
Typing Noninterference for Reactive Programs∗

Ana Almeida Matos, Ǵerard Boudol and Ilaria Castellani

June 7, 2004

Abstract

We propose a type system to enforce the security property ofnoninterferencein a core reactive language, ob-
tained by extending the imperative language of Volpano, Smith and Irvine with reactive primitives manipulating
broadcast signals and with a form of “scheduled” parallelism. Due to the particular nature of reactive compu-
tations, the definition of noninterference has to be adapted. We give a formulation of noninterference based on
bisimulation. Our type system is inspired by that introduced by Boudol and Castellani, and independently by
Smith, to cope with nontermination and time leaks in a language for parallel programs with scheduling. We
establish the soundness of this type system with respect to our notion of noninterference.

1 Introduction

To be widely accepted and deployed, the mobile code technology has to provide formal guarantees regarding the
various security issues that it raises. For instance, foreign code should not be allowed to corrupt, or even simply
to get knowledge of secret data owned by its execution context. Similarly, a supposedly trusted code should
be checked for not disclosing private data to public knowledge. In [3] we have introduced a core programming
model for mobile code called ULM, advocating the use of alocally synchronousprogramming style [1, 10] in a
globally asynchronouscomputing context. It is therefore natural to examine the security issues from the point of
view of this programming model. In this paper, we address some of these issues, and more specifically the non-
disclosure property, for a simplified version of the ULM language. We recall the main features of the synchronous
programming style, in its control-oriented incarnation:

Broadcast signalsProgram components react according to the presence or absence of signals, by computing and
emitting signals that are broadcast to all components of a given “synchronous area”.

SuspensionProgram components may be in a suspended state, because they are waiting for a signal which is
absent at the moment where they get the control.

Preemption There are means to abort the execution of a program component, depending on the presence or
absence of a signal.

Instants Instants are successive periods of the execution of a program, where the signals are consistently seen as
present or absent by all components.

The so-calledreactivevariant of the synchronous programming style, designed by Boussinot, has been imple-
mented in a number of languages and used for various applications, see [8, 7]. This differs from the synchronous

∗Research partially funded by the EU IST FET Project MIKADO, by the french ACI Project CRISS, and by the PhD scholarship
POSI/SFRH/BD/7100/2001.

1

language ESTEREL [2], for instance in the way absence of signals is dealt with: in reactive programming, the
absence of a signal can only be determined at the end of the current instant, and reaction is postponed to the next
instant. In this way, the causal paradoxes that arise in some ESTEREL programs can be avoided, making reactive
programming well suited for systems where concurrent components may be dynamically added or removed, as it
is the case with mobile code.

We consider here a core reactive language, which is a subset of ULM that extends the sequential language
of [18] with reactive primitives and with an operator of alternating parallel composition (incorporating a fixed form
of scheduling). As expected, these new constructs add expressive power to the language and induce new forms
of security leaks. Moreover, the two-level nature of reactive computations, which evolve both within instants
and across instants, introduces new subtleties in the definition of noninterference. We give a formulation of
noninterference based on bisimulation, as is now standard [15, 14, 16, 4]. We define a type system to enforce this
property of noninterference, along the lines of that proposed by Boudol and Castellani [5], and independently by
Smith [16], for a language for parallel programs with scheduling. In this approach, types impose constraints on
the relation between the security levels of tested and written variables and of received and emitted signals.

Let us briefly recall the intuition about noninterference: in a system with multiple security levels, information
should only be allowed to flow from lower to higher (more secure) levels [9]. As usual, we assume security levels
to form a lattice. However, in most of our examples, we shall use only two security levels,low (public, L) and
high (secret,H). Security levels are attributed to variables and signals, using subscripts to specify them (eg.xH

is a variable of high level). In a sequential imperative language, aninsecure flowof information, orinterference,
occurs when the initial values of high variables influence the final value of low variables. The simplest case of
insecure flow is that of an assignment of the value of a high variable to a low variable, as inyL := xH . It is called
explicit (insecure) flow. More subtle kinds of flow, calledimplicit flows, may be induced by the flow of control.
An example is the programif xH = 0 then yL := 0 else nil , where at the end of execution the value ofyL

may give information aboutxH .
Other programs may be considered as secure or not depending on the context in which they might appear. For

instance, the program
(while xH 6= 0 do nil) ; yL := 0 (1)

may be considered safe in a sequential setting (since whenever it terminates it produces the same value0 for yL),
whereas it becomes critical in the presence of parallelism or scheduling (as explained for instance in [4, 5]). When
moving to a reactive setting we must reconsider the security of such programs in the new contexts.

In the ULM model we consider two kinds of parallel composition: first, there is the globally asynchronous
composition of “reactive machines”. This is similar to the parallel composition usually considered in the literature
(see for instance [15, 5, 16]), except that it is quite natural to assume that there is no specific scheduling at
this level. We do not consider this global composition here, and we expect it could be dealt with in a standard
compositional manner. Then, in a locally synchronous area, that is within a reactive machine, parallel composition
is quite different: like in the implementation of reactive programming [7], we assume a deterministic cooperative
scheduling discipline on threads. It is well-known that scheduling induces new possibilities of flow (see [15, 14] for
instance), and this is indeed the case with the sequentialisation of threads that we adopt. Consequently, programs
such as (1) can be dangerous in a reactive setting. Similarly, we should question whether the reactive counterparts
of the above programs pose problems. In fact they do, as we shall see in Section 3.1.

Another problem we are faced with when addressing the security of reactive programs is their ability to suspend
while waiting for an absent signal, thus giving rise to a special event calledinstant change. One of the effects of an
instant change is to reset all signals to “absent”. With the constructs of the language we may write (for any security
level) a programpause , whose behaviour is to suspend for the current instant, and terminate at the beginning of
the next instant (see Section 2.2). This allows us to write the following program:

emit aL ; if xH = 0 then nil else pause (2)

2

Depending on the value ofxH , this program may either terminate within an instant, in which caseaL remains
present, or suspend and change instant, in which caseaL is erased. However, since instant changes are not
statically predictable in general, we do not consider as observable the change in the status of low signals that
occurs in the transition from one instant to the next. Consequently, we consider (2) as safe. These considerations
will lead us to adapt the definition of noninterference. We will then be able to prove that our type system is sound
for this notion of noninterference.

The rest of the paper is organized as follows. In Section 2 we introduce the language and its operational
semantics. Section 3 presents the type system and some properties of typed programs, including subject reduction.
We then define noninterference as a bisimulation relation and prove the soundness of our type system with respect
to it. Most proofs are omitted in this extended abstract. They may be found in the full paper [6].

2 The language

2.1 Syntax

We consider two infinite and disjoint sets ofvariablesandsignals, V ar andSig, ranged over byx, y, z anda, b, c
respectively. We then letNames be the unionV ar ∪ Sig, ranged over byn, m. The setExp of expressions
includes booleans and naturals with the usual operations, but no signals. For convenience we have chosen to
present the type system only in Section 3.1. However types, or more preciselysecurity levels, ranged over by
δ, θ, σ, already appear in the syntax of the language. Security levels constitute what we callsimple types, and are
used to type expressions and declared signals. In Section 3 we will see how more complex types for variables,
signals and programs may be built from simple types.

The language ofprocessesP,Q ∈ Proc is defined by:

P ::= x := e | let x : δ = e in P | if e then P else Q | while e do P | P ; Q
| nil | emit a | local a : δ in P | do P watching a | when a do P | (P � Q)

Note the use of brackets to make the precedence of� unambiguous. The constructlet x : δ = e in Q binds free
occurrences of variablex in Q, whereaslocal a : δ in Q binds free occurrences of signala in Q. The free
variables and signals of a programP , notedfv (P) andfs (P) respectively, are defined in the usual way.

2.2 Operational Semantics

ConfigurationsC are quadruples〈Γ, S, E, P 〉 composed of a type-environmentΓ, a variable-storeS, a signal-
environmentE and a programP . The type-environment is a mapping from names to the appropriate types. We
denote its update by{x : δ var}Γ or {a : δ sig}Γ, whereδ var andδ sig denote types for variables and signals
respectively (formally introduced in Section 3.1). A variable-store is a mapping from variables to values. By abuse
of language we denote byS(e) the atomic evaluation of the expressione underS, which we assume to always
terminate and to produce no side effects. We denote by{x 7→ S(e)}S the update or extension ofS with the
value ofe for the variablex, depending on whether the variable is present or not in the domain ofS. The signal-
environment is the set of signals which are considered to be present. We restrict our attention to well-formed
configurations, satisfyingfv (P) ⊆ dom(S) anddom(S)∪E ⊆ dom(Γ). We will generally use the wordmemory
to refer to the pair〈variable-store, signal-environment〉.

A distinguishing feature of reactive programs is their ability tosuspendwhile waiting for a signal. The sus-
pension predicate, which applies to pairs of programs and signal-environments, is defined inductively by the rules
in Figure 1. Suspension is introduced by the constructwhen a do P , in case signala is absent. The suspen-
sion of a programP is propagated to certain contexts, namely processes of the formP ; Q, do P watching a,

3

(WHEN-SUS1)
a /∈ E

(E, when a do P)‡
(WHEN-SUS2)

(E,P)‡
(E, when a do P)‡

(WATCH-SUS)
(E,P)‡

(E, do P watching a)‡

(SEQ-SUS)
(E,P)‡

(E,P ; Q)‡
(PAR-SUS)

(E,P)‡ (E,Q)‡
(E,P � Q)‡

Figure 1: Suspension predicate

when a do P andP � Q, which we callsuspendable processes. We extend suspension to configurations by letting
〈Γ, S, E, P 〉‡ if 〈E,P 〉‡.

There are two forms of transitions between configurations: simplemoves, denoted by the arrowC → C ′, and
instant changes, denoted byC ↪→ C ′. These are collectively referred to assteps, and is denoted byC 7−→ C ′.
The reflexive and transitive closure of these transition relations are denoted with a ‘∗’ as usual. Aninstant is a
sequence of moves leading to termination or suspension.

2.2.1 Moves

The operational rules for imperative and reactive constructs are given in Figure 2. The functionsnewv(N) and
news(N) are injective functions on finite sets of names which return a fresh name not inN , respectively a variable
and a signal. They are used in order to guarantee determinism in the language. The notation{n/m}P stands for
substitution (name-capture avoiding) ofm by n in P .

The imperative rules are as usual, where termination is dealt with by reduction to ‘nil ’. Some comments on the
reactive rules are in order. Signal emission adds a signal to the signal-environment. The local signal declaration is
standard. Thewatching construct allows the execution of its body until an instant change occurs; the execution
will then resume or not at the next instant depending on the presence of the signal (as explained below). As for
thewhen construct, execution of its body depends on the presence of the signal; the body suspends if the signal is
absent. Alternating parallel composition implements a co-routine mechanism. It executes its left component until
termination or suspension, and then gives control to its right component, provided this is not already suspended.

Example 1 (Alternating parallel composition) In this example three threads are queuing for execution in an
empty signal-environment (left column). Underbraces indicate suspension. The emission of signala by the third
process unblocks the first of the suspended processes, enabling them to execute one by one and then reach termi-
nation.

{} ((when a do emit b) � (when b do emit c)︸ ︷︷ ︸) � emit a

→ {} emit a � ((when a do emit b) � (when b do emit c))
→? {a} (when a do emit b) � (when b do emit c)
→? {a, b} when b do emit c
→? {a, b, c} nil

We have seen that suspension of a thread may be lifted during an instant upon emission of the signal by another
thread in the pool. This is no longer possible in a program in which all threads are suspended. When this situation
is reached, an instant change occurs.

4

(ASSIGN-OP) 〈Γ, S, E, x := e〉 → 〈Γ, {x 7→ S(e)}S, E, nil 〉

(SEQ-OP1) 〈Γ, S, E, nil ; Q〉 → 〈Γ, S, E,Q〉

(SEQ-OP2)
〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E, P ; Q〉 → 〈Γ′, S′, E′, P ′ ; Q〉

(LET-OP)
y = newv(dom(Γ))

〈Γ, S, E, let x : δ = e in P 〉 → 〈{y : δ var}Γ, {y 7→ S(e)}S, E, {y/x}P 〉

(COND-OP1)
S(e) = true

〈Γ, S, E, if e then P else Q〉 → 〈Γ, S, E, P 〉

(COND-OP2)
S(e) = false

〈Γ, S, E, if e then P else Q〉 → 〈Γ, S, E,Q〉

(WHILE-OP1)
S(e) = true

〈Γ, S, E, while e do P 〉 → 〈Γ, S, E, P ; while e do P 〉

(WHILE-OP2)
S(e) = false

〈Γ, S, E, while e do P 〉 → 〈Γ, S, E, nil 〉

(EMIT-OP) 〈Γ, S, E, emit a〉 → 〈Γ, S, {a} ∪ E, nil 〉

(LOCAL-OP)
b = news(dom(Γ))

〈Γ, S, E, local a : δ in P 〉 → 〈{b : δ sig}Γ, S, E, {b/a}P 〉

(WATCH-OP1) 〈Γ, S, E, do nil watching a〉 → 〈Γ, S, E, nil 〉

(WATCH-OP2)
〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E, do P watching a〉 → 〈Γ′, S′, E′, do P ′ watching a〉

(WHEN-OP1)
a ∈ E

〈Γ, S, E, when a do nil 〉 → 〈Γ, S, E, nil 〉

(WHEN-OP2)
a ∈ E 〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E, when a do P 〉 → 〈Γ′, S′, E′, when a do P ′〉

(PAR-OP1) 〈Γ, S, E, nil � Q〉 → 〈Γ, S, E,Q〉

(PAR-OP2)
〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E, P � Q〉 → 〈Γ′, S′, E′, P ′ � Q〉

(PAR-OP3)
〈E,P 〉‡ ¬〈E,Q〉‡

〈Γ, S, E, P � Q〉 → 〈Γ, S, E,Q � P 〉

Figure 2: Operational semantics of moves

5

(INSTANT-OP)
〈E,P 〉‡

〈Γ, S, E, P 〉 ↪→ 〈Γ, S, ∅, bP cE〉

bdo P watching acE
def=

 nil if a ∈ E

do bP cE watching a otherwise
bP ; QcE

def= bP cE ; Q

bwhen a do P cE
def=

 when a do bP cE if a ∈ E

when a do P otherwise
bP � QcE

def= bP cE � bQcE

Figure 3: Operational semantics of instant changes

2.2.2 Instant changes

Suspension of a configuration marks the end of an instant. At this point, all signals are reset to absent (the new
signal-environment is the empty set) and all the suspended subprocesses of the formdo P watching a whose
watched signal is present are killed. Indeed, thewatching construct provides a way to recover from the deadlock
situation. The semantics ofinstant changesis defined in Figure 3. The functionbP cE is meant to be applied to
suspended processes (see Figure 1) and therefore is only defined for them.

Instant changes are programmable; we hinted in the Introduction the possibility of encoding a primitive that
enforces suspension of a thread until instant change. This primitive, which we callpause , is defined as follows.

Example 2 (pause) Here the local declaration of signala ensures that the signal cannot be emitted outside the
scope of its declaration, and therefore that the program will suspend. At this point, the presence ofb is checked,
and since it has been emitted, the subprogram(when a do nil), wherea is replaced by a fresh variablea′, is
aborted (i.e. turned intonil) at the beginning of the next instant.

{} local a : δ in (local b : θ in (emit b ; do (when a do nil) watching b))
→? {} emit b ; do (when a′ do nil) watching b′

→? {b} do (when a′ do nil︸ ︷︷ ︸) watching b′︸ ︷︷ ︸
↪→ {} nil

The following is a program where an instant change breaks a causality cycle:

emit a ; ((when b do emit c) � (do (when c do emit b) watching a) ; emit b)

Here the whole program suspends after the emission ofa. Then, sincea is present, the body of thewatching
construct is killed and a new instant starts, during whichb is emitted, thus unblocking the other thread and allowing
c to be emitted.

2.2.3 Execution paths

A computation of a configuration has the form:

〈Γ, S, E, P 〉 →? 〈Γ1, S1, E1, P1〉 ↪→ 〈Γ1, S1, ∅, bP1cE1
〉 →? 〈Γ2, S2, E2, P2〉 ↪→ . . .

One can check that every configuration is able to perform a step if and only if its program is different fromnil .
The form of this step, simple move or instant change, depends on whetherP is suspended or not. Moreover, the
following result establishes the uniqueness of this step.

6

Theorem 2.1 (Determinism) Any configurationC = 〈Γ, S, E, P 〉 is in exactly one of three states:terminated, if
P = nil ; suspended, if 〈E,P 〉‡, in which case∃!C ′ : C ↪→ C ′; active, in which case∃!C ′ : C → C ′.

3 Noninterference

3.1 Type System

We now introduce our type system, whose role is to rule out insecure programs. In the Introduction we illustrated
the notion of implicit flow in sequential programs. Reactive constructs should also forbid “low writes” after “high
tests”, as inwhen aH do emit bL. To see this, consider the program

emit cL ; (do (when aH do emit bL) watching cL) (3)

WhetheraH is present or not this program always terminates (in one or two instants respectively), emittingbL only
if aH is present. Also the more subtle program (1) has its reactive counterpart(when aH do nil) ; emit bL.
Again, this could be viewed as safe when run in isolation. However, when composed with other threads, this
program can be source of interferences as suspension can be lifted by the emission of signalaH . Consider for
instance the programγ � (α � β) (which is the reactive analogue of thePIN example of [15, 5]), where

γ : if PIN H = 0 then emit aH else emit bH

α : when aH do nil ; emit cL ; emit bH

β : when bH do nil ; emit dL ; emit aH

If PIN H = 0, no suspension occurs:α is executed beforeβ, andcL is emitted beforedL. If PIN H 6= 0, α is
initially suspended andβ is executed first, emittingdL and then unblockingα. In this casecL is emitted afterdL.

Note that imperative constructs with high tests, followed by “low writes” (as in the imperative program (1) of
the Introduction) remain problematic in a reactive setting, for we can write the programγ′ � (α′ � β′):

γ′ : if PIN H = 0 then xH := 0 else xH := 1
α′ : (while xH = 0 do pause ; rL := 0 ; xH := 0)
β′ : (while xH = 1 do pause ; rL := 1 ; xH := 1)

Reactive concurrency introduces new leaks that are not exhibited with the usual asynchronous concurrency.
Consider the program(γ′′ � α′′) � β′′, running in two different environments,E1 = {aH , zH} andE2 = {zH}:

γ′′ : (pause ; xL := 1)
α′′ : (do (when aH do nil) watching zH � when bL do xL := 0)

β′′ : (nil ; pause ; emit bL)

The threadsγ′′ andα′′ are running in parallel, containing different low assignments onxL. Notice that while
γ′′ starts by suspending itself, the threadα′′ suspends if and only if signalaH is absent. Therefore, only in
an environment whereaH is present, willγ′′ andα′′ start by switching positions. Thenil component inβ′′

(although technically redundant) stresses that this thread gains control before suspension, thus ensuring that the
first thing that happens after the change of instant is the emission of signalbL. What remains to be done is the two
assignments to the low variablexL, but the order in which they will happen depends in the order of appearance
of the continuations ofγ′′ andα′′ (which as we’ve seen depends on the the presence of the high signalaH). This
example suggests that it is possible to make the order of execution of neighboring threads depend on high signals.
The tree of threads can then be seen as the body of a conditional, where any high test is its potential guard. This
motivates the introduction of some extra conditions in the typing of reactive concurrency, similar to those used for
conditionals in [5, 16].

7

Let us now present our type system. As we mentioned in Section 2, expressions will be typed withsimple types,
which are just security levelsδ, θ, σ. As usual, these are assumed to form a lattice(T ,≤), where the order relation
≤ stands for “less secret than” and∧,∨ denote meet and join. Starting from simple types we buildvariable types
of the formδ var andsignal typesof the formδ sig. Program types will have the form(θ, σ) cmd, as in [5, 16].
Here the first componentθ represents a lower bound on the level of written variables and emitted signals, while
the second componentσ is an upper bound on the level of tested variables and signals.

(NIL) Γ ` nil : (θ, σ) cmd

(ASSIGN)
Γ ` e : θ Γ(x) = θ var

Γ ` x := e : (θ, σ) cmd

(LET)
Γ ` e : δ {x : δ var}Γ ` P : (θ, σ) cmd

Γ ` let x : δ = e in P : (θ, σ) cmd

(SEQ)
Γ ` Q1 : (θ1, σ1) cmd Γ ` Q2 : (θ2, σ2) cmd σ1 ≤ θ2

Γ ` Q1 ; Q2 : (θ1 ∧ θ2, σ1 ∨ σ2) cmd

(COND)
Γ ` e : δ Γ ` P : (θ, σ) cmd Γ ` Q : (θ, σ) cmd δ ≤ θ

Γ ` if e then P else Q : (θ, δ ∨ σ) cmd

(WHILE)
Γ ` e : δ Γ ` P : (θ, σ) cmd δ ∨ σ ≤ θ

Γ ` while e do P : (θ, δ ∨ σ) cmd

(EMIT)
Γ(a) = θ sig

Γ ` emit a : (θ, σ) cmd

(LOCAL)
{a : δ sig}Γ ` P : (θ, σ) cmd

Γ ` local a : δ in P : (θ, σ) cmd

(WATCH)
Γ(a) = δ sig Γ ` P : (θ, σ) cmd δ ≤ θ

Γ ` do P watching a : (θ, δ ∨ σ) cmd

(WHEN)
Γ(a) = δ sig Γ ` P : (θ, σ) cmd δ ≤ θ

Γ ` when a do P : (θ, δ ∨ σ) cmd

(PAR)
Γ ` P : (θ1, σ1) cmd Γ ` Q : (θ2, σ2) cmd σ1 ≤ θ2 σ2 ≤ θ1

Γ ` P � Q : (θ1 ∧ θ2, σ1 ∨ σ2) cmd

(SUB)
Γ ` P : (θ, σ) cmd θ ≥ θ′ σ ≤ σ′

Γ ` P : (θ′, σ′) cmd

(EXPR)
∀xi ∈ fv (e).δ ≥ θi whereΓ(xi) = θi var

Γ ` e : δ

Figure 4: Typing Rules

Our type system is presented in Figure 4. It is analogous to the one in [5, 16], apart from the new restrictions
on parallel composition. The types for thewhen andwatching commands are similar to those for thewhile
command, since their semantics also consists of the execution of a process under a guard. As regards reactive
parallel composition, the side conditions express the fact that any high test is a potential guard to the order of
execution of concurrent threads. It forbids a thread from performing assignments and emissions at levels that are
not higher than or equal to those of the tested variables and signals of parallel threads.

One may notice that these side conditions restrict the compositionality of the type system and introduce some

8

overhead (two comparisons of security levels) when adding new threads in the system. This is the price we pay for
allowing loops with high guards such aswhile xH = 0 do nil (which are rejected by previous type systems, as
[15, 14]) in the context of a co-routine mechanism. However, it might be worth examining if this restriction could
be lifted to some extent by means of techniques proposed for other concurrent languages ([11, 12]).

3.2 Properties of typed programs

It is easy to see from the semantic rules that computation may affect a type-environment only by extending it with
fresh names. Our first result states that types are preserved along execution.

Theorem 3.1 (Subject Reduction)If Γ ` P : (θ, σ) cmd and〈Γ, S, E, P 〉 7−→ 〈Γ′, S′, E′, P ′〉 thenΓ′ ` P ′ :
(θ, σ) cmd.

Our next result ensures that program types have the intended properties. We use the generic term “guard” for
either a tested variable or a tested signal.

Proposition 3.2 (Guard Safety and Confinement)

1. If Γ ` P : (θ, σ) cmd then every guard inP has typeδ ≤ σ.

2. If Γ ` P : (θ, σ) cmd then every variable assigned to inP and every signal emitted inP has security level
δ (that is typeδ var or δ sig, respectively) withθ ≤ δ.

We now introduce some terminology that will be useful to define our notion of indistinguishability. We useL to
designate adownward-closed set of security levels, that is a setL ⊆ T satisfyingθ ∈ L & σ ≤ θ ⇒ σ ∈ L. The
low memoryis the portion of the variable-store and signal-environment to which the type-environment associates
“low security levels” (i.e. security levels inL). Two memories are said to be low-equal if their low parts coincide:

Definition 3.1 (L,Γ-equality of Memories and Configurations) 〈S, E〉=Γ
L〈R,F 〉 def⇔

∀x.Γ(x) = θ var & θ ∈ L ⇒ S(x) = R(x) and ∀a.Γ(a) = θ sig & θ ∈ L ⇒ a ∈ E ⇔ a ∈ F . Two
configurations are said to be low-equal when they have low-equal memories.

There is a class of programs for which the security property is trivial to establish because of their inability to
change low memory. As usual, we will refer to these ashigh programs. Here we distinguish two classes of high
programs based on a syntactic, respectively semantic, analysis:

Definition 3.2 (High Reactive Programs)

1. Syntactically high programs HΓ,L
syn is inductively defined by:P ∈ HΓ,L

syn if

• P = (x := e), andΓ(x) = θ var⇒ θ /∈ L.

• P = (emit a), andΓ(x) = θ sig⇒ θ /∈ L.

• P = let x : δ = e in Q, andQ ∈ HΓ∪{x:δ var},L
syn , and

• P = local a : δ in Q, andQ ∈ HΓ∪{a:δ sig},L
syn , and

• P = (Q1 ; Q2), P = (if e then Q1 else Q2), P = (while e do Q1), P = (when a do Q1),
P = (do Q1 watching a), or P = (Q1 � Q2), whereQi ∈ HΓ,L

syn for i = 1, 2.

2. Semantically high programsHΓ,L
sem is coinductively defined byP ∈ HΓ,L

sem implies:

• ∀S, E, 〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉 implies〈S, E〉 =Γ
L 〈S′, E′〉 andP ′ ∈ HΓ′,L

sem , and

• ∀S, E, 〈Γ, S, E, P 〉 ↪→ 〈Γ′, S′, E′, P ′〉 impliesP ′ ∈ HΓ′,L
sem

9

Note thatP = let x : δ = e in Q (as well asP = local a : δ in Q) is considered syntactically high even if
δ /∈ L, providedQ is syntactically high in the extended typing environment. It may be shown that both properties
are preserved by execution. As argued in the Introduction, we do not consider as relevant the initialization of the
low signal environment that is induced by instant changes. This is reflected by the absence of the low equality
condition after instant changes in Definition 3.2.2 (recall that the variable-storeS is not modified during an in-
stant change). Since instant changes are not statically predictable, this assumption allows us to deduce, from the
syntactic property of being a high program, the corresponding behavioural property. In other words, the set of
syntactically high programs is a subset of the semantically high ones, that isHΓ,L

syn ⊆ HΓ,L
sem . An example of a

semantically high program that is not syntactically high isif true then nil else yL := 0.
The key result for proving noninterference is the following theorem, whose proof is quite elaborate and therefore

omitted here (it uses the notions ofL-boundedness andL-guardedness as in [5] and some intermediate results).
This result states that typed programs which immediately fork because of a high test, are syntactically high.
Therefore, we are sure that the only changes in low memory occurring beyond such a fork occur at instant changes,
and do not involve variables.

Theorem 3.3 (Forking programs) Let P be typable inΓ, 〈S, E〉 =Γ
L 〈R,F 〉, 〈Γ, S,E,P 〉 7−→ 〈Γ1, S1, E1, P1〉,

〈Γ, R, F, P 〉 7−→ 〈Γ2, R2, F2, P2〉, and〈S1, E1〉 6=Γ1∩Γ2
L 〈R2, F2〉 or 〈Γ1, P1〉 6= 〈Γ2, P2〉 or 〈E,P 〉‡ iff ¬〈F, P 〉‡.

ThenP ∈ HΓ,L
syn . (1)

This is quite a strong result, for it says that if there is any difference in the first step of two computations of a
typable program under low-equal memories, then the program code contains no low-assignments or emissions.
The intuition is that such a difference reflects the passage of a high test, and our type system guarantees that no
changes in low memory will follow. Since the type system is based on a syntactical analysis, the result uses the
syntactic notion of high program. For an example of a forking program which becomes syntactically high (after
one step of computation) see (2) in the Introduction.

3.3 Security notion and soundness of the type system

In this section we define reactive bisimulation, and prove our noninterference result with respect to it. The two-
level nature of reactive computations, together with the asymmetry in signal removal and emission, poses some
challenges in the definition of noninterference. However, these subtleties can be factored out through the notion
of high program.

Definition 3.3 (L-Bisimulation equivalence (≈L)) The equivalence≈L is the largest symmetric relationR
such thatC1RC2, whereC1 = 〈Γ1, S1, E1, P1〉 andC2 = 〈Γ2, S2, E2, P2〉, imply:

• C1 =Γ1∩Γ2
L C2, and

• either

a. Pi ∈ HΓi,L
sem for i = 1, 2, or

b. C1 7−→ C ′
1 implies∃C ′

2 such thatC2 7−→? C ′
2 andC ′

1RC ′
2

We can now formalize the notion ofsecure programin the usual way:

Definition 3.4 (Γ-Secure Programs)P is secure in the typing contextΓ if for any downward-closed setL of
security levels and for anyS1, E1, S2, E2 such that〈S1, E1〉=Γ

L〈S2, E2〉 then〈Γ, S1, E1, P 〉 ≈L 〈Γ, S2, E2, P 〉.

Finally, we are in position to prove that every typable program is secure:

1Note that the case where〈S1, E1〉6=Γ
L 〈R2, F2〉 attends the case where only one of the computations performs an instant change and

∃aL ∈ E ∪ F .

10

Theorem 3.4 (Noninterference)If P is typable inΓ thenP is Γ-secure.

Proof 3.4 For anyL, define the relationSL on configurationsC1 = 〈Γ1, S1, E1, P1〉 andC2 = 〈Γ2, S2, E2, P2〉,
such thatC1 SL C2 if and only if:

• Pi is typable inΓi for i = 1, 2, and

• C1 =Γ1∩Γ2
L C2, and

• either
i. Pi ∈ HΓi,L

syn for i = 1, 2, or

ii. 〈Γ1, P1〉 = 〈Γ2, P2〉.

Note first that ifP is typable inΓ and〈S1, E1〉 =Γ
L 〈S2, E2〉, then〈Γ, S1, E1, P 〉 SL 〈Γ, S2, E2, P 〉 by clause ii.

Next we prove thatSL ⊆ ≈L . Suppose thatC1 SL C2. Then we haveC1 =Γ1∩Γ2
L C2 by hypothesis, and either:

1. BothPi ∈ HΓi,L
syn for i = 1, 2 by clause i. SinceHΓi,L

syn ⊆ HΓi,L
sem thenPi ∈ HΓi,L

sem .

2. 〈Γ1, P1〉 = 〈Γ2, P2〉 by clause ii. We may assume thatPi /∈ HΓi,L
syn , since otherwise we would fall into

the previous point. IfC1 7−→ C ′
1 = 〈Γ′

1, S
′
1, E

′
1, P

′
1〉, thenP1 6= nil . SinceP1 = P2, alsoP2 6= nil

and by Theorem 2.1∃!C ′
2 such thatC2 7−→ C ′

2 = 〈Γ′
2, S

′
2, E

′
2, P

′
2〉. By Theorem 3.3, we conclude that

C ′
1 =Γ′1∩Γ′2

L C ′
2 and〈Γ′

1, P
′
1〉 = 〈Γ′

2, P
′
2〉. Hence,C ′

1 SL C ′
2 by clause ii.

Let us now return to the programP = if xH = 0 then nil else pause , so that we can understand the
subtleties in this apparently straightforward definition of security. As can be seen from the definition of bisimu-
lation, this program is accepted as secure for the reason that it is high. Let us argue why such programs do not
pose security problems. Although we have not pursued this question formally here, our motivation stems from
the following reasoning. Consider the programP � Q, whereQ would be an observer which we assume to be
confined to the lowest level (and therefore typable, although the composition need not be). When control is given
to Q, he is not able to know whether this is due to the suspension or to the termination ofP . In particular, if
Q starts by suspending itself, an instant change will occur in both cases. Unable to distinguish the two possible
execution paths thatP might have taken,Q cannot perform different actions accordingly. For similar reasons we
do not consider necessary to require the synchronization of instant changes for matching two computations of a
program.

4 Conclusion and related work

In this paper we have addressed the question of noninterference for reactive programs. We have presented a type
system guaranteeing noninterference in a core imperative reactive language. We are currently studying a call-by-
value language for mobility built around a reactive core, called ULM [3]. We intend to adapt to this language the
techniques we have developed here.

As has been observed, reactive programs obey a fixed scheduling policy, which is enforced syntactically using
the parallel construct�. Other approaches to noninterference in the presence of scheduling include the probabilistic
one, proposed for instance in [17] and [14]. In these papers scheduling is introduced at the semantic level (adding
probabilities to the transitions), and security is formalized through a notion of probabilistic noninterference. It
should be noted that, unlike [5], which allows to express different scheduling policies, and [14] which accounts
for an arbitrary scheduler (satisfying some reasonable properties), here a fixed deterministic scheduling is in use.
Indeed, the novelty of our work resides mainly in addressing the question of noninterference in a reactive scenario.
The work [13] examines the impact of synchronization on information flow, and uses it as a means to study time
leaks without explicitly introducing a scheduler. However the analogy cannot be pushed very far since [13] has no
notion of instant (and thus no way of recovering from deadlocks) and uses asynchronous parallel composition.

11

References

[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The synchronous
languages twelve years later.IEEE, 91(1):64–83, 2003.

[2] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, semantics, imple-
mentation.Sci. of Comput. Programming, 19:87–152, 1992.

[3] G. Boudol. ULM, a core programming model for global computing. InESOP’04, 2004.

[4] G. Boudol and I. Castellani. Noninterference for concurrent programs. InICALP’01, number 2076 in Lecture
Notes in Computer Science, pages 382–395, 2001.

[5] G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems.Theoretical
Computer Science, 281(1):109–130, 2002.

[6] G. Boudol, I. Castellani, and A. Matos. Typing noninterference for reactive programs. Full paper available
at “http://www-sop.inria.fr/mimosa/personnel/ana.matos/tec-rep2004.ps”, 2004.

[7] F. Boussinot. Reactive Programming, Software available at “http://www-sop.inria.fr/mimosa/rp/”, 2003.

[8] J.-F. Susini F. Boussinot. The sugarcubes tool box: a reactive JAVA framework. Software Practice and
Experience, 28(14):1531–1550, 1998.

[9] J. A. Goguen and J. Meseguer. Security policies and security models. InProceedings 1982 IEEE Symposium
on Security and Privacy, pages 11–20, 1982.

[10] N. Halbwachs. Synchronous programming of reactive systems, 1993.

[11] N. Yoshida K. Honda. A uniform type structure for secure information flow. InProceedings of the The 29th
Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages, 2002.

[12] A. Myers S. Zdancewic. Observational determinism for concurrent program security. InProceedings of the
16th IEEE Computer Security Foundations Workshop, 2003.

[13] A. Sabelfeld. The impact of synchronization on secure information flow in concurrent programs. InPro-
ceedings of Andrei Ershov 4th International Conference on Perspectives of System Informatics, 2001.

[14] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In13th Computer
Security Foundations Workshop. IEEE, 2000.

[15] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language. InProceedings
POPL ’98, pages 355–364. ACM Press, 1998.

[16] Geoffrey Smith. A new type system for secure information flow. InProc. 14th IEEE Computer Security
Foundations Workshop, pages 115–125. ACM Press, June 2001.

[17] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.Journal of Computer
Security, 7(2-3), 1999.

[18] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.Journal of Computer
Security, 4(3):167–187, 1996.

12

