its “visibility” level, since just by owning a
low reference, the position of a thread can be detected by “low observers”.

Judgments have the form Σ, Γ �n̄l

G M : s, τ , where Σ is a partial injective
mapping from the set of decorated thread names extended with ‘?’, and the set
of decorated thread identifiers. The typing context Γ assigns types to variables.
The expression M belongs to the thread that is statically identified by n̄l. The
security level l is a lower bound to the references that the thread can own. The
flow policy G is the one that is enforced by the context in which M is evaluated.
The security effect s has the form 〈s.r, s.w, s.t〉, where s.r is an upper bound on
the security levels of the references that are read by M , s.w is a lower bound
on the that are written by M , and s.t is an upper bound on those levels of the
references on which the termination of expression M might depend. Finally, τ is
the type of the expression, whose syntax is as follows, for any type variable t:

τ, σ, θ ::= t | unit | bool | θ refl,n̄k
| τ

s−−−→
n̄k,G

σ

As expected, the reference type shows the reference’s security level l and the type
θ of the value that it points to; now we also add the identifier n̄ and security
level k of the thread that owns the reference. As for the function type, we have
the usual latent parameters that are needed to type the body of the function.

The rules of the type system are shown in Figure 1. Whenever we have
Σ; Γ �n̄

G M : 〈⊥,�,⊥〉, τ , for all n̄, G, we simply write Σ; Γ � M : τ . We
also abbreviate meet and join with respect to the empty flow relation (�∅, �∅)
by �, �, and 〈s.r � s′.r, s.w � s′.w, s.t � s′.t〉 by s � s′. We must now convince
ourselves that the type system indeed selects only safe threads, according to the
security notion defined in the previous section. We refer the reader to [AB05]
for explanations regarding the use of flow policies in the typing rules. The usual
intuitions on treating termination leaks can be useful to understand the new
conditions regarding migration leaks. In fact, suspension of a thread on an access
to an absent reference can be seen as a non-terminating computation that can
be unblocked by migration of concurrent threads.

In rule Loc, the identifier of the thread name that owns the reference is
obtained by applying Σ to the prefix of the address. In rule Ref, the reference
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[Nil] Σ; Γ � () : unit [Flow]
Σ; Γ �m̄j

G∪F M : s, τ

Σ; Γ �m̄j

G (flow F in M) : s, τ

[Abs]
Σ; Γ, x : τ �m̄j

G M : s, σ

Σ; Γ � (λx.M) : τ
s−−−→

m̄j ,G
σ

[Rec]
Σ; Γ, x : τ � W : τ

Σ; Γ � (�xW ) : τ

[Var] Σ; Γ, x : τ � x : τ [Loc] Σ; Γ � nk.ul,θ : θ refl,Σ(nk)

[Ref]
Σ; Γ �m̄j

G M : s, θ
j � l

s.r, s.t �G l

Σ; Γ �m̄j

G (refl,θ M) : s, θ refl,m̄j

[Der]
Σ; Γ �m̄j

G M : s, θ refl,n̄k

Σ; Γ �m̄j

G (? M) : s � 〈l,�, t̄〉, θ (∗)

[Ass]

Σ; Γ �m̄j

G M : s, θ refl,n̄k
Σ; Γ �m̄j

G N : s′, θ
s.t �G s′.w

s.r, s′.r, s.t, s′.t, j �G l

Σ; Γ �m̄j

G (M :=? N) : s � s′ � 〈⊥, l, t̄〉, unit
(∗)

(∗) where t̄ = (if m̄ 
= n̄ then k � j else ⊥)

[BoolT] Σ; Γ � tt : bool [BoolF] Σ; Γ � ff : bool

[Cond]
Σ; Γ �m̄j

G M : s, bool Σ; Γ �m̄j

G Ni : si, τ s.r � s.t �G s1.w � s2.w

Σ; Γ �m̄j

G (if M then N1 else N2) : s � s1 � s2 � 〈⊥,�, s.r〉, τ

[App]

Σ; Γ �m̄j

G M : s, τ
s′−−−→

m̄j ,G
σ Σ; Γ �m̄j

G N : s′′, τ
s.t �G s′′.w

s.r, s′′.r, s.t, s′′.t �G s′.w

Σ; Γ �m̄j

G (M N) : s � s′ � s′′ � 〈⊥,�, s.r � s′′.r〉, σ

[Seq]
Σ; Γ �m̄j

G M : s, τ Σ; Γ �m̄j

G N : s′, σ s.t �G s′.w

Σ; Γ �m̄j

G (M ; N) : s � s′, σ

[Thr]

j �G l
n̄ fresh in Σ

Σ, ? : n̄l; Γ �n̄l
G M : s, unit

Σ; Γ �m̄j

G (threadl M) : 〈⊥, s.w � l,⊥〉, unit

[Mig] Σ; Γ �m̄j

G goto d : 〈⊥, j,⊥〉, unit

Fig. 1. Type system

that is created belongs to the thread identified by the superscript of the ‘�’. We
check that the security level that is declared for the new reference is greater than
the level of the thread. In rule Thr, a fresh identifier – image of an unknown
thread name represented by ‘?’ – is used to type the thread that is created. The
new thread’s security level must preserve that of the parent thread.

In rule Mig we add the security level of the thread to the write effect to
prevent migrations of threads owning low references to depend on high infor-
mation. The motivation for this is that the mere arrival of a thread and its
references to another domain might trigger the execution of other threads that
were suspended on an access to a low reference, as in the following program:

d1[ {(if (? n1.xH) then goto d2 else ())n1}, {n1.yL 	→ 1} ] ‖ d2[ {(n1.yL :=? 0)
n2}, ∅ ]

Notice that the rule Cond rejects thread n in a standard manner, since H �� L.
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In rules Der and Ass, the termination effect is updated with the level of
the thread that owns the foreign reference we want to access. Without this
restriction, suspension on an access to an absent reference could be unblocked
by other threads, as is illustrated by the following example:

d[ (if aH then (goto d1) else (goto d2))
mj , {mj .x� 	→ 42} ] ‖

‖ d1[ ((mj .x� :=? 0); (n1k1 .y
L

:=? 0))
n1k1 , S1 ] ‖

‖ d2[ ((mj .x� :=? 0); (n2k2 .y
L

:=? 0))
n2k2 , S2 ]

Then, depending on the value of the high reference a, different low assignments
would occur to the low references n1.yL and n2.yL. To see why we can take j for
preventing the leak from aH to n1.yL, n2.yL, notice that (by Mig and Cond)
H � j. The same example can show a potential leak of information about the po-
sitions of the threads n1 and n2 via their own low variables n1.yL, n2.yL. This also
accounts for updating the termination level of the assignments (mj .x� :=? 0)
and (mj .x� :=? 0) with the security levels k1 and k2, respectively.

The previous example shows how migration of a thread can result in an
information leak from a high variable to a lower one via an “observer” thread.
It is the ability of the observer thread to detect the presence of the first thread
that allows the leak. However, one must also prevent the case where it is the
thread itself that reveals that information, like in the following simple example:

d[ (n.uL :=? 0)
mj

, ∅ ]

This program is insecure if j �� L, and it is rejected by the condition j �G l in
rule Ass. Notice that, in the typing rule, for the cases where m = n the condition
is satisfied anyway due to the meaning of j.

We now give a safety property of our type system:

Theorem 1 (Subject reduction). If Σ; Γ �Σ(mj)
G M : s, τ and 〈T, Mmj , S〉

Nnl−−−→
F

〈T ′, M ′mj , S′〉, then ∃s′ such that Σ; Γ �Σ(mj)
G M ′ : s′, τ , where s′.r � s.r,

s.w � s′.w and s′.t � s.t. Furthermore, if Nnl �= (), then ∃n̄, s′′ such that
Σ, ? : n̄l; Γ �n̄l

G N : s′′, unit where n̄ is fresh in Σ, j �G l and s.w � s′′.w.

This result states that computation preserves the type of threads, and that as the
effects of an expression are performed, the security effects of the thread “weaken”.
We now state the main result of the paper, saying that our type system only
accepts threads that can securely run in a network with other typable threads.

Theorem 2 (Soundness). Consider a set of threads P and an injective map-
ping Σ from decorated thread names to decorated thread identifiers, such that
dom(Σ) = tn(P ). If for all Mmj ∈ P we have that ∃Γ, s, τ . Σ; Γ �Σ(mj)

∅ M : s, τ ,
then P satisfies the non-disclosure policy for networks.

This result is compositional, in the sense that it is enough to verify the typability
of each thread separately in order to ensure non-disclosure for the whole network.
Having the empty set as the flow policy of the context means that there is no
global flow policy that encompasses the whole network. One could easily prove
non-disclosure with respect to a certain global flow policy G by requiring the
typability of all the threads with respect to G. However, by choosing the empty
global flow policy we stress the decentralized nature of our setting.



Non-disclosure for Distributed Mobile Code 187

5 Conclusion and Related Work

To the best of our knowledge, this paper is the first to study insecure information
flows that are introduced by mobility in the context of a distributed language
with states. We have identified a new form of security leaks, the migration leaks,
and provided a sound type system for rejecting them. The discussion on related
work will focus on type-based approaches for enforcing information flow control
policies in settings with concurrency, distribution or mobility.

A first step towards the study of confidentiality for distributed systems is
to study a language with concurrency. Smith and Volpano [SV98] proved non-
interference for an imperative multi-threaded language. They identified the ter-
mination leaks that appear in concurrent contexts but that are not problematic
in sequential settings. This line of study was pursued by considering increasingly
expressive languages and refined type systems [Smi01, BC02, AB05, Bou05]. In
the setting of synchronous concurrent systems, new kinds of termination leaks
– the suspension leaks – are to be handled. A few representative studies in-
clude [Sab01, ABC04]. Already in a distributed setting, but restricting inter-
action between domains to the exchange of values (no code mobility), Mantel
and Sabelfeld [SM02] provided a type system for preserving confidentiality for
different kinds of channels over a publicly observable medium.

Progressing rather independently we find a field of work on mobile calculi
based on purely functional concurrent languages. To mention a few representa-
tive papers, we have Honda et al.’s work on for π-calculus [HVY00], and Hennessy
and Riely’s study for the security π-calculus [HR00]. The closest to the present
work is the one by Bugliesi et al. [CBC02], for Boxed Ambients [BCC01], a purely
functional calculus based on the mobility of ambients. Since ambient names cor-
respond simultaneously to places of computation, subjects of migration, and
channels for passing values, it is hard to establish a precise correspondence be-
tween the two type systems. Nevertheless, it is clear that the knowledge of the
position of an ambient of level l is considered as l-level information, and that
migration is also identified as a way of leaking the positions of ambients, though
the dangerous usages of migration are rejected rather differently.

Sharing our aim of studying the distribution of code under decentralized
security policies, Zdancewic et al. [ZZNM02] have however set the problem in a
very different manner. They have considered a distributed system of potentially
corrupted hosts and of principals that have different levels of trust on these
hosts. They then proposed a way of partitioning the program and distributing
the resulting parts over hosts that are trusted by the concerned principals.
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