
Universidade Técnica de Lisboa
Instituto Superior Técnico
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Abstract

The growing number of three dimensional objects in digital libraries led to a prob-
lematic situation. Searching and browsing collections of models is no longer a trivial
task. Today, a regular domain-specific database can contain thousands of items, and
the number of generic 3D models available on the internet is much larger. Indeed,
unless some meta-data have been assigned to models, finding the desired model in
large collections is an hard task.

To ease this task, researchers proposed, during the last decade, several approaches
to retrieve 3D models based on shape similarity. Some of these content-based retrieval
systems are able to find a model in a database from a sketched query or using query-
by-example. However, results produced by such systems are far from the successful
query results obtained by their textual counterparts.

A major handicap of most retrieval systems is the fact that they only support
queries of the complete object. Even those who use local features to represent a
model in a database usually do not allow matching of object subparts. In recent
years, some researchers focused their investigation on 3D shape retrieval with partial
matching. However, they rely on representing only some parts of the model, such as
salient regions or distinctive features, and not the complete set of model subparts.

In this thesis proposal we will focus on 3D shape retrieval with partial matching.
Unlike other approaches, we will represent complete models, in a way similar to text
retrieval systems that classify all words from the entire document and not only some
select words. We believe that through the use of a deterministic shape decomposition
and a shape thesaurus with inverted indexes we will be able to describe and retrieve 3D
models partially. This approach will allow us to take advantage of some well known
techniques from text information retrieval, such as the term frequency and inverse
document frequency to rank the relevance of every subpart in the database. We hope
that, at the end, our research contribute to devising an effective solution for 3D shape
retrieval with partial matching.

Keywords: Content-based retrieval, 3D shapes, partial matching.

vii



viii



1

1 Introduction

In the last decades the volume of multimedia information, such as images and video, stored
into databases and over the internet has been growing. In particular, recent advances on
modelling, digitising and visualising techniques led to a clear tendency to increase the
number of 3D models both on the internet and in domain-specific databases. Three-
dimensional models are used in a wide range of fields, such as engineering (CAD/CAM),
virtual reality, medicine (CAT scans), molecular biology, geography (SIG) or not to men-
tion the growing entertainment industry.

As a result, many collections of 3D models are now available for usage on a wide
range of areas. Following the evolution of such collections, a considerable effort has been
dedicated by researchers all over the world to analysis, classification and retrieval of three-
dimensional models. Indeed, the problem of comparing 3D objects arises not only in one
specific area or type of model but is a general issue, embracing a wide range of applications.
For instance, besides the obvious applications in CAD model retrieval, similarity detection
in organ deformation can help diagnosing diseases [72] and structural classification, a basic
task in molecular biology, can be approached by 3D similarity search [9].

Thus, there is a growing necessity in classifying and retrieving 3D geometrical models
using shape properties instead of (or combined with) text. To that end, several research
groups focused their work on classification and retrieval algorithms that rely mainly on
shape descriptors (feature vectors). Indeed, finding adequate descriptors that capture
global or local shape characteristics while allowing computational viability of the repre-
sentation has become a main investigation goal in this area. As a result of this research,
there are several emerging solutions to search 3D objects based on their geometrical con-
tent.

In this context, most current techniques to describe 3D models are based on computable
geometrical attributes of the shape. However, these techniques do not use the structure
and details of the desired objects to index. Moreover, existing approaches work mostly
by comparing the complete models and do not allow partial queries to be formulated,
which greatly hinders their usefulness. This is similar to a text-based system requiring
detailed specifications of pages or complete documents to find a given document, in which
only example documents would serve as query initiators instead of typing a few words to
a search engine. This explains why 3D model retrieval systems enjoy limited usefulness
and there is no equivalent of a GoogleTM or Yahoo R© search engine for three-dimensional
geometric shapes.

Nevertheless, in recent years a few 3D shape retrieval approaches with partial matching
has been proposed. These approaches allow searching for a model supplying as a query
only part of the desired model . However, such solutions rely on representing some sub-
parts of the model and not the complete model. Indeed, considering only a small set
of distinctive features of an object to classify it proved to be an efficient shortcut, but
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some eventually relevant object information is discarded in this process. Informally, a 3D
search engine using these approaches can be compared to a text retrieval system that uses
automatically extracted keywords to classify document instead of the whole content.

Aiming an effective solution for 3D shape search, our investigation work will focus
on object retrieval mechanisms to analyse and describe the content of models based on
techniques for structure-driven partial matching of 3D models. Indeed, we intend to
develop techniques that will provide some of the functionality necessary to build a retrieval
system with effective support to partial matching but classifying complete models. To that
end, we plan to investigate the viability of transposing matching and indexing approaches
widely-used in text information retrieval to 3D shape searching.

We believe that through the combination of effective shape decomposition techniques
with a shape thesaurus we will be able to describe and retrieve 3D models with partial
queries. However, despite the success of word thesaurus in text documents, while words
can be easily extracted from documents, shape identification in a three-dimensional object
is a much harder task and the success of such approach is not guaranteed. Indeed, the
difficulties of this task came not only from its computational complexity but also from the
ambiguity of such identification.

Therefore, our research will focus on devising a technique for model segmentation
suitable to be used in conjunction with a shape thesaurus. Moreover, we will investigate
shape retrieval, indexing and matching methods that support the proposed thesaurus-
based approach. Additionally, we will develop a framework for 3D shape classification and
retrieval with partial matching based on the proposed approach.

On this proposal we will firstly present a brief overview of research context underneath
the classification and retrieval of three dimensional shapes. To that end we identify the
key players in this area and the most relevant events regarding our work. Additionally,
we present a short list of existing model databases.

Next, we will focus on the theoretical background and state of the art in 3D shape re-
trieval by analysing three distinct research areas: shape descriptors; content-based retrieval
of 3D models and retrieval of 3D shapes using partial queries. Since shape descriptors are
generally used to represent objects in retrieval systems, as referred above, algorithms and
techniques to extract such information from models are considered to be among the most
important topics in shape retrieval research. Thus, we give special attention to shape
descriptor techniques by providing an extensive overview to existing approaches.

In the remaining of this document we will focus in the proposed research problem and
present the thesis statement, defining the hypothesis. Next, we will describe the approach
we will follow in our research work and present a three-year work plan for the proposed
PhD thesis. Finally, we will present some preliminary results obtained in early stages of
this work.
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2 Background and State-of-the-Art

In this section we intend to introduce the reader into the current context of research on
three dimensional shape classification retrieval. To that end, we will start by presenting
some people whose work is closely related or has a major relevance to our research. Addi-
tionally, we will identify a small set of journals and conferences where our research topics
are usually presented and published.

Besides presenting the current research context we focus on important topics in 3D
shape retrieval. Regarding our work, these are the shape description, query and matching
techniques and benchmarking methodologies. Due to the unquestionable importance of
descriptor computation techniques on content-based retrieval system, we dedicate special
attention to present later in this section a short but comprehensive survey on 3D shape
descriptors. We will also briefly review some existing solutions for 3D shape retrieval.
Obviously, this section could not be complete without presenting the state-of-the-art on
partial matching of 3D shapes, with which we close this section.

2.1 The key players

Following the increasing importance of content-based retrieval of three-dimensional shapes,
several research groups around the world focused their interests on this area, which we will
present here. However, producing an exhaustive list with all of them is difficult, with the
additional risk of excluding some important researchers. Therefore, we will only present
a short list containing those we consider more relevant regarding our work.

The concise list of research groups working on analysis and retrieval of three-dimensional
shapes, and corresponding researchers is presented in Table 1. As we mentioned before,
the list of research groups referred in this section is far from exhaustive. Indeed, many
relevant researchers were not included here since it will result in a quite extensive list of
every people of every group working on analysis and retrieval of three-dimensional shapes.
Thus, we will only refer the groups whose work had greater impact in our research until
the present time and the most prominent researchers of these groups.

Princeton During the last six years, the Princeton Shape Retrieval and Analysis Group,
leaded by Thomas Funkhouser, have been addressing key issues in shape-based retrieval
and analysis of 3D models. Focusing on effective shape representations and query inter-
faces, they have developed a search engine for 3D polygonal models and later released a
classified set of 3D models that can be used by researchers in this area. The Princeton
Shape Benchmark is now widely accepted as a major benchmarking tool within 3D shape
retrieval and classification.
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Research Group Institution People
Shape Retrieval and Analysis Group Princeton University Thomas Funkhouser

(USA) David Dobkin
Adam Finkelstein
Szymon Rusinkiewicz
Philip Shilane
Josh Podolak

3D Model Similarity Search Project Konstanz University Daniel A. Keim
(Germany) Dietmar Saupe

Benjamin Bustos
Tobias Schreck
Dejan Vranić

PRECISE Purdue University Karthik Ramani
(USA) Suyu Hou

Y. Kalyanaraman
Shape Modelling Group CNR IMATI-Ge Bianca Falcidieno

(Italy) Michela Spagnuolo
Silvia Biasotti
Simone Marini
Francesco Robbiano

Multimedia and Geometry Group Utrecht University Remco Veltkamp
(The Netherlands) Frank Ter Haar

Reinier Van Leuken
FOX-MIIRE group University of Lille Mohamed Daoudi

(France) Jean-Philippe Vandeborre
Tarik Filali-Ansary

Media Integration and Communication Center University of Florence Alberto del Bimbo
(Italy) Pietro Pala

Jürgen Assfalg
Image and Video Processing Group Boǧaziçi University Bülent Sankur

(Turkey) Yücel Yemez (Koç University)
Ceyhun Burak Akgül
Helin Dutaǧaci

Table 1: Some key players on 3D shape retrieval research

Konstanz The Multimedia Signal Processing Group chaired by Dietmar Saupe and the
Databases, Mining and Visualization Group leaded by Daniel Keim, both from Konstanz
University, join their efforts in a research project focusing the retrieval of three-dimensional
shapes. The 3D Model Similarity Search project is part of the strategic research initiative
on Distributed Processing and Delivery of Digital Documents and aims at effective content
based model retrieval and efficient indexing and accessing methods.

PRECISE In Purdue University, Karthik Ramani leads the Purdue Research and Edu-
cation Center for Information Sciences in Engineering (PRECISE). Their research lies at
the intersection of design, shape analysis, and information sciences. They focus on develop-
ing representations for two and three-dimensional shapes for engineering and proteomics.
In the last few years, they developed interfaces for querying, interacting, orienteering, and
navigating intelligently in 3D shape databases. Their 3D Sketch-Based System for Con-
ceptual Design, also known as ShapeLab, aims on empower computer-aided design users
to retrieve, modify and reuse 3D models through freehand sketches.
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CNR IMATI-Ge The people at the Shape Modelling Group, a research team of the In-
stitute of Applied Mathematics and Information Technology at Genova headed by Bianca
Falcidieno, have been working on geometric modelling for several years. Their main re-
search goal is to describe the shape of an object through the definition of geometric
primitive entities and the classification of the reference context. To that end, they have
been working in a variety of topics, ranging from graph comparison to free-form mod-
elling, producing some interesting work on shape retrieval. Moreover, Bianca Falcidieno
is coordinator of the AIM@SHAPE network of excellence.

AIM@SHAPE The Advanced and Innovative Models And Tools for the development
of Semantic-based systems for Handling, Acquiring, and Processing knowledge Embed-
ded in multidimensional digital objects (AIM@SHAPE) is a sixth framework program
project that fosters the development of new methodologies for modelling and processing
the knowledge related to digital shapes. This project embraces a multi-disciplinary field,
which integrates Computer Graphics and Vision with Knowledge Technologies and builds
on using knowledge formalisation mechanisms for linking semantics to shape or shape
parts.

Utrecht Also participating on AIM@SHAPE, Multimedia and Geometry group headed
by Remco Veltkamp at the Center for Geometry, Imaging and Virtual Environments of
Utrecht University has been working on multimedia information retrieval. Along with their
research in areas such as music or image retrieval, they have developing some interesting
work on 3D shape analysis and retrieval, namely on 3D facial models.

FOX-MIIRE In the Multimedia, Images, Indexation and Recognition (FOX-MIIRE)
research group at the University of Sciences and Technologies of Lille, Jean-Philippe Van-
deborre, Mohamed Daoudi and their teams are working on three-dimensional model in-
dexing and topological analysis. The recently published FOX-MIIRE 3D-Models Search
Engine based on adaptive views clustering algorithm is the first search engine that accepts
3D-Models retrieval from photos [46]. Additionally, they developed a 3D retrieval applica-
tion for mobile devices, which were presented in the 2007 ACM International Conference
on Image and Video Retrieval. The FOX-MIIRE group is a partner of DELOS Network
of Excellence.

DELOS Partially funded by the European Commission in the frame of the Information
Society Technologies Programme, DELOS is a Network of Excellence on Digital Libraries.
The main goal behind DELOS is to provide global access to knowledge contained in the
digital collections created by organisations and individuals around the world. To that end,
DELOS is conducting a joint program of activities aimed at developing the next generation
of Digital Library technologies, based on sound comprehensive theories and frameworks for
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the life-cycle of Digital Library information. Within the large number of research topics
covered by DELOS, the work leaded by Alberto del Bimbo from the University of Florence
is of major relevance for our research.

Firenze At the Media Integration and Communication Center of the University of Flo-
rence, researchers leaded by Alberto del Bimbo presented a prototype system for content
based retrieval of 3D objects, briefly described in Section 2.8. Besides, they have been
developing relevant research on curvature maps and spin images as descriptors for 3D
shape retrieval.

Boǧaziçi At the Image and Video Processing Group of Boǧaziçi University, Bülent
Sankur’s team is developing, together with people from the multimedia, vision and graph-
ics laboratory at Koç University relevant research on 3D shape retrieval. In the last two
years, they focused their research on analysis and description of 3D shapes and on 3D face
recognition, achieving remarking results.

2.2 The most relevant events and journals

In order to disseminate the results of our research and to allow an easier search of related
work, we identified the most relevant events and journals that focus the 3D shape analysis
and retrieval area. When gathering this information we decided not to include some
major computer graphics publications and events, such as ACM Transaction on Graphics,
since their importance is obvious. Instead, we list a short number of selected events and
publications with high visibility where researchers on our field have been sharing their
work.

SMI The IEEE International Conference on Shape Modeling and Applications, also
known as Shape Modelling International (SMI), was launched in 1997 with the goal to
join a multi-disciplinary community concerned with computation techniques for modelling
and processing digital representations of shapes and their properties. In 2001, SMI has
merged with the Implict Surface Workshop and is now run as an annual event alternating
between Asia, Europe and America. Today, SMI addresses all aspects of shape acquisition,
processing, retrieval and understanding. Since 2006, it includes a related event of great
importance for our work, the 3D Shape Retrieval Contest (SHREC).

SHREC Similarly to what happens in other information retrieval research areas, inves-
tigators that work on 3D object retrieval established recently an international retrieval
contest. Organised by the Network of Excellence AIM@SHAPE, the SHREC aims at
evaluating the effectiveness of 3D-shape retrieval algorithms. In its initial version it was
designed around the Princeton Shape Benchmark. The success of this contest provided
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a good feedback of the vitality of the research on 3D shape retrieval. In the following
year, the scope of the contest specialised toward problems involving CAD content and
partial similarity tasks, among others. Indeed, SHREC is now widely accepted as a ref-
erence benchmark in 3D shape retrieval and is expected to become an objective tool for
evaluating and comparing 3D retrieval techniques.

SGP The first Eurographics Symposium on Geometry Processing was held in 2003 to
allow researchers of the geometry processing area to present and share their work. This
emerging research field aims at designing efficient algorithms for acquisition, manipulation,
animation and transmission of complex 3D models. The processing techniques are based on
recent developments in applied mathematics, computer science, and engineering. Closely
related to our work, shape analysis is one of the topics covered by this symposium, making
it an interesting event for us. After the success of the first edition, this event are being
organised on a yearly base. Papers presented in this event appear in the Eurographics
Proceedings Series in cooperation with ACM SIGGRAPH.

MIR Initially launched as Workshop Multimedia Intelligent Storage and Retrieval Man-
agement (MISRM) in 1999 and later renamed to ACM SIGMM International Workshop on
Multimedia Information Retrieval (ACM MIR), this workshop has the purpose of bringing
together researchers, developers, and practitioners from academia and industry, working
on multimedia information retrieval. The workshop proceedings are printed by ACM and
indexed in the ACM Digital Library, which makes it a good selection when choosing where
to publish our work.

SPM Since its inception in 1991, the ACM Symposium on Solid and Physical Modeling
Symposium (SPM), then Symposium on Solid Modeling and Applications, has been the
primary venue for disseminating research results in the design, representation, analysis,
visualisation, and use of digital models. Within the topics of interest covered by this
event are geometry processing and shape analysis, two important subjects in our research
work. Moreover, the proceedings of this event are published by ACM Press and papers
of outstanding quality are selected for publication in the following international journals:
Computer Aided Geometric Design, Computer-Aided Design and IEEE Transactions on
Automation Science and Engineering.

CAD Published by Elsevier, Computer-Aided Design is an established international
journal that provides engineers, designers and computer scientists with key papers on
research and developments in the application of computers to the product design process.
Although it focus mainly on engineering design, it covers a wide range of topics, such as
the management of design databases, which includes the study of techniques for analysis
and retrieval of 3D models.
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CADG The international journal of Computer Aided Geometric Design, also published
by Elsevier, is closely related with CAD journal referred before, but it main focus is on
mathematical and computational methods for the description of geometric objects as they
arise in areas ranging from CAD/CAM to robotics and scientific visualisation. Indeed, this
journal does not have any topic focusing on retrieval of 3D shapes, but is an interesting
place to find and publish work on shape description and simplification algorithms.

TOMCCAP The ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMCAP) is the flagship publication of the ACM Special Interest Group
in Multimedia (SIGMM), published quarterly. It focuses on multimedia computing, mul-
timedia communications and multimedia applications. Since our research field can be
considered as part of multimedia information retrieval, this journal assumes major rele-
vance both in our studies and in our dissemination goals.

IJDL The International Journal on Digital Libraries (IJDL), published by Springer, is
a quarterly journal aimed at advancing the theory and practice of acquisition, definition,
organization, management, and dissemination of digital information. Indeed, databases of
3D models are digital libraries, which justifies the importance of this publication for our
work.

IJSM The International Journal of Shape Modeling is aimed at creating a suitable
environment for exchanging research results obtained in advanced theories and techniques
devised for handling the shape of objects, pointing out main aspects of modeling. Besides
the pure shape modeling, this journal also includes topics regarding shape classification,
recognition and characterisation.

2.3 Model databases

Besides identifying the key players in three dimensional shape retrieval and the most
relevant events for this research area, it is important to identify the existing sources of
three dimensional models to which shape retrieval can be useful. Indeed, as a result
of recent advances on modelling, digitising and visualising techniques, there are a large
number of 3D model collections available for usage both on the internet and in domain-
specific databases. Since it will be hard and out of scope of this work to exhaustively
enumerate all of this databases, we will refer in the following paragraphs just a few of
these databases offering public access.

The Protein Data Bank (PDB) [14, 15], an archival for macro molecular structures,
is an early example of such collections now considered the single worldwide archive for
biological macro molecules. The PDB stores atomic 3D coordinates and partial bond
connectivity for around 29,000 protein molecules, as derived from crystallographic studies.
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Another example of a 3D model collection was produced during the Digital Michelangelo
Project [77, 76], an archive with digital models of Michelangelo sculptures and architecture
containing an aggregate of nearly eight billion polygons.

The National Design Repository [94, 113, 95] is a collection of public domain computer-
aided design data from a variety of sources. This data includes tens of thousand solid
models and CAD files. Recently, GoogleTM released the GoogleTM 3D Warehouse [63],
an online service that hosts 3D models of existing objects (mainly buildings) created in
GoogleTM SketchUp [62]. These models can be downloaded into GoogleTM Earth [61] and
placed in their actual location on earth.

Relevant for our work are the databases associated with shape benchmarks, very useful
for evaluating retrieval algorithms. From these, the most important is Princeton Shape
Database [50] which stores polygonal surface models for more than thirty thousand ob-
jects crawled from the web. Additionally, the PRECISE group provides a fully classified
database of mechanical parts [60]. This shape benchmark has special interest for people
working on analysis and retrieval of CAD models. The objects in this database were col-
lected from various sources including industrial partners of Purdue University and from
the web.

2.4 From shapes to descriptors

The application diversity of three-dimensional models in a wide range of fields lead to sev-
eral distinct forms of model representation [29]. However, these can always be converted
or approximated to a more generic one, such as a polygonal mesh, which could be inter-
preted by classification and retrieval algorithms. These algorithms usually rely on feature
vectors to describe both models and queries and then perform the search over the feature
vectors instead of comparing the objects directly. Indeed, the usage of feature vectors is
the standard approach for multimedia retrieval [44]. A feature vector, also referred as de-
scriptor, is a set of values extracted from a multimedia object that describe it numerically
in a high dimensional space.

In 3D models, these values usually describe the shape or certain aspects of the object
and form a feature vector of high dimensionality. Thus, a 3D shape descriptor can be
considered as a representation of a three dimensional object in a high-dimensional vector
space. However, an important goal of any shape description approach is to preserve the
maximum shape information on a feature vector with the lower dimensionality possible.
Indeed, finding such computational representation of a shape is considered as the primary
challenge in building a shape based retrieval system [49]. Therefore, we will present in the
next section a survey on most important shape description techniques.

Some relevant recent work had focused on the computation of the shape descriptor,
i.e. , the extraction of global or local object characteristics. Indeed, several research groups
are working in this field, developing mechanisms to support 3D shape retrieval from large
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Figure 1: Shape descriptor computation process.

collections using geometrical queries. One of the main goals of their research is to devise
descriptors that represent efficiently the shape geometry and that allow computation of ill-
defined properties, such as ”geometric similarity”. A wide variety of extraction algorithms
have been proposed, ranging from basic approaches, which use properties of an object
bounding box, to more complex ones, like the distribution of normal vectors or curvature,
or the Fourier transform of some spherical functions that characterise objects. Depending
on the method used, the feature vector describes particular characteristics of an object,
capturing different features.

Despite the wide variety of approaches to 3D shape descriptor computation, this
process generally follows the basic steps depicted in Figure 1. The first step is the ob-
ject simplification. In this step is usually performed a noise removal algorithm, especially
in digitised models. Additionally, irrelevant geometrical features are removed from the
object. In the second step, the resulting shape is pre-processed for rotation, translation
and/or scale invariance, when required by the algorithm, followed by pose normalisation.
The third step starts by converting the resulting shape to an object abstraction accord-
ing to descriptor needs. Thus, it is converted to surfaces, volumes or images, depending
on the approach. Then, the object abstract representation is transformed into a numeri-
cal representation using, for instance, histograms, spherical harmonics or discrete Fourier
transform. The last step uses this numerical representation to generate a feature vector.
Although this basic steps are similar in most approaches, different authors use different
techniques, making descriptor computation a rapidly evolving field.

2.5 Shape descriptors

In this section we will briefly describe existing approaches to 3D shape description. Al-
though we tried, in this document to produce a comprehensive survey, readers are en-
couraged to consult recent publications entirely dedicated to this topic. Bustos et al.
extensively surveyed methods for 3D shape descriptor computation [27] and proposed a
taxonomy for these methods. However, due to the variety of distinct approaches, there is
no universally accepted taxonomy of 3D shape descriptors.
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Figure 2: Taxonomy of 3D shape descriptors.

Nevertheless, I will follow a general classification scheme, very similar to the taxonomy
proposed earlier by Bustos et al.. This scheme, depicted in Figure 2, emphasises the
specific way to exploit the shape information contained in a 3D object and was suggested
by Akgül [4]. However, the research on 3D shape descriptors is a rapidly evolving field
and, besides the recent work referred above, two other relevant surveys were published
in recent years. A complete review on content based 3D shape retrieval methods was
presented in 2004 by Tangelder and Veltkamp [115]. Additionally, in the following year,
Iyer et al. published another state-of-the-art review [64] where they classify and compare
several 3D shape searching techniques from a CAD/CAM perspective and suggest future
trends.

2.5.1 Histogram-based descriptors

In statistics, a histogram is a summary graph showing a count of the data points falling
within tabulated frequencies. Basically, it is the graphical version of a table which shows
what proportion of cases fall into each of several or many specified categories. Widely used
in computer graphics to represent the color distribution in an image, the color histogram
is computed by counting the number of pixels for each color. Adopted to 3D shape
description, an histogram is often referred as an accumulator that collects numerical values
of certain features calculated from the shape to represent. Based on this loose definition,
many 3D shape descriptors can be considered as histogram-based methods, although they
are not based on histograms in the rigorous statistical sense of the term.

Cord and angle histograms The use of cord and angle histograms for 3D shape
descriptors were presented by Paquet et al. in [90, 91]. The authors define a cord as a
vector that goes from the centre of mass of an object to the centre of mass of a bounded
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region on the surface of the object. They state that most often in 3-D applications the
bounded region is a triangle, which is true due to broad use of triangular meshes. Even
in other cases, the object can be transformed into a triangular mesh in the second step of
shape descriptor computation process.

This 3D object descriptor are computed based on a collection of three histograms. The
first histogram represents the distribution of the angles between the cords and the first
reference axis. The second histogram represents the distribution of the angles between the
cords and the second reference axis. The third histogram provides the distribution of the
radius.

Despite its computational simplicity and efficiency, this approach simplifies triangles
to their centres and does not consider the size and shape of the mesh triangles. Therefore,
triangles of different sizes have equal weight in the final distribution and centres may not
represent adequately the impact of the triangle on the shape distribution because of arbi-
trary triangle orientations. Moreover, since only global features are used to characterise
the overall shape of the objects this method is not very discriminating about objects de-
tails, but their implementation is straightforward. It is often used in object retrieval as
an active filter, after which more detailed comparisons can be made, or can be used in
combination with other methods to improve shape descriptors.

Color distribution Paquet and Rioux [90] proposed, along with the cord and angle
histograms, a peculiar color based descriptor for 3D shapes. In their approach, a voxelised
representation of the 3D object, where each voxel has a color value associated with it.
This value is computed using information from the texture map, material properties and
vertex color extracted from the object representation.

Authors suggest three distinct approaches to compute the histogram that describes the
object. If color location is relevant, it is only necessary to compute the color histogram of
the object, based on the triplets (r, g, b) that represent the model colors. Alternatively, the
dominant color is determined for each triplet and then the angle between the normal corre-
sponding to that point and the first eigenvector is calculated. The statistical distribution
of these angles is represented by a set of three histograms according to the dominant color.
Otherwise, if color location is relevant, authors suggest using a wavelet approach based
on a model with six dimensions: x, y, z, R, G,B. The six-dimensional wavelet transform
is computed and then used to construct a histogram.

Curvature histogram Koenderink and van Doorn [73] defined the curvature index as
a function of the two principal curvatures of the surface. This index gives the possibility
to describe the shape of the object at a given point. However, it loses the information
about the amplitude of the surface shape and is sensitive to noise. Later, Vandeborre et
al. used this index to compute a curvature histogram of the shape [119], a local descriptor
invariant to geometric transformations.
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Figure 3: 3D shape and corresponding curvature histogram. (Figure taken from [119])

The surface curvatures are computed at a generic vertex v of a three-dimensional
polygonal mesh as expressed in Equation 1, with k1

v ≥ k2
v , where k1

v and k2
v are the

principal curvatures associated with the point v.

Iv =
2
π

arctan
k1

v + k2
v

k1
v − k2

v

(1)

In curvature histogram construction, the computation of principal curvatures is a key
step. Estimating these curvatures can be achieved in several different ways. Authors
suggest computing the curvature at each face of the mesh by fitting a quadric to the
neighbourhood of this face ( i.e. the centroid of this face and the centroids of its 1-adjacent
faces) using the least-squares method1and then determine the principal curvatures k1

and k2 using the eigenvalues of a Weingarten endomorphism2. An alternative way to
compute the curvature histogram descriptor is described in [24]. Figure 3 depicts the
curvature histogram with 1024 intervals and the three-dimensional object from where it
was extracted.

Shape distribution Osada et al. proposed a method for computing shape signatures
for arbitrary 3D polygonal models [88]. They use a collection of shape functions computed
with random sampling of the surface of the 3D object to describe. This shape function
measures global geometric properties of the shape, based on distance, angle, area and
volume measurements between random surface points.

Authors suggest five distinct one dimension functions to measure the object prop-
erties, which are quick to compute, easy to understand, and produce distributions that
are invariant to rigid motions (translations and rotations). The function to compute D1
shape distribution measures the distance of a surface point to the centre of mass of the
model. Depicted in Figure 4, the D2 shape distribution is a function measuring the dis-

1Least squares is a method for linear regression that determines the values of unknown quantities in a
statistical model by minimizing the sum of the residuals (difference between the predicted and observed
values) squared. It is used to find or estimate numerical values of parameters to fit a function to a set of
data and to characterise the statistical properties of estimates [1].

2Principal curvatures are usually defined as the eigenvalues of the Weingarten map W = I−1II, where
I and II denote respectively the first and second differential forms.
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Figure 4: Two distinct objects and corresponding D2 shape distributions.

tance between two surface points. The D3 shape function measures the square root of the
area of the triangle defined by three surface points. The cube root of the volume of the
tetrahedron defined by four surface points is measured by D4 shape function. Finally, A3
distribution function measures the angle formed by three random surface points.

The shape descriptors are constructed from the histograms of a set of the above men-
tioned shape functions, controlling histogram accuracy through sampling density. The
descriptor of shape distributions is fast, simple to implement, and useful for 3D shapes
discrimination. However, the proposed shape functions are not adequate to fully describe
the 3D shape effectively. Indeed, this approach distinguish models in broad categories
very well, but perform poorly when used to discriminate between models with similar
gross shape properties but vastly different detailed shape properties.

Modified shape distribution Ohbuchi et al. [87] extended the D2 shape functions
proposed by Osada et al., by devising a set of shape features that are tolerant to topological
variations and geometrical degeneration. These are the modified shape D2 (mD2), the
angle and distance histogram (AD) and the absolute angle and distance histogram (AAD).

In the proposed technique, the mD2 is similar to original D2, but authors used a
quasi-random number sequence3 to select points instead of the pseudo-number sequence4

suggested by Osada et al.. To compute AD, authors measure both distance between a
pair of points and angle formed by the surfaces the pair of points are located. Then, a 2D
histogram is computed using the angle and distance as two independent variables. The
AAD is computed in an identical manner, but while the AD histogram respects the sign
of the angle, the AAD feature takes the absolute value of the inner product in order to
increase robustness against inconsistently orientated surface. Thus, these two descriptors
are not supposed to be used together. Indeed, the choice of using AD or AAD depends
only whether the surfaces are properly and consistently orientated.

3The quasi random number sequence, also called low-discrepancy sequence, is not really random since
a predictable sequence of numbers is generated. However, the numbers generated will provide uniform
sampling with a suitable number of samples is required.

4A pseudo random number sequence exhibits statistical randomness while being generated by an entirely
deterministic causal process. Indeed, a pseudo random generator calculates a number in the range [0.0, 1.0]
given an initial seed which is updated each time a number is requested. With enough random numbers
sampled, the distribution will be uniform. This, however, could be a large number of samples.
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Figure 5: 2D examples of the space decomposition techniques proposed by Akerst et al.
in [9]. With a single bin marked, are depicted, from left to right, shell, sector and spider
web model.

Shape histograms The shape histograms were proposed by Akerst et al. as an intuitive
approach to describe 3D solid models [9]. In this approach the space where the object
resides is partitioned using one of three space decomposition techniques: a shell model,
a sector model and a spider web model (depicted in Figure 5). Shell model consists in
decomposing the 3D space into concentric shells around the centre point. In the sector
model the 3D is decomposed into sectors that emerge from the centre point. Finally, the
spider web model (sometimes referred as combined model) is a simple combination of the
two decomposition models described above. In any of these techniques, each cell of the
decomposed 3D space correspond to a bin in the histogram. Then, the histogram can be
constructed by accumulating the surface points in the bins.

The shape histograms method is an intuitive and discrete representation of complex
spatial objects. However, authors illustrate the shortcomings of Euclidean distance to
compare two shape histograms and make use of a Mahalanobis5 quadratic distance mea-
sure taking into account the distances between histogram bins. On the other hand, this
approach needs pose normalisation to be performed in the pre-processing stage. The pose
normalisation is necessary because the sector model is only scaling invariant, while the
shell model is only rotation invariant.

3D shape contexts The shape contexts was initially introduced by Belongie et al. [13]
as a descriptor for computing similarity between 2D images. Using reference points, au-
thors assign a shape context to each one, by capturing the distribution of the remaining
points relative to it. Körtgen et al. extends the 2D shape contexts into a 3D shape de-
scription and combines it with the shape histogram, thus proposing a set of descriptors
called 3D shape contexts [74].

To compute the 3D shape contexts, N points are sampled from the shape boundaries,
as in the shape distribution approach [88]. Then, the vectors originating from one sample
point to all other points in the shape are computed, as depicted in Figure 6. Using the
distribution over relative positions, is computed for this point a coarse histogram of the

5A short explanation of Mahalanobis distance can be found in Section 2.6.3
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Figure 6: From left to right: original 3D object; mesh with fifty samples; just the fifty
samples; vectors originating from one sample point to all others (Figures taken from [74]).

relative coordinates of the remaining N − 1 points. Indeed, this histogram is an adapted
version of one of the Ankerst’s [9] shape histograms centred upon the sample point. This
method is applied to all N sampled points, producing a 3D shape descriptor that is simply
a set of N histograms.

Extended Gaussian images Defined by Horn in [59], the extended Gaussian im-
ages (EGI) is a histogram-based technique to represent the shapes of surfaces that define
a 3D object. Initially devised for recognition in machine vision systems, this approach
was later adapted for pose determination and for computing 3D shape descriptors [68], by
means of the complex extended Gaussian images (CEGI) representation.

Basically, the EGI of a 3D object is a histogram that records the variation of surface
area with surface orientation. Each bin of this histogram is defined by a pair (θi , φk) and
corresponds to some quantum of the spherical azimuth and elevation angles (θ, φ) in the
range 0 < θ < 2π and 0 < φ < π. These bins accumulate the count of the spherical angles
of the face normal per surface, weighted by the scalar that represent the associated visible
face area. The CEGI concept, presented by Kang and Ikeuchi, extended the EGI approach
by adding the normal distance of each face to the origin. Thus, the weight associated with
a particular normal in the CEGI is a complex number whose magnitude and phase are the
corresponding visible face area and its signed distance to the origin, respectively. Thus, for
a given point in the CEGI associated to normal ~nk, the point weight wk can be estimated
through Equation 2:

wk = |A~nk
ejdk |, (2)

where A~nk
is the area of the corresponding face and dk is the distance of that face to

the origin. Concluding, the CEGI method combines the pose determination into shape
descriptors and even into the shape matching process. It enables estimation of both the
orientation and translation of a given object with respect to a stored model or prototype.

More recently, Zhang et al. further extended the EGI representation to capture the
volume distribution of an object without canonical alignment, while maintaining the trans-
lation, scale and orientation invariance. The volumetric extended Gaussian image (VEGI)
shape descriptor [133] is thus able to differentiate between convex and non-convex shapes
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Figure 7: Two objects with the same EGI descriptor, but different volumes, thus different
VEGI descriptors.

that share the same EGI, such as the objects depicted in Figure 7. Furthermore, VEGI
directly extracts shape features avoiding pose normalization, since it does not depends on
canonical alignment of shapes.

3D Hough transform Based on the 2D generalised Hough transform [12], Zaharia and
Prêtoux proposed in [132] the 3D Hough transform descriptor (3DHT) to represent a three-
dimensional object. In their later work [131], developed canonical 3D Hough transform
descriptor (C3DHT). These descriptors are constructed by accumulating points within a
set of planes in 3D space, as described below.

Considering that a plane can be defined by a triplet (s, θ, φ), where s > 0 denotes the
distance from the origin of the coordinate system to plan and 0 < θ < 2π and −π

2 < φ < π
2

respectively denote the azimuth and elevation associated with the spherical representation
of the plane’s unit length normal vector. Then, each axis of the parameter space (s, θ, φ)
can be uniformly sampled and a set of planes with orientation (θk, φj) passing through
the p is created. Considering a polygonal model, p stands for the centre of mass of a mesh
face g. Finally, for each plane, the quantized normal distance to the origin si is calculated.
If this value is positive, the bin corresponding to (si, θj , φk) is augmented by a weight
factor wp

jk defined in Equation 3, where np denotes the unit length normal vector of face
g and njk denotes the normal of the plane defined by pair (θi, φk).

wp
jk = Ap|〈np, njk〉| (3)

Indeed, 3DHT can be considered as a generalized version of EGI since, for a given si,
(θj , φk)-bins correspond to an EGI at distance si, except for the way the contributions of
the faces are assessed. In fact, Agkül et al. have experimentally proven [6] that the 3DHT
descriptor captures the shape information better than the EGI descriptor.
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Shape spectrum The shape spectrum was introduced by Dorai and Jani [39] as a view-
based representation of 3D free-form objects. In their work, authors focus on generation
of a set of representative views of a 3D object suitable for efficient clustering and retrieval.
Indeed, they apply this method to devise a general and powerful technique for organising
multiple views of objects of complex shape and geometry into compact and homogeneous
clusters. The shape spectrum characterises quantitatively the object shape by summarising
the area on the surface of an object at each shape index value. This value is a quantitative
measure of the shape of a 3D regular surface at a point p, denoted by Ip and defined
as expressed in Equation 4, where k1

p and k2
p are the principal curvatures of the surface

associated with point p, with k1
p > k2

p.

I(p) =
1
2
− 1

π
arctan

k1
p + k2

p

k1
p − k2

p

(4)

Therefore, the shape index is a local geometrical attribute of a 3D surface, expressed
as the angular coordinate of a polar representation of the principal curvature vector.
It ranges in the interval [0, 1] and is not defined for planar surfaces, since those have
k1 = k2 = 0 which will result in an indeterminate shape index6. Figure 8 illustrates
the shape index of a free-form 3D object computed by this technique. The shape index
provides a scale for representing salient elementary shapes and is invariant with respect
to scale and Euclidean transforms. However, an important problem regarding the shape
index, in fact all curvature-related quantities, is the estimation unreliability leading to a
lack of robustness. Such shortcoming was alleviated by Zaharia and Prêtoux in [131] by
augmenting the shape index histogram by two additional attributes named planar surface
and singular surface. Then, the proposed 3D shape spectrum descriptor (3D SSD) was
applied to 3D retrieval within the MPEG-7 framework for multimedia content description.
The 3D SSD of a 3D mesh is defined as the histogram of the shape index values, calculated
over the entire mesh.

Therefore, the 3D SDD locally characterises free-form surfaces represented as discrete
polygonal 3D meshes. One major advantage of this descriptor is its generality, since 3D
meshes may include open surfaces that have not an associated volume. Furthermore, in-
herited from the shape index properties, the 3D-SSD is invariant with respect to scale,
translation, rotation and reflection transforms. On the other hand, this descriptor, as a
simple local feature representation, is better to be combined with some global representa-
tion schemes to effectively describe 3D object for shape retrieval purposes.

6For computational purposes, the shape index of a planar surface is represented by a symbolic label,
usually a predefined shape index value to indicate surface planarity. In their implementation, Dorai and
Jain [39] used a shape index value of 2.0.
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Figure 8: View of a 3D object and corresponding shape index (Figure taken from [39] c©
1997 IEEE).

Density-based shape descriptors A density-based descriptor of a 3D object is defined
as the sampled probability density function7 (PDF) of some surface feature. The feature
is local to the surface patch and treated as a random variable. This analytical framework
was proposed by Akgül and Sankur [6, 7] to extract 3D shape descriptors from local
surface features characterising the object geometry. In [5], the authors suggest using as
features the radial distance, the radial direction, the normal direction, the radial-normal
alignment and the tangent-plane distance. Additionally, authors considered the shape
index proposed in [73] as a second order feature that provides categorisation of the shape
into primitive forms.

The density-based shape descriptor can be considered as a probability modeling prob-
lem. As explained by Akgul et al. in [8], the local surface properties are first measured
via various features, such as the referred above or a subset of the most discriminating of
them. This feature information is then processed with the kernel methodology for density
estimation [106, 41] and the PDF of the local feature is estimated at chosen target points.
Then, the shape descriptor vector is then simply a sampled version of this probability
density function.

As Akgul mentioned in [6], when performing on the Princeton Shape Benchmark, the
density-based descriptor shown very good results when compared with other well-known
3D shape descriptors, such as cord and angle histogram, shape distribution, 3D Hough
transform, extended Gaussian images, among others. However, this descriptor still suffers
a problem that the features are neither scale- nor rotation-invariant and, since the method
depends on them, pose normalisation must be accomplished during the prepossessing
phase.

7The probability density function [3], also called probability function or density function, is a function
that represents a probability distribution in terms of integrals.
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2.5.2 Transform-based descriptors

Instead of estimating the shape descriptor from the three dimensional space, some ap-
proaches rely on mathematical transformations to switch from the spatial domain to a
more suitable one and compute from there a shape descriptor. These new spaces are
usually the frequency domain, although some recent approaches use different spaces.

Voxel-based 3D Fourier transform Vranić and Saupe suggest switching from the
spatial domain to the frequency domain via a 3D Fourier transform [123] (3DFT). Au-
thors start by performing pose normalisation, then voxelise the object using the so-called
bounding cube8 (BC). This voxelisation is achieved by subdividing the BC into N3 equal
sized cubes (cells) and calculating the proportion of the total surface area of the object in-
side each cell. Then, authors apply a 3D discrete Fourier transform to the voxelised model,
i.e. calculated values in cells, to compute the descriptor that represents the feature in the
frequency domain.

Distance transform and radial cosine transform Following the initial ideas from
Vranić and Saupe of applying Fourier transforms to feature extraction, Dutagaci et al.
proposed estimating a 3D discrete Fourier transform descriptor using two different voxel
representations of 3D objects [42], namely, binary and continuous, as depicted in Figure 9.
While in the first case the voxel values are simply set to 1 in the surface of the object and
0 elsewhere, in the continuous representation the space is filled with a function of distance
transformation. This function, vd, is called inverse distance function and is calculated as
in Equation 5, where d(x) is the minimum L1 distance from point x to the object surface.
Thus, the function vd(x) has is maximum value of 1 on the object surface and decreases
when moving away from it.

vd(x) =
1

d(x) + 1
(5)

To compute a quasi rotation invariant descriptor, authors suggest a measure of the
spectral energy in a sphere of radius r, because the spectral energy in a sphere centred
at the origin of the frequency domain remains constant under rotation. Afterwards, they
define the incremental spectral energy (ISE) as the difference of the spectral energies
contained within concentric spheres, normalise ISE by r2 and take its square root to
balance out large values accumulated in the low-pass shells. The normalised spectral
energy(NSE), which has the property of rotation invariance, is used as the 3DFT-based
descriptors of the object. However, slight deviation from rotation invariance can occur due
to voxelisation distortion, together with the distance transform values at the corners of the
bounding box, which decays rapidly to zero towards there, makes this representation not

8Vranić and Saupe consider the bounding cube of a 3D-model as the tightest cube in the canonical
coordinate frame that encloses the model, with the centre in the origin and the edges parallel to the
coordinate axes.
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Figure 9: From left to right: voxelised 3D object; cross section of the binary function;
cross section of the inverse distance function (Figures taken from [42] c© 2005 IEEE).

totally rotation invariant, but instead quasi rotation invariant. Furthermore, authors claim
that this descriptor provide a multi-resolution representation because NSE descriptors
values at small radii (low-pass region) carry information about the gross shape of the
object, while shape details are encoded in the spectral shells at high-frequency radii.

Additionally, Dutagaci et al. suggest the use of 3D radial cosine transform (RCT) as an
alternative to 3DFT [42]. The RCT coefficients constitute a set of rotation invariant shape
descriptors. Such descriptor represents a 3D model with a small number of features, thus
being easy and fast to be calculated. However, the retrieval results of RCT are generally
worse than 3DFT or some other approaches. Therefore, it is always considered to be
mainly suitable to be used together with other descriptors as an preliminary filter.

Spherical harmonics transform A 3D object can be characterized by a function r on
the sphere S2. To that end, rays are cast from the centre of mass the object and, for each
ray defined by u ∈ S2, is estimated the value equal to distance d from origin to the last
point of intersection with the object surface. These values yield a sample of function r,
called spherical extent function, for a shape I. This function can be defined as

r : S2 → R
u 7−→ max{d ≥ 0|du ∈ I ∪ {0}}

where 0 is the origin. In their initial approach, Saupe and Vranić [122] took a coarse
number of samples of r(u) to construct a feature vector. However, this simple technique is
sensitive to small perturbations of the model. Therefore, to improve the robustness of this
approach, they later proposed [97] extracting a dense sample of r(u) and then compute
spherical harmonics for this function to describe the shape. Spherical harmonics form
a Fourier basis on a sphere, like the sine and cosine do on a line or circle, and allow a
spherical function to be decomposed into the sum of its harmonics. Thus, the function r

can be represented by the Fourier transform on the sphere defined in Equation 6, using
the spherical harmonic function Y m

l and the Fourier coefficient r̂(l,m).

r(θ, φ) =
∞∑
l=0

m=l∑
m=−l

r̂(l, m)Y m
l (θ, φ) (6)
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Original k = 8 k = 16 k = 24

Figure 10: Multi-resolution representation of the function r(u) applied to the original
model using k2 spherical harmonic coefficients (Figures taken from [97]).

To efficiently compute the Fourier coefficient, authors apply a spherical FFT algorithm
to N samples taken at points uij , where i, j = 0, ..., N . Thus, the descriptor accuracy
can be defined by changing the parameter that defines the sampling size, as well as the
number of spherical harmonic coefficients to use. Figure 10 depicts the reconstruction of
an object by using different number of coefficients. The shape descriptor is derived from
these of coefficients, thus providing an embedded multi-resolution approach for 3D shape
description.

Vranić and Saupe [123] improved the robustness of the proposed feature vector by
taking samples of the spherical function r(u) at many points, but characterising the map
by just a few coefficients in the spectral domain. In [124], they enhanced the spherical
harmonics transform approach described above by taking in account the orientation of the
surface, along with the extent vector. To that end, they proposed the use of a complex
feature vector, in which the real component of the complex function is the extent of the
object from the origin and the imaginary part is computed using the normal vector of the
surface at sampled points. Thus, in this approach, the complex function r(u) for a shape
I was defined as

r : S2 → C
u 7−→ x(u) + iy(u)

x : S2 → [0,+∞[∈ R
u 7−→ max{x ≥ 0|xu ∈ I ∪ {0}}

y : S2 → [0, 1[∈ R

u 7−→

{
0, ifx(u) = 0
u·n(u), otherwise

where n(u) is the normal vector at the point ux(u). To compute the complex feature
vector, authors apply the spherical Fourier transform to the function r(u), as they did in
their previous work. Later, Vranić [120] proposed considering a set of concentric spheres
with different radii, instead of a single one, thus using a collection of spherical functions
to compute the descriptor.



2.5 Shape descriptors 23

d

pi

i
1

2

Figure 1. Computing feature maps. Rays
(dashed lines) are shot from the center (white
dot) of a bounding sphere (dashed circle)
through the object points (black dots) to the
sphere’s surface. The distance

� �
traveled

by the ray from a point �
�

to the sphere’s
surface and the number of object surfaces
(solid lines; 2, in this case) penetrated by
the ray since it leaves the sphere’s center are
recorded in the feature maps.

� Our method is based on 3D morphing, and the amount
of effort required to morph 3D objects into a canonical
object is used to measure their similarity.

� It uses feature maps that capture spatial information
about the features. In contrast, many existing methods
(e.g., [1, 2, 9, 11, 12, 13, 14, 16]) use histograms of
shape features that do not capture spatial information.

� It explores the use of both geometric features and topo-
logical features. On the other hand, almost all existing
methods use geometric features only, except [6] which
uses topological feature.

2. Related Work

The use of canonical object for shape comparison has
been applied by Hebert et al. [5] to object recognition. Their
method deforms the mesh representation of an ellipsoid
onto a 3D object and measures the simplex angle at each
node of the mesh. The difference between two 3D objects
is computed by comparing the nodes angles in their meshes.
This method is applicable only to 3D objects that are topo-
logically equivalent and geometrically similar to a sphere.

The method of Hilaga et al. [6] is the only method
that uses topological feature for 3D object matching. The
topology of an object is represented in a reeb graph. The
computation of the reeb graph requires vertex resampling,
short-cut edge generation, and computation of the geodesic
distance. In contrast, the topological feature used in our
method is simpler and far less expensive to compute than
the reeb graph, as will be evident in Section 3.3.

Existing methods that use geometric features for 3D ob-
ject retrieval can be divided into three broad categories ac-
cording to the type of shape features used: (1) global fea-
tures, (2) histograms, and (3) spatial maps. Global fea-

tures refer to shape features such as moments, aspect ratio,
volume-to-surface ratio, etc. Since single feature values are
used to characterize the overall shape of the objects, these
features tend to be not very discriminative about the objects.
They have been used in [4, 21, 22].

Histograms of local shape features are probably the most
widely used feature types for 3D object retrieval. The
term “histogram” has been used by various authors to mean
somewhat different things. Here, we use the term to mean
a discrete frequency or probability distribution of features
such that each bin of a histogram represents a range of fea-
ture values and each bin count is either a frequency or a
probability of occurrence of the feature values within the
range of the bin. Thus, histograms capture the distribu-
tion of features over the entire object without representing
spatial information of the features. In general, histograms
are invariant to rotation, reflection, and uniform scaling of
objects. Histograms of various feature types have been
used, such as angle, distance, area, volume, and curvature
[11, 12, 13, 16, 21, 22]. Special types of histograms such as
spin image and shape context have also been used to repre-
sent the relative positions of points [1, 2, 9, 14].

Spatial maps are representations that capture the spatial
information of an object’s features. The map entries corre-
spond to physical locations or sections of an object, and are
arranged in a manner that preserves the relative positions of
the features in the object. For example, Kriegel et al. [7, 8]
and Suzuki et al. [17, 18] divided an object into cells and
used the number of points within each cell as the feature.
Vranic et al. [19, 20] computed 2D maps of spherical har-
monics coefficients and Novotni and Klein [10] computed
3D maps of distances to features on the objects.

Since spatial maps preserve the spatial information of
the features in an object, they are generally not invariant to
linear transformations, except for specially designed maps
(e.g., the rotationally invariant map of [7, 8]). So, Fourier
transform is often performed to transform spatial maps into
the frequency domain to obtain invariant features [15, 19,
20]. In some cases, Fourier transforms of the objects are
used directly as the shape features [15, 19, 20, 21, 22]. Our
method also uses 2D spatial maps to capture shape features.
However, the shape features are based on 3D morphing and
they capture both geometric and topological properties.

3. Feature Extraction and 3D Object Matching
3.1. Overview of Feature Extraction

The feature extraction procedure consists of the follow-
ing steps: First, the 3D object are translated so that the ob-
ject’s centroid coincides with the origin of the 3D coordi-
nate system. Next, the object is scaled so that the furthest
3D point on the object is 1 unit distance away from the cen-
troid. Then, Principal Component Analysis (PCA) is per-
formed on the 3D points on the object to align the major
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and minor axes of the object to the first and second eigen-
vectors of PCA. After the alignment process, the Distance
Map (DM) and the Surface Penetration Map (SM) are ex-
tracted from the object.

3.2. Distance Map
After the scaling process discussed in the Section 3.1,

a 3D object can fit inside a bounding sphere of unit ra-
dius, possibly with one or more points falling exactly on
the sphere’s surface. The object’s centroid is located at the
center of the sphere, which is also the origin of the 3D co-
ordinate system. Note that the magnitude � � � � of a point

� �
on the object’s surface is equal to the distance of the

point from the center of the sphere. Furthermore, the length� � � 	 � � � � � is the distance that it takes to travel from the
object point � �

to the sphere’s surface along the direction of
� �

(Fig. 1). Therefore, the sum of all
� �

would correspond
to the total amount of energy required to deform the object
into a sphere. In other words, the values

� �
measure the

complexity of the shape of the object.
Instead of recording all the

� �
values, an average map

is computed by dividing the bounding sphere as follows:
The longitudinal angle of  � � �

to � � � �
is divided into

64 equal intervals and the latitudinal angle of � � � � � �
to � � � �

into 64 equal intervals. This process partitions the
sphere into � � � � � pyramidal sections, corresponding to � � �

� � entries of the map � !  $ � ' , where  and � identify the
angles at the center of the corresponding pyramidal section.
Each entry !  $ � ' records the mean distance averaged over
all

� �
’s of the points � �

contained in section !  $ � ' . These
� !  $ � ' values form the Distance Map, which describes the
geometry of the object’s shape.

Note that the Distance Map can also capture informa-
tion about the curvature of the object’s surface. Each value

� !  $ � ' corresponds to the spherical coordinate of an av-
erage point ! + $  $ � ' with + � 	 � � in the section !  $ � ' .
The average point ! + $  $ � ' is equivalent to the average of all
points on all the object’s surfaces within the section !  $ � ' .
The coordinates of the average points in different sections
can be used to estimate the normals of the average surfaces
at the average points, which can, in turn, be used to esti-
mate the average curvature of the surfaces. Therefore, the
Distance Map can be regarded as capturing all the informa-
tion about a low-pass filtered version of the original object.

3.3. Surface Penetration Map
Consider a point 0 on the surface of the object. If a ray is

shot from the center of the bounding sphere through 0 to the
sphere’s surface, the ray may penetrate one or more surfaces
depending on the object’s topology and concavity. Then, the
mean number of surfaces 1 !  $ � ' within the section !  $ � '
would describe the topology and concavity of the section,
and the whole Surface Penetration Map would describe the
topology and concavity of the entire object.

pk

q 0 pkα (     ,     )< 2

q 4

q 1 q 2

q 0

q 3

Figure 2. Counting number of object surfaces.
A ray (dashed arrow) is shot from the cen-
ter (gray dot) of the sphere (dashed curve)
through an object point (black dot) to ob-
tain a cone (dotted lines) with a small angle.
The other object points (white dots) within
the cone are considered. Checking the num-
ber of times the surface normals (arrows) at
the points change direction, compared to the
ray’s direction, in increasing distance of the
points from the sphere’s center, gives the
number of surfaces that the ray penetrates.

Direct computation of the intersection of a ray with sur-
faces that are made up of triangular meshes is quite com-
plicated. Instead, a simpler method is developed: Consider
an object point 0 3 and its corresponding ray 4 ! 0 3 ' from the
sphere’s center to 0 3 . Obtain the connected neighbors � �
of 0 3 from the triangular meshes that make up the object’s
surfaces. Among these neighbors, one of them, say � 6 , is
nearest to 0 3 in terms of the angle 7 ! 0 3 $ � 6 ' between them:

7 ! 0 3 $ � 6 ' � : < = > @ 0 3 B � 6
� 0 3 � � � 6 � F (1)

Now, form a cone with its vertex located at the sphere’s
center, extending along the direction of 0 3 , and with an an-
gle smaller than G 7 ! 0 3 $ � 6 ' (Fig. 2). Then, all other ob-
ject points 0 � $ I � 	 $ F F F $ L , that are contained in the cone
must lie on different surfaces than 0 3 . Next, sort the points

0 � $ I � � $ F F F $ L , in increasing order of their distances � 0 � �
from the sphere’s center, and compute the inner product N �
between 0 3 and the surface normals O ! 0 � ' at the points 0 �

:

N � � 0 3 B O ! 0 � ' F (2)

The surface normal O ! 0 � ' at 0 �
can be easily computed

from the cross product of the vectors that connect 0 �
to its

neighbors in the triangular mesh that contains 0 �
. Finally,

check the signs of N �
in increasing order of distance � 0 � � .

A sign change indicates that the ray 4 ! 0 3 ' has penerated
another surface. So, the number of surfaces that the ray
penetrates is equal to the number of sign changes plus one.

Same as the Distance Map, the bins of the Surface Pene-
tration Map is obtained by partitioning the bounding sphere
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Figure 11: Computing feature maps. Measuring distance from pi to sphere surface and
counting number of object surfaces intersected by a ray (Figures taken from [129] c© 2003
IEEE).

On a slightly different approach, Yu et al. proposed measuring the amount of effort
required to morph9 a 3D object into a canonical sphere [129] to describe the geometry
and topology of the object. To that end, they use a descriptor similar to the spherical
extent function together with a descriptor counting the number of intersections from a
ray casted from the origin with the object surface. Unlike many other approaches, the
authors construct descriptors from feature maps instead of histograms in order to capture
spatial information. The distance map is computed by measuring the distance di from
the normalised object surface to the bounding shape surface, as depicted in Figure 11 (a).
Authors consider that the sum of all di correspond to the total energy required to deform
the object into a sphere. The surface penetration map is constructed by counting the shape
surfaces intersected by a ray shot from the centre of the sphere. To efficiently compute
the penetration map, is considered a conical volume with the ray as its axis and a small
angle α, such as the nearest neighbor point pk of the ray intersection with the surface q0

is not contained in the cone, as illustrated in Figure 11 (b). Then, surface normal sign
changes are used to calculate the number of surfaces that the ray penetrates, since it is
equal to the number of sign changes plus one. The resulting surface penetration map
provides information about object topology and concavity.

Papadakis et al. presented recently [89] a 3D shape retrieval methodology based on
spherical harmonics. The proposed model decomposition and feature extraction is very
similar to previous approaches. They compute the spherical functions using not only the
intersections of the surface with emanating rays but also points in the direction of each
ray which are closer to the origin than the furthest intersection point.

9Morphing is a technique that changes one object into another through a seamless transition, generally
by producing a sequence of intermediate objects.
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Figure 12: Princeton methodology for computing spherical harmonics shape descriptor
(Figure taken from [50] c© 2003 ACM).

Rotation invariant spherical harmonics After identifying several limitations of canon-
ical alignment used in other approaches, Kazhdan et al.proposed [70] an alternate method
to obtain rotation invariant representation of three-dimensional objects based on spheri-
cal harmonics. First, the object to describe should be converted into a voxel grid. Then
authors intersect the object with a set of concentric spheres and construct a spherical
function from voxel values for each sphere. Next, the frequency decomposition of each
one of these functions is computed, as well as the norms of each frequency component at
each radius. The resulting rotation invariant descriptor is a 2D grid indexed by radius
and frequency.

Following this idea, the Princeton group derived a practical methodology, illustrated
in Figure 12, to compute rotation invariant descriptor using spherical harmonics [50].
First, they rasterise the object into a 2R × 2R × 2R voxel grid, with R ≈ 32 to provide
adequate granularity for discriminating shapes while filtering out high-frequency noise in
the original data. Then a value of one is assigned to each voxel if it is within one voxel
width of object surface, or zero otherwise. The model is translated in order to move its
centre of mass to point (R,R, R) and scaled in order to make the average distance from
nonzero voxels to the centre of mass R

2 . By applying these two transforms, translation and
scale normalisation are obtained. In next step, a collection of spherical functions fr(θ, φ)
defined as

fr(θ, φ) = voxel(r sin(θ) cos(φ) + R, r cos(θ) + R, r sin(θ) sin(φ) + R), (7)

where r ∈ [0, R], θ ∈ [0, π] and φ ∈ [0, 2π]. Then, using spherical harmonic transform,
each fr function is expressed as a sum of its frequencies and a rotation invariant signature is
computed for fr as a collection of scalars from the L2 norm of its frequencies fm

r . The two-
dimensional rotation invariant spherical harmonics descriptor is obtained by combining
these different signatures over the different radii.
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3D angular radial transform Adopted as region-based shape descriptor in MPEG-7
standardisation, the angular radial transform [25] is a moment based description method
that expresses pixel distribution within a 2D region. Ricard et al. proposed a generalisa-
tion of this descriptor to index 3D models [96]. The 3D angular radial transform (3D ART)
descriptor preserves the properties of the original 2D descriptor, such as robustness to rota-
tion, translation, noise and scaling. Moreover, the 3D ART produces compact descriptors
and allows short retrieval times.

The 3D ART transform is a complex unitary transform defined on a unit sphere.
Thus, to compute the 3D ART descriptor, the object must be represented in spherical
coordinates, which can be insured during preprocessing stage. Considering φ the azimuth
angle in the xy-plane from the x-axis, θ the polar angle from the z-axis and ρ the 3D ART
coefficient of order n, mθ and mφ is defined by

Fnmθmφ
=

∫ 2π

0

∫ π

0

∫ 1

0
Vnmθmφ

(ρ, θ, φ)× f(ρ, θ, φ)ρdρdθdφ, (8)

where f(ρ, θ, φ) is a 3D object function in spherical coordinates and Vnmθmφ
(ρ, θ, φ) is

a basis function composed by one radial function and two angular functions:

Vnmθmφ
(ρ, θ, φ) = Amθ

(θ)Amφ
(φ)Rn(ρ) (9)

To achieve rotation invariance, the angular basis functions are defined by complex
exponential functions as expressed in Equations 10 and 11 for polar and azimuth angles
respectively. Without such constraints, the radial basis function is a simple cosine function,
as shown in Equation 12. Since the values of parameters n, mθ and mφ are trade-offs
between efficiency and accuracy, these must be chosen upon experimental evaluation, and
may change depending on the data set.

Amθ
(θ) =

1
2π

exp(2jmθθ) (10)

Amφ
(φ) =

1
2π

exp(jmφφ) (11)

Rn(ρ) =

{
0, ifn = 0
2 cos(πnρ), otherwise

(12)

In order to determine n, mθ and mφ, authors measured the recall response for several
possible values of these parameters and found a good compromise between the efficiency
and accuracy. For instance, in the particular case of a database of technical models,
authors have chosen n = 3, mθ = 5 and mφ = 5. With these values, authors argue that
their approach outperforms the spherical harmonics descriptor in speed while keeping a
close accuracy.
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Figure 13: Symmetries with respect to planes representing the four strong local maxima
of the PRST. (Figures taken from [92] c© 2006 ACM).

Planar-reflective symmetry transform In [92] Podolak et al. introduced the planar
reflective symmetry transform (PRST). The PRST is a transform from the space of points
to the space of planes that captures a continuous measure of the symmetry of a shape with
respect to all planes through its bounding volume. This transform combines and extends
previous work that has focused on global symmetries with respect to the centre of mass in
3D meshes [69, 71], briefly described in Section 2.5.5, and local symmetries with respect
to points in 2D images [130].

Authors also provide an iterative refinement algorithm to find local maxima of the
transform precisely. In Figure 13 triangles of the model are colored to show how symmetric
they are with respect to the plane of symmetry displayed. The triangles with highest
symmetry values are lighter than the ones with less or no reflection in the given plane.

In addition, Podolak et al. use the planar reflective symmetry transform to define two
geometric properties, the centre of symmetry and the principal symmetry axes. These
properties are useful for aligning objects in a canonical coordinate system. Indeed, the
planar reflective symmetry transform can be useful for several applications in computer
graphics, including segmentation of meshes into parts, and automatic viewpoint selection,
besides shape matching.

2.5.3 Graph-based descriptors

The above referred approaches focus on describing the geometry of model to classify, ig-
noring or giving just few relevance to topological information. At most, these approaches
attempt to integrate topological information in the shape descriptor of the object. In con-
trast, graph-based approaches extract both topology and geometry of 3D objects, focusing
on topological relationships between object components and using graphs to represent such
relationships. These approaches are generally more complex than the previous ones, but
despite their ability to encode geometry and topology, they do not generalise for any type
of 3D shape, forcing each approach to restrict its scope to a specific type of object. There-
fore, graph-based approaches are not effective in general-purpose retrieval applications.

Furthermore, due to the complexity associated to graph matching, alternative solutions
to graph isomorfism are used, such as application of techniques from spectral graph theory
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Figure 14: Reeb graph of a bi-torus and some cross sections. (Figure taken from [20])

to convert graphs into numeric descriptors [48, 103]. However, during recent years several
researchers focused their attention in graph-based descriptors due to its potential. In the
following paragraphs we will present the most commonly used approaches for graph-based
descriptors.

Reeb graphs Back in 1946, Georges Reeb proposed considering a topological graph
defined as a quotient spaceof a manifold10 which, under opportune hypotheses defines
the skeleton of the manifold itself [93]. Indeed, the Reeb graph is just a topological
skeleton determined using a scalar function defined on an 3D object. To automatically
construct a Reeb graph, Shinagawa and Kunii [102] proposed defining a scalar function
and using a series of cross-sections of the object to determine nodes and arcs of the graph.
Considering, for instance, the height function f associated to a manifold M = M(x, y, z),
the Reeb graph is the quotient space given by the relationship which identifies the points
x1 and x2 having same function values and belonging to the same connected component
of the inverse image of f . Figure 14 illustrates a Reeb graph of a bi-torus computed using
a height function as mapping function.

Several approaches to 3D shape classification and retrieval based on Reeb graphs were
proposed in recent years. Biasotti et al. obtain graphs by using different quotient functions
f and suggest that a good choice of f is necessary to achieve good matching results [22].
Indeed, they conclude that f function must be determined based on the object type, since
the same function produces different matching performance for different kinds of models.
For instance, the authors proved that using the integral geodetic distance as a quotient
function is especially suited for articulated objects.

10A manifold is an abstract mathematical space that is locally Euclidean. This means that around
every point there is a neighbourhood that is topologically the same as the open unit ball in Rn, i.e. the
neighbourhood resembles Euclidean space, but the global structure may be more complicated.
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Figure 15: Results of shape matching with MRG versus ARG (Figure taken from [117]
c© 2004 IEEE).

Multiresolution Reeb graphs Hilaga et al. introduced the concept of topology match-
ing for 3D object retrieval [57], describing a matching method best suited for articulated
objects. Their method constructs Reeb graphs at multiple levels of resolution of a function
f , the Multiresolution Reeb Graph (MRG). They proposed using the integral geodetic dis-
tance as f , since this function is invariant to rotation and translation and is also robust
against changes caused by mesh simplification or subdivision. However, they also defined
f as the height of a point on the surface of the object or the curvature value at that
point. According to the chosen function, the resulting descriptor has certain properties
for a different kinds of models. To quickly determine similarity between polyhedral models
they compare the graphs using a coarse-to-fine strategy while preserving the consistency
of the graph structures, which results in results in establishing a correspondence between
the parts of objects. This graph matching is achieved through sophisticated heuristics
proposed by authors and improved later by Tung et al. [118].

Tung and Schmitt [117] took further the approach by Hilaga and augmented the Reeb
graph by storing geometric attributes in each node, since the original method only takes
into account topological information, which is often insufficient for effective shape match-
ing. In this approach authors use, as geometrical information, features such as the cord
histograms, local curvature and volume associated with each node. Moreover, they also
provided a new topological coherence condition to improve the graph matching.

Using the proposed Augmented Reeb Graph (ARG), Tung and Schmidt could overcome
some issues raised during matching with Hilaga’s MRG. For instance, graph edges topo-
logically similar might not really be geometrically similar, thus being wrongly matched, as
depicted in Figure 15. This figure illustrates the gain obtained by introducing geometri-
cal information in the nodes. While matching without geometrical information (left) legs
can be matched with arms, since they are topologically equivalent, by adding geometrical
information, arms and legs are well matched.
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Aware of MRG drawbacks when models become geometrically and topologically de-
tailed, Bespalov et al. studied the application of Hilaga’s method to matching of complex
machined parts [17]. They stated that such solution produces poor results when directly
applied to 3D solid models in engineering databases. Since for this kind of models topo-
logical insensitivity is important, they conclude that some improvements should me made
to MRG technique. Thus, they present in [19] an alternative to Hilaga’s approach. Their
method computes the scale-space decomposition of a shape, represented as a rooted tree.
Through spectral decomposition the problem is of matching reduced to that of computing
a mapping and distance measure between vertex labeled rooted-trees. Indeed, authors
claim that their method represents a computationally efficient approach to matching of
3D models, enabling highly accurate matching of solid models of 3D mechanical parts.

Size graphs Following the previous approaches, Biasotti et al. use the Reeb graph to
construct a centerline skeleton of a 3D model and apply a size function to create a size
graph [21]. Their idea is to associate with a 3D object a graph (Gf , φ), where Gf is the
centerline skeleton computed using the quotient function f and φ is a measuring function
labelling each node of the graph with local geometrical properties of the model.

In this approach, authors consider four distinct mapping functions f , namely the dis-
tance from the barycenter, the distance from the center of the bounding sphere, the in-
tegral geodetic distance and the topological distance from curvature extrema [84]. Based
on these functions, a centerline skeleton is extracted from the original model. Then, for
each node of this skeleton, the value of function φ must be calculated to obtain the size
graph. Biasotti et al. suggest measuring a set of features of the corresponding region on
the model, such as the area of the region or the minimum, maximum and average distance
of the barycenter of the region to region vertices. To compare models authors use the
matching between their size functions, as discussed by d’Amico et al. in [36].

Skeletal Graphs In a slightly different approach, skeletons can be derived from solid
objects and represented as a direct acyclic graph (DAG). These skeletons capture impor-
tant information about the object. However, when using shape skeletons in 3D object
retrieval, two major challenges arise. Suitable skeleton computation algorithms and sim-
ilarity functions should be defined. Sundar et al. presented a framework that provides
both [107]. They propose, as shape descriptor for three-dimensional models, a skeletal
graph encoding geometrical and topological information of the object. Then they apply
graph matching techniques to match the skeletons and compare them.

To compute the skeleton, Sundar et al. first perform a voxelisation of the object.
From the voxelised model, the skeletal points are calculated using a distance transform-
based algorithm proposed by Gagvani and Silver [53] with a thinness parameter. This
method reduces the model voxels to those voxels that are important for reconstruction.
These remaining voxels are clustered and the corresponding skeletal points are connected
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Figure 16: Skeletal graphs for a pair of matching objects (Figure taken from [107] c© 2003
IEEE).

in a DAG by applying the minimum spanning tree algorithm. By decreasing the thinness
parameter denser graphs can be obtained. Thus, authors suggest varying the thinness
this parameter to obtain a hierarchical graph structure. Finally, to each node of the DAG
is associated a set of geometric features and a signature vector that encodes topological
information of subtrees rooted at this node. This topological signature vector is derived
recursively over the sub-graphs of the node using eigenvalues of their adjacency matrices.

The matching procedure proposed by Sundar et al. consists of two stages. In the first
stage shapes are matched by approximate comparison of their hierarchical skeletal graphs
using a greedy algorithm to find the maximum cardinality, minimum weight matching in
a bipartite graph. In the second stage is performed geometry matching over the informa-
tion stored on nodes to refine the results. Figure 16 illustrates skeletal graph matching
accomplished using Sundar et al. technique, showing the node-to-node correspondence
based upon the topology and the radial distance about the edge.

2.5.4 Image-based descriptors

An approach completely different from the previous ones consider representing a three di-
mensional model in a set of two dimensional spaces. The basic idea behind such approach
is that when two 3D models are similar, images captured from the same points of view are
also similar. From this idea several researchers were able to reduce the problem of com-
paring 3D shapes to image matching. Thus, taking advantage of the existing reasonable
amount of work in this area capable of producing good retrieval results.

Spin Images Johnson and Herbert proposed a 3D object recognition system [67] based
on matching surfaces using the spin image representation. To produce spin images authors
use oriented points on the model surface, i.e. points associated with the surface normal
at that point. Each oriented point (p, n) corresponds to a spin image and defines a local
coordinate system using the tangent plane P through p oriented perpendicular to n and
the line L through p parallel to n, as illustrated in Figure 17. Then, two coordinates are
defined with respect to the oriented point (p, n): the radial coordinate α and the elevation
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Chapter 2: Spin-Images

16

The above eigenvector computation does not determine the inside/outside direction of the sur-

face normal; for spin-image generation, oriented points should be oriented to the outside of the

object surface. If the surface mesh was created from a sensor with a single viewing direction,

then the normal direction can be chosen as the one pointing toward the sensor. Otherwise, sur-

face normals of a mesh must be oriented to the outside of the object using the following heu-

ristic. First, a vertex is chosen and the orientation of its normal is spread to the normals of its

adjacent vertices. This process is repeated until the normals of all of the vertices are consistent-

ly oriented to the inside or outside of the object. Next the orientation (inside/outside) of all of

the normals on the surface is determined by calculating the scalar products of the surface nor-

mal at each vertex and the vector from the centroid of the object to the vertex. If the majority

of scalar products are positive, the normals have been oriented to the outside. Otherwise, the

normals have been oriented to the inside, so they are inverted. If the object has multiple con-

nected components, this normal orientation procedure is applied separately to each connected

component. To date, we have never encountered an object where this heuristic would not gen-

erate outside oriented surface normals, although objects can be constructed where it will fail.

Given this method for computing surface normal, an oriented point can be constructed at each

vertex of a surface mesh using the position of the vertex and its surface normal.

As shown in Figure 2-1, an oriented point defines a 5 degree of freedom (DOF) basis(p,n) (i.e.,

local coordinate system) using the tangent planeP throughp oriented perpendicularly ton and

α

β

x
L

P

p

n
B

Figure 2-1: An oriented point basis created at a vertex in a surface mesh. The position of the oriented point
is the 3-D position of the vertex, and the direction of the oriented point is the surface normal at the vertex.
Two coordinates can be calculated given an oriented point:α the radial distance to the surface normal line
L and β the axial distance above the tangent planeP.

Figure 17: Building a spin image with respect to point p (Figure taken from [66]).

coordinate β. The cylindrical angular coordinate is omitted because it cannot be defined
robustly and unambiguously on planar surfaces.

To create the spin image, a 2D accumulator indexed by α and β is created. Next,
the coordinates (α, β) are computed for every vertex in the surface mesh that is within
the support of the spin image. The bin indexed by (α, β) in the accumulator is then
incremented. The resulting accumulator can be thought of as an image where dark areas
in the image correspond to bins that contain many projected points. Figure 18 shows
the projected (α, β) coordinates and spin images for three oriented points on a model
of a valve. For 3D object matching, spin images can be constructed for every vertex in
the surface mesh, producing a set of two-dimensional histograms representing the object
geometry.

Aware of the high storage necessary for their approach, of the computational overhead
when comparing all spin images of two objects and of the existence of redundant infor-
mation among close or symmetrically related spin images, Johnson and Herbert suggest
performing compression on the set of an object spin images.

The spin images approach to 3D shape retrieval was later improved by de Alarcón et
al. [37]. Instead of compression method proposed by Johnson and Herbert, they suggest
data reduction by clustering the spin image set using a self organising map algorithm to
group similar spin images, followed by a clustering algorithm. This way, the number of
descriptor comparisons during matching is reduced, having only to check the spin image
prototypes of each cluster. Moreover, authors introduce a three-level indexing schema
based on artificial neural networks, which improves significantly the efficiency in matching
query spin images against those stored in the database.

More recently, Assfalg et al. suggested a 3D shape retrieval method based on spin
images, but using global features [10]. In their approach, spin images are used to derive
a view-independent object description. First a set of spin images is created. Then, a
descriptor is computed for each spin image in the set. Considering spin images as grey-scale
images, these could be efficiently described by a low-dimensional region-based description
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Chapter 2: Spin-Images

20

points; indices to oriented point bases were stored in the hash table in the bins determined by

spin-map coordinates of other points on the object. Point matching proceeded by choosing a

point in the scene, computing bin locations from spin-map coordinates of the other points in

the scene, and voting for model points with indices in the computed bins. The model point with

the highest vote was chosen as the point corresponding to the current scene point. By placing

the indices in discrete bins of a hash table, the effect of the exact position of individual points

on matching was reduced through averaging.

β
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Figure 2-3: Spin-images for three oriented points on the surface of a model of a valve. The 3-D position of
vertices in the mesh are mapped into 2-D using the spin-map for each oriented point basis. By
accumulating 2-D points in discrete bins, spin-images are generated.
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Figure 18: Spin-images for three oriented points on the surface of a model of a valve
(Figure taken from [66]).

scheme from the content-based image retrieval domain. Next, authors apply a fuzzy
clustering algorithm on the set of resulting image-based descriptors to reduce the number
of spin images to a smaller number of prototypes, achieving a compact representation of
the initial model, thus allowing efficient indexing and matching.

Silhouette descriptor Vranić presented, in his PhD thesis [121], a 3D shape descriptor
based on 2D silhouettes. In this approach, a axis aligned 3D-object is projected on the
coordinate hyperplanes, in order to generate three monochrome images as depicted in
Figure 19. Next, author founds the outer contour of each image, approximating it by a
polygonal line. Then, a commonly used technique on 2D shape description, the discrete
Fourier transform, is used to represent the shape features in the spectral domain. The
absolute values of the obtained coefficients are used to form the silhouette-based feature
vector.

The PCA preprocessing stage necessary in this approach makes the silhouette descrip-
tor pose and scale invariant. Additionally, author stresses that this approach is invariant
to rotation due to an interesting property of the discrete Fourier transform, which makes
the magnitudes of obtained coefficients (approximately) invariant with respect to rotation
of the underlying silhouette image. Moreover, the magnitudes of obtained coefficients are
invariant with respect to reflections of a mesh around the coordinate hyper-planes. How-
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Figure 19: Silhouette images of an aeroplane model obtained by projecting the model on
the coordinate hyper-planes (Figure taken from [121]).

ever, if it is not possible to determine a single unique contour of the silhouette image (for
3D models with holes or disjoint parts), only the longest contour is processed. Therefore,
certain parts of 3D-objects might not be described.

Depth buffer descriptor When silhouette images of 3D-objects are created, all the
information about shape is contained in contour points, because each interior point of the
silhouette has the same attribute. Therefore, in order to capture 3D-shape characteristics
Vranić considered other approaches for creating 2D images from 3D-objects [121]. He
proposed another feature vector, which is obtained from six depth-buffer images formed
using the faces of an appropriate cuboid region.

This approach starts the same way as the silhouette descriptor computation. The
model is oriented and scaled into the canonical unit cube. Now, instead of three silhouettes,
six grey scale images are used. Each image are rendered on each canonical cube face using
a technique similar to the well-known z-buffer algorithm used in computer graphics, but
instead of color, the attribute used to fill the interior of the image is the distance to the
front clipping pane. After rendering the six images, the three-dimensional discrete Fourier
transform is used to represent the image in the spectral domain instead of spacial domain.
Figure 20 illustrates the extraction of the depth buffer-based shape descriptor. In the first
row the depth-buffer images are formed using the canonical bounding cube. Lighter pixels
indicate that distance between view plane and object is smaller than at darker pixels.
In the second row are shown the coefficient magnitudes of the two-dimensional Fourier
transform of the six depth-buffers.

Elevation descriptor Shih et al. proposed [98] a descriptor that shares the basic idea
behind the depth buffer descriptor referred above. To compute the elevation descriptor,
six different views of the 3D object are captured, corresponding to 2D projections of the
object on the faces of the tightest bounding box circumscribing the 3D model. These
views encode elevation maps describing the altitude information of the model relative to
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Figure 20: Extraction of the depth buffer-based shape descriptor (Figure taken from [121]).

the corresponding view plane and are represented as gray-scale images. Then, each one
of these images is decomposed into a set of concentric circles around the centre point and
the elevation descriptor is obtained by taking the difference between the altitude sums of
two successive circles.

Unlike depth buffer approach, where authors rasterise the views using a technique
similar to z-buffer algorithm, Shih et al. decompose the bounding box into a 64× 64× 64
voxel grid and identifies the voxels intersected by the object surface as opaque. Then, to
compute the elevation maps they simply have to found, for each cell within a 64×64 grid on
the box face, the opaque voxel closer to that face and store in that cell the corresponding
distance. Figure 21 illustrates the major steps of elevation descriptor computation. The
3D Jeep model is decomposed into a voxel grid and then elevation maps are computed
for each k-face of enclosing box. Finally, the elevation descriptor is estimated by finding
the distance within two successive concentric circles along the radius j. The complete
elevation descriptor is obtained by concatenating the six partial descriptors.

Authors are aware that performing a full matching between two models will require
a large number of elevation comparisons. Therefore, to reduce matching time Shih et al.
provide an efficient similarity computation that finds the best match for a given query
model.

Light field descriptor Following the idea that if two 3D models are similar, they
also look familiar from all viewing points, Chen et al. [34] proposed a descriptor based
on silhouettes from many different viewing directions. The light field descriptor encode
one hundred orthogonal projections of an object, excluding symmetry, with both Zernike
moments and Fourier Descriptors to produce feature vectors that describe the object.

To obtain the silhouettes of the object, authors define a camera system where twenty
light field cameras are located on the vertices of a regular dodecahedron11 centred at the

11A general dodecahedron is any polyhedron with twelve faces. A regular dodecahedron is a Platonic
solid composed of twelve pentagonal faces, twenty vertices and thirty edges [126].
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Model Decomposed model Elevation maps
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for j = 1, 2, . . . , 32. Furthermore, every dk(j) value is nor-
malized by using the following equation:

xk(j) = dk(j)∑6
k=1D(k)

,

Fig. 3. Top elevation of the 3D jeep model shown in Fig. 2(a) segmented
by several concentric circles.
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Fig. 4. Elevation descriptors for the three models shown in Fig. 2. The vertical axis represents xk(j). The horizontal axis represents j (1�j �32) for
each k = 1, 2, . . . , 6 successively. (a) The elevation descriptors for the jeep model shown in Fig. 2(a). (b) The elevation descriptors for another jeep model
shown in Fig. 2(b). (c) The elevation descriptors for the ship model shown in Fig. 2(c).

where D(k) is the sum of all dk(j) values for the kth eleva-
tion:

D(k) =
32∑

j=1

dk(j).

The ED x is defined as

x = [(x1)
T, (x2)

T, . . . , (x6)
T]T,

where

xk = [xk(1), xk(2), . . . , xk(32)]T.

Fig. 4 shows the EDs for the three 3D models shown in
Fig. 2. It is evident that these two jeep models exhibit similar
EDs whereas the jeep and ship models have totally different
ones.

In general, the ED is less sensitive to rotation if a 3D
model is rotated by a small degree. Assume a 3D model
is rotated by a small degree � (see Fig. 5), the incre-
ment/decrement �n of the altitude value of a voxel located
at radius j is

�n = j tan �.

Elevation descriptor

Figure 21: Computing elevation descriptor from a 3D model of a Jeep (Figures taken
from [98] c© 2006 Pattern Recognition Society).

object centre. The cameras viewing direction (view plane normal) is pointing towards
the centre of the object and the camera up-vector is uniquely defined. This means that
twenty different views, distributed uniformly over a 3D model, are captured. Therefore, ten
different silhouettes are produced for the object, because silhouettes captured by cameras
on opposite vertices of the dodecahedron are identical.

However since the cameras are placed on the vertices of the dodecahedron, the camera
system must by rotated sixty times12 in order to switch the cameras onto different vertices.
This way the dissimilarity between light field descriptors of two objects are defined as the
minimum of the sum of the distances between all corresponding image pairs when rotating
one camera system relative to another.

To improve robustness against invariance a set of ten light field descriptors is applied
to each 3D model, which lead to the one hundred orthogonal projections. These ten
descriptors are created from different camera system orientations. Thus, the dissimilar-
ity between two models is the minimum difference between all combinations light fields.
Therefore, the similarity between two 3D models is obtained from the best one of 5,460
different rotations, which determines the final similarity distance.

12For a regular dodecahedron, each of the twenty vertices is connected by three edges, which results in
sixty different rotations for one camera system.



36 2 BACKGROUND AND STATE-OF-THE-ART

2.5.5 Other methods

In the previous sections, we described several methods to represent 3D shapes. These
were classified according to the technique behind the descriptor computation, may it be
histograms, transforms, graphs or images. However there are some approaches that does
not fit on these classifications, since the computation of these shape descriptors does not
use any of this techniques or combines different methods to achieve a distinct result. In
this section we will briefly describe a few of such techniques.

3D Zernike moments Novotni and Klein [86] advocate the usage of a specific kind
of shape moment that has the advantage of capturing global information about the 3D
shape and not requiring closed boundaries as boundary-based methods. The 3D Zernike
descriptors are a projection of the function defining the object onto a set of orthonormal
functions within the unit ball. They can be considered as the magnitudes of a set of
orthogonal complex moments of the 3D shape and the natural extensions of spherical
harmonics based descriptors.

Spherical moments Based on the concepts underneath moment-based method pro-
posed by Saupe [97], Wei and Yuanjun introduced spherical moments as a shape compar-
ison method for 3D model retrieval [125]. This method employs a multi-level spherical
moments analysis approach relying on voxelization and spherical mapping of the 3D mod-
els. Authors claim that, despite the simplicity of this method, it outperforms in retrieval
performance many previously proposed ones.

To compute the shape descriptor of a model, firstly a pose normalization step is done
to align it into a canonical coordinate frame. Afterwards, them model is rasterised into a
cubical voxel grid, then a series of homocentric spheres centred at the center of the voxel
grid are used to produce a series of spherical images, by simply checking the intersection
between trigonal pixels on the spheres surface and the object voxels and labelling the pixels
accordingly, as illustrated in Figure 22. Finally moments of each sphere are computed and
the moments belong to all spheres constitute the descriptor of the model. To estimate
the similarity between models, Wei and Yuanjun suggest comparing feature vectors using
Euclidean distance.

Reflective symmetry descriptor Kazhdan et al. proposed describing 3D models
by measuring its amount of symmetry [69]. While such approach in two dimensions is
quite simple, since it works by averaging an image against itself reflected along a line
of symmetry, with 3D shapes the symmetry computation is more complex. Indeed, the
reflective symmetry descriptor [71] of a 3D model is a collection of functions that measure
the rotational and reflective symmetry with respect to every axis passing through its
centre of mass. Kazhdan et al. present an efficient algorithm for computing the reflective
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Spherical images with radius 5, 10 and 15.

Figure 22: Computing spherical images from a 3D model (Figures taken from [125]).

symmetry descriptor from a 3D voxel representation of a model, and show that,in addition,
planar symmetries can be used for alignment of 3D meshes.

Moreover, authors suggest using this approach to improve existing shape descriptors
with symmetry information. In particular, they describe the symmetry augmented descrip-
tor, based on the spherical harmonic representation, described in Section 2.5.2. According
to Kazhdan et al., this augmented descriptor provides a highly discriminating representa-
tion of the shape.

Generalized shape distributions Liu et al. presented last year a combined approach
to 3D shape description [78]. The Generalized Shape Distributions (GSD) takes advantage
of both local and global shape signatures. The start by generating spin images, on meshes,
producing a set of local shape descriptors, which are then clustered in what authors call
”words” in a ”dictionary” of local shapes. This way, they represent a global 3D shape as
the spatial configuration of a set of specific local shapes by computing the distributions of
the Euclidean distance of pairs of local shape clusters. Then, they store the descriptor in an
indexing data structure to reduce the space complexity of the proposed shape descriptor.

Authors claim that their approach is robust to non-trivial shape occlusions and defor-
mations and is more discriminative than a simple collection of local shape signatures since
the spatial layouts of a global shape are explicitly computed. The robustness to shape
occlusions and deformations comes from the fact that there are statistically a large number
of chances that some local shape signatures and their spatial layouts are unchanged and
users can easily identify those unchanged parts. Indeed, their preliminary experiments
show the effectiveness of the proposed technique for shape comparison and analysis.
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In the present PhD research work we plan to research for a solution somehow similar
to the GSD proposed by Liu et al.. However, we intend to extend this kind of approach,
by incorporating topological information for each shape and by using a shape thesaurus,
as described below in Section 4.

2.5.6 Discussion on Shape Descriptors

As we have seen above, there are several three dimensional shape descriptors. In a variety
of approaches, these algorithms for feature extraction have one thing in common. All aim
at producing a feature vector that provides good discriminating power while keeping the
time and space consumption relatively low while computing the descriptor. Although some
of the techniques we described in this chapter are outdated, the technique proposed in such
approaches remain useful. Indeed, many recent algorithms are basically an evolution of
older methods. A summary of all analysed methods for shape description is available in
Table 2.

To provide a organised view of this research area, we divided the 3D shape description
algorithms into five distinct categories. The histogram based approaches simply accounts
one or more shape features and constructs histograms with them. These histograms are
then used to estimate the corresponding set of feature vectors. The transform-based ap-
proaches rely on mathematical transformations to switch from the spatial domain to a
more suitable one and compute from there a shape descriptor. For instance by applying
the Fourier transform or the spherical harmonics transform. The graph-based approaches
computes a graph representing the topology of the model and then uses one or a combina-
tion of several histogram-based or transform-based descriptors to code the shape features
for each node of the graph. The image-based approaches rely on multiple 2D representa-
tions of the shape to compute the descriptor. Finally, there are a few algorithms that do
not fit on any of these four categories, which we classify as other.

Depending on the purposes and scope of the retrieval system, some shape descriptors
can perform better than other. As a matter of fact, there are no shape descriptor that is
clearly better than all the others. Instead, some are best suited for some kind of 3D models
or for specific needs of the retrieval system. While, in some cases the major concern is
the effectiveness of the shape descriptor, in others the most important factor could be the
efficiency of shape description techniques.

The effectiveness of a shape descriptor indicates the amount of shape information it
is able to represent. More effective shape descriptors store more information about the
shape. On the other hand, the efficiency of a shape description technique regards on the
time and space necessary to compute and store the resulting feature vector. Larger and
more complex shape descriptors usually led to slower classification and retrieval. In a near
future we will evaluate experimentally several shape descriptors, producing a practical
comparison that will allow us to select the most appropriate for our work.
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Descriptor Feature Refs.

H
is

to
g
ra

m
-b

a
se

d

Cord and Angle Histograms Distribution of length and angles of cord rays [90, 91]
Color Distribution Voxel colors computed from shape texture [90]
Curvature Histogram Principal curvatures at each face of the mesh [73, 119]
Shape Distribution Collection of shape functions measuring several

shape features using randomly selected surface
points.

[88]

Modified Shape Distribution Shape functions measuring a pair of features using
a quasi-random point selection.

[87]

Shape Histograms Surface points in cells of decomposed model. [9]
3D Shape Contexts Distribution of sampled points relative to each

other.
[74]

Extended Gaussian Images Variation of surface area with surface orientation. [68]
3D Hough transform Variation of surface area with surface orientation. [132]
Shape Spectrum Area of surface object with respect to shape cur-

vature.
[39, 131]

Density-based Shape Descriptor Variation of surface area with surface orientation. [6, 7, 5]

T
ra

n
sf

o
rm

-b
a
se

d Voxel 3D Fourier Transform Proportion of total surface area inside each cell of
voxelised model.

[123]

Distance and radial cosine transform Binary and continuous voxel-based distance from
a point to the object surface.

[42]

Spherical Harmonics Transform Distance from the object surface to the surface of
enclosing sphere.

[97]

Rotation Invariant Spherical Harmonics Spherical functions of concentric sphere based on
voxelised model.

[70]

Planar-Reflective Symmetry transform Symmetry of a shape with respect to all planes
through its bounding volume.

[92]

G
ra

p
h
-b

a
se

d Multi-resolution Reeb Graphs Reeb graphs at multiple levels of resolution of a
function over the surface

[57]

Size Graphs A centreline skeleton with nodes labelled with lo-
cal geometric properties.

[21]

Skeletal Graphs A directed acyclic graph associated with a set of
geometric features and a signature vector.

[107]

Im
a
g
e-

b
a
se

d Spin Images Surface points projected on planes defined by ori-
ented points on model surface

[67, 10]

Silhouette Descriptor Object projections on coordinate hyperplanes. [121]
Depth Buffer Mappping of surface distances into the six faces

of the object bounding cube.
[121]

Lightfield Descriptor Object silhouettes captured by cameras on the
vertices of a dodecahedron.

[34]

Elevation Descriptor Decomposition in concentric circles of surface el-
evation with respect to the six faces of bounding
cube.

[98]

O
th

er

3D Zernike Moments Magnitudes of a set of orthogonal complex mo-
ments of the object.

[86]

Spherical Moments Moments of spheres mapping voxelised models. [125]
Reflective Symmetry Descriptor Collection of functions measuring rotational and

reflective symmetry with respect to every axes
passing on barycenter.

[69]

Generalised Shape Distributions Clustering of spin images. [78]

Table 2: Summary of 3D shape descriptors.
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2.6 Query and Matching

As we have already mentioned, 3D shape descriptor computation is crucial on a shape
based retrieval system. This explains the large amount of work developed in this partic-
ular topic, which we surveyed in Section 2.5. However, effective shape representation is
not the only challenge to overcome when developing 3D model retrieval systems. Another
important part of a 3D shape retrieval solution, as of any content-based retrieval system,
is the query and matching processes. Descriptors extracted from objects are usually rep-
resented as feature vectors on a multidimensional space. This is truth not only for 3D
models, but also for other data types, such as images or music. Effective content-based
retrieval of information indexed on multidimensional spaces depends greatly of query and
matching techniques.

2.6.1 Query types

Regardless of the data stored on the database or used as a query, several authors agree
on a basic set of different types of queries [52, 56, 31] for multidimensional spatial data.
Following the enumeration of query types presented by these authors, we will briefly
describe the four most common categories of queries.

Exact match query This type of query aims on finding all objects that have exactly
the same spatial extent as the spatial query object. Indeed, exact match queries are
only of moderate interest in content-based retrieval , and, when applied on content-based
retrieval, are usually based on metadata, managed by a traditional database management
system. An example of such query is ”find all alloy 17 inches-radius wheels”.

Range search query Content-based retrieval approaches rely mostly on retrieval-by-
similarity queries. One way to accomplish this is by performing a range search query, i.e. find
all objects that are within a given range, usually a hyperrectangle 13. Such query can be
specified as finding objects in the multidimensional space that have at least one com-
mon point with a query volume in that space. For instance, the following sentence is a
range search query: ”find all 3D MRI models showing a tumor of size between volmin and
volmax”.

k-nearest-neighbor search Another way to perform retrieval-by-similarity is to search
for a given number of objects similar to the query. Measuring this similarity among objects
is an important issue on retrieval that we discuss briefly on Section 2.6.3. Usually such

13A hyperrectangle, also called orthotope, is parallelotope whose edges are all mutually perpendicular.
Indeed, a hyperrectangle is a generalization of the rectangle to higher dimensions [127]. For instance, the
cuboid is a 3-orthotope.
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similarity is seen as a distance between object representations in multidimensional space.
Thus, a k-nearest-neighbor query is specified by finding k objects with the shorter distance
to the given query. An example of such query is given by the sentence: ”Find the twenty
tumors most similar to a specified example”.

Within-distance (or α-cut) This third way to query by content is quite similar to the
previous one. The main difference is that in this type of query instead of a pre-defined
number of results, the search must return all the results within a given distance to the
query. Thus, the objective is to find all objects with a similarity score better than α with
respect to a query. This means to find all objects whose representation in multidimensional
space has a distance smaller than a threshold from the query representation in that space.
An α-cut query can be specified, for instance, by the sentence:”Find all the 3D MRI models
containing tumours having a given similarity with respect to an example provided”.

2.6.2 Matching properties

The performance of a content-based retrieval system depends on a great extent of the qual-
ity of the results produced by matching techniques. To characterise the query processing
mechanism Vittorio Castelli [31] defined a set of three properties, which we will briefly
present in the following paragraphs.

Exhaustiveness A matching algorithm is exhaustive if it retrieves all the database items
satisfying the query. A database item that satisfies the query and does not belong to the
result set is called a miss. Non-exhaustive range-query processing fails to return objects
that lie within the query range. Non-exhaustive α-cut query processing fails to return
points that are closer than α to the query template. Non-exhaustive k-nearest-neighbor
query processing either returns fewer than k results, or returns results that are not correct.

Correctness Matching is correct if all the returned items satisfy the query.A database
item that belongs to the result set and does not satisfy the query is called a false hit. Non-
correct range-query processing returns points outside the specified range. Non-correct α

cut-query processing returns points that are farther than α from the template. Non-correct
k-nearest-neighbor query processing miss some of the desired results, and therefore is also
non-exhaustive.

Determinism Matching is deterministic if it returns the same results every time a query
is issued, and for every construction of the index. It is common to have non-deterministic
range, α-cut and k-nearest-neighbor queries implemented in content-based retrieval sys-
tems. This happens because when designing such mechanisms there are another factor to
consider. They must be time efficient.
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Indeed, to achieve time efficient solutions, is common to relax some of these properties,
or even the three of them. For instance, by relaxing exhaustiveness, alone, we are allowing
misses, but not false hits, and determinism is retained.

2.6.3 Similarity measuring

To achieve effective matching, resemblance between objects, i.e. feature vectors, must be
measured. Indeed, nearest-neighbor queries rely on the definition of a similarity function,
while α cut queries rely on a scoring function. Usually, in both cases similarity measuring
among objects is done through distance functions that estimate the distance between
the closest points of their representations in the multidimensional space. Even in range-
queries, a distance function is used to sort the objects within the given range by similarity.
Due to the importance of such functions, we will briefly explain them in the following
paragraphs.

Following the approach presented by Tangelder and Veltkamp [114], we assume that S

is a set of all points representing objects in the n-multidimensional space. Then, a metric
distance function d on that set S can be formally defined by a non-negative value function
d : S × S → R+ ∪ 0 that should satisfy the following properties:

• self-identity: ∀x∈S , d(x, x) = 0;

• positivity: ∀x,y∈S , x 6= y ⇔ d(x, y) > 0;

• symmetry: ∀x,y∈S , d(x, y) = d(y, x);

• triangle inequality: ∀x,y,z∈S , d(x, y) + d(y, z) ≥ d(x, z).

As a matter of fact, an extensive theory lays behind distance functions and there
are a large set of possible approaches to measure the distance between two points in a
multidimensional space. However, this issue is not within the main scope of our work.
Therefore, we will only focus on a short list of the most useful distance functions. These
are Euclidean, Manhattan and Chebychev distances, which are particular cases of the
more general family of Minkowsky distances, and the Mahalanobis distance.

The Minkowsky distance of degree p, also called p-distance, between two points in a
n-dimensional space is given by:

dp = (
n∑

i=0

(xi − yi)p)
1
p . (13)

Indeed, this general equation is not applied in practice. Instead, the parameter p is
fixed in a few values commonly used. Thus, the Minkowsky distance of degree 1 (p = 1) is
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Figure 23: The unit sphere under Manhattan (d1), Euclidean (d2) and Chebychev (d∞)
distances.

called Manhattan distance, the usual Euclidean distance is the distance of degree 2 (p = 2)
and with p = ∞ we obtain the Chebychev distance. The difference among these three
distance functions is shown in Figure 23, where we depict the unit sphere in each one of
these metric spaces. The corresponding distance functions are defined as:

• Manhattan distance d1(x, y) =
∑n

i=0(xi − yi);

• Euclidean distance d2(x, y) =
√∑n

i=0(xi − yi)2;

• Chebychev distance d∞(x, y) = maxi=0..n(xi − yi).

These three Minkowsky distances are simple, fast to compute and can be generically
used. However, in some cases the results obtained by this measurements do not fulfil the
needs of retrieval solutions. Thus, to solve problems caused by poorly scaled or highly
correlated coefficients of a vector (descriptor), is often used the Mahalanobis [81] distance.
It is a computationally expensive generalisation of the Euclidean distance widely used
in cluster analysis and other classification techniques to measure the distance between
probability distributions. This measurement is based on correlations between variables by
which different patterns can be identified and analysed. It is a useful way of determining
similarity of an unknown sample set to a known one. It differs from Euclidean distance
in that it takes into account the correlations of the data set and is scale-invariant. The
Mahalanobis distance is defined in terms of a covariance matrix C, which measures a
tendency to vary between two features, as given by the function dM :

• Mahalanobis distance dM (x, y) = det|C|
1
d (x− y)T C−1(x− y).

There are some other distance functions that are often used in content based retrieval
solutions, but we prefer not to mention them all here. Instead, we refer our readers to the
comprehensive explanation of similarity measures for retrieval published by Castelli [31]
or to a theoretical description of distance function presented by Hervé Abdi [2].
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2.7 Benchmarking 3D shape retrieval

Like in other information retrieval research areas, effective testing and comparison of
different techniques in multimedia information retrieval requires the existence of widely
accepted evaluation frameworks. One of the most complete evaluation projects in this
area has been the TRECVid [104]. Focused on information retrieval from digital video,
TRECVid provides a large video test collection, uniform scoring procedures, and a forum
for organisations interested in comparing their results. Another example is the Music
Information Retrieval Evaluation eXchange (MIREX), a formal framework for the scientific
evaluation of the many different techniques being employed by researchers in the domains
of Music Information Retrieval and Music Digital Libraries [40].

2.7.1 Shape benchmarks

In the three-dimensional models domain, the Princeton Shape Benchmark (PSB), deployed
by Thomas Funkhouser team [99], has become the standard and is being widely used
for evaluating various representation methods and shape retrieval techniques. The PSB
provides a carefully compiled repository of around 1,800 models collected from the web and
software tools for evaluating shape-based retrieval and analysis algorithms. The models
in this collection are real-world objects such as vehicles, buildings, animals or plants. The
popularity of PSB lead to its use in the initial version of the international 3D Shape
Retrieval Contest (SHREC), described in Section 2.2.

Another shape repository, concerning evaluation of 3D model retrieval algorithms, was
released recently. The AIM@SHAPE network of excellence, introduced in Section 2.1,
released their shape repository which makes several 3D models available for researchers to
compare shape matching algorithms. It is a shared repository populated with a collection
of digital shapes and an integral part of the framework of tools and services for modeling,
processing and interpreting digital shapes, developed within the AIM@SHAPE project.

However, despite the existing work on shape repositories, there has been limited work
in developing domain dependent benchmark databases for 3D shape searching. Indeed,
the most popular benchmarks do not include model classes from specialised application
domains, such as molecular biology or CAD engineering. To overcome this, the PRE-
CISE group at Purdue proposed [65] a benchmark database for evaluating shape-based
search methods relevant to the mechanical engineering domain. They developed a publicly
available Engineering Shape Benchmark (ESB) for comparing various shape-based search
algorithms. The ESB includes a set of 867 models along with associated images and a
classification schema.

Having also identified the problems referred above, Bespalov et al. presented bench-
mark datasets to assess the relevance of existing 3D shape retrieval techniques for engineer-
ing problems [16]. They proposed several distinctive repositories for evaluating techniques
for automated classification and retrieval of CAD objects. These collections includes sets
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Figure 3: Examples of Models from the National Design Repository.

Manufacturing Classification Dataset This dataset was
classified by hand into (1) prismatic machined parts and (2) parts
that are first cast and then have their finishing features machined.
The engineering rationale in this classification is that parts that
are exclusively machined are usually high-precision parts, or parts
made in small batches (i.e., for custom jobs). Cast-then-machined
parts are typically from larger production runs and generally have
much looser tolerance considerations for the non-machined sur-
faces of the object. In this case the investment of the physical plant
is larger, as is the manufacturing production plan (i.e., one needs to
machine a mold with which to do casting). Figure 4 shows a sample
of this dataset, and Table 3 shows a brief summary of this dataset it
is available at:
http://www.designrepository.org/datasets/machined.tar.bz2

and
http://www.designrepository.org/datasets/cast.tar.bz2.

Table 3: Statistics of the Manufacturing Classification Dataset.
#Models Avg. #Faces Avg. #Polygons

Prismatic Machined 56 106 3600
Casted-then-Machined 54 80 3447

Total 110

Avg. SAT size Avg. STEP size Avg. VRML size
Prismatic Machined 146KB 233KB 162KB

Casted-then-Machined 277KB 314KB 159KB

Functional Classification Dataset This dataset consists of
seven groups of models. Seventy (70) models are hand classified
by their role in mechanical systems. For instance, brackets
are overhanging members that project from a structure and are
usually designed to support a vertical load or to strengthen an

PRISMATIC
MACHINED

CAST-THEN-
MACHINED

Figure 4: Examples of Models from the Manufacturing Classifica-
tion Dataset.

angle. Linkage arms are motion transferring components from the
spectrometer assembly. Nuts, Screws, and Blots are commonly
used fasteners. Figure 5 shows a sample of this dataset, and Table 4
shows a brief summary of this dataset it is available at:
http://www.designrepository.org/datasets/functional.tar.

bz2.

4.2.2 LEGO c© Dataset

The LEGO c© dataset aims to provide a benchmark for a part fam-
ily composed of homogeneous features. This dataset consists of
LEGO c© pieces from the popular LEGO c© Mindstorms c© robotics
kit. The remarkable characteristic of this dataset is that all LEGO c©

components are composed with a fixed set of features. In addition,
these features exhibit explicit interactions between one another. For

279

Figure 24: Some models from National Design Repository (Taken from [16] c© 2005 ACM).

of CAD primitives, industrial CAD models and LEGO R© models. The models on these
datasets were extracted from the National Design Repository [94, 113, 95] and manually
classified by their appearance, manufacturing process and function, since these are typical
classification schemes for CAD models. Figure 24 depicts a few examples of such models.

Clark et al. published a novel and interesting work regarding shape signature bench-
marking [35]. They state that research on shape retrieval has focused on methods for
describing 3D shapes in order to compute properties such as the ”geometric similarity”.
However, authors argue that such properties are ill-defined because little work on assess-
ing how closely these measures match human perceptions has been reported. Thus, they
performed an experiment comparing the part families identified by both human subjects
and three published shape signatures, using a subset of the National Design Repository.

From this experiment, Clark et al. reported two main conclusions. First, they conclude
that the results of the human perception test suggest that the used dataset contains a large
number of perceptually similar objects. Second, results obtained when benchmarking
shape signatures against human perception indicates a low false-positives rate. Moreover,
the false-negative rate varied almost linearly with the amount of similarity perceived by
human subjects. Such experiment opened a new field of study, where the importance of
human perception in the 3D shape retrieval should be seriously taken into account.
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2.7.2 Comparative studies

As we have already shown, there are many different techniques to describe three-dimensional
shapes, each one with its own strengths and drawbacks. Due to differences between exist-
ing approaches to shape description, comparing these is a difficult task. Nevertheless, to
assess the effectiveness of shape description methods several comparative studies has been
carried out recently. In the following paragraphs, we will briefly describe three of these
studies published last year.

Bustos et al. presented in 2006 [28] an experimental effectiveness comparison of meth-
ods for 3D similarity search. In this study, authors surveyed some approaches to 3D shape
retrieval and presented an extensive experimental effectiveness and efficiency evaluation
of these techniques, using several 3D collections. Among a total of sixteen shape descrip-
tors, they studied the rotation invariant spherical harmonics descriptor, shape distribution
descriptor, shape spectrum descriptor, silhouette descriptor and depth-buffer descriptor.

After comparing the computational complexity of the analysed descriptors, they discuss
its retrieval performance. Authors concluded that there is a number of descriptors that
have good database-average effectiveness and work well in general, while others work better
with some specific model classes but have poorer results on generic models. Finally,
authors argue that most descriptors can be considered robust, as they can effectively
retrieve similar objects with different level of detail.

In a distinct study, Alberto del Bimbo and Pietro Pala performed a comparative analy-
sis of a few different solutions for description and retrieval by similarity of 3D models [24].
For this study, authors selected descriptors that are representative of the principal classes
of approaches. From the class of histogram-based descriptors, authors selected the cur-
vature histograms and the shape functions, while Spin-image signatures and light field
descriptors were used to represent the image-based approaches. Authors also included on
the comparative study the geometric moments [43] used by Elad et al. to describe 3D
shapes.

Bimbo and Pala focused their experimental analysis on comparing the four methods
referred above according to their robustness to deformations and their ability to capture
the structural complexity of 3D objects, as well as the resolution at which models are
considered. To that end, authors used two different shape databases. The Art-Model
database composed by around three hundred high-resolution models from miscellaneous
sources was used to test the robustness to geometric deformations. To that end, these
models were subjected to special deformations, as illustrated by the examples depicted in
Figure 25, generating an extra set of deformed versions of each original model. The other
collection used in this comparative study used the well known Princeton shape database.

From the results obtained in this experiment, authors could achieve an extensive set
of conclusions. Particularly, they concluded that the light fields descriptor and spin image
signatures have superior capability to capture the structural peculiarities of the mod-
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Figure 25: Three busts from Art-Models database and corresponding deformed models
(Taken from [24] c© 2006 ACM).

els, with highest insensitivity noise provided by the light fields representation. Moreover,
Bimbo and Pala claim that geometric moments are not able to capture salient and discrim-
inating features of 3D objects and the histogram-based approaches never provide better
retrieval performance than the other solutions. However, the computational complexity
were not considered in this study, which will eventually uncover additional drawbacks of
the image-based descriptors when compared to the histogram-based approaches.

Together with the ESB, Jyanti et al. presented a comparative study between twelve
different shape descriptors evaluating the effectiveness of these representations on the
mechanical engineering domain [65]. Within the set of tested descriptors are spherical
harmonics, shape distributions, shape histogram and light field descriptors, among others.
In these experiment, authors performed an unusual test. They compared the results re-
trieved by using every shape descriptor against the random retrieval method. As expected,
all shape representation methods outperformed the random retrieval.

Additionally, in a paper published this year, Bustos et al. present two recently pro-
posed approaches to shape description and discuss methods for benchmarking the 3D
retrieval systems’ qualitative performance [26]. Indeed, they suggest as best options for
shape retrieval evaluation the Princeton Shape Benchmark and the actual version of the
benchmark used in the SHREC 3D retrieval contest.

2.8 Content-based Retrieval of 3D models

During recent years, several 3D shape search engines have been introduced. One of the
earliest of such systems was proposed by Paquet and Rioux in 1997. Nefertiti [90] is the
first well documented query by content software for three-dimensional model databases.
It incorporates a set of retrieval algorithms that allows database searches by scale, shape,
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color or any combination of these parameters.

Later, in 2001, Thomas Funkhouser and his team released the Princeton 3D model
search engine [50]. This system is now the best known solution for shape retrieval, indexing
more that thirty six thousand models. Its authors claim that they have developed the
search engine to be the ”GoogleTM for 3D models” [49].

Unlike the Princeton team, whose search engines aims on generic 3D models, the
PRECISE group at Purdue University developed a search engine for a specific domain [79].
The 3D Engineering Shape Search system integrates a set of existing shape description
techniques to compute the feature vectors of a model. This search engine incorporates a
3D interface that allows users to submit a shape as a query, to select the feature vectors
that will be used for shape representation and to search the database by browsing.

Starting from the idea that if two 3D models are similar they also look similar from
all viewing angles, Chen et al. introduced a retrieval system [34] based on the light field
descriptor. The 3D Model Retrieval System from National Taiwan University is available
on the web and its database contains more than ten thousand publicly available 3D generic
models. A simple interface is integrated in this search engine, allowing users to retrieve
3D models by drawing 2D silhouettes.

To serve as a proof-of-concept to methods and tools for content-based search for 3D-
mesh models proposed during his PhD research [121], Vranić deployed a web-based re-
trieval system for 3D models. The Content-based Classification of 3D-models by Cap-
turing spatial Characteristics (CCCC) 3D search engine uses a set of model databases,
including the Princeton Shape Benchmark test and training databases, providing around
three thousand classified objects.

Based on two distinct approaches to description and matching of 3D objects, Assfalg et
al. developed a content based retrieval system for 3D shapes [11]. Using a curvature map
of the shape surface, authors propose, in one approach subdividing the map into a grid
of rectangular tiles and then use these to compute a shape histogram, while in the other
approach, the map is segmented into regions of homogeneous curvature, and regions are
described with weighted walkthroughs. This search engine allows users to perform queries
by example through a web interface on a database of three-dimensional models.

More recently, in 2007, researchers from the FOX-MIIRE group released a on-line
search engine for 3D content [47]. Their search engine implements the adaptive views
clustering technique, a method proposed by the authors to index 3D models based on two-
dimensional views. Besides the good retrieval results offered by the FOX-MIIRE search
engine, it has a unique feature when comparing with previous approaches. This search
engine is the first that accepts 3D-Models retrieval from photos [46] and can be reached
through a mobile device. Figure 26 depicts both the standard and the mobile device
interfaces of the FOX-MIIRE search engine. Indeed, the idea of incorporating a 3D model
retrieval system in a mobile device was proposed by Suzuki et al. [110]. They developed
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Figure 26: MIIRE search engine on PC (a) and PDA (b).

an experimental 3D shape retrieval system for cellular phones where users can search for
a model similar to a given example.

Additionally, Qin Lv et al. introduced a toolkit to support the construction of content-
based similarity search systems [80]. The Ferret toolkit is a content-based similarity search
engine for generic, multi-feature object representations. It was designed to solve the
similarity search problem in high-dimensional spaces. Indeed, this solution can be used to
successfully construct content-based similarity search systems for audio recordings, digital
images, 3D shape models and genomic microarray data. Regarding 3D object retrieval,
authors collaborated with the PRECISE group to create a search system based on Ferret
toolkit. According to Qin Lv et al. this system was developed in a few hours by adapting
existing solutions for segmentation, feature extraction and similarity measurement into
their toolkit.

2.9 Retrieval using Partial Matching

As we have shown in previous sections, there is plentiful work on 3D shape analysis
and retrieval. However, most research focus on description and matching of complete
shapes. These approaches are usually based on global or local features and sometimes a
mix of both to improve results. But even when taking advantage of local features, most
common 3D shape retrieval approaches do not support partial matching. In the following
paragraphs we will present some recent research work tackling the partial matching of
three dimensional models.

Existing techniques to partial 3D shape matching can be roughly divided into two
distinct approaches. One uses only relevant features of the model while the other uses
the entire object, usually decomposed into sub-parts. The research work developed by
Suzuki et al. at the National Institute of Multimedia Education (NIME), in Japan, fits in
this last category.
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2.9.1 Partial matching at NIME

Suzuki et al. proposed [111, 109] a solution that follows a process commonly used for
partial matching using the information of the entire object. The 3D model is initially
decomposed into its sub-components and then the shape descriptors for these shapes are
computed. The shape descriptor computation and matching techniques used for partial
matching are identical to the techniques used in typical 3D shape retrieval.

There are a multiplicity of different ways to decompose a 3D object. Indeed, besides
the impractical user-assisted 3D model decomposition, several automatic techniques have
been proposed. These usually rely on object attributes such as color, texture or shape.
Detailed explanations of these techniques can be found in several papers [33, 32, 134]. As
a matter of fact, object decomposition is so relevant for our research, that further details
will be presented in a future survey.

In their work, Suzuki et al. apply a simple and automatic decomposition technique.
They decompose 3D models into several parts by comparing angles created by normal vec-
tors of each polygonal face, and the technique finds sharp angles and cuts polygonal faces
into parts based on a typical clustering approach. To tune the decomposition granularity
is used a threshold for the angle size. A wide angle size produces a large number of shape
parts while a sharp angle size produces a small number of components.

To compute the shape descriptors for extracted components, Suzuki et al. used a
rotation invariant shape descriptors they proposed earlier for their similarity retrieval
system [108]. In this method the object part is initially normalised for scale and then for
orientation by using principal component analysis pose normalisation. Next it is voxelised
and inserted into a cube divided in a three dimensional grid. The number of voxels
contained in each cell are computed and then a clustering technique is applied. Finally,
the descriptor are constructed from a voxel distribution function.

Authors acknowledge that, although their decomposition technique is fast and fully
automatic, occasionally the algorithm can not efficiently handle highly complex 3D models.
However, they suggest using a powerful algorithm from the several algorithms available
to decompose 3D models to produce better object decomposition. Additionally, time
complexity is also a problem of the proposed method, since the decomposition process is
a time consuming task and shape matching requires a considerable amount of time due to
the high number of shape descriptors for each model.

More recently, Suzuki et al. improved their decomposition method and partial shape
descriptors construction algorithm to attain better similarity retrieval results [112]. One of
the decomposition enhancements was the use of the area proportion to identify irrelevant
parts that should be merged into other. An example of model decomposition obtained with
the enhanced algorithm is depicted in Figure 27. Other improvement in this approach was
the use of multiple bounding boxes in descriptor computation. Authors use a bounding
box for each decomposed part, instead of only one for the entire object used in their
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Figure 27: Example of the decomposition of a 3D model of a turtle (Figures taken
from [112]) c© 2006 IEEE.

previous solution. However, despite for most models this approach proved better, the
time complexity problems were not solved and when 3D models does not have visually
irrelevant parts the previous technique works better.

2.9.2 Partial matching by structural descriptors

It is widely accepted that humans recognise and code mentally shapes in terms of relevant
parts and their spatial configuration. Therefore, geometric features are insufficient to fully
describe a three dimensional model for retrieval. It is necessary to combine geometric data
with structural information.

Biasotti et al. described [23] an interesting method for partial shape matching that
couples geometry and structure in a single descriptor. Based on the theory of Reeb graphs,
as an alternative to commonly used skeletal graphs, authors compute the so-called struc-
tural descriptor. They suggest [82] encoding the shape and all its relevant sub-parts in a
graph which represents the structure of the object and its geometry at the same time.

The proposed extended Reeb graph (ERG) [105] generalises the original Reeb graph
definition to a surface on which a finite set of contour levels given by a mapping function f

is defined. In their work, authors compare two distinct mapping functions, since choosing
this function is an important aspect of the proposed method. One option is using the
distance from the centre of mass of the object as a mapping function, which makes f

rotation invariant, but sensitive to pose changes. The other option is estimating f as
suggested by Hilaga et al. in [57], using the integral geodesic distance to the surface
centre, which is also pose invariant. Biasotti et al. conclude that the latter is best suited
for retrieving articulated objects disregarding its pose, while the first option distinguishes
articulated models in different poses.

Using the selected mapping function, the ERG is constructed and represents the topol-
ogy of the model. Then, the corresponding value of f and a geometric descriptor is assigned
to each node of the graph, which represents a sub-part of the model. To compute the geo-
metric descriptor assigned to each node, authors use spherical harmonic analysis of the
corresponding sub-part. The rotation invariant spherical descriptor used in this approach
has been defined by Kazhdan et al. in [70] and is briefly described in Section 2.5.2. Addi-
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Figure 28: Sub-part correspondence of two mechanical parts (Figures taken from [23]
c© 2006 Elsevier Ltd.).

tionally, each sub-part is uniformly scaled separately before computing the descriptor to
guarantee that retrieval is scale invariant. Indeed, due to the necessity of finding similar
sub-parts with different sizes, scale invariance is an important feature in retrieval with
partial matching approaches.

Since the structural descriptor is coded as a directed attributed graph, the sub-part
correspondence between models is obtained by matching its descriptors, i.e. matching
its graphs. Using inexact graph matching, the authors adapted the algorithm proposed
by Marini [83] for the computation of the maximum common sub-graph between two
directed, acyclic graphs with attributes. The specialised version of this algorithm produces
a set of all common sub-graphs between two extended Reeb graphs, considering not only
the topological structure but also node attributes such as the geometric descriptor. The
similarity estimation between models is obtained by considering the size of the common
sub-graphs with respect to the size of the corresponding graphs and the similarity distance
between the nodes belonging to the common sub-graphs.

An example of the above described technique is shown in Figure 28. To obtain partial
matching between two models the ERG are extracted from each object and the structural
descriptor are computed based on it. Then, a graph matching technique is applied to com-
pare the structural descriptors, identifying the common sub-graphs. Finally, the similar
subparts are identified in both objects by comparing the common sub-graphs.

2.9.3 Scale-space feature extraction for partial matching

Focusing on mechanical CAD models, Bespalov et al. [18] proposed a partial matching
technique for finding similarities across part models constructed from data acquired in 3D
scanners. For that end they propose a feature extraction technique based on recursive
decomposition of polyhedral surfaces into patches which applies the method introduced
by Novatnack et al. for extracting and integrating shape features in the discrete scale-
space 14 of a 3D mesh model [85]. The discrete scale-space of a three dimensional model is

14Scale-space is widely used by the computer vision and image processing communities for handling
image structures at different scales. With this framework, the fine-scale features are iteratively suppressed
while the level in the scale-space representation increases. The idea behind this theory is that objects are
composed by different structures at different scales. For instance, it is appropriate to represent a dog at
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constructed by unwrapping the shape surface onto a planar domain, as a two dimensional
image of surface normals. After this initial step, the scale-space operator used in image
processing can be applied to the 3D shape.

However, the parametrization of original mesh to the planar domain that produces the
surface unwrapping is not isometric, introducing distortion in the image. As a result of
this distortion, relative geodesic distances between points on the original 3D model are
not equivalent to relative distances between corresponding points on the 2D normal map.
Therefore, to correct this distortion, authors compute the distortion for each point in the
2D image and then construct a dense distortion map with these values. Then, this map
is used to approximate the geodesic distances between two points in the two dimensional
image representing the unwrapped model surface. Finally, the discrete scale-space of the
original model is constructed from finer to coarse by iteratively convolving the normal
map with a distortion adapted Gaussian kernels, as commonly done when computing the
scale-space of a two dimensional image.

After the discrete scale-space of the model has been constructed, scale-dependent shape
features can be extracted in a similar manner to image feature detection. To that end,
a gradient of the normal map that correctly accounts for the distortion is defined. This
gradient is then used to detect edges and corner of the original shape in the normal
map. Since a 3D corner is a point with geometric changes in more than one direction,
these points can be detected in the normal map by identifying large local changes in the
normal directions. On the other hand, an edge in the 3D model corresponds to a line of
points with significant changes in the surface geometry. Therefore, edges are detected by
finding maxima along gradients previously computed. Indeed, to detect corners and edges
authors suggest methodologies analogous to the Harris corner detection algorithm [55]
and the Canny edge detector algorithm [30] respectively. Figure 29 depicts the results of
scale-dependent corners and edges extraction from a 3D mesh model.

Once the features have been extracted at individual scales these are combined into a
unified feature set which encodes the scale-dependent geometric structure of the shape,
providing a concise representation of the original model. Authors argue that, with the
appropriate parameters, the method can be tuned to extract local features of engineering
relevance from CAD mechanical models. Thus, they adapted feature extraction in scale-
space proposed by Novatnack [85] discussed above by replacing the geodesic distance
function by a new distance function computed with respect to triangular faces of the
model. This function measures the maximum angle between adjacent faces on the shortest
path between two surface polygons.

In practice, the maximum angle function introduced by Bespalov et al. quantifies the
smoothness of the surface, since smaller angles correspond to smoother surfaces. Using this

the scale of meters, but not the hair of its fur or the molecules that compose its skin, which should be
represented at much finer scales. Therefore, the scale-space approach consider multiple descriptions for an
object at different scales to be able to capture its complete description.
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Figure 6: Combined set of scale-dependent corners and edges extracted on three mesh models. The first column shows the original 3D
models. In the second and third column, the combined set of corners are shown as spheres on the 3D models. Corners are colored and sized
based on their detected scales with red and green corresponding to coarsest and finest, respectively, and larger spheres corresponding to
corners at coarser scales. The fourth and fifth columns show two different views of the combined edge sets overlaid on the each 3D model.
The combined feature sets capture the underlying scale-dependent structure very well.
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models. In the second and third column, the combined set of corners are shown as spheres on the 3D models. Corners are colored and sized
based on their detected scales with red and green corresponding to coarsest and finest, respectively, and larger spheres corresponding to
corners at coarser scales. The fourth and fifth columns show two different views of the combined edge sets overlaid on the each 3D model.
The combined feature sets capture the underlying scale-dependent structure very well.
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Original model Extracted corners Extracted edges

Figure 29: Combined set of scale-dependent corners and edges extracted from polygonal
model (Figures taken from [85] c© 2006 IEEE).

function, CAD mechanical models are decomposed and the resulting combined feature set
is used for partial matching of 3D models. Figure 30 illustrates a scale-space decomposition
of a CAD model. In this example the presented tree are not full, since it will be hard to
understand the results if the whole tree was depicted.

2.9.4 Salient geometric features for partial matching

In their approach to partial matching, Ran Gal and Daniel Cohen-Or [54] shown that
a relatively small number of salient geometric features can describe a three-dimensional
model with sufficient detail for various applications of content-based shape retrieval. Based
on this idea they introduced the abstraction of salient geometric features and presented a
method to extract these features from polygonal meshes.

The first step of this method is computing a sparse set of local surface descriptors
across the surface and use these to measure similarity between regions of the model, even
if they have dissimilar polygonal meshes. Then, these descriptors are clustered in order
to locally describe a nontrivial region of the surface. Each one of these clusters form a
compound higher-level descriptor that represent a salient geometric feature characterising
a local partial shape. In this approach trivial regions of the model are considered irrelevant
and discarded.

A major challenge facing the Gal and Cohen-Or was correctly identifying the salient
features. To that end, they start by making a loose definition of salient geometric feature.
In this definition, a salient geometric feature is a region of the object surface with a non-
trivial shape. Based on this definition, they select regions with high curvature relative to
their surroundings and high variance of curvature values as geometrically salient. Indeed,
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Figure 30: Scale-space decomposition of a mechanical part (Figures taken from [18] c© 2006
Elsevier Ltd.).

such option is grounded on previous work by Hoffman and Singh [58]. They have found
that human vision defines boundaries along negative minima of the principal curvatures
on surfaces. From this, Hoffman and Singh suggest that salience of a region depends on
its size relative to the whole object, the degree to which it protrudes, and the strength of
its boundaries.

Authors identify salient regions by growing, for each descriptor from the sparse set,
a cluster of descriptors. Such cluster is constructed by incrementally adding descriptors
from its neighbourhood that maximise the saliency of the cluster until the contribution of
neighbour cluster become insignificant. The saliency grade S of a descriptor cluster F is
estimated through Equation 14:

S =
∑
d∈F

W1Area(d)Curv(d)3 + W2N(F )V ar(F ). (14)

While the term Area(d)Curv(d) expresses the saliency of the region represented by
descriptor d, the term N(F )V ar(F ) expresses the degree of relevance of cluster F , with
N(F ) representing the number of local minimum and maximum curvatures in the cluster
and V ar(F ) representing the curvature variance of the cluster. The weights W1 and W2

can be used to fine-tune the saliency grade function, but authors claim that no manual
tuning is required and that using W1 = W2 = 0.5 should produce good results according
to their tests.

After estimating all clusters, authors select from these a set of clusters with higher
values of S and use them to identify the set of salient geometric features of the model.
This set should include model regions that are salient and interesting compared with other
parts of the model. Figure 31 illustrates the result of applying this method to four different
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Figure 31: Salient geometric features from four models and corresponding individual sub-
parts (Figure taken from [54] c© 2006 ACM).

models and selecting as salient the top 10% cluster ordered according to saliency grade.

In this approach each model is represented by a set of descriptor clusters corresponding
to the salient geometric features of the object. Ran Gal and Cohen-Or associate each one
of these features with a vector index (a signature) and insert it in a geometric hash
table15. Authors recognise that elaborate indices, such as normalised moments can be
used to describe the geometric features. However, they simply use the terms employed for
defining the saliency grade to construct the vector index, reinforcing their claims for the
efficiency of salient features in shape retrieval.

2.9.5 Partial matching at Princeton 3D shape retrieval and analysis group

The researchers at the Princeton 3D shape retrieval group follows a slightly different path.
Instead of identifying the salient regions of an object, as proposed by Ran Gal and Cohen-
Or [54], Shilane and Funkhouser [100] suggest selecting the distinctive regions of a 3D
surface. The basic idea behind their approach is to focus the shape matching process on
local features of shapes that are consistent among objects of the same class and distinctive
relative to object of other classes.

Instead of using global descriptors, which represent global features of the model and fail
when local properties of an object distinguishes it from others, in their approach authors
use local shape descriptors. However, computing and storing local shape descriptors for
the whole shape is time consuming and space expensive. To overcome this, they proposed
a method for finding distinctive features of an object that are more relevant for shape
retrieval.

15Geometric hashing is an highly efficient technique with low polynomial complexity developed for match-
ing geometric features against a database of such features [75]. This technique uses a grid-based hash table
to store every feature of every object but only a limited number of features is used to determine a mapping
into the hash. During a query, the remaining features are used when hash collisions exist. With this tech-
nique matching is possible even when the recognisable database objects have undergone transformations
or when only partial information is present [128].
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Mesh Random Points Regions Shape Descriptors Distinct Regions Vertex Distinction

Figure 32: Selecting distinctive regions of an object (Figures taken from [101] c© 2007
ACM).

In their method, Shilane and Funkhouser [101] define a distinctive region as a region
with features that are only found on objects of a single class, while a not distinctive region
is a region common to many objects of different classes. Therefore, in this approach to
find the distinctive regions of an object the complete model database should be initially
classified into object types. Otherwise it will not be possible to establish which are the
objects of the same class. And such relationship is necessary to identify common features.

The distinctive region identification process starts by randomly sample each mesh on
the database in order to obtain a set of spherical regions, covering the object at different
scales. For every region, authors compute the corresponding shape descriptor that rep-
resents the distribution of surface area within that region. Next, by comparing all the
descriptors of the database, they produce a ranked list of matches for each descriptor and
use it to produce measures of region distinctiveness, thus identifying the most distinctive
regions of each model.

Identifying distinctive regions is, therefore, a pipeline of relatively simple steps. Al-
though other sampling methods could be used, authors propose selecting points randomly
with uniform distribution with respect to surface area. Likewise, several shape descrip-
tors can be used, but authors suggest describing the shape of every spherical region using
rotation invariant spherical harmonics16 [70]. Figure 32 illustrates the different stages of
the process of partitioning a model into distinctive regions with respect to a set of object
classes in a given database. In the final result, regions in red are the most distinctive while
regions in blue are least distinctive.

To perform partial matching retrieval on large model databases, Funkhouser and Shi-
lane proposed a priority-driven search algorithm [51]. This kind of backtracking search
algorithm considers only partial matches that can possibly lead to the lowest cost match-
ing, as in the widely known shortest path algorithm by Dijkstra [38]. Therefore, authors
use a cost function that accounts for both feature dissimilarity and geometric deformation
to order the list of pairwise matches between features of query and of objects in database.
The proposed algorithm produces a list of best target objects sorted by the similarity of
a subset of matching features between the object and the query.

16Rotation invariant spherical harmonics were briefly described in Section 2.5.2.
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3 Thesis Statement

Now that we have briefly analysed the background and state-of-the-art on 3D model
retrieval with partial matching, we can focus on the topic we plan to explore. As we have
shown in previous sections, during the last decade most research on three dimensional
shape retrieval has focused mainly on global matching, sometimes using local features,
but always by measuring similarity between complete models [115]. Comparing subparts
of models is a harder challenge than global matching, since these are not predefined and
can be any subshape of a larger object with any orientation and scale.

Indeed, to accomplish partial matching it is necessary to identify and isolate sub-parts
in models before measuring similarity. Therefore, devising a retrieval solution with partial
matching faces two major challenges, besides the ones shared with the global matching
approaches. The first is the correct and efficient decomposition of models into its subparts,
identifying the relevant or all of them. The second is to devise an effective way to index
the extracted information that allows fast and accurate search. In the present research
work we will dedicate a special attention to these two problems.

3.1 The ultimate goal

Ignoring for a while the problems ahead, we present an overall description of what we
think a content based model retrieval system should be. In our opinion, an ideal three-
dimensional retrieval system should be able to decompose models into its components,
eventually in multiple scales, and classify all of them correctly. After an effective object
decomposition and subpart classification, it should be possible to submit a query to the
system, representing a subpart of existing objects in the database, and it will return a list
of models containing similar parts.

Despite no such fully functional system had been devised yet, we illustrate in Figure 33
an example of a 3D model search with a partial query. In this case a screw was submitted
as a query to a retrieval system with partial matching. As a result of this query, models
that has screws are returned, including, of course, objects that are screws. Achieving such
solution is indeed the ultimate goal of most researchers working on 3D shape retrieval. It
will constitute the equivalent of the GoogleTM search engine but for 3D model collections.

During our research work we intend to develop novel techniques that will provide some
of the functionality necessary to build a retrieval system with effective support to partial
matching. Assuming that models in the database are not previously decomposed by human
operators, devising a system that behaves like the example given above is a complex task.
Probably we would not be able to devise the complete solution for this problem, but we
hope to provide some relevant contributions to it.
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Results

Query

Figure 33: Example of partial matching. Users provide an element and the system returns
objects containing it.

3.2 Problem statement

Indeed, a currently open challenge is how to perform retrieval with partial matching on
large collections of three dimensional models using all of its features. Although some
techniques seems practical for indexing large models, and even large collections of complex
models, these only consider a small set of relevant local features of each object. Such
approaches do not fulfil the main goal of the research on shape retrieval with partial
matching: the ability to find models with different global shape properties but having just
some characteristics in common, which might not even be the most relevant geometric
features. In the proposed research work we intend to achieve this goal.

To that end, we plan to follow a slightly different approach from those proposed by
other researchers and described in Section 2.9. Like them, we aim to provide a solution
that will allow successful searches on three-dimensional databases with partial queries.
However, we will consider not only relevant parts of models, but the whole set of parts
that compose objects. Thus, we need to overcome one major problem. The time and space
complexity associated to indexing all components of each model, even the irrelevant ones.
This is even worst when considering a multi-scale approach to shape decomposition. Nev-
ertheless, indexing contents of large collections have been already addressed with success
in text information retrieval. We suggest adapting techniques from this area to 3D shape
retrieval.
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3.3 Research hypothesis

In the proposed research work we intend to research the viability of transposing the match-
ing and indexing approaches widely-used in text information retrieval. It is well known
that these approaches produce successful practical results, such as the obtained within
GoogleTM search engine. Therefore we propose using a shape thesaurus for model classi-
fication and indexing, similarly to what happens with words in text documents. Unfortu-
nately, while words can be easily extracted from documents, shape subpart identification
in a three-dimensional object is a much harder task. The difficulties of this task came not
only from its computational complexity but also from the ambiguity of such decomposition.

We believe that it is possible to achieve a practical solution, overcoming the ma-
jor challenges of computational complexity and ambiguous shape decomposition. It will
be necessary to devise effective methods for shape matching and indexing suited to a
thesaurus-based approach. In our work we plan to create the above referred shape the-
saurus and then transpose well known inverted indexing techniques used in text data to
support 3D shapes.

Besides, we plan to adapt from text information retrieval some other well-known tech-
niques because these have already prove their efficiency handling large collections of doc-
uments, such as tf-idf 17 weight measure or data compression techniques. Since we will
index all subparts of 3D models, it is necessary to rank them according to its importance
for retrieval. Indeed, some authors have already proposed some geometry-based methods
to select distinctive regions of 3D surfaces regarding the whole collection [101]. However,
we will extend their approach and combine it with concepts form information retrieval. We
will use the tf-idf to classify the relevance of distinctive components of three-dimensional
models. Moreover, since we will use inverted files for indexing the shapes we will take
advantages of existing inverted file compression techniques to optimise our solution.

Having identified the major challenges we plan to address, we can now formulate the
following research hypothesis:

Partial 3D object matching can be achieved by decomposing a
model into a set of subshapes that describe the whole model, com-
bined with a shape thesaurus for indexing.

This hypothesis summarises our main ideas and clearly indicates our final objective: to
devise a 3D shape retrieval solution that supports partial matching. But such goal should
be decomposed in a set of research objectives presented in the next section.

17The term frequency and inverse document frequency (tf-idf) is a quantitative measure commonly used
in information retrieval and text mining to determine the relevance of a word to a document in a collection,
regarding to the contents of the whole collection.
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3.4 Research objectives

Following the hypothesis stated above, we already identified the overall objective of our
work. However, we can decompose it in a set three major research goals:

1. Devise a solution for model segmentation that allows proper description based on a
thesaurus of shapes;

2. Identify a method or combination of methods for shape matching and indexing that
supports a thesaurus-based approach on 3d shape retrieval;

3. Develop and evaluate a thesaurus-based framework for 3D shape retrieval with par-
tial matching.

To achieve these objectives we have already defined an overall plan identifying the
path we must pursue. Hence, in the next section we will describe the approach we intend
to follow.

4 Proposed Approach

At the current stage of our research we are not yet able to identify clearly the methods and
techniques we will use during the remaining of our research. However, we have already
selected the shape decomposition approach we plan to use in our work. We intend to
extend existing graph-based segmentation techniques to not only construct the model
topology, but also identify the major shape components. Then, we must devise a suitable
composition of several shape descriptors to extract the geometrical information from the
previously identified shape components.

The success of the proposed work depends in great extents from two major issues:
the accuracy of the segmentation and topology extraction process and the robustness and
efficiency of shape descriptors. Consequently, our efforts in the initial stages of this research
work were focused on studying and comparing existing alternatives for shape description.
In a short term, we plan to develop an appropriate feature extraction algorithms to used
for shape description in our approach. Indeed, besides simply combine and extend existing
algorithms into our solution we might found necessary to develop completely new methods
from scratch.

After overcoming the challenge of geometrical shape description we will focus on three-
dimensional shape segmentation. First, we must devise a suitable solution to decompose
3D models unambiguously and efficiently. Eventually, this can be done through extend-
ing existing segmentation techniques. As we are currently doing with shape descriptor
computation, we will compare several segmentation approaches and study carefully the
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results to determine the best solution for our purposes. Anyhow, during preliminary stud-
ies on 3D model decomposition we identified the work developed by Tierny et al. [116] as
a promising approach to skeleton driven segmentation.

Additionally to shape geometry description and model segmentation, we will focus on
finding a method to represent 3D model topology that suits our needs of efficient indexing
and matching. To that end, we will probably use a graph-based representation. Such
representation usually encode both topology and geometry of the whole object and its
components, which is exactly what we need. Within this subject, the research group lead
by Bianca Falcidieno at IMATI-Ge have been investigating techniques for structural model
geometry description [105]. We plan to follow closely their work and eventually integrate
some of their findings in our solution.

Finally, we will focus on the core investigation challenge of this work. Having already
devised mechanisms to segment three-dimensional models into a set of subshapes and
having found shape description algorithms that allow efficient shape matching, we will
move on to the ground-breaking technique we propose to study in this thesis. We will use
a thesaurus of shapes to describe a collection of three-dimensional objects. To that end
we must transpose indexing techniques commonly-used in textual information retrieval to
be used in 3D shape retrieval.

In addition to geometric information we will also use topology for classification, match-
ing and retrieval purposes. However, the topology will be used as an auxiliary strategy to
distinguish models that share geometrically similar components. To that end, for indexing
and matching purposes we might take advantage of the NB-Tree structure proposed by
Fonsecain his PhD thesis [48].

4.1 Research focus

From medicine to forensics, from archeology to biology, from architecture to mechanical
CAD, there are a broad range of application for 3D model retrieval. The ultimate goal
should be develop research work that will produce a general solution, effective in all these
areas. However, such goal is not feasible. Indeed, from all research groups working on
3D retrieval none express such intention. Indeed, all published results in this area were
achieved through research work focused in a specific type of models. For instance, an
approach developed for retrieval on protein databases might not even function on an
engineering database.

Therefore, in the proposed research work, we will focus on a single type of three-
dimensional models. Nonetheless, we intend to achieve a solution as generic as possible,
within the selected data type. Thus, we will exclude from the proposed study some shape
collections, such as medical and chemical databases. In a first stage, we will use existing
data sets of 3D models of everyday objects to help us devising a good solution. However,
to achieve effective practical results, we plan to constrain our research to CAD model
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collections, which will allow us to fine-tune our algorithms, taking advantage of some
particularities of this type of models. We select the CAD model due to our partnerships
with the mould industry, described with some detail in Section 5.3.

A major challenge to overcome on 3D shape retrieval is the definition of an effective
interface that will allow users to define queries. The most simple approach rely only in
query-by-example, where users submit an existing model as a query. In this particular
case, devising the interface raises no issues. However, such solution dos not fulfil the real
users needs. Indeed, there are a myriad of different approaches to 3D query specification
interfaces, from more or less traditional modeling tools to image-based queries. Anyhow,
this issue are not within the scope of the proposed research work. Thus, initially we will
employ a query-by-example interface and later we might integrate other solutions, such as
sketch-based queries.

4.2 The 3D test data set

A subset of Princeton Shape database is now widely use for evaluating shape-based re-
trieval and analysis algorithms. The Princeton Shape Benchmark [99] provides a repository
of 3D models to promote the use of standardized data sets and evaluation methods for
research in matching, classification, clustering, and recognition of 3D models. Therefore,
we plan to use mainly this collection for evaluation of algorithms and techniques developed
during our research work.

However, it is expected that during the evolution of our research, novel 3D model
databases appear and become accepted by the research community. In that case, we will
adapt our work in order to take into account the trends in the 3D shape retrieval area.
For instance, the SHREC 2007 involved multiple tracks, one of these is exactly partial
matching, the primary goal of our work. If this model remains in the future, it is quite
obvious that we will use extensively the datasets recommended in the partial matching
task on SHREC.

5 Work Plan

In this section we will present the research work plan, based on a three-year doctoral
program. Indeed, it started last year and some work has already been done while other is
currently ongoing, as depicted in the Gantt chart at Figure 34. Thus, we expect to finish
this doctoral program on August 2009, by submitting the preliminary version of the PhD
thesis dissertation.
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ID Task Name

1 PhD Work Plan

2 Literature Review

3 Writing Thesis Proposal 

4 Thesis Proposal Presentation

5 Research Work

6 Study of Clasification and Retrieval Techniques 

7 Algorithm Development

8 Prototype Development

9 Prototype Deployment

10 Result Production

11 Algorithm Evaluation

12 User Testing

13 Data Analysis

14 Writing Thesis Dissertation

15 Submission of Thesis Dissertion
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2007 2008 2009

Figure 34: Gantt chart representing PhD work plan.

5.1 First year

In the early stages of this work we made a brief literature review on multimedia information
retrieval, focusing mostly on three dimensional shape analysis and retrieval. The main goal
of this study was to identify the main research topic and corresponding open issues that we
must address in this PhD research. As a result of this preliminary review we determined
the topic of the present thesis. We will aim on devising a solution for 3D shape retrieval
with partial matching. Then, after establishing the scope of our research, we restarted the
bibliographic research. In this second part of the literature review, we aimed on finding
related work on areas of relevance to this investigation and identifying within each area
who are the key authors, who are the most prominent research groups and what are the
main approaches followed by them with success in recent years.

From the initial research we concluded that computation of shape descriptors is a key
topic in any approach to 3D shape retrieval. Therefore, we are currently developing pre-
liminary prototypes which implement some existing techniques on 3D shape descriptor
computation. These prototypes receive as input models from the most relevant shape
databases, identified during literature review, and produce several distinct feature vec-
tors. Furthermore, the prototypes will provide the most common similarity measures
methodologies.

Information produced by these preliminary prototypes will allow us to collect and study
comparative data about existing approaches to help identifying techniques that best suits
the planned research. As a result of the work developed during the first year, besides this
PhD proposal, we will produce technical reports on the state-of-the-art and we intend to
submit a survey of the state-of-the-art on 3D shape description to an international journal.
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5.2 Second year

Based on the conclusions from the work developed during the first year, we will start the
second year by performing a theoretical and experimental study on selected classification
and retrieval techniques. In this study we plan to broad the focus from shape description
techniques to their integration with indexing and matching mechanisms. Within this
study we will implement a preliminary solution for 3D shape retrieval. Such system shall
be able to perform classification, indexing and retrieval of 3D shapes combining existing
algorithms and techniques. This solution might be considered as an adaptable framework
where we will integrate and test our algorithms devised during the rest of the research
work.

After we have finished the 3D shape retrieval solution described above, we will start to
develop the algorithms proposed to support retrieval of 3D shapes with partial matching.
Since we will be working on a novel approach, the techniques we propose must be ex-
tensively experimented with the most relevant 3D shape databases, using pier recognised
benchmarks for that purpose. In this stage we will perform a formal evaluation of our
algorithms and check their efficiency, which will eventually led to discarding some less
successful methods and improving others.

When we have finally achieved a feasible partial matching solution for 3D shape re-
trieval, we will develop a fully functional prototype for classification and retrieval of 3D
shapes with partial matching. Such prototype shall incorporate the feature extraction,
indexing and matching techniques devised during this work. Moreover, in order to attain
a practical application for this prototype we will focus our efforts on a specific class of 3D
models: CAD technical drawings.

The work developed during this period will be published in technical reports and
submitted to international conferences and journals. Roughly, two different groups of
publications are expected to be produced. In one group we will present the results ob-
tained during the study on classification and retrieval techniques. On the other group
of publications we will present our approach to classification and retrieval of 3D shapes.
Namely, we will focus on presenting our shape descriptors, classification, indexing and
matching techniques, as well as the whole solution.

5.3 Third year

We plan to start the third year of this work with a user evaluation of the CAD models
retrieval prototype developed during the second year. We would like to involve in these
tests real users of such tool. Since it is supposed to be used by designers, the main idea
is to test it with professionals from the mould industry, as we did in the past during our
research on retrieval of 2D technical drawings [45]. For that end, we intend to continue
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our seven-year long (at present date) partnership with CENTINFE18. Results obtained
in these tests will allow us to fine-tune our techniques and to validate our approach as a
practical solution, not only as a proof-of-concept prototype, but as an effective tool used
by real users.

The second half of this year will be dedicated to analyse and reflect on the work
developed during this doctoral program. Furthermore, we shall identify unsolved issues
while revealing paths for future research. Finally, we will compile, organise and synthesise
all the information, producing as an outcome of all work a thesis dissertation.

6 Preliminary Results

As part of our initial research we compared the behaviour of existing shape descriptors to
identify the most suitable for the solution we propose in this document. To that end, we
developed a prototype that computes 3D shape descriptors and performs shape matching,
based on these descriptors and on combinations of several of these descriptors. Then, to
evaluate the shape descriptors, we used a subset of the Princeton Shape Benchmark (PSB)
database.

6.1 Prototype

The prototype is divided in three main modules, as depicted in Figure 35. The file reader
module reads the source files containing the three dimensional models and stores the
corresponding polygonal mesh. We implemented two distinct versions of this module.
While one reads the widely used VRML files, the other reads the OFF files provided by
the PSB database. In the feature extractor module we coded the algorithms to compute
the shape descriptors, constructing the corresponding feature vectors. Finally, the shape
matching module compares a given feature vector with the existing in the model dataset
and produce a similarity list enumerating the best matches.

Currently the feature extractor module implements a selection of three shape descrip-
tors and all the combinations of compound descriptors. However, this module was devel-
oped in order to support a much larger set of shape descriptors. Indeed, in short term
we plan to include a few more, which will allow a more complete comparison of shape
descriptors.

6.2 Shape Descriptors

In this preliminary stage of our work we selected three histogram-based shape descrip-
tors, briefly described in Section 2.5.1. These descriptors are the cord and angle his-

18CENTIMFE is a technological training centre for the Portuguese Mould Industry.
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Figure 35: Architecture of preliminary prototype.

togram (CAH), shape distribution (SD) and complex extended Gaussian image (CEGI).
For our prototype we implemented versions according to corresponding authors instruc-
tions, in order to obtain the more precise results possible.

Therefore, we followed the original method proposed by Paquet et al. in [90, 91] to
implement the CAH descriptor. We considered a cord as a ray segment which joins the
barycentre of the mesh with a triangle centre. We then conctructed the histograms using
the length of the rays and the angles of the rays to the three coordinate planes.

Similarly, to estimate the SD descriptor we computed five distinct histograms as sug-
gested by Osada et al. in [88] To that end we measured the angle formed by three random
surface points, the distance of a random surface point to the centre of mass of the model,
the distance between two random surface points, the area of the triangle defined by three
random surface points and the volume of the tetrahedron defined by four random surface
points.

Finally, to create the CEGI shape descriptors we constructed two histograms based
on a complex function, as suggested by Kang and Ikeuchi [68]. One of these histograms
measures the visible face area, composing the magnitude of complex function. The other
accounts the normal distance of the face from the designated origin in the direction of the
normal, composing the phase of complex function.

An example of the results obtained by the algorithms we implemented to compute the
shape histogram is illustrated in Figure 36. In this case, a three dimensional model of
a dog, from the PSB database, was used and corresponding histograms are shown. The
feature vectors that describe the model are then constructed from these histograms and
used for representing the object in the model dataset. The shape matching is obtained
simply by comparing these feature vectors in order to find similar ones, which should
correspond to similar 3D models.
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Figure 36: Shape descriptors computed by preliminary prototype.

6.3 Model Database

As referred above we just have implemented three feature extraction algorithms. This
only allow us to perform a small comparative study, which will be more complete as
other shape descriptor computation algorithms are implemented. Thus, since we are on a
initial stage of our shape descriptor evaluation process, we decided to use a reduced model
database instead of a more complete one, to be used when we implement the remaining
shape description techniques .

Therefore, for the preliminary shape descriptor performance evaluation experiments
we used a subset extracted from PSB database, which contains a total of 1914 models. To
construct this subset, we selected twelve classes of creatures and eight classes of furniture,
summing a total of four hundred models.

6.4 Evaluation results

Using the reduced model database we performed evaluation experiments and tested the
three single 3D shape descriptors, as well as all of their combinations. In this experiment,
we choose a 3D model which belongs to the class ”Table” as the query shape. The three
single shape descriptors and all their combinations were employed to retrieve this model
from the database of four hundred models and then we observed and compared the retrieval
results.

To quantify the performance of shape descriptors, we used a 11 − Point (11P) av-
erage precision. This measures the average of precision values taken at eleven equally
spaced recall values (0.0, 0.1, 0.2, ..., 0.9, 1.0). We use this measurement because 11P av-
erage precision value is commonly considered as a summary of the recall-precision plot,
which emphasises overall performance. Additionally we also measured the R− precision,
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Figure 37: Precision-recall plots of single and combined shape descriptors

the ratio of the models retrieved from the same class as the query in the top R retrievals,
and the 2R − precision, similar to R − precision but computed using the top 2R re-
trievals. However, will discuss here only the results that allow a direct analysis of the
overall performance.

Our experiments shown that the most approving results we obtained are produced
by SD. This is illustrated in the precision-recall plot depicted in Figure 37, where the plot
of the SD shape descriptor is on the top of the others. Furthermore, from all the shape
descriptor combinations, the one that performed better was the combination of CAH
and SD. On the contrary, is shown in Figure 37 that CEGI descriptor produced a very
poor classification result a single descriptors. Moreover, combined descriptors containing
CEGI has lower precision than those without CEGI.

6.5 Next steps

Despite the results we obtained in our preliminary evaluation experiment, we recognise that
these are not enough for our purposes. Therefore, to obtain more accurate and informative
results we need to implement more shape descriptors and use a more complete database.

In a near future we will continue the development of the prototype, integrating more
shape descriptors, in order to repeat the experiment, now using the complete PSB data-
base. From the results gathered from this experiment we expect formulate a strongly-based
opinion on shape descriptors for 3D models and, eventually, publish it on an international
journal.

After identifying the best descriptors for our work, we will focus on shape decompo-
sition and topological description of three dimensional objects. To that end, we plan to
work in cooperation with the Shape Modelling group from IMATI-Ge (see Section 2.1)
who have been developing some interesting research in this area. Taking advantage of
their and our knowledge, we intend to achieve, as a result of our joint research, a solution
for efficient 3D shape retrieval with partial matching.
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