Typing Noninterference for Reactive Programs

Ana Almeida Matos, &ard Boudol and llaria Castellani

June 7, 2004

Abstract

We propose a type system to enforce the security properngrihterferencén a core reactive language, ob-
tained by extending the imperative language of Volpano, Smith and Irvine with reactive primitives manipulating
broadcast signals and with a form of “scheduled” parallelism. Due to the particular nature of reactive compu-
tations, the definition of noninterference has to be adapted. We give a formulation of noninterference based on
bisimulation. Our type system is inspired by that introduced by Boudol and Castellani, and independently by
Smith, to cope with nontermination and time leaks in a language for parallel programs with scheduling. We
establish the soundness of this type system with respect to our notion of noninterference.

1 Introduction

To be widely accepted and deployed, the mobile code technology has to provide formal guarantees regarding th
various security issues that it raises. For instance, foreign code should not be allowed to corrupt, or even simpl
to get knowledge of secret data owned by its execution context. Similarly, a supposedly trusted code shoulc
be checked for not disclosing private data to public knowledge. In [3] we have introduced a core programming
model for mobile code called ULM, advocating the use ¢d@ally synchronougrogramming style [1, 10] in a
globally asynchronousomputing context. It is therefore natural to examine the security issues from the point of
view of this programming model. In this paper, we address some of these issues, and more specifically the nor
disclosure property, for a simplified version of the ULM language. We recall the main features of the synchronous
programming style, in its control-oriented incarnation:

Broadcast signals Program components react according to the presence or absence of signals, by computing anc
emitting signals that are broadcast to all components of a given “synchronous area”.

SuspensionProgram components may be in a suspended state, because they are waiting for a signal which i
absent at the moment where they get the control.

Preemption There are means to abort the execution of a program component, depending on the presence o
absence of a signal.

Instants Instants are successive periods of the execution of a program, where the signals are consistently seen
present or absent by all components.

The so-calledeactivevariant of the synchronous programming style, designed by Boussinot, has been imple-
mented in a number of languages and used for various applications, see [8, 7]. This differs from the synchronou

*Research partially funded by the EU IST FET Project MIKADO, by the french ACI Project CRISS, and by the PhD scholarship
POSI/SFRH/BD/7100/2001.

language ESTEREL [2], for instance in the way absence of signals is dealt with: in reactive programming, the
absence of a signal can only be determined at the end of the current instant, and reaction is postponed to the ne
instant. In this way, the causal paradoxes that arise in some ESTEREL programs can be avoided, making reacti
programming well suited for systems where concurrent components may be dynamically added or removed, as
is the case with mobile code.

We consider here a core reactive language, which is a subset of ULM that extends the sequential languag
of [18] with reactive primitives and with an operator of alternating parallel composition (incorporating a fixed form
of scheduling). As expected, these new constructs add expressive power to the language and induce new forn
of security leaks. Moreover, the two-level nature of reactive computations, which evolve both within instants
and across instants, introduces new subtleties in the definition of noninterference. We give a formulation of
noninterference based on bisimulation, as is now standard [15, 14, 16, 4]. We define a type system to enforce thi
property of noninterference, along the lines of that proposed by Boudol and Castellani [5], and independently by
Smith [16], for a language for parallel programs with scheduling. In this approach, types impose constraints on
the relation between the security levels of tested and written variables and of received and emitted signals.

Let us briefly recall the intuition about noninterference: in a system with multiple security levels, information
should only be allowed to flow from lower to higher (more secure) levels [9]. As usual, we assume security levels
to form a lattice. However, in most of our examples, we shall use only two security léwlgpublic, L) and
high (secret,H). Security levels are attributed to variables and signals, using subscripts to specify thery (eg.
is a variable of high level). In a sequential imperative languagénsacure flowof information, orinterference
occurs when the initial values of high variables influence the final value of low variables. The simplest case of
insecure flow is that of an assignment of the value of a high variable to a low variable;as-+#n z . Itis called
explicit (insecure) flowMore subtle kinds of flow, callegmplicit flows may be induced by the flow of control.

An example is the programf z; = 0 then yr := 0 else nil , where at the end of execution the value,gf
may give information about ;.

Other programs may be considered as secure or not depending on the context in which they might appear. Fc
instance, the program

(whilexgy #0donil); yr:=0 (1)

may be considered safe in a sequential setting (since whenever it terminates it produces the sairfervaile
whereas it becomes critical in the presence of parallelism or scheduling (as explained for instance in [4, 5]). Wher
moving to a reactive setting we must reconsider the security of such programs in the new contexts.

In the ULM model we consider two kinds of parallel composition: first, there is the globally asynchronous
composition of “reactive machines”. This is similar to the parallel composition usually considered in the literature
(see for instance [15, 5, 16]), except that it is quite natural to assume that there is no specific scheduling a
this level. We do not consider this global composition here, and we expect it could be dealt with in a standard
compositional manner. Then, in a locally synchronous area, that is within a reactive machine, parallel compositior
is quite different: like in the implementation of reactive programming [7], we assume a deterministic cooperative
scheduling discipline on threads. It is well-known that scheduling induces new possibilities of flow (see [15, 14] for
instance), and this is indeed the case with the sequentialisation of threads that we adopt. Consequently, prograr
such as (1) can be dangerous in a reactive setting. Similarly, we should question whether the reactive counterpar
of the above programs pose problems. In fact they do, as we shall see in Section 3.1.

Another problem we are faced with when addressing the security of reactive programs is their ability to suspenc
while waiting for an absent signal, thus giving rise to a special event dakéaiht changeOne of the effects of an
instant change is to reset all signals to “absent”. With the constructs of the language we may write (for any security
level) a progranpause , whose behaviour is to suspend for the current instant, and terminate at the beginning of
the next instant (see Section 2.2). This allows us to write the following program:

emit ay;if xy = 0then nil else pause (2)

Depending on the value afy, this program may either terminate within an instant, in which easeemains
present, or suspend and change instant, in which ¢ase erased. However, since instant changes are not
statically predictable in general, we do not consider as observable the change in the status of low signals the
occurs in the transition from one instant to the next. Consequently, we consider (2) as safe. These consideratior
will lead us to adapt the definition of noninterference. We will then be able to prove that our type system is sound
for this notion of noninterference.

The rest of the paper is organized as follows. In Section 2 we introduce the language and its operationa
semantics. Section 3 presents the type system and some properties of typed programs, including subject reductic
We then define noninterference as a bisimulation relation and prove the soundness of our type system with respe
to it. Most proofs are omitted in this extended abstract. They may be found in the full paper [6].

2 The language

2.1 Syntax

We consider two infinite and disjoint sets\adriablesandsignals Var andSig, ranged over by, y, z anda, b, ¢
respectively. We then leWames be the unionVar U Sig, ranged over by, m. The setFExp of expressions
includes booleans and naturals with the usual operations, but no signals. For convenience we have chosen
present the type system only in Section 3.1. However types, or more presésrlyity levelsranged over by
0,0, 0, already appear in the syntax of the language. Security levels constitute what wiengaddl typesand are
used to type expressions and declared signals. In Section 3 we will see how more complex types for variables
signals and programs may be built from simple types.

The language gbrocesses’, Q € Procis defined by:

P = x:=e | let z:6=ein P | if ethen Pelse @ | while edoP | P;Q
| nil | emit @ | local a:6in P | doPwatching a« | whenadoP | (P9Q)

Note the use of brackets to make the precedenGauobmbiguous. The constrdet = : d = ein @ binds free
occurrences of variable in @), whereadocal «:din @ binds free occurrences of signalin Q). The free
variables and signals of a prografy notedfv (P) andfs (P) respectively, are defined in the usual way.

2.2 Operational Semantics

ConfigurationsC' are quadruplesl’, S, E, P) composed of a type-environmelit a variable-stores, a signal-
environmentt’ and a progranP. The type-environment is a mapping from names to the appropriate types. We
denote its update byz : ¢ var}T' or {a : ¢ sig}I', whered var andé sig denote types for variables and signals
respectively (formally introduced in Section 3.1). A variable-store is a mapping from variables to values. By abuse
of language we denote by(e) the atomic evaluation of the expressieminderS, which we assume to always
terminate and to produce no side effects. We denotéisby— S(e)}S the update or extension ¢f with the
value ofe for the variabler, depending on whether the variable is present or not in the domain ®he signal-
environment is the set of signals which are considered to be present. We restrict our attention to well-formed
configurations, satisfyinfy (P) C dom(S) anddom(S) U E C dom(I"). We will generally use the wonshemory
to refer to the paifvariable-storgsignal-environment

A distinguishing feature of reactive programs is their abilitystsspendwvhile waiting for a signal. The sus-
pension predicate, which applies to pairs of programs and signal-environments, is defined inductively by the rules
in Figure 1. Suspension is introduced by the constwioén o do P, in case signak is absent. The suspen-
sion of a progranP is propagated to certain contexts, namely processes of thefar), do P watching a,

wd B (E. P)}

(WHEN-SUS) (E,when a do P)i (WHEN-SUS) (E,when ado P)i
(E, P)f
(WATCH-SUS) .
(E,do P watching a)f
(SEQ-SUS) Bt (PAR-SUS) (& PR (E,Q1
(E,P; Q) (E,P Q)i

Figure 1: Suspension predicate

when a do P andP 9 @, which we callsuspendable process&de extend suspension to configurations by letting
(I, S, E, P)tif (E, P)1.

There are two forms of transitions between configurations: simmgiees denoted by the arro®@ — C’, and
instant changesdenoted byC' < C’. These are collectively referred to sieps and is denoted by’ —— C’.
The reflexive and transitive closure of these transition relations are denoted withsusual. Aninstantis a
sequence of moves leading to termination or suspension.

2.2.1 Moves

The operational rules for imperative and reactive constructs are given in Figure 2. The funetronsV) and
news (V) are injective functions on finite sets of names which return a fresh name Notéspectively a variable
and a signal. They are used in order to guarantee determinism in the language. The fatatid® stands for
substitution (name-capture avoiding):efby n in P.

The imperative rules are as usual, where termination is dealt with by reductiaih tb ‘Some comments on the
reactive rules are in order. Signal emission adds a signal to the signal-environment. The local signal declaration i
standard. Thevatching construct allows the execution of its body until an instant change occurs; the execution
will then resume or not at the next instant depending on the presence of the signal (as explained below). As fol
thewhen construct, execution of its body depends on the presence of the signal; the body suspends if the signal i
absent. Alternating parallel composition implements a co-routine mechanism. It executes its left component until
termination or suspension, and then gives control to its right component, provided this is not already suspended.

Example 1 (Alternating parallel composition) In this example three threads are queuing for execution in an
empty signal-environment (left column). Underbraces indicate suspension. The emission af bigitta third
process unblocks the first of the suspended processes, enabling them to execute one by one and then reach ter
nation.

{} ((when a do emit b) 9 (whenbdoemit ¢)) Temit a
— {} emit a 9 ((when adoemit b) 9 (whenbdoemit c))
—* {a} (when a do emit b) 9 (when bdo emit c¢)
—* {a,b} when b do emit ¢
—* {a,b,c} nil

We have seen that suspension of a thread may be lifted during an instant upon emission of the signal by anothe
thread in the pool. This is no longer possible in a program in which all threads are suspended. When this situatior
is reached, an instant change occurs.

(ASSIGN-OP) (T, S, E,x := ¢) — (T, {z — S(e)}S, E,nil)
(SEQ'OR) <F757E7n“) Q> - <F757E7Q>

(T,S,E,P)— (I",S',E', P
(I,S,E, P; Q) — (I",S", E', P'; Q)
y = newv (dom(T"))

(SEQ-OR)

(LET-OP)
(IS, E)let z:0=ein P)— ({y:0var}l',{y — S(e)}S, E,{y/x}P)

S(e) = true
(I',S,E,if ethen Pelse Q) — (I',S,E,P)
S(e) = false
(I,S,E,if ethen Pelse Q) — (I'S,E,Q)
S(e) = true
(', S, E,while edo P) — (I',S,E, P; while edo P)
S(e) = false
(', S, E,while edo P) — (', S, E,nil)
(EMIT-OP) (I, S, E,emit a) — (T, S, {a} U E,nil)

(COND-OR)

(COND-OR)

(WHILE-OP;)

(WHILE-OP,)

b = news(dom(T"))

(IS, E,local a:din P)— ({b:4dsigil',S,E,{b/a}P)
(WATCH-OP,) (I', S, E, do nil watching a) — (T, S, E,nil)

T,S,E,P)y — (I",5',E', P')
(', S,E,do P watching a)— (I',S’, E’,do P’ watching a)

a€eFE
(I, S, E,whenadonil)— (IS E,nil)
acE (I,S,E,P)— (IS E P

(', S, E,whenado P) — (I, S, E'’,when a do P’)
(PAR-OR) (T',S,E.nil Q) — (I, S, E,Q)

(LOCAL-OP)

(WATCH-OP,)

(WHEN-OR)

(WHEN-OR)

(IS, E, Py —(I'",S",E', P')
(PAR-OR)
(I''S,E,P1Q) —(I'",)S"E', P" 1Q)
PAR-OR) (E,P)t ~(E,Q)

(I,S,E,P19Q)— (I',S,E,Q 1P)

Figure 2: Operational semantics of moves

(E, P)}
(T, S,E, P) < (T,S,0,|P|)

(INSTANT-OP)

|do Pwatching a|, & ml fock 1P;Qly £ 1P Q
g B do | P|; watching a otherwise PEAE T £
def whenado |P|, ifa€FE def
(whenado Ply =4 henado P otherwise P10y = Plp1Q)s

Figure 3: Operational semantics of instant changes

2.2.2 Instant changes

Suspension of a configuration marks the end of an instant. At this point, all signals are reset to absent (the nev
signal-environment is the empty set) and all the suspended subprocesses of tde fBrwatching « whose
watched signal is present are killed. Indeed Mia¢ching construct provides a way to recover from the deadlock
situation. The semantics aistant changess defined in Figure 3. The function”] ,, is meant to be applied to
suspended processes (see Figure 1) and therefore is only defined for them.

Instant changes are programmable; we hinted in the Introduction the possibility of encoding a primitive that
enforces suspension of a thread until instant change. This primitive, which weacak , is defined as follows.

Example 2 (pause) Here the local declaration of signal ensures that the signal cannot be emitted outside the
scope of its declaration, and therefore that the program will suspend. At this point, the presénsebécked,
and since it has been emitted, the subprogfavhen « do nil), wherea is replaced by a fresh variabl€, is
aborted (i.e. turned intmil) at the beginning of the next instant.

{} local a:0in (local b:60in (emit b; do (whenadonil)watching b))
- {} emit b; do (when «’ donil)watching ¥
—* {b} do (whena' donil)watching o
s {} nil

The following is a program where an instant change breaks a causality cycle:
emit a; ((whenbdoemit c¢) 9 (do (whencdoemit b)watching a);emit b)

Here the whole program suspends after the emissien dhen, since: is present, the body of theatching
construct is killed and a new instant starts, during whighemitted, thus unblocking the other thread and allowing
c to be emitted.

2.2.3 Execution paths

A computation of a configuration has the form:
(T, S, B, P) —* (['1,S1, B, Pr) — (1, 51,0, [P1] g,) =" (T2, 52, Ba, P2) — ...

One can check that every configuration is able to perform a step if and only if its program is differemilfrom
The form of this step, simple move or instant change, depends on whetisesuspended or not. Moreover, the
following result establishes the uniqueness of this step.

Theorem 2.1 (Determinism) Any configuratiorC' = (I', S, E, P) is in exactly one of three stategerminatedif
P =nil ; suspendedf (E, P)1, in which casel!C’ : C' — (’; active in which cased!C’ : C — C".

3 Noninterference

3.1 Type System

We now introduce our type system, whose role is to rule out insecure programs. In the Introduction we illustrated
the notion of implicit flow in sequential programs. Reactive constructs should also forbid “low writes” after “high
tests”, as ivhen ay do emit b;,. To see this, consider the program

emit ¢z ; (do (when ay doemit by)watching c¢;) (3)

Whethera g is present or not this program always terminates (in one or two instants respectively), ebnithimy

if ay is present. Also the more subtle program (1) has its reactive countéwieeh ay do nil) ; emit by.

Again, this could be viewed as safe when run in isolation. However, when composed with other threads, this
program can be source of interferences as suspension can be lifted by the emission af;sig@ahsider for
instance the program 9 (« 9) (which is the reactive analogue of tRéN example of [15, 5]), where

~:if PIN g =0thenemit ay elseemit by
a:whenag donil ;emit cp; emit by
G :whenby donil ;emit dy;emit ay

If PINz = 0, no suspension occurs: is executed beforg, andc;, is emitted beforel;,. If PINy # 0, ais
initially suspended and is executed first, emittind;, and then unblocking.. In this case:;, is emitted afted;,.

Note that imperative constructs with high tests, followed by “low writes” (as in the imperative program (1) of
the Introduction) remain problematic in a reactive setting, for we can write the pregraw’ 9 3'):

~:if PIN g =0then zy:=0else zy:=1
o : (while xy =0do pause; r, :=0; zg :=0)
g : (while xy =1do pause;rp:=1;zy:=1)

Reactive concurrency introduces new leaks that are not exhibited with the usual asynchronous concurrency.
Consider the prograrty” 9) 9 4", running in two different environment&}; = {ay, zy} andEy = {zg}:

~": (pause ; xp :=1)
o : (do (when ay donil) watching z, 9Twhen by, do zy, :=0)
A" : (nil ; pause ; emit by)

The threadsy” and«” are running in parallel, containing different low assignmentscgn Notice that while

~" starts by suspending itself, the threal suspends if and only if signaly is absent. Therefore, only in

an environment wherey is present, willy” anda” start by switching positions. Theil component in3”
(although technically redundant) stresses that this thread gains control before suspension, thus ensuring that tl
first thing that happens after the change of instant is the emission of signalhat remains to be done is the two
assignments to the low variabtg,, but the order in which they will happen depends in the order of appearance
of the continuations of” anda” (which as we've seen depends on the the presence of the high sjghalhis
example suggests that it is possible to make the order of execution of neighboring threads depend on high signal
The tree of threads can then be seen as the body of a conditional, where any high test is its potential guard. Thi
motivates the introduction of some extra conditions in the typing of reactive concurrency, similar to those used for
conditionals in [5, 16].

Let us now present our type system. As we mentioned in Section 2, expressions will be typsidwithtypes
which are just security levels 6, 0. As usual, these are assumed to form a lattite<), where the order relation
< stands for “less secret than” andV denote meet and join. Starting from simple types we bugidable types
of the form¢ var andsignal typeof the form§ sig. Program types will have the forii#, o) cmd as in [5, 16].
Here the first componeritrepresents a lower bound on the level of written variables and emitted signals, while
the second componeatis an upper bound on the level of tested variables and signals.

(NIL) TkEnil :(0,0)cmd

'ke:0 T'(x)=0var
F'+z:=e:(0,0)cmd
'ke:d {z:dvar}I'+ P: (0,0) cmd

'let z:0=ein P:(f,0)cmd
F'EQq:(01,01)ecmd T'F Q2 : (62,02) cmd o1 < 6o

I'FQ1;Q2: (01 Nby,01V 0q) cmd
'ke:0 'HFP:(A,o)ecmd T'HQ:(f,0)cmd 6 <60
I'+if ethen Pelse Q:(0,0Vo)cmd

'te:0 THP:(A,o0)cmd 6Vo <46

I' -while edo P:(60,6Vo)cmd

I'(a) =6 sig

I'+emit a:(0,0)cmd

{a:dsigi'+ P:(0,0)cmd
I'klocal a:din P:(0,0)cmd
I'(a)=0sig T'FP:(8,0)cmd § <0
I'+do P watching a:(#,0Vo)cmd
I'(a)=dsig 'FP:(f,0)cmd § <4

I'-whenado P: (0,6 Vo)cmd
'EP:(01,01)ecmd T'HQ:(02,00)cmd o1 <6y o9 <6

'EPA9Q: (01 Nb2,01V 02) cmd
FEP:(0,o0)cmd 6>60" o<o
'EP:(¢,0)cmd
Vx; € fv (e).0 > 0; wherel'(z;) = 0; var
F'kFe:é

(ASSIGN)

(LET)

(SEQ)

(COND)

(WHILE)

(EMIT)

(LOCAL)

(WATCH)

(WHEN)

(PAR)

(SUB)

(EXPR)

Figure 4: Typing Rules

Our type system is presented in Figure 4. It is analogous to the one in [5, 16], apart from the new restrictions
on parallel composition. The types for tiwaen andwatching commands are similar to those for tivhile
command, since their semantics also consists of the execution of a process under a guard. As regards reacti
parallel composition, the side conditions express the fact that any high test is a potential guard to the order o
execution of concurrent threads. It forbids a thread from performing assignments and emissions at levels that ar
not higher than or equal to those of the tested variables and signals of parallel threads.

One may notice that these side conditions restrict the compositionality of the type system and introduce some

overhead (two comparisons of security levels) when adding new threads in the system. This is the price we pay fo
allowing loops with high guards suchaile 2z = 0donil (which are rejected by previous type systems, as
[15, 14]) in the context of a co-routine mechanism. However, it might be worth examining if this restriction could
be lifted to some extent by means of techniques proposed for other concurrent languages ([11, 12]).

3.2 Properties of typed programs

It is easy to see from the semantic rules that computation may affect a type-environment only by extending it with
fresh names. Our first result states that types are preserved along execution.

Theorem 3.1 (Subject Reduction)If ' - P : (§,0) cmd and(T", S, E, P) — (I",S’, E', P’) thenT" + P’ :
(0,0) cmd.

Our next result ensures that program types have the intended properties. We use the generic term “guard” fc
either a tested variable or a tested signal.

Proposition 3.2 (Guard Safety and Confinement)
1. IfT'+ P: (#,0) cmd then every guard iR has type) < o.

2. IfT"'+ P : (0,0) cmd then every variable assigned tofnand every signal emitted iR has security level
¢ (that is typed var or ¢ sig, respectively) witlh < 4.

We now introduce some terminology that will be useful to define our notion of indistinguishability. W&tose
designate @ownward-closed set of security levelsat is a sell. C 7 satisfyingd € L& o <0 = o € L. The
low memoryis the portion of the variable-store and signal-environment to which the type-environment associates
“low security levels” (i.e. security levels if). Two memories are said to be low-equal if their low parts coincide:

Definition 3.1 (£, I'-equality of Memories and Configurations) (S, E)=L(R, F) &

VeI'(z) = 0var& 0 € L = S(z) = R(zx) and Val(a) = 0sig& 8 € L = a € E & a € F. Two
configurations are said to be low-equal when they have low-equal memories.

There is a class of programs for which the security property is trivial to establish because of their inability to
change low memory. As usual, we will refer to thesénagh programs Here we distinguish two classes of high
programs based on a syntactic, respectively semantic, analysis:

Definition 3.2 (High Reactive Programs)

1. Syntactically high programs M. is inductively defined byP € HL.£ f

syn syn
o P=(x:=¢),andl'(z) =0 var=6 ¢ L.
e P = (emit a),andIl'(x) =60sig=0 ¢ L.
P=let z:5=cin Q andQ € HL {0 vatL and
e P=local a:din Q,andQ € HLHeISGHE and
P = (Q1;Q2), P = (if ethen Qelse @), P = (while edo @), P = (whenado Q1),
P = (do Q; watching a),or P = (Q; 1Q2), whereQ; € HL-X fori =1,2.

syn

2. Semantically high programs H.“ is coinductively defined by ¢ HL;~ implies:

e VS, E,(,S, E,P)— (I, S E', P"y implies (S, E) =, (S, E') and P’ € HL;*, and
e VS,E,(I,S,E,P) — (IS, E', P') impliesP’ € HL .~

Note thatP =let x:d=ein Q (aswellasP =local a:din Q) is considered syntactically high even if

d ¢ L, provided@ is syntactically high in the extended typing environment. It may be shown that both properties
are preserved by execution. As argued in the Introduction, we do not consider as relevant the initialization of the
low signal environment that is induced by instant changes. This is reflected by the absence of the low equality
condition after instant changes in Definition 3.2.2 (recall that the variable-Stagenot modified during an in-

stant change). Since instant changes are not statically predictable, this assumption allows us to deduce, from tt
syntactic property of being a high program, the corresponding behavioural property. In other words, the set of
syntactically high programs is a subset of the semantically high ones, théjisC HL;%. An example of a
semantically high program that is not syntactically higff teue then nil else yr, := 0.

The key result for proving noninterference is the following theorem, whose proof is quite elaborate and therefore
omitted here (it uses the notions 6fboundedness anfl-guardedness as in [5] and some intermediate results).
This result states that typed programs which immediately fork because of a high test, are syntactically high.
Therefore, we are sure that the only changes in low memaory occurring beyond such a fork occur at instant change
and do not involve variables.

Theorem 3.3 (Forking programs) Let P be typable inl', (S, E) =% (R, F), (I, S E P) — (T'1, 51, Ex, P1),
(T, R, F, P) v (T3, Ry, Fy, P2), and(Sy, B1) """ (Ro, Fb) or (T'y, P1) # (T2, Py) or (E, P)iiff ~(F, P)1.
ThenP ¢ HL~. ()

syn

This is quite a strong result, for it says that if there is any difference in the first step of two computations of a

typable program under low-equal memories, then the program code contains no low-assignments or emission:
The intuition is that such a difference reflects the passage of a high test, and our type system guarantees that |
changes in low memory will follow. Since the type system is based on a syntactical analysis, the result uses the
syntactic notion of high program. For an example of a forking program which becomes syntactically high (after

one step of computation) see (2) in the Introduction.

3.3 Security notion and soundness of the type system

In this section we define reactive bisimulation, and prove our noninterference result with respect to it. The two-
level nature of reactive computations, together with the asymmetry in signal removal and emission, poses som
challenges in the definition of noninterference. However, these subtleties can be factored out through the notiol
of high program.

Definition 3.3 (£-Bisimulation equivalence (=,)) The equivalencex, is the largest symmetric relatioR.
such thalClRCg, WhereC’1 = <F1, Sl, El, P1> and02 = <1—‘27 SQ, EQ, Pg), |mpIy

o Oy =12 Oy, and

e either
a. P, e HYi:Lfori=1,2, or

sem

b. C; — Cf implies3CY, such thatCy —* C) andC{ R,
We can now formalize the notion skcure progranin the usual way:

Definition 3.4 (I'-Secure Programs) P is secure in the typing context if for any downward-closed sef of
security levels and for any;, F1, Se, F5 such that(Sy, E1>:E<Sg, Es) then(T', Sy, Eq, P) =~/ (T, So, E9, P).

Finally, we are in position to prove that every typable program is secure:

'Note that the case whel&, E1)#% (R», F») attends the case where only one of the computations performs an instant change and
Jar € EUF.

10

Theorem 3.4 (Noninterference)If P is typable inl" thenP is I'-secure.

Proof 3.4 For any L, define the relationS, on configurationg”, = (I'1, S1, E1, P1) andCy = (I'y, Sa, Eo, Ps),
such thatCy S C, if and only if:

e P, istypableinl’; fori = 1,2, and
o () :Elﬁf‘z Cs, and

e either
i. PyeHliLfori=1,2,0r

syn

ii. (I'1,P)= (T2, P).

Note first that ifP is typable inl" and (S, E1) :E (Sa, E9), then(T", S1, E1, P) S¢ (T, Sa, Es, P) by clause ii.
Next we prove thatS; C = . Suppose that; S; Cs. Then we have; =.'"'> Cy by hypothesis, and either:

1. BothP; € HLi* for i = 1,2 by clause i. Sinc@(L;~ C HL:E thenP; € HLLE.

sem

2. (T'1, Py) = (I'y, P») by clause ii. We may assume that ¢ HLi:*, since otherwise we would fall into
the previous point. I, — C1 = (I}, S, Ef, Pj), thenP; # nil . SinceP; = P, also P, # nil
and by Theorem 2.3!C% such thatCy, — C) = (I, S5, E5, Py). By Theorem 3.3, we conclude that
Ci :Elm% Cy and (I}, P)) = (I'y, Py). Hence (| S; €% by clause ii.

Let us now return to the progra = if xz = 0 then nil else pause , SO that we can understand the
subtleties in this apparently straightforward definition of security. As can be seen from the definition of bisimu-
lation, this program is accepted as secure for the reason that it is high. Let us argue why such programs do nc
pose security problems. Although we have not pursued this question formally here, our motivation stems from
the following reasoning. Consider the progrdm @, where@ would be an observer which we assume to be
confined to the lowest level (and therefore typable, although the composition need not be). When control is giver
to @, he is not able to know whether this is due to the suspension or to the terminatin lof particular, if
@ starts by suspending itself, an instant change will occur in both cases. Unable to distinguish the two possible
execution paths tha? might have taken) cannot perform different actions accordingly. For similar reasons we
do not consider necessary to require the synchronization of instant changes for matching two computations of :
program.

4 Conclusion and related work

In this paper we have addressed the question of noninterference for reactive programs. We have presented a ty
system guaranteeing noninterference in a core imperative reactive language. We are currently studying a call-by
value language for mobility built around a reactive core, called ULM [3]. We intend to adapt to this language the
techniques we have developed here.

As has been observed, reactive programs obey a fixed scheduling policy, which is enforced syntactically using
the parallel construct. Other approaches to noninterference in the presence of scheduling include the probabilistic
one, proposed for instance in [17] and [14]. In these papers scheduling is introduced at the semantic level (addin
probabilities to the transitions), and security is formalized through a notion of probabilistic noninterference. It
should be noted that, unlike [5], which allows to express different scheduling policies, and [14] which accounts
for an arbitrary scheduler (satisfying some reasonable properties), here a fixed deterministic scheduling is in use
Indeed, the novelty of our work resides mainly in addressing the question of noninterference in a reactive scenario
The work [13] examines the impact of synchronization on information flow, and uses it as a means to study time
leaks without explicitly introducing a scheduler. However the analogy cannot be pushed very far since [13] has no
notion of instant (and thus no way of recovering from deadlocks) and uses asynchronous parallel composition.

11

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The synchronou:
languages twelve years latéEEE, 91(1):64—-83, 2003.

G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, semantics, imple-
mentation.Sci. of Comput. Programming9:87-152, 1992.

G. Boudol. ULM, a core programming model for global computingE®BOP’04 2004.

G. Boudol and I. Castellani. Noninterference for concurrent programi€ALP’01, number 2076 in Lecture
Notes in Computer Science, pages 382—395, 2001.

G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systémasretical
Computer Scien¢®81(1):109-130, 2002.

G. Boudol, I. Castellani, and A. Matos. Typing noninterference for reactive programs. Full paper available
at “http://lwww-sop.inria.fr/mimosa/personnel/ana.matos/tec-rep2004.ps”, 2004.

F. Boussinot. Reactive Programming, Software available at “http://www-sop.inria.fr/mimosa/rp/”, 2003.

J.-F. Susini F. Boussinot. The sugarcubes tool box: a reactive framework. Software Practice and
Experience28(14):1531-1550, 1998.

J. A. Goguen and J. Meseguer. Security policies and security modétsoteedings 1982 IEEE Symposium
on Security and Privagypages 11-20, 1982.

N. Halbwachs. Synchronous programming of reactive systems, 1993.

N. Yoshida K. Honda. A uniform type structure for secure information flowPdoceedings of the The 29th
Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming Lang2a§es

A. Myers S. Zdancewic. Observational determinism for concurrent program securRyodredings of the
16th IEEE Computer Security Foundations WorksHz§03.

A. Sabelfeld. The impact of synchronization on secure information flow in concurrent prograrRso-In
ceedings of Andrei Ershov 4th International Conference on Perspectives of System Infor20@tics

A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded prograrh8thi€omputer
Security Foundations WorkshojEEE, 2000.

G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative languaBeodeedings
POPL '98 pages 355-364. ACM Press, 1998.

Geoffrey Smith. A new type system for secure information flow.Phc. 14th IEEE Computer Security
Foundations Workshgpages 115-125. ACM Press, June 2001.

D. Volpano and G. Smith. Probabilistic noninterference in a concurrent langusmenal of Computer
Security 7(2-3), 1999.

D. Wolpano, G. Smith, and C. Irvine. A sound type system for secure flow analysignal of Computer
Security 4(3):167-187, 1996.

12

