
UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Sketch and Image Based Retrieval of Technical
Drawings

Alfredo Manuel dos Santos Ferreira Jr.
(Licenciado)

Dissertation for the degree of Master of Science in
Information Systems and Computer Engineering

Adviser: Doutor Joaquim Armando Pires Jorge

Co-adviser: Doutor Manuel João Caneira Monteiro da Fonseca

Chairman: Doutor Joaquim Armando Pires Jorge

Members: Doutor Nuno Manuel Robalo Correia
Doutor Mário António da Silva Neves Ramalho
Doutor Manuel Jõao Caneira Monteiro da Fonseca

June 2005

Sketch and Image Based Retrieval of Technical

Drawings

Alfredo Manuel dos Santos Ferreira Jr.

A Thesis submitted to the Graduate School
for the degree of

Master of Science in
Information Systems and Computer Engineering

Department of

Information Systems and Computer Engineering

Instituto Superior T́ecnico

Adviser

Prof. Doutor Joaquim Armando Pires Jorge

Professor Auxiliar com Agregação from the
Department of Information Systems and Computer Engineering

Instituto Superior T́ecnico
Technical University of Lisbon

This work was funded in part by the Portuguese Foundation for Science
and Technology, project 34672/99 and the European Commission, project
SmartSketches IST-2000-28169.

Alfredo Ferreira Jr.

http://immi.inesc-id.pt/ ∼afj

alfredo.ferreira.jr@inesc-id.pt

Resumo

Nesta dissertação, proponho um ḿetodo para especificar as interrogações, que usa
simultaneamente esboços e imagens digitalizadas. Desta forma conseguimos tirar partido
não śo da meḿoria visual dos utilizadores e da sua habilidade para desenhar, mas também
de desenhos já impressos para rapidamente especificar interrogações complexas.

Para tal, desenvolvi mecanismos de vectorização, bem como algoritmos de detecção
de poĺıgonos, simplificaç̃ao e extracç̃ao de caracterı́sticas de desenhos vectoriais. Estes
foram integrados numa moldura para recuperação baseada em conteúdos que fornece uma
estrutura de indexação e suporta todo processo de pesquisa, produzindo deste modo uma
soluç̃ao funcional para recuperação de desenhos técnicos combinando esboços e imagens.
Com base em testes realizados com utilizadores conseguiu-se validar o paradigma pro-
posto e a eficîencia dos algoritmos, sendo possı́vel afirmar que a combinação de esboços
e imagens para especificar interrogações agradou aos utilizadores e que estes consider-
aram o sistema rápido e preciso.

Palavras-Chave

Recuperaç̃ao Baseada no Conteúdo

Recuperaç̃ao Usando Esboços

Vectorizaç̃ao de Imagens

Detecç̃ao de Poĺıgonos

Simplificaç̃ao de Desenhos

Extracç̃ao de Caracterı́sticas

i

ii

Abstract

In this dissertation, I propose a query specification scheme, where digital images are
combined with sketches, after vectorization, taking advantage not only of users’ visual
memory and their ability to sketch but also of existing paper drawings to quickly specify
complex queries.

To create my retrieval system, I used an existing framework for content based retrieval
which provides an indexing structure and supports the matching process. I developed
vectorization mechanisms and simplification, polygon detection and feature extraction
algorithms. Then, these algorithms were integrated in the framework in order to create
a functional solution for retrieval of technical drawings using both images and sketches.
This system was evaluated by users to validate the interaction paradigm and the efficiency
of algorithms. From these tests I concluded that users liked using sketches and images to
specify queries and considered the system both accurate and fast.

Keywords

Content-Based Retrieval

Sketch-Based Retrieval

Image Vectorization

Polygon Detection

Drawing Simplification

Feature Extraction

iii

iv

To my Mother,

In Memoriam

v

vi

Acknowledgements

First, I would like to express thanks to my adviser Professor Joaquim A. Jorge and
co-adviser Professor Manuel J. Fonseca, for their continuous support during my MSc.
Professor Joaquim A. Jorge thank you for always be there to meet and talk about my
ideas and to provide me with good guidance. Your constant comments and the confidence
you showed to me and to my research contributed to improve the quality of the developed
work. Professor Manuel J. Fonseca thanks for your friendship, for your interminable
patience and for your endless trust even when things seem not to have an end.

In second place, I would like to show gratitude to all the members of the IMMI group
for their friendship and help, specially to Filipe Dias for being a good friend and someone
you can always rely on, Bruno Araújo for his wide knowledge on Computer Graphics and
his availability, Frederico Figueiredo for his different opinions and for the stimulating
discussions, and Paula Caetano.

Next, I would like to credit the people at CENTIMFE that made possible a collabo-
ration with the mould industry during the development of this work. Their ideas were a
valuable contribute to the work presented in this dissertation.

Finally, and the last ones are always the first, I would like to thank my wife Sandra
who supported me unconditionally and my son Tiago who gave me additional motivation
to finish my work. Also, a very special thank to my aunt Bernardete for her support.

Lisboa, June 2005

Alfredo Manuel dos Santos Ferreira Jr.

vii

viii

Contents

Resumo i

Abstract iii

Acknowledgements vii

Contents ix

List of Figures xv

List of Tables xviii

Glossary xxi

1 Introduction 1

1.1 Context of the Present Work . 3

1.2 Extracting Features from Drawings and Sketches 3

1.3 Contributions . 4

1.4 Publications . 5

1.5 Dissertation Outline . 6

2 Related Work 9

2.1 Content-Based Retrieval . 9

2.2 Working with digitized drawings . 14

2.3 Vectorization of engineering drawings 15

2.3.1 Hough Transform . 16

2.3.2 Thinning based methods . 18

2.3.3 Contour based approach . 20

ix

2.3.4 Run-graph based methods . 21

2.3.5 Mesh pattern based methods . 23

2.3.6 Sparse pixel based approaches 23

2.3.7 Discussion on Image Vectorization techniques 24

2.4 Curve Simplification . 25

2.4.1 Discussion on Curve Simplification 28

2.5 Summary . 29

3 Sketch and Image Based Retrieval of Engineering Drawings 31

3.1 Approach Overview . 32

3.1.1 Use Scenarios . 33

3.1.1.1 Scenario A: Creating a Mould 33

3.1.1.2 Scenario B: Looking for a Part 34

3.1.2 System Architecture . 34

3.2 Image Vectorization . 36

3.2.1 Contrast Enhancement . 37

3.2.2 Edge Enhancement . 38

3.2.3 Binarization . 40

3.2.4 Binary Noise Reduction . 43

3.2.5 Thinning . 44

3.2.6 Polygonization . 45

3.3 Feature Extraction . 46

3.3.1 Simplification . 47

3.3.1.1 Line Set Simplification 48

3.3.1.2 Polygon Simplification 50

3.3.2 Polygon Detection on a Vector Drawing 56

3.3.2.1 Removal of Line Segment Intersections 56

3.3.2.2 All Cycles of a Graph 58

3.3.2.3 Minimum Cycle Basis of a Graph 59

3.3.2.4 Polygon Construction 60

3.3.2.5 Polygon Detection Outline 61

3.3.2.6 Experimental Results on Polygon Detection 62

3.3.3 Topological Information Gathering 62

3.3.4 Geometrical Feature Extraction 64

x

3.4 Indexing, Query and Matching . 66

3.4.1 Classification . 66

3.4.2 Retrieval . 67

3.5 Summary . 68

4 Prototypes 69

4.1 Sketch and Image Based Retrieval Prototype 69

4.1.1 Architecture . 70

4.1.1.1 User Interface Tier . 70

4.1.1.2 Application Core Tier 72

4.1.1.3 File Management Tier 73

4.1.2 Graphical User Interface . 74

4.1.2.1 Using Sketches . 75

4.1.2.2 Using Images . 77

4.1.2.3 Mixing Sketches and Images 79

4.2 Database Builder . 79

4.2.1 Architecture . 80

4.2.2 Graphical User Interface . 81

4.3 Summary . 82

5 Experimental Results 83

5.1 Sketching Experiment . 84

5.1.1 Sketch Reader Prototype . 84

5.1.2 Users . 85

5.1.3 Experiment Steps . 86

5.1.4 Technical Drawings . 86

5.2 Sketches . 87

5.2.1 First Sketching Session . 87

5.2.2 Second Sketching Session . 89

5.2.3 Analysis of the Sketching Experiment 91

5.2.4 Conclusions from sketching experiment 92

5.3 Preliminary Usability Evaluation . 93

5.3.1 Users . 93

5.3.2 Usability Test Session . 93

5.3.3 Drawings Database . 94

xi

5.3.4 Queries . 95

5.3.5 Final Questionnaire . 96

5.3.6 Sketches . 96

5.3.6.1 Basic Drawings . 96

5.3.6.2 Simple Technical Drawings 98

5.3.7 Test Analysis . 99

5.3.8 Questionnaire analysis . 101

5.3.9 Conclusions from preliminary usability tests 101

5.4 Final Usability Evaluation . 102

5.4.1 Users . 102

5.4.2 Usability Test Session . 103

5.4.3 Drawings Database . 104

5.4.4 Queries . 104

5.4.5 Final Questionnaire . 105

5.4.6 Sketches . 105

5.4.7 Test Analysis . 108

5.4.8 Questionnaire Analysis . 111

5.4.9 Conclusions from final usability tests 112

5.5 Discussion . 112

5.6 Summary . 114

6 Conclusions and Future Work 117

A Sketches from Sketching Experiment 121

A.1 First Sketching Session . 123

A.2 Second Sketching Session . 124

B Testing Protocols 125

B.1 Protocol for Preliminary Usability Evaluation 127

B.2 Protocol for Final Usability Evaluation 132

C Questionnaires 137

C.1 Questionnaire of the preliminary evaluation tests 139

C.2 Questionnaire of the final evaluation tests 143

D Databases 147

xii

D.1 Basic Drawings . 149

D.2 Simple Technical Drawings of Mould Plates 150

D.3 Technical Drawings of Parts . 151

E Sketched Queries 153

E.1 Preliminary Usability Evaluation . 155

E.1.1 User A . 155

E.1.2 User B . 156

E.1.3 User C . 158

E.2 Final Usability Evaluation . 159

E.2.1 User A . 159

E.2.2 User B . 162

E.2.3 User C . 164

E.2.4 User D . 166

E.2.5 User E . 168

E.2.6 User F . 171

Bibliography 175

xiii

xiv

List of Figures

1.1 Overview of architecture for a engineering drawings indexing and re-
trieval solution. The main contribution of the present work is the fea-
ture extraction component. Fonseca’s framework is represented within
the dashed boundaries. 2

2.1 Screen-shots of Gross’s Electronic Cocktail Napkin, querying the Great
Buildings Collection. 10

2.2 Screen-shots of sketched query (a) and corresponding results (b) yielded
by the 2D-PIR prototype. 11

2.3 Screen-shots of a query on S3 (a) and correspondent results(b). 12

2.4 Screen-shot of Princeton Search Engine for 3D Models. 13

2.5 Screen-shot of Bajavista. 14

2.6 Example of Hough transform using trignometric parameters: (a) Image
with four lines; (b) corresponding Hough space. Each peak corresponds
to a line. The dominant peak (the topmost) represents the longer line. . . . 17

2.7 Peeling iterations: (a) original image; (b), (c), (d) intermediate results
after first, second and third iterations; (e) skeleton. 19

2.8 Thinning using distance transform: (a) original image; (b) distance trans-
form; (c) skeleton. 20

2.9 Example of skeleton sampling: (a) parallel edges; (b) almost parallel
edges; (c) cross-junction. 21

2.10 Simplified example of run graph representation: (a) vertical portioning;
(b) horizontal partitioning; (c) computed graph. 22

2.11 Example of Orthogonal Zig-Zag algorithm. 24

2.12 Example of regular sub-sampling usingn = 3. Original curve (left) and
its caricature (right). 26

2.13 Example of curve simplification using Douglas-Peucker. Original curve
(left) and its caricature (right). 26

3.1 Searching a mould component using a sketched-query. 33

xv

3.2 Retrieving a mould component and integrating it into a drawing. 34

3.3 System architecture of proposed solution. Feature Extraction and Image
Vectorization components are my main contributions, while remaining
components are provided by Fonseca’s framework. 35

3.4 Image Processing Steps. 36

3.5 Original gray-scale image (a) and yielded result after contrast and edge
enhancement (b). 38

3.6 Binary Image obtained using fixed threshold (a) and region averaging (b). 40

3.7 Image of a digitized engineering drawing (a) and its intensity histogram
(b). At right of the histogram the peak is formed the background while
the small peak at left corresponds to foreground. Threshold value should
be just at left of the larger peak. 41

3.8 Evolution of image detail during processing. 42

3.9 Pictorial example of speckle noise reduction: original image (a) under-
went several iterations of the noise reduction algorithm based on the kFill
filter, which yielded the final image (b). 43

3.10 Freeman chain coding: chain direction codes (a), and an example of line
structure with starting coordinates and direction codes. The resulting
Freeman code for this image is:(0, 0)3, 2, 2, 2, 2, 1, 5(3, 1)4, 4, 5, 1 45

3.11 Thinned binary image (a) and vector version of drawing (b). 46

3.12 Feature extraction block diagram decomposition. 47

3.13 Arrangement of segments before (a) and after (b) traditional snap rounding. 48

3.14 Arrangement of segments with a vertex very close to a non-incident line
after (b) snap rounding. 49

3.15 Results produced by Snap Rounding (b) and Iterated Snap Rounding (c)
when applied to a set of line segments (a). 50

3.16 Example of polygon detection on a simple drawing: (a) original set of
lines and (b) detected polygons with vertices marked. 50

3.17 Example of polygon detection and coherence simplification on a simple
drawing: (a) detection algorithm yields desired result and (b) an heuristic
simplification must be applied to set of detected polygons. 51

3.18 Example of boolean operations over polygons: (a) original set of two
polygons, (b) intersection result and (c) exclusive-or result. 53

3.19 Example of small polygon removal: (a) original set of polygons, (b) af-
ter small polygon identification, (c) after merging of small polygons and
(d) simplified polygons. 55

3.20 SetΦ of line segments (a) and graphG induced byΦ (b). 57

3.21 A planar graph with a exponential number of cycles 58

xvi

3.22 Shortest cycle basisΓ of graphG (a) and setΘ, constructed fromΓ, of
polygons detected in original set of line segmentsΦ 60

3.23 Set of simplified polygons (left) and correspondent topology graph (right). 63

3.24 SIBR geometric feature vector used in construction of geometry matrix. . 65

3.25 Block diagram for the matching process. 67

4.1 Conceptual view of Sketch and Image Based Retrieval Prototype archi-
tecture. 70

4.2 Example of single stroke (top) and multi-stroke (bottom) auto-completion. 71

4.3 Screen-shot of Graphical User Interface of SIBR. 75

4.4 Using delete gesture to remove a stroke. 76

4.5 Selecting part of a sketch . 77

4.6 Screen-shot of image processing window 78

4.7 Mixing images and sketches to retrieve a technical drawing. 79

4.8 Conceptual view of Database Builder prototype architecture. 80

4.9 Screen-shot of Database Builder prototype during a classification process. 81

5.1 Sketch Reader: sketching prototype application 84

5.2 User during a sketching session. 85

5.3 Top view of drawings D1 (a) and D2 (b). 87

5.4 Drawings D3 (a), D4 (b) and D5 (c). 87

5.5 Sketches representing drawing D3 produced by user B in first (a) and
second (b) sketching sessions. 90

5.6 Time comparison. 92

5.7 Detail of a sketch made during second session (a), same detail of the
original drawing (b) and amplified sketch of a small circle (c). 92

5.8 Basic drawings to search in the database. 95

5.9 Simple technical drawings to search in the database. 95

5.10 Sketch for Q1 made by user A and returned drawings. 97

5.11 Sketches made by user C for Q3 (left) and Q4 (right). 97

5.12 Sketch of two concentric circles. 98

5.13 Detail of the sketch made by user A for Q9. 98

5.14 Original drawing (Q10) and sketches performed by each user. 99

5.15 Overall position of the desired drawing in the results list. 100

5.16 Number of sketches drawn before finding the correct result. 100

5.17 Time spent performing queries. 101

xvii

5.18 User and observer during the training phase. 103

5.19 Technical drawings selected as queries. 104

5.20 Sketched queries made by user A for Q3. 105

5.21 Sketch S2C (a) made by user C for Q2 and details of sketch (b) and draw-
ing (c). 106

5.22 ”Good” sketches made for Q4 that returned successful results. 107

5.23 Sketches made for Q4 that returned unsuccessful results. 107

5.24 Detail of second SBR prototype showing the ”Show all results” button
and part of results area scroll bar . 108

5.25 Overall position of the desired drawing in the results list. 109

5.26 Average overall position of query results grouped by user experience. . . 110

5.27 Pie charts representing query results distribution (a) and number of sketches
drawn before finding a correct result (b). 111

xviii

List of Tables

3.1 Results of algorithm tests . 62

3.2 List of relevant geometrical features. 65

5.1 Sketching times for the first session . 89

5.2 Sketching times for the second session 91

xix

xx

Glossary

AABB

Bounding Box aligned with the axes of the coordinate system. Axis-aligned bound-
ing boxes are simpler to test for intersection than oriented bounding boxes but have
the disadvantage that they cannot be rotated.

binarization

process to convert gray-scale images into binary images.

KNN

K-Nearest Neighbor queries return the K closest answers according to given dis-
tance metric in the database with respect to a query point.

MCB

A minimum cycle basis in an undirected graph G is a set of simple cycles whose
incidence vectors span the cycle space of G and whose overall edge sum is minimal.

OBB

The smallest cuboid that encloses an object or set of objects.

OZZ

Orthogonal Zig-Zag Vectorization algorithm that samples the image sparsely.

PCC

Extension of Freeman chain code designed to preserve information on branching
and junction topology.

SBR

Preliminary Sketch-Based Retrieval approach developed during the work described
in this dissertation.

SIBR

Sketch and Image Based Retrieval approach proposed in this dissertation to retrieve
engineering drawings through combining images and sketches.

xxi

SPV

Sparse Pixel Vectorization algorithm based on the OZZ algorithm.

Vectorization

Process to convert raster images into vector format.

xxii

1
Introduction

Over the past few decades, the widespread use of CAD applications has resulted

in large numbers of engineering drawings in diverse domains such as architectural or

industrial design. However, current systems provide only conventional database queries

or direct-manipulation mechanisms to retrieve such drawings.

From task analysis and informal conversations with draftspeople we found out that

they often re-use data from previous projects, publications and libraries of ready-to-use

components. Even though reusing drawings may save time, searching for them is usually

slow and problematic, requiring browsing through large directories or navigating through

a maze of menus and dialogs in the case of component libraries. Unfortunately, the pop-

ularity of CAD systems, while making it easier to create and edit drawings, exacerbates

this problem, insofar as the number of projects and drawings grows enormously, without

adequate search mechanisms to support retrieving these documents.

Thus, there is a need for devising techniques to automatically classifying and retriev-

ing drawings based on their content. Some approaches to classification and retrieval of

drawings use textual databases to organize the information [2, 16]. These classify draw-

ings by keywords and additional information, such as designer name, style, date of cre-

ation/modification and a textual description. However, solutions based on textual queries

are not satisfactory, because they force designers to know in detail the meta-data used to

characterize drawings. Moreover, such textual information requires time and effort to be

correctly introduced.

In contrast to textual methods, a generic approach to the problem of retrieving draw-

ings was presented by Fonseca in his PhD thesis [34]. He proposed a visual classification

scheme based on shape geometry and spatial relationships, which are better suited to this

1

2 Chapter 1. Introduction

Figure 1.1: Overview of architecture for a engineering drawings indexing and retrieval
solution. The main contribution of the present work is the feature extraction component.
Fonseca’s framework is represented within the dashed boundaries.

problem. Furthermore, he presented a novel indexing mechanism that efficiently supports

large sets of drawings.

However, to use the framework presented by Fonseca with engineering drawings in

an effective manner, it becomes necessary to classify such drawings correctly. Since

technical drawings are often composed by hundreds or thousands of entities, extracting

visual features from them is not straightforward or trivial.

In this dissertation I present an approach to retrieve engineering drawings from large

databases by combining sketches and images. To that end, I propose an effective method-

ology to classify technical drawings or sketches and a technique to vectorize scanned

engineering drawings yielding sketchable queries. This technique was integrated with

Fonseca’s framework to create an efficient method for engineering drawing indexing and

retrieval. Figure 1.1 presents an overview of the proposed architecture to achieve this

goal.

1.1 Context of the Present Work 3

1.1 Context of the Present Work

The work presented in this dissertation was developed at Intelligent Multimodal In-

terfaces research group1, within theSmartSketches2 European project.SmartSketcheswas

developed by a consortium joining three European countries with a a well balanced mix

of University, Industry and end-user partners. Its main objective was to introduce novel

computer-based tools at the initial stage of design.

One problem addressed underSmartSketcheswas the lack of efficient techniques for

engineering drawing retrieval. My research in this area focused on classification and

retrieval of engineering drawings for the mould industry and provided the context to the

present dissertation.

Throughout this dissertation I will use “we” to describe group work, while “I” refers

to my contributions.

1.2 Extracting Features from Drawings and Sketches

In order to classify mould drawings, I developed a method to extract geometric and

topological features from engineering drawings and sketched-queries, which yields the

corresponding topology graphs and geometry descriptors. This process was integrated

with Fonseca’s framework to yield a system for indexing, searching and retrieving 2D

engineering drawings. Additionally, I created the user interface to the whole system and

tested it with users, to evaluate both the system usability and the performance of classifi-

cation and retrieval algorithms.

Feature extraction comprises a set of steps for simplifying drawings and sketches and

detecting shapes. Thus, I developed simplification algorithms for drawings and queries

as well as a novel3 simple polygon detection algorithm. This algorithm yields a set of

1The IMMI group, at INESC-ID (Lisbon, Portugal), does research in novel user interaction paradigms
and applications for Design and Manufacturing applications. The group has focused its activities on Cal-
ligraphic Interfaces, but also work on other interaction modalities such as speech, sound and vision. More
information about IMMI group can be found in the web sitehttp://immi.inesc-id.pt .

2More information about theSmartSketchesproject can be found athttp://smartsketches.
inesc-id.pt .

3Unlike image processing, where data consist of raster images, the proposed polygon detection algo-
rithm deals with drawings in vector format, consisting of line segments. This requires a completely different

4 Chapter 1. Introduction

shapes that will be considered when classifying the drawing or query. I extract geometric

features from these shapes using CALI, a powerful scribble recognizer [39]. To construct

the topology graph, needed by Fonseca’s framework, I developed a simple algorithm that

computes topological relationships among detected polygons.

1.3 Contributions

The main outcome of my work is an approach to automatic classification and in-

terctive retrieval of engineering drawings by combining images and sketches to specify

queries. Additionally, I devised a novel polygon detection and simplification algorithm

and implemented methodologies for simplification and vectorization of technical draw-

ings were implemented. Moreover, I studied the way users sketch queries, in order to

understand how they perceive and represent visual elements of a drawing. My research

has yielded the following contributions:

• A method for simplification of technical drawings.

Efficient classification and retrieval of engineering drawings requires effective sim-

plification methods. This is because technical drawings are often composed by

thousands of elements, most of which are not relevant for classification. To this

end, I devised simplification methodologies that remove irrelevant features from

drawings, in two separate steps. Initially, drawings are considered as a set of line

segments and simplified using an iterated snap rounding method. After detecting

polygons from the remaining segments, a small polygon removal procedure and a

coherence normalization heuristic are used to further simplify the drawings.

• An algorithm for polygon detection from vector drawings.

Our approach classifies technical drawings according to topological relationships of

relevant shapes and their geometry. Thus, it is necessary to have a efficient way to

identify these shapes, since irrelevant features are already removed by the simplifi-

cation techniques. Unlike most published methods, which use raster information to

approach. Known algorithms detect polygons only on raster images. Until now, no efficient solution has
been proposed to detect polygons directly from vector drawings.

1.4 Publications 5

detect shapes, I developed a novel algorithm to detect polygons from a set of lines

in vector format. This algorithm combines several methods from computational ge-

ometry and graph theory to yield a set of non-intersecting polygons in polynomial

time.

• Heuristics for identifying relevant items in sketched queries.

To take advantage of users’ natural ability at sketching, I need to understand how

they draw 2D views of parts. Moreover, any solution for classification and retrieval

of engineering drawings based on visual features can only be effective if the shapes

considered relevant by the classification heuristics match those users consider rele-

vant. Therefore, we invested considerable efforts on performing tests with users and

studying sketches drawn as queries. From the analysis of such sketches I was able

to identify which features users consider relevant and those that can be discarded.

These results were crucial to developing simplification methodologies.

• A paradigm for drawing retrieval combining images and sketches.

Using the framework presented by Fonseca [34], I devised a novel method for re-

trieving technical drawings based on content. Previous approaches to content-based

retrieval of drawings based on visual features rely exclusively on sketches or images

to specify queries. Some approaches use text to enrich the query, but none combine

images with sketches. I developed a method that allows mixing both images and

sketches to retrieve technical drawings in a more flexible manner.

1.4 Publications

The work described in this dissertation yielded five original publications accepted in

peer-reviewed scientific meetings and journals, which are listed in reverse chronological

order by date of publication.

1. Manuel J. Fonseca andAlfredo Ferreira and Joaquim A. Jorge.

Content-Based Retrieval of Technical Drawings. International Journal of Computer

Applications in Technology, March 2005.

6 Chapter 1. Introduction

2. Alfredo Ferreira and Manuel J. Fonseca and Joaquim A. Jorge and M. Ramalho.

Mixing Images and Sketches for Retrieving Vector Drawings. Proceedings of the 7th

Eurographics Workshop on Multimedia, pages 69-75, Nanjing, China, Oct 2004.

3. Manuel J. Fonseca andAlfredo Ferreira and Joaquim A. Jorge.

Retrieving Mould Drawings by Content. Proceedings of Rapid Product Develop-

ment (RPD 2004), Marinha Grande, Portugal, Oct 2004.

4. Manuel J. Fonseca andAlfredo Ferreira and Joaquim A. Jorge.

Towards 3D Modeling using Sketches and Retrieval. Proceedings of Eurographics

Workshop on Sketch-Based Interfaces and Modeling 2004, pages 127-136, Greno-

ble, France, Aug 2004

5. Alfredo Ferreira and Manuel J. Fonseca and Joaquim A. Jorge.

Polygon Detection from a Set of Lines. Proceedings of 12o Encontro Portugûes de

Computaç̃ao Gŕafica (12o EPCG), pages 159-162, Porto, Portugal, Oct 2003.

1.5 Dissertation Outline

The rest of this dissertation is organized in five chapters and one appendix.

Chapter 2 surveys the work related to my research, which includes content based

retrieval of vector drawings. I also review the main image vectorization techniques and

polygonal curve simplification methods.

Chapter 3 describes in detail my approach to sketch and image based retrieval of

engineering drawings. Initially, it gives an overview, presenting use scenarios and de-

scribing the system architecture. Then, it describes a vectorization technique to convert

raster images of engineering drawings to vector format. Next it details every step of the

classification process, namely the simplification, polygon detection and feature extraction

algorithms developed. Finally, it describes the query and matching methods.

The prototypes developed to exercise my approach are described in Chapter 4. The

proposed system was divided in two distinct applications. One application performs draw-

ing classification while the other allows users to specify queries through sketches using a

calligraphic interface to yield the set of drawings similar to a sketched query.

1.5 Dissertation Outline 7

These prototypes were evaluated by users in two distinct usability evaluation sessions.

Additionally, a sketching experiment with users was performed to understand how they

formulate queries for engineering drawings. The three experimental tests are described

and their results analyzed in Chapter 5.

Chapter 6 presents an overall discussion of my work, presents conclusions and pro-

poses directions for future work. I point possible paths for further research on image

vectorization, drawing simplification and polygon detection.

Finally, five appendices provide additional information related to the experiments

with users, described in Chapter 5. The first appendix, lists the sketches made by users

during the initial sketching experiment. The next three contain the protocols, question-

naires and databases used in both usability evaluations. The last appendix exhaustively

lists the sketched queries made by users during usability evaluations and corresponding

results.

8 Chapter 1. Introduction

2
Related Work

Last decade has seen several systems for content-based retrieval of vector drawings

and images. In most of these, queries can be specified by either using sketches, keywords

or images. Some of them allow mixing textual keywords with sketches or images, but

never mixing both sketches and images, as I suggest in the present work.

Since I intended to use digitized images to specify queries, I needed to develop an au-

tomatic method to classify these drawings. However, automatic classification of scanned

engineering drawings based on visual features depends to a great extent on the quality

of the extracted features. Thus, vectorization and simplification are key methods, whose

accuracy determines the quality of the features.

This chapter reviews existing systems for content-based retrieval of vector drawings,

examining their methods and domains of application. Then, it describes and compares

existing vectorization algorithms and presents a comprehensive analysis of curve simpli-

fication techniques.

2.1 Content-Based Retrieval

Recently there has been considerable interest in querying multimedia databases by

content. However, most such work has focused on image databases, as surveyed by Shi-

Kuo Chang [13]. Moreover, in [99], the author analyzes several image retrieval systems

which use color and texture to describe images. However, drawings in electronic format

are represented in structured form (vector graphics), requiring different approaches from

image-based methods, which resort to color, regions and texture as the main features to

describe content. Some initial work [2, 16] attempted to index technical drawings through

9

10 Chapter 2. Related Work

Figure 2.1: Screen-shots of Gross’s Electronic Cocktail Napkin, querying the Great Build-
ings Collection.

textual databases. However, these fail to use the rich visual association mechanisms and

designer’s use of sketches to recover information.

Gross’s Electronic Cocktail Napkin [45, 24, 44] is a pen based drawing environment

that aims to support designing using hand drawn sketches and diagrams. This system uses

a simple, trainable, on-the-fly recognition scheme to identify multi-stroke glyphs drawn

using a digitizing tablet. The authors extended the Electronic Cocktail Napkin to allow

visual queries and visual bookmarking in drawings databases. To that end, they addressed

a visual retrieval scheme based on diagrams, to index databases of architectural drawings.

To retrieve indexed drawings, users draw sketches of buildings, which are compared with

annotations (diagrams) of , stored in a database and manually produced by users. Even

though this system works well for small sets of drawings, the lack of automatic indexation

and classification makes it difficult to scale the approach to large collections of drawings.

Figure 2.1 illustrates an application of Electronic Cocktail Napkin, depicting the results

of searching for buildings in a database using hand-sketched queries.

Nabil et al. [79] proposed techniques for similarity retrieval based on 2D Projection

Interval Relationships (2D-PIR), including methods for dealing with rotated and reflected

images. The 2D-PIR is a symbolic representation of directional as well as topological

relationships among spatial objects. It combines three existing representation formalisms

in a novel way to produce a unified representation of pictures, integrating both directional

and topological relationships. Authors claim that their method encodes more information

about spatial relationships between objects in a picture than traditional methods. Further-

2.1 Content-Based Retrieval 11

Figure 3: Sketch query “find a hawk perching on a stump”

0

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100

R
ec

al
l

Precision

"2D-PIR"
"Gudivada"

Figure 5: Recall-precision graphs for images of Sydney

larger recall value than Gudivada’s at the same precision
value. This suggests that our method has better filtering
capability than Gudivada’s.

Now, we briefly compare our work with Takahashi’s
fuzzy spatial relationships, Chang’s 9-DLT and Yu’s E-
R picture. It is interesting that these works use a dif-
ferent approach in representing spatial relationships. For
comparison we refer Takahasi’s work as Spade, (the name
of the prototype system that implements fuzzy spatial re-
lationships for picture retrieval), Yu’s work as E-R pic-
ture, Chang’s works as 9-DLT, Gudivada’s system as Gva
and our system as 2D-PIR. We compare the systems on a
number of criteria: kind of representation available, how
it is constructed, what kind of relationships and query
model are supported, whether the system supports simi-
larity matching, and how extensible it is.

Considering first the basic representation structure used

20

30

40

50

60

70

80

90

30 40 50 60 70 80 90 100

R
ec

al
l

Precision

"2D-PIR"
"Gudivada"

Figure 6: Recall-precision graphs for images of antelopes

by each system, we find that 2D-PIR and Gva use a graph-
based representation, 9-DLT uses a string-based one, E-R
picture uses an E-R model and Spade uses a rule-based
one.

2D-PIR, Gva and Spade all use a semi-automatic pro-
cess to build the representation of an image. E-R picture,
on the other hand requires completely manual construction
of the E-R model.

Gva, Spade and 9-DLT all support directional relation-
ships only. 2D-PIR supports both directional and topolog-
ical relationships, while E-R picture can support all spatial
relationships, as well as any other kind of relationship that
the indexer chooses.

Spade supports a natural language query model. All
other except 9-DLT support a graphical query style (either
by sketch or by drawing an E-R diagram for E-R picture).
Both 2D-PIR and E-R picture also support keyword-based

Figure 4: Result of the sketch query “find a hawk perching on a stump”

40

45

50

55

60

65

70

75

80

85

90

95

50 55 60 65 70 75 80 85 90 95 100

R
ec

al
l

Precision

"2D-PIR"
"Gudivada"

Figure 7: Recall-precision graphs for images of falcons

queries.
All of the systems support similarity matching, although

Spade only supports it to some extent, via fuzzy directional
relationships.

With respect to extensibility, 2D-PIR can be extended
in a straightforward way to incorporate visual features as
well as spatial features. E-R picture is also extensible, be-
cause it provides the full power of the E-R model. It is less
clear how the other systems can be extended to incorporate
other information from images into their representations
and query models.

5 Summary
We have designed and implemented a prototype im-

age similarity retrieval system based on 2D-PIR for a dis-
tributed environment using the Java language. We have
conducted several image similarity retrieval experiments

20

30

40

50

60

70

80

90

20 30 40 50 60 70 80 90 100

R
ec

al
l

Precision

"2D-PIR"
"Gudivada"

Figure 8: Recall-precision graphs for images of sunsets

with the system using several image collections. We found
that the precision of 2D-PIR retrieval is much higher thatn
the precision of keyword-based retrieval (three times as
high for a threshold value of 60). This is to be expected,
because 2D-PIR represents more information about an im-
age than can be captured simply by the keywords that name
the objects in the image.

In a comparison of 2D-PIR similarity retrieval and Gu-
divada’s similarity retrieval, 2D-PIR similarity retrieval
performed much better on all collections that we used.
Again, 2D-PIR can represent more information than Gu-
divada’s representation, since he ignores topological rela-
tionships. We briefly compared 2D-PIR with other systems
that use spatial relationships. It seems that only Yu’s E-R
pictures come close to 2D-PIR. However, the E-R picture
model requires considerably more effort to index images
than does our method.

(a) (b)

Figure 2.2: Screen-shots of sketched query (a) and corresponding results (b) yielded by
the 2D-PIR prototype.

more, they suggest that it should be easy to extend this approach to three dimensional

objects and even to video classification by incorporating time intervals into relationships.

A later publication [80] presents a prototype image retrieval system for distributed envi-

ronments based on 2D-PIR. Figure 2.2 depicts a sketched query and the results yielded by

the prototype. This system transforms each image into a symbolic representation using

the techniques described above and then is able to answer to sketched-queries. However,

the symbolic representation of the query needs to be compared to all the symbolic rep-

resentations stored in the database, making this approach difficult to scale up for large

collections of images.

The Similarity Search System (S3) [8] is able to retrieve industrial CAD parts, de-

scribed by their contours and thematic attributes. S3 retrieves parts using bi-dimensional

polygons drawn with a graphical editor. It is also possible to use sample parts from a

database, as depicted in Figure 2.3. The S3 uses four similarity algorithms to match

queries against parts in the database. The first is a modified version of the Mehrotra-

Gary algorithm [74] that determines angles and lengths of segments in a region. Another

method is the angular profile [1], which computes angles between line segments defined

by sample points from the contour. A third method is section coding which determines

the portion of the contour inside each sector resulting from equally dividing the circle

surrounding the polygon. Finally, a Fourier-based method [7] can detect partial similar-

ity. Authors used special data structures and indexing algorithms, such as the R*-Tree

and the X-Tree to avoid exhaustive search. However, S3 relies exclusively on matching

contours, ignoring spatial relations and shape information, making this method unsuitable

12 Chapter 2. Related Work

(a) (b)

Figure 2.3: Screen-shots of a query on S3 (a) and correspondent results(b).

for retrieving complex multi-shape drawings.

Müller and Rigoll presented an approach [78, 77] to retrieve engineering drawings

based on stochastic models. Engineering drawing databases can be searched using sketches

or shapes which match details in drawings of mechanical parts. This technique represents

drawings and queries using a pseudo 2-D Hidden Markov chain with filler models. This

makes it possible to match images by specifying details and to locate such details in the

retrieved images, even when queried shapes are embedded in hatching or connected to

other parts in the drawing. Howver, the method proposed by Müller and Rigoll only

allows specifying simple queries, representing a single element. Indeed, more complex

queries including several elements with spatial relationships between them are not pos-

sible. Furthermore, the search mechanism is not appropriated for large collections of

drawings, since they perform a sequential scan through the database comparing the query

with all indexed drawings.

Leung and Chen proposed a sketch retrieval method [70] for general unstructured

free-form hand-drawings stored as multiple strokes. They use shape information from

each stroke and exploit geometric relationships between multiple strokes for matching.

Their approach computes a matching score between a query and each sketch in the database.

More recently, the authors improved their system by considering spatial relationships be-

tween strokes [69]. However, their approach still has two drawbacks. First, they use a

small number of basic shapes (circle, line and polygon) to classify strokes. Second, this

method is difficult to scale up to large databases, since it too relies on exhaustive search.

Funkhouser et al [41] describe a method for retrieving 3D shapes using textual key-

2.1 Content-Based Retrieval 13

Figure 2.4: Screen-shot of Princeton Search Engine for 3D Models.

words, 2D sketched contours, 3D sketches or a combination of both. Based on this work

they developed the Princeton Search Engine for 3D Models. Figure 2.4 depicts a screen-

shot of a query and respective results. The authors developed a new 3D shape descriptor

based on spherical harmonics that is descriptive, concise, efficient to compute and in-

variant to rotations. Additionally, they found that queries combining both text and shape

produce better results than either one alone and that users prefer to specify queries in 2D

than in 3D. The Princeton Search Engine relies on silhouettes and their fitting to projec-

tions of 3D images to retrieve models from large databases. Although this method works

well when searching for a shape by its contour, it does not provide a functional solution

to allow partial matches based on embedded shapes.

Bajavista is an application to index and retrieve clip-art drawings by content, using

hand-sketched queries [33, 36, 35]. To that end it uses the framework for content-based

retrieval from large sets of drawings developed by Fonseca [34]. This framework pro-

vides efficient indexing and matching of drawings based on their geometry and topol-

ogy. Therefore, to classify existing clip-arts, Bajavista extracts geometric and topological

information from them, after applying a set of simplification heuristics. The extracted

information is then converted into descriptors and stored in a database. When a query

is submitted to Bajavista, topology and geometry descriptors are computed and used to

search the database for similar drawings. A screen-shot of Bajavista prototype is depicted

in Figure 2.5, which illustrates a query (center window) and results (bottom images).

As we have seen above, the majority of the existing content-based retrieval systems

focus on raster image classification and retrieval. Moreover, most published techniques

14 Chapter 2. Related Work

Figure 2.5: Screen-shot of Bajavista.

for retrieving vector drawings show two major drawbacks. First, they are evaluated on

databases with few elements. Second, drawings stored in the database tend to be sim-

ple elements, not representative of real vector drawings. One noteworthy, the Princeton

Search Engine uses large databases with complex models. However, as the authors stated,

good results are produced mainly when queries combine text and shape descriptions. An-

other exception is the Bajavista system, which produce good results when querying large

databases of clip-arts using hand-made sketches. The success of this system lies, in part,

on the framework for content-based retrieval proposed by Fonseca [34]. Fonseca’s frame-

work could be considered as an improvement to Berchtold [8] and Park [89] systems. It

focuses on retrieving vector drawings by privileging spatial relationships among domi-

nant shapes and their geometry. Moreover, Fonseca’s framework provides fast and effi-

cient algorithms to perform similarity matching of sketched queries in large databases of

drawings. This makes it a good foundation for for retrieval of engineering drawings pro-

posed in this dissertation. By adopting this framework, I was able to focus my research

on feature extraction from drawings and sketches.

Furthermore, Funkhouser et al [41] found out that users prefer sketching two dimen-

sional queries, even if they are looking for 3d models. This is very important, since it

supports the paradigm for query specification proposed in this dissertation.

2.2 Working with digitized drawings

During task analysis we have interviewed draftspeople from the mould industry. In

these interviews one user referred that it will be convenient to use existing drawings, in

2.3 Vectorization of engineering drawings 15

paper format to specify the queries. When we posed this idea to other users, all agree that

it will be quite useful. One effective method to implement such solution is by digitizing

the existing drawing using a scanner and then use the resulting image to specify the query.

However, proposed approach is based on vector information. Thus, to use digitized

drawings as queries it is necessary to convert them into vector format. Raster to vector

conversion,i.e. vectorization, of images is widely used, yet several distinct approaches

exist with their own pros and cons. In next section I review the most common vectoriza-

tion techniques.

2.3 Vectorization of engineering drawings

When classifying a drawing based on a printed version, we first convert the hard-copy

to digital format. The quality of such digital images may vary drastically depending of the

characteristics of all parts of the sensor chain and illumination technology [21]. Therefore,

the process of converting those raster images to vector format will be preceded by a chain

of steps to enhance image quality and reduce existing noise. That way the vectorization

algorithms do not need to deal with discontinuities or extra pixels in original images, since

these problems have already been solved during the pre-processing stage.

Image vectorization techniques have been deeply studied during the last decades.

Most widely known solutions are more than thirty years old and still being used in several

applications or have served as a base to developing improved techniques.

One of the oldest vectorization methods is the Hough Transform [95], which is still

very useful for identifying clusters of points defining shapes that can be expressed para-

metrically, as line segments defined by their slope and zero-axis intersection. Many dis-

tinct solutions to this problem have been proposed since. Most of these methods rely

on the medial axis of shapes to perform vectorization and they differ mainly in the way

medial axes are determined. The other major difference is the line tracking technique,

i.e. how points that compose the medial axis are grouped in a chain of points to deter-

mine each vector.

In this section I survey existing vectorization methods and present them according to

medial axis determination methods, after a classification suggested in [109], dividing the

16 Chapter 2. Related Work

vectorization methods into six classes: Hough transform, thinning, contour, run-graph,

mesh pattern and sparse pixels grouping.

2.3.1 Hough Transform

Theoretically, the Hough Transform can be used to detect any type of shape, regard-

less of its complexity. However, such general solution is not feasible since it would entail

significant computation time and memory requirements. In practice, this method is used

mainly to detect straight lines or curves in drawings. Still, this might be enough to process

may types of engineering drawings.

I start by describing the vectorization of straight line images and then generalize to

other parametric shapes. Dori [26] discusses detecting lines in binary images by trans-

forming extended patterns into spatially compact features in parametric space. This space

is often called the Hough domain, but is also referred to as the Hough space, Hough trans-

form plane or accumulator array. By transforming a raster image to the Hough domain it

is possible to avoid the difficult global detection problem and replace it with a more easily

solved local peak detection problem. A line in the binary image is thus represented by a

single peak in the Hough domain. This peak has coordinate values in the two parameters

that describe the line, slope and intersect. When an image is composed by multiple lines

the resulting Hough space will show multiple peaks each corresponding to a different

line. To convert the binary image data into Hough domain it is necessary to construct

lines from sets of multiple unrelated points. Straight lines are defined by the equation

y = mx+ c. Thus every line in the(x, y) plane corresponds to a point in the(m, c) plane.

Each point in image plane can have an infinite number of lines that pass trough it. The

slope and intercepts of these infinite(x, y) plane lines correspond to a line on the(m, c)

plane described by equationc = −mx + y.

To allow practical implementation it is necessary to reduce the number of lines that

passes trough each point. To that end, the Hough space is discretized to the desired

accuracy by dividing the(m, c) plane into rectangular ”bins”. These bins accumulate for

each black pixel in the(x, y) plane the slopes and intercepts of all possible lines that can

pass trough it. That is, if the image contains only one line, this will map to the same

coordinates in Hough space for all pixels on that line. Thus, the value of a bin in the

2.3 Vectorization of engineering drawings 17

(a) (b)

Figure 2.6: Example of Hough transform using trignometric parameters: (a) Image with
four lines; (b) corresponding Hough space. Each peak corresponds to a line. The domi-
nant peak (the topmost) represents the longer line.

Hough space will be proportional to the length of the corresponding line. After visiting

all black pixels of the binary image, it is possible to find the lines by detecting peaks on

Hough domain. However, because of image noise and sampling inaccuracy it is possible

that a line will be mapped into more than a single ”bin” in the Hough space. If the number

of existing lines is knowna priori it is possible to limit the number of peaks to detect. On

the other hand, if we just want to find significant (long) lines we can set a threshold that

represents the minimum number of pixels a line must have.

Peak detection in Hough domain yields lines of infinite length instead of line seg-

ments. Furthermore, a set of collinear line segments might yield a peak similar to the

one produced by a longer single line. Hence, line segments can be found by examining

the overlap of an Hough-determined line to the points in the original image. A slightly

different approach is referred by Seulet al. in [100]. They suggest parameterizing each

line trigonometrically. Thus, a straight line is defined by equationx sin θ + y cos θ = r

and each line in the(x, y) plane corresponds to a single point in(r, θ) plane, which is

considered the Hough domain. Apart from this small difference the procedure is exactly

the same as before.

To detect circles in binary images the method is identical to the one used for straight

line vectorization. The sought shape is parameterized by equation(x−a)2 +(y−b)2 = r,

wherea andb define the center of the circle andr its radius. The Hough domain becomes

a three-dimensional space defined by the parameters(a, b, r). After all black pixels in

image space have been mapped to all possible points in Hough space, each peak in that

18 Chapter 2. Related Work

space indicates a circle with parameters equal to the coordinates of that location. Peak

detection on three-dimensional Hough space makes this method a much more computa-

tionally intensive task than the detection of straight lines. Thus, the Hough transform is

not a good option for detecting geometric shapes other than line segments.

Since the parameters in the Hough Transform are sampled sparsely, their precision

is not too high. Hence, the shapes yielded by this technique might not be accurate. This

problem cannot be eliminated, but can be minimized by using a finer grid,at the cost of

increased computation time and memory.

2.3.2 Thinning based methods

Scanning a engineering drawing yields a raster image. In order to extract features

from that drawing, it is necessary to convert the scanned image into vector format. One

way to do that is by computing one-pixel wide skeletons of shapes and then converting

them to lines using a line tracking algorithm. To calculate the skeleton of objects in

raster images is generally used a technique calledthinning. Dinnen [23] found, in the mid

1950’s, that an averaging operation over a square window in a binary image with a high

threshold yields a thinning of the shapes existent in original image. Since then, hundreds

of articles have been published on thinning methods and their application. Among these

articles, we can find several good surveys on thinning techniques [104, 20, 54, 102, 67].

Today, thinning is commonly used in a wide range of applications, such as data compres-

sion, extraction of critical features, pattern recognition or raster-to-vector conversion. In

this document I am interested in studying thinning-based vectorization methods.

Since earlier vectorization systems ([31, 66, 82]), thinning methods are used as a

first step of the vectorization process. These systems apply thinning methods to a binary

image in order to determine one-pixel-wide medial axes of regions in the image. This

skeletonized representation is then submitted to a line tracking process. This thinning

process, also called skeletonisation or medial axis transformation, applies morphological

transformations [47, 48] to regions on a binary-valued image to compute their one-pixel-

wide skeleton. Although the thinning operation can be applied to regions of any shape, it

is most suitable for elongated regions, where an obvious medial axis exists. In blob like

shapes the thinning process hardly produces a correct skeleton.

2.3 Vectorization of engineering drawings 19

* * * * *
* * * * * *

* * * * * * *
* * * * * * * *

* * * * * * * * *
* * * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * *

a e e e e
e * * * * e

e * * * * * e
e * * * * * * e

e * * * * * e e e
e * * * * e
e * * * e
e * * * e
e * * * e
e * * * e
e * * * * e e e e
e * * * * * * e
e * * * * * * e

e e e e e e e

a e e e
e * * * e

e * * * e e
e * * * e
e * * e
e * e
e * e
e * e
e * e
e * * e

e * * e e e
e e e * * e

a e e e e
e * * * * e

e * * * * * e
e * * * * * * e

e * * * * * e e e
e * * * * e
e * * * e
e * * * e
e * * * e
e * * * e
e * * * * e e e e
e * * * * * * e
e * * * * * * e

e e e e e e e

a e e e
e * * * e

e * * * e e
e * * * e
e * * e
e * e
e * e
e * e
e * e
e * * e

e * * e e e
e e e * * e

a e e
e * e

e * e
e *
O
O
O
O
e *

e O
O O

O
O
O

O
O
O
O

O
O
O O

a e e e e
e * * * * e

e * * * * * e
e * * * * * * e

e * * * * * e e e
e * * * * e
e * * * e
e * * * e
e * * * e
e * * * e
e * * * * e e e e
e * * * * * * e
e * * * * * * e

e e e e e e e

a e e e
e * * * e

e * * * e e
e * * * e
e * * e
e * e
e * e
e * e
e * e
e * * e

e * * e e e
e e e * * e

a e e
e * e

e * e
e *
O
O
O
O
e *

e O
O O

O
O
O

O
O
O
O

O
O
O O

a e e e e
e * * * * e

e * * * * * e
e * * * * * * e

e * * * * * e e e
e * * * * e
e * * * e
e * * * e
e * * * e
e * * * e
e * * * * e e e e
e * * * * * * e
e * * * * * * e

e e e e e e e

a e e e
e * * * e

e * * * e e
e * * * e
e * * e
e * e
e * e
e * e
e * e
e * * e

e * * e e e
e e e * * e

a e e
e * e

e * e
e *
O
O
O
O
e *

e O
O O

O
O
O

O
O
O
O

O
O
O O

a e e e e
e * * * * e

e * * * * * e
e * * * * * * e

e * * * * * e e e
e * * * * e
e * * * e
e * * * e
e * * * e
e * * * e
e * * * * e e e e
e * * * * * * e
e * * * * * * e

e e e e e e e

a e e e
e * * * e

e * * * e e
e * * * e
e * * e
e * e
e * e
e * e
e * e
e * * e

e * * e e e
e e e * * e

a e e
e * e

e * e
e *
O
O
O
O
e *

e O
O O

O
O
O

O
O
O
O

O
O
O O

(a) (b) (c) (d) (e)

Figure 2.7: Peeling iterations: (a) original image; (b), (c), (d) intermediate results after
first, second and third iterations; (e) skeleton.

Skeletons are approximations of the medial axis of the region boundary, as defined by

Montanari [76], Pfaltz and Rosenfeld [92] or Davies and Plummer [20]. Based on these

distinct definitions of skeleton the thinning algorithms were classified in three groups:

iterative boundary erosion, distance transform and adequate skeleton.

The iterative boundary erosion, also referred as peeling, peels the region boundaries,

iteratively removing one layer at a time and stoping when the region have been reduced

to a one-pixel-wide skeleton. An effective way to perform this iterative thinning is by

moving a square window over the image and applying a set of rules to decide wich pixels

should be marked for erasure after each iteration. Hilditch [53] proposes the use of a

3× 3 window and a basic set of rules to mark its center. These are described in detail by

Naccache and Shinghal in [81]. The major drawbacks of iterative thinning methods are

their time complexity and shape distortions at junctions that commonly occur. To reduce

the impact of these problems new variations of the basic thinning algorithm were devised.

For instance, Deutsch [22] uses non-square windows while O’Gorman [84] generalizes

the method forn × n sized windows. Although the speed and accuracy of thinning pro-

cess have improved significantly since their early implementations, the problems referred

above still persist.

A distinct approach to thinning was presented by Pfaltz and Rosenfeld [91, 97], us-

ing its formal definition of skeleton described in [92]. The distance transform thinning

replaces each pixel in a shape by a number indicating its minimum distance to the pixels

outside that shape, as depicted in Figure 2.8(b). In the presented approach this distance is

defined as the length of a 4-connected chain between the two points. After computing the

distance transform they apply a local maximum determination procedure to construct the

skeleton of each shape in the image. Generally, distance transform algorithms are much

20 Chapter 2. Related Work

* * * * *
* * * * * *

* * * * * * *
* * * * * * * *

* * * * * * * * *
* * * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * *

1 1 1 1 1
1 2 2 2 2 1

1 2 3 3 3 2 1
1 2 3 4 3 2 2 1

1 2 3 4 3 2 1 1 1
1 2 3 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 3 2 1 1 1 1
1 2 3 3 2 2 2 1
1 2 2 2 2 2 2 1

1 1 1 1 1 1 1

O O
O

O
O

O
O
O
O

O
O

* * * * *
* * * * * *

* * * * * * *
* * * * * * * *

* * * * * * * * *
* * * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * *

1 1 1 1 1
1 2 2 2 2 1

1 2 3 3 3 2 1
1 2 3 4 3 2 2 1

1 2 3 4 3 2 1 1 1
1 2 3 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 3 2 1 1 1 1
1 2 3 3 2 2 2 1
1 2 2 2 2 2 2 1

1 1 1 1 1 1 1

O O
O

O
O

O
O
O
O

O
O

* * * * *
* * * * * *

* * * * * * *
* * * * * * * *

* * * * * * * * *
* * * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * *

1 1 1 1 1
1 2 2 2 2 1

1 2 3 3 3 2 1
1 2 3 4 3 2 2 1

1 2 3 4 3 2 1 1 1
1 2 3 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 3 2 1 1 1 1
1 2 3 3 2 2 2 1
1 2 2 2 2 2 2 1

1 1 1 1 1 1 1

O O
O

O
O

O
O
O
O

O
O

(a) (b) (c)

Figure 2.8: Thinning using distance transform: (a) original image; (b) distance transform;
(c) skeleton.

faster than the iterative algorithms described before. However, there are no warranties

that the distance transform will yield correct results. Often, the resulting skeletons are not

connected, especially at junctions.

Davies and Plummer [20] defined an ”adequate skeleton” and suggested a third ap-

proach for thinning, which combines skeleton points obtained by iterative and distance

transform methods. This yields more accurate skeletons than iterative thinning algo-

rithms, at the cost of more computing resources.

Unlike lines computed by the Hough Transform method, skeletons produced by thin-

ning algorithms are still in bitmap format. To convert these to vectors is necessary to

apply a line-tracking process to skeletal points. The more common line-tracking methods

use the Freeman Chain Code [40]. A widely used extension of this approach, the Prim-

itive Chain Code (PCC), was proposed by O’Gorman [86]. [100] provides a practical

description of these chain coding methods.

2.3.3 Contour based approach

Contour based approaches seem to be faster than other vectorization methods. Un-

like the thinning algorithms, which perform line-tracking after detecting the skeleton,

contour based methods first perform a contour-tracing followed by a skeleton sampling

process. This contour-tracing procedure is the most computationally intensive part of the

contour-based algorithms. Since this is a common operation in computer vision, many

methods have been proposed in literature. Most popular approaches to contour-tracing

are described in the books of Haralick and Shapiro [48], Nalwa [83] and Seulet al. [100].

Jimenez and Navalon [63] suggested a skeleton sampling algorithm that considers

2.3 Vectorization of engineering drawings 21

(a) (b) (c)

Figure 2.9: Example of skeleton sampling: (a) parallel edges; (b) almost parallel edges;
(c) cross-junction.

the skeletal points as the midpoints of the perpendiculars projected from one side of the

contour to the other. This algorithm behaves well with elongated shapes with parallel

or almost parallel edges,i.e. line objects, as depicted in Figure 2.9 (a) and (b). How-

ever, it fails to detect small angle merging junctions and misjudges cross intersections, as

illustrated by Figure 2.9 (c).

A similar approach for skeleton sampling was described by Shapiroet al.[101]. They

suggest that midpoints between each pair of pixels on opposite edges of the contour be

considered as a point on the skeleton. Therefore, edges must be followed in such a manner

as to minimize the width of the object. As in the algorithm presented by Jimenez and

Navalon [63], the approach described by Shapiroet al. [101] does not handle junctions

perfectly.

Due to these unsolved problems in vectorizing shapes with junctions, contour-based

approaches are generally unsuitable for vectorizing engineering drawings.

2.3.4 Run-graph based methods

Di Zenzo and Morelli [111] presented a graph-based approach to image represen-

tation. Their method, represents the binary image of a drawing as a list of vertical or

horizontal ”runs”. These ”runs” are maximal sequences of black pixels along vertical

columns or horizontal rows. They construct a graph based on these detected runs and

according to their classification:

A run adjacent to only one run in each side is a segment portion run.

22 Chapter 2. Related Work

Extreme

Extreme

Crossing
ExtremeExtreme

Extreme

Extreme

Crossing

Extreme

Extreme

Crossing
ExtremeExtreme

Extreme

Extreme

Crossing

Extreme

Extreme

Crossing
ExtremeExtreme

Extreme

Extreme

Crossing

(a) (b) (c)

Figure 2.10: Simplified example of run graph representation: (a) vertical portioning;
(b) horizontal partitioning; (c) computed graph.

A run adjacent to more than one run on a side is a crossing point.

A run not adjacent to any run on one side is at the extreme of a segment.

A formal definition of these simple rules yields a procedure that computes a graph

whose nodes derive from crossing and extreme runs and edges consist of sets of adjacent

line runs. Figure 2.10 depicts this vertical (a) and horizontal (b) partitioning of a simple

image. Any of these partitioning results in the graph pictured in Figure 2.10 (c). This

graph represents the vectorized image, with each edge corresponding to a line segment.

A improved version of this technique generalizes crossing points and extreme points as

crossing areas and extreme areas. These generalized notions allow extending nodes to

include runs that would otherwise belong to edges, so that the lengths of runs in an edge

are approximately uniform.

More recent methods to compute run graph representations have been published, but

all of them derive from the ones described before. For instance, mixed graph represen-

tations were introduced to solve the problem of associating an edge with a line segment

that forms a narrow angle with the direction of runs, as in Figure 2.10 (b). In this vari-

ation, edges consist of either horizontal or vertical runs, according to the slope of the

corresponding line portion, while nodes consists of vertical runs and sub-runs (parts of a

run).

Boattoet al. [9] described a line drawing interpretation algorithm based on graphs.

Their procedure takes as input the run-graph of an image and produces the corresponding

skeleton, from the midpoints of the runs in edge areas.

One of the major disadvantages of run-graph based methods is the lack of accuracy

in determining the junction points. Also these methods can introduce false junctions

2.3 Vectorization of engineering drawings 23

caused by changes in run direction. Finally, these methods cannot handle curve segments

correctly, since they were conceived to detect straight lines.

2.3.5 Mesh pattern based methods

Lin et al.[71] introduced mesh patterns to improve vectorization. They suggest divid-

ing the image by using a specific mesh. Then they detect characteristic square patterns by

analyzing the borders of each mesh unit and create a control map for the image. This con-

trol map is composed of meshes labeled according to a pattern database. Their technique

detects straight lines by analyzing this control map.

Vaxivière and Tombre [108] present an extension to Lin’s mesh pattern approach,

which uses dynamic meshes to handle more complicated drawings. In this method, mesh

units that cannot be characterized are divided into smaller known pattern meshes, whose

shape may be non-square.

Mesh pattern approaches are relatively fast. This is because they sample the images

sparsely and only analyze the pixels on mesh borders. As a result their running time

increases linearly with image resolution. However, the ideal mesh size for each image is

hard to control. Moreover, those methods fail to correctly detect complex lines such as

arcs or dashed lines.

2.3.6 Sparse pixel based approaches

A different approach to vectorization that also samples the image sparsely was devel-

oped by Doriet al. [12, 27, 26]. Their Orthogonal Zig-Zag (OZZ) algorithm tracks the

course of a one pixel wide ”beam of light” which turns at right angles each time it hits the

edge of an area covered by black pixels. Lines are detected by joining the midpoints of

each run, as depicted in Figure 2.11. This procedure uses two passes to improve accuracy.

In the first pass, it starts beams horizontally. On the second pass, it starts beams vertically.

The lines detected on both passes are then combined in a single description.

The OZZ algorithm is a time-efficient method to detect straight lines due to the sparse

sampling of images. However, it is difficult to correctly detect arcs with OZZ which is

also highly sensible to noise. More recently, Liu and Dori [28] developed the Sparse

24 Chapter 2. Related Work

Initial “beam of light”

Run midpoint

Detected line

Figure 2.11: Example of Orthogonal Zig-Zag algorithm.

Pixel Vectorization (SPV) algorithm, which , unlike OZZ, does not bounce a simple zig-

zag pattern off the edges of black areas. Rather, it traces medial axis points of consecutive

horizontal or vertical black pixel runs. While OZZ uses a two pass of scan, SPV requires

only one pass. Furthermore, SPV can correctly detect arcs in an image.

2.3.7 Discussion on Image Vectorization techniques

Although suitable for many kinds of engineering drawings, Hough Transform based

methods are the slowest presented in this document. In practice, they can only to handle

correctly straight lines and eventually curves. Thus, for general engineering drawings

these approaches often produce low quality vector versions of raster drawings.

Iterative thinning methodologies can handle a wide range of drawings. These al-

gorithms are able to perform high quality when noise is minimal and drawings contain

mostly elongated shapes. While these approaches have high time complexity their sim-

plicity makes them well-known and widely used in image processing.

Contour based methods and run-graph based methods preserve line widths, unlike

basic thinning approaches that require additional processing to accomplish this. However,

both contour and run-graph techniques only detect straight lines yielding descriptions

lacking in geometric fidelity.

Mesh pattern based methods fails to detect complex line patterns and are unable to

handle correctly noisy images. Thus, these methods are not suitable for engineering draw-

ings.

The OZZ method reproduces line geometry with low quality and is designed to detect

mainly straight lines. Thus, this method, although fast, is not suitable for vectorization of

2.4 Curve Simplification 25

engineering drawings containing arcs or other curved shapes.

Finally, the SPV is a fast method that both respects line geometry, preserves line

width and handles junctions and intersections accurately. Therefore, this method is better

suited to perform vectorization of engineering drawings, as well as the iterative thinning

approaches.

2.4 Curve Simplification

Engineering drawings in vector format are stored using a small set of primitives.

These primitives range from lines and splines to more complex geometric shapes, such as

polygons and arcs. In my approach I choose to convert all these shapes to polygonized

curves (a chain of line segments, also called ”polyline”). While this increases the number

of entities in the drawing it allow me to use a uniform simplification algorithm since it

only needs to handle lines.

Curve simplification, must try to reduce the number of line segments in a polyline

preserving its caricature. There are three main approaches to curve simplification. The

simpler takes a polygonized curve withn vertices as input and produces an approximate

polyline with m vertices as output (m � n). Algorithms based on this approach are

referred asbounded-#. Other approaches also take a polygonized curve withm ver-

tices to yield an approximate output within a specified errorε tolerance. These are called

bounded-ε methods. A third approach approximates the polygonized curve without any

prespecified restriction. Implementations of this approach depend on the context of appli-

cation and are mostly used on cartography or character outline detection [56]. Therefore,

it will not be discussed further on this document.

One of the most trivial methods to simplify polylines is the regular sub-sampling al-

gorithm [73] known as the ”nth-point algorithm” in cartography. This method produces

an output line using everynth point of the input and discarding the rest. The major draw-

back of this method is that simplification may remove critical points such as edge corners,

as depicted in Figure 2.12. In this example the simplified output (right) is a straight line,

which is a poor approximation of the original curve. Another disadvantage of the reg-

ular sub-sampling is that it generates unnecessary vertices on straight lines, that could

26 Chapter 2. Related Work

Figure 2.12: Example of regular sub-sampling usingn = 3. Original curve (left) and its
caricature (right).

Figure 2.13: Example of curve simplification using Douglas-Peucker. Original curve
(left) and its caricature (right).

be represented with only two endpoints. However, when the original polygonized curves

are smooth this algorithm might produce satisfactory results. Regular sub-sampling is a

very fast and simple technique that can produce, under certain conditions, good approx-

imations. Unfortunately the result of the simplification of generic curves may be a poor

caricature of the original [19].

Probably, the most widely used [50] method for curve simplification is the Douglas-

Peucker algorithm [29]. This well-known technique recursively selects coordinates that

fall outside a predefined bandwidth. At each step, the Douglas-Peucker algorithm at-

tempts to approximate a sequence of points by a line segment. The farthest point from

the line segment is found and if its distance to the line segment falls below a pre-defined

thresholdε, the approximation is accepted. Otherwise the algorithm is recursively ap-

plied to the two sub-sequences before and after the farthest point. Figure 2.13 depicts the

simplification of a polyline with Douglas-Peucker method. Although this technique may

not be optimal, it generally yields the highest quality approximations when compared

with many other heuristic approaches. According to published results [110], Douglas-

Peucker Algorithm was the best at choosing critical points and generalizations produced

by this algorithm were overwhelmingly deemed the best perceptual representations of

the original curves. Additionaly, the Douglas-Peucker method is easy to implement and

the hierarchical structure of simplified polylines can be used on scale-independent carto-

2.4 Curve Simplification 27

graphic databases [65, 18] as well as in image processing or computational geometry. The

time complexity of Douglas-Peucker algorithm depends greatly on the input curve. While

Ω(n) complexity can be achieved in a best case withn vertices, the worst case running

time of this algorithm is quadratic.

Hershberger and Snoeyink [51, 52] proposed an approach based onpath hullsto speed

up the Douglas-Peuker algorithm. This method uses the geometric structure of the prob-

lem to attain a worst case time-complexity ofO(n log n). Since the splitting vertices of

a polygonized curve must lie on its convex hull, Hershberger and Snoeyink use thepath

hull data structureto maintain a dynamic convex hull of the polygonal chain. Two convex

hulls from the middle of the chain outward are computed using Melkman’s hull algorithm

[75]. The farthest vertex from a line is found by locating two extreme points in each

hull using binary search. After splitting the curve on the farthest vertex, one of the hull

computations are undone to obtain the hull from the ”middle” to the farthest point and

recursively approximate the sub-chain containing the middle. Then another two convex

hulls for the remaining sub-chain are built and the same method is applied to find its car-

icature. In their paper, Hershberger and Snoeyink shown that the path hull algorithm can

be between two and three times slower than the standard Douglas-Peucker method in best

case situations due to extra structural information that it maintains, but it is far faster in

both worst case and generic situations. However its implementation is more complex than

the standard implementation of the Douglas-Peucker algorithm.

Instead of splitting the polygonized curve recursively, Ballard and Brown [4] suggest

splitting at the point of highest error along the whole curve, on each iteration. This method

produces highest quality results in detriment of some processing time. Additionally, if the

yielded subdivision tree is saved, it allows building an approximation for any larger error

tolerance very quickly [18].

Recently, Jaafar [60] presented a new approach to curve simplification using a least

squares method with double tolerance (LS:DT). This technique uses the Douglas-Peucker

method to identify a chain of ”anchor points” that preserves the line caricature. Then,

they construct a least squares line that passes trough a set of points computed from the

anchor points. Using a shift tolerance it is possible to adjust these lines to enhance the

generalization effects. Since least square lines are not linked together, it is necessary to

establish common intersection points, which must be joined to create the simplified poly-

28 Chapter 2. Related Work

line. This method can minimize distortion with respect to original curve, while preserving

its caricature.

Additionally to the heuristic methods referred above, algorithms for optimal approx-

imation of polygonized curves yield the best solution to this problem. Unfortunately,

these algorithms are slower than their heuristic counterparts and are usually quite com-

plex, making them hard to implement. An optimal algorithm that performs an exhaustive

search would have exponential cost. However, using dynamic programming and taking

advantage of geometric properties it is possible to yield an optimal solution in polynomial

time. By introducing a slight variation in error metric, Imai and Iri [59] presented anL∞-

optimal1 approach that yields optimal solutions inO(n2 log n) using shortest-path graph

algorithms or convex hulls.

2.4.1 Discussion on Curve Simplification

Regular sub-sampling has some restricted applications, when the input characteristics

are known and fulfill certain requirements or when it is not necessary to yield a precise

approximation. However it is the fastest simplification algorithm available.

The major drawback of the Douglas-Peucker algorithm and its variants is that sim-

plification of a simple polygon can yield a self-intersecting polygonized curve. Although

this problem seems quite serious, the simplicity, performance and effectiveness of the

Douglas-Peucker method make up for its drawbacks. That way it is not hard to under-

stand why this algorithm remains the most widely used curve simplification technique

more than three decades after its publication.

The other existing solutions for curve simplification can produce better (even optimal)

approximations and/or be faster. However the complexity of implementation prevents

their use, except when Douglas-Peucker algorithms are not fast enough or when better

approximations are needed.

1To estimate the error in approximation of the initial curve, several distances from a point to a line
can be applied: the Euclidean distance (L2); the Manhattan distance (L1); the Max distance (L∞); the
Vertical distance; the Bounding Shell distance. Furthermore, Perez and Vidal [90] proposed an incremental
technique for error measurement that uses the Euclidean and Vertical distances measured to the line support
of the segments that allows optimal simplification algorithms to attain faster results. For more details on
approximation error measurement see [43].

2.5 Summary 29

2.5 Summary

This chapter presented a comprehensive survey on drawing retrieval systems, focus-

ing on those that use sketches to specify queries. Additionally, I surveyed the most used

vectorization methods in order to select the one that best suits my needs. Finally, I pre-

sented a survey on line simplification methods, identifying advantages and disadvantages

of each method. The next chapter introduces my approach to retrieval of technical draw-

ings using both images and sketches.

30 Chapter 2. Related Work

3
Sketch and Image Based
Retrieval of Engineering

Drawings

The majority of content based retrieval systems were developed to classify and search

for digital images. These approaches uses mainly color, texture and shape information to

describe the content of pictures. However, engineering drawings, are usually colorless

and existing textures are rarely relevant for drawing classification. Thus, a completely

different set of features must be used to describe its content. As presented in previous

chapter, some work has been published on classification and retrieval of vector drawings.

However, existing content based retrieval of vector drawings methods rely exclusively on

sketches, images or vector information to specify the query [8, 89, 69, 34].

My approach is based on the framework for retrieval of vector drawings proposed by

Fonseca [34]. It uses spatial relationships and geometric information to classify drawings

and queries and provides an effective and accurate indexing and retrieval process to search

for vector drawings in large databases. Using Fonseca’s framework I developed a novel

approach that allows not only the use of sketches to specify queries and images to query

by example but also mixing both, providing users with a powerful new way to search

for vector drawings. Furthermore, I proposed methods for automatic simplification and

classification of existing drawings and queries.

In this chapter I describe in detail my approach for content based retrieval of engi-

neering drawings. Initially, I present an overview of the approach, which includes some

use-case scenarios and a description of proposed architecture. Then, I describe the image

vectorization along with drawing simplification and classification algorithms. Finally, I

give a brief description of the indexing, query and matching mechanism.

31

32 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

3.1 Approach Overview

In this dissertation I present a novel approach that allows mixing images and sketches

to specify queries when searching for vector drawings. It provides a powerful new way

to define queries for content-based retrieval of vector drawings. It is now possible to take

advantage of existing hard-copies of drawings and simultaneously explore users’ visual

memory and ability at sketching. Besides using only hand-sketched queries or digitized

drawings to query by example, my approach allow users to add new elements to vectorized

drawings by sketching new shapes or delete existing entities using simple gestures. This

way, they can start with a digitized drawing and then apply editing commands to refine it.

Images and sketches are integrated by first applying a vectorization process, convert-

ing raster drawings into vector figures. To that end I selected a set of existing algorithms

from computer vision. To achieve a vectorization solution which is usable interactively,

performance was privileged in detriment of accuracy. Indeed, the selected algorithms

were tuned to minimize user intervention during vectorization, assuring an almost auto-

matic process, described in Section 3.2. Then users can edit the vectorized image using

sketches. This way they can refine queries, select relevant parts, delete unnecessary shapes

or add new visual elements.

To classify existing drawings it is necessary to extract from them visual and relation-

ship features1. To that end, I developed a feature extraction process capable of identify

relevant features from drawings in short time. This process simplifies the drawings, in

order to remove irrelevant shapes, and then, based on extracted features, it computes a

geometry matrix and a topology graph for each drawing. These are then passed to Fon-

seca’s framework, which computes the correspondent descriptor and inserts them in two

different indexing structures, one for topological information and another for geometric

information. The retrieval process extracts the same geometry and topology descriptors

from the query that the classification process extracts from a drawing. Thus, feature ex-

traction and descriptor computation are basically the same in retrieval and classification.

However, while the later descriptors are inserted in the database, during retrieval the de-

scriptors are used to execute a search in the database.

1As suggested by Fonseca [34], visual features encode shape geometry while relationship features de-
scribe topological relationships among shapes on drawing.

3.1 Approach Overview 33

(a) (b) (c)

Figure 3.1: Searching a mould component using a sketched-query.

3.1.1 Use Scenarios

The proposed Sketch and Image Based Retrieval (SIBR) system can be used in a di-

versity of scenarios involving draftspeople, designers, CAD operators or even salespeople

or storekeepers. While the first three usually use the system while creating or editing a en-

gineering drawing for searching for other drawings or components they want to reuse, the

others use the system to search for specific parts. Next, I will present distinct scenarios,

focusing on two possible utilizations of my retrieval system.

3.1.1.1 Scenario A: Creating a Mould

While drawing a mould (Figure 3.1 (a)), Mary, a CAD operator, needs to include a

rarely used component. Despite her large experience in this kind of task, she only knows

in memory the references of the most used components. Instead of browsing in the maze

of menus and options provided by the component library, Mary decides to use the SIBR

system. Thus, she sketches a rough approximation of a 2D view of the ought component

(Figure 3.1 (b)). The system yields a set of results (Figure 3.1 (c))based on that query, but

none of them is the desired component.

Since the ought component is not within the returned results, Mary refines the initial

sketch by adding more detail (Figure 3.2 (a)). Now, the desired component is in the

results yielded by the SIBR. Mary selects it (Figure 3.2 (b)) to open it with the CAD tool

she is using. After confirming that that component was the one she was looking for, Mary

integrates it in the mould drawing (Figures 3.2 (a) and (b)).

34 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b) (c) (d)

Figure 3.2: Retrieving a mould component and integrating it into a drawing.

3.1.1.2 Scenario B: Looking for a Part

John, a maintenance technician, needs a mechanical part in order to fix a broken

equipment. He rushes to the huge store of the supplier and asks Jack, the storekeeper, for

that part, giving him the part reference number. Unfortunately, that part is out of stock and

it will not be delivered within the next weeks. However, it is possible that similar parts

might solve the problem, but neither Jack have sufficient know-how to point a equivalent

part neither John knows by memory references of equivalent parts.

Fortunately, John has the engineering drawing of the part he is looking for. Therefore,

Jack can use the SIBR to search for similar parts. To that end, he digitizes the drawing

using a flatbed scanner and submits it as a query to to SIBR system. Within a couple of

minutes the system yields a set of similar drawings. By consulting the technical specifica-

tions of parts associated with each drawing, provided by the manufacturer software, John

finds an equivalent part and asks Jack to give him that one.

3.1.2 System Architecture

The proposed scheme for content-based retrieval of vector drawings through images

and hand-sketched queries supplies a mechanism to retrieve vector drawings, in electronic

format, taking advantage of users’ natural ability at sketching and existing paper drawings.

Based on the framework presented by Fonseca [34], the architecture of this system for

content-based retrieval, presented in Figure 3.3, is divided in two modules:

• Classificationmodule, which analyzes existing drawings and maps their features

onto numeric descriptors, storing them in a database.

3.1 Approach Overview 35

• Retrievalmodule, which compares queries to a database of drawing descriptors to

produce a set of candidate results. The vectorization of digitized drawings is also

performed by this component.

In the Classificationmodule, theFeature Extractioncomponent yields a geometry

matrix and a topology graph for each drawing. This geometrical and topological informa-

tion are passed to theDescriptor Computationcomponent, which creates feature vectors

that are then inserted into a multidimensional indexing structure. TheRetrievalmod-

ule comprises four different components. TheImage Vectorizationcomponent converts

digitized drawings to vector format, by applying computer vision algorithms. As in the

Classificationmodule, theFeature Extractorcomponent extracts features from sketches,

vectorized drawings or from a combination of both, producing a geometry matrix and a

topology graph. Those are then passed to theQuerycomponent which creates descrip-

tors for this information. Finally, the Matching component compares descriptors from the

query to those stored in the logical database, yielding a set of similar drawings.

Figure 3.3: System architecture of proposed solution. Feature Extraction and Image Vec-
torization components are my main contributions, while remaining components are pro-
vided by Fonseca’s framework.

36 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

D
ig

iti
ze

d
D

ra
w

in
g

V
ec

to
r

D
ra

w
in

g

Mandatory StepOptional Step

Contrast
Enhancement

Edge
Enhancement Binarization Binary Noise

Reduction Thinning Polygonization

Figure 3.4: Image Processing Steps.

Next section describes in detail the process used by theImage Vectorizationcom-

ponent and in following section I present the feature extraction process applied in the

respective components.

3.2 Image Vectorization

When searching for a drawing or similar drawings based on a printed version, it is

first converted to digital format trough scanning. The quality of such digital images may

vary drastically depending of the characteristics of all parts of the sensor chain and illu-

mination technology [21]. The loss of quality incurred during image acquisition makes

the vectorization a complex process. Until now no methods devised can be considered as

sufficiently stable and robust to work as stand-alone ”black boxes” [106]. According to

Karl Tombre et al. [105], one important factor for robustness is to minimize the number

of parameters and thresholds needed in the vectorization process. Thus, my approach

intends to achieve an acceptable vectorization result with minimal user configuration re-

quirements.

Proposed approach starts by performing contrast and edge enhancement, followed

by a thresholding process that yields a binary version of the original image. Then, I ap-

ply a noise reduction algorithm followed by a thinning step before converting image to

vector format. In this vectorization process I employed well known and widely used al-

gorithms from Computer Vision, some of them are more than thirty years old. Hence, I

will avoid an exhaustive description of this algorithms, since those techniques are exten-

sively documented in the literature. The image processing pipeline (depicted Figure 3.4)

for vectorization of engineering drawings is composed by a sequential application of the

steps referred in the previous paragraph. Depending on image quality, contrast and edge

enhancement might be skipped, as well as binary noise reduction.

3.2 Image Vectorization 37

In my work I assumed that printed drawings have no text or symbols. However, this

restriction can be eliminated by applying a text/symbols/graphics segmentation method

before polygonization. Ramel and Vincent [96] presented several strategies for localiza-

tion and recognition of graphical entities in line drawings. Additionally, I also assumed

that drawings were digitized to a raster gray-scale format and saved in non-compressed

image files. If drawings are digitized in binary format, first steps can be discarded, at

the cost of external pre or post processing in order to refine or connect lines after image

acquisition.

3.2.1 Contrast Enhancement

Accurate visual interpretation of images depends to a great extent on their visual

contrast. To improve the appearance of images and effectiveness of analysis I use his-

togram transformations, due to its widely proven simplicity and effectiveness. These well

known methods enhance image contrast by changing the shape of the histogram and are

extensively documented [58, 93, 94, 100]. If quality of original image is acceptable but

not enough for an effective vectorization, an histogram expansion is applied. Histogram

expansion is a straightforward and conservative linear histogram transformation that in-

creases contrast keeping the histogram shape. To improve effectiveness of this histogram

transformation in images with low contrast but with regions of low and high intensities,

such as digitized versions of engineering drawings, is introduced a cut-off percentage

such that middle intensities will be stretched while intensities on upper and lower tails of

histogram will be compressed.

In lower quality images, I apply an histogram transformation by specifying the de-

sired shape of the output histogram. In my approach I considered three possible slope

values (m) for output histogram: a positive slope with valuem = 1, that enhances con-

trast in low intensities; a negative slope with valuem = 1, that enhances contrast in high

intensities; or a zero slope (m = 0), corresponding to histogram equalization. Depend-

ing on brightness of original image, one of these slopes values is used in the histogram

transformation.

38 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b)

Figure 3.5: Original gray-scale image (a) and yielded result after contrast and edge en-
hancement (b).

3.2.2 Edge Enhancement

The main goal of the algorithms presented in this thesis is to detect lines from original

images in digital format. Therefore, it is important to enhance images in order to improve

the effectiveness of line detection when their quality is not good enough, as depicted

in Figure 3.5. Unlike the global image enhancement provided by histogram transforma-

tions presented previously, the edge enhancement methods performs local analysis to give

a crisper appearance to image, enhancing edges and local features. Edges in an image are

denoted by abrupt local variations in intensity, which implies high spatial frequencies.

Thus, contrast enhancement can be achieved trough amplification of these high frequency

components relative to background and other slowly varying intensity features.

One method to sharpen edges is simple to diminish the slowly varying intensity fea-

tures. unsharp masking performs this by applying a low-pass filter and then subtract the

filtered image from the original. The unsharp masking procedure is based on the as-

sumption that edges to enhance lay on a flat (constant) background. However, this is not

the most common situation, since digitized versions of engineering drawings frequently

present non-uniform backgrounds. To overcome this problem, Seulet al.[100] suggests

high-pass filtering with a pre-defined mask. These masks should have coefficients that

sum to unity in order to ensure that the average intensity of the original image remains

unaltered. Since engineering drawings are contains mainly lines over a distinct back-

ground, the most suitable mask is based on an operator known as the Laplacian, which

is a difference operator commonly used for detecting edges in an image. Thus, I suggest

using the Laplacian operator∆ as a convolution filter.

3.2 Image Vectorization 39

∆i(x, y) =

 0 −1 0
−1 4 −1
0 −1 0



Unfortunately this sharpening produces, as a side effect, an enhancement of back-

ground noise. Hence, it is necessary to perform a noise reduction operation as a prior

step. A common approach to generic noise reduction on gray-scale images is smoothing.

To that end, convolution of the image is performed with a low-pass filter. In this technique

each pixel is compared to its neighbors and if their intensity differ sharply, this difference

may be reduced by adjusting the pixel’s intensity.

The simplest filter used for smoothing is the uniform filter. With this filter, sharp

features are smoothed trough removal of intensity disparities between neighboring pixels.

However, uniform filters has two major drawbacks. Both noise and small important fea-

tures can be equally affected when they exhibit similar degrees of acuity. Furthermore,

some ringing distortion can be introduced due to ghost edges. Using Gaussian filters for

smoothing avoids major problems of uniform filters, namely by reducing the ringing dis-

tortion. Nonetheless, the degree of smoothing with a uniform filter is superior than with

a gaussian filter with the same length. Thus, a larger filter should be used to achieve

the same smoothing. Moreover, while the uniform filter only requires addition, using a

Gaussian filter implies multiplication during convolution. Therefore, to obtain the same

smoothing effect with a Gaussian filter is required higher computation time than with a

uniform filter. Since engineering drawings contain a large number of lines, the most ap-

propriate technique for noise removal on gray-scale version of digitized drawing is trough

smoothing with a Gaussian filter. Hence, before high-pass filtering, I perform convolution

with the3 × 3 Gaussian filterhG, which yields pretty acceptable results in a reasonable

amount of time.

hG = 1
16

 1 2 1
2 4 2
1 2 1



Despite the small amount of smooth produced by this filter, when compared with

a similar uniform filter, the risk of image corruption due to ringing is highly reduced.

Moreover, the computation time with digitized images used for retrieval of engineering

drawings is similar to other steps in the vectorization pipeline.

40 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b)

Figure 3.6: Binary Image obtained using fixed threshold (a) and region averaging (b).

3.2.3 Binarization

Shading and textures are not relevant to the presented work, since the vectorization

process aims line detection on digitized engineering drawings. Therefore gray-scales

images can be converted to binary images. These are composed by pixels that just ad-

mit two possible intensities, usually referred as ”on” and ”off” or ”black” and ”white”.

This seemingly simple conversion process is really a complex problem, since even gray-

scale images that apparently contains only black lines on a white background have many

more than only two intensity values, often covering almost all range of possible intensi-

ties. Therefore it is necessary to identify the range of intensities that must be considered

”black” and which are ”white”. To that end, a threshold level is defined. The threshold

level represents a intensity value above which pixels are considered ”on” and below are

considered ”off”. Thus, choice of threshold level is the most important task to perform

in binarization . However, determination of this value might be difficult, especially if

contrast are poor or image have a nonuniform background.

The binarization, also called thresholding, could be achieved trough several different

methods. These are usually grouped in two main categories: global techniques and locally

adaptive techniques. Global techniques determine a single threshold level for the image

and perform conversion using that value for all pixels, ignoring their context. On the other

hand, locally adaptive techniques use context information to adapt the threshold for each

pixel according to its neighbors.

When images have uniform background the global techniques are usually more effi-

cient, since there are no advantage in using the more complex locally adaptive techniques.

3.2 Image Vectorization 41

(a) (b)

Figure 3.7: Image of a digitized engineering drawing (a) and its intensity histogram (b).
At right of the histogram the peak is formed the background while the small peak at left
corresponds to foreground. Threshold value should be just at left of the larger peak.

In some cases the results might even be better because threshold selection is based on

overall image and not in a smaller set of pixels. However if original paper drawing quality

is low or if illumination during capture were nonuniform only locally adaptive techniques

can achieve satisfactory results. A detailed evaluation of locally adaptive binarization

methods for gray-scale images with low contrast, variable background intensity and noise

is presented by Trier and Taxt in [107].

Since in this thesis I assumed that images are acquired using a flatbed scanner that

provides controlled lightning conditions, the best results are achieved, when the original

paper drawing has good quality, by using global techniques. However poor quality orig-

inals, usually caused by aging or mishandling, may require locally adaptive techniques.

Therefore I suggest that the choice of binarization method must be done during image

processing, by selecting between a fixed thresholding technique, a global technique based

on histogram shape or a locally adaptive region averaging technique.

Fixed thresholding is the most straightforward global technique. It uses a selected

threshold value to perform the binarization of a gray-scale image. However, histogram

shape can be used to determine the threshold value automatically. The global technique

based on the histogram shape, analyzes the intensity histogram in order to find a value

between the peak formed by background, dominant in engineering drawings, and the

peak originated by the foreground (see Figure 3.7).

Region averaging is a widely used locally adaptive technique. Theoretically, it sub-

tracts a nonuniform background from the original image and performs thresholding on

the uniform result. In practice, it works by first calculating a running region average, by

42 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

Figure 3.8: Evolution of image detail during processing.

comparing each pixel to its local average and setting it to ”ON” or ”OFF” accordingly.

The effectiveness of region averaging technique depends on the size of the region used for

calculating the local averages. This value must be adjusted to reflect the expected size of

foreground features. Since I am interested in lines, this region should be relatively small.

Best results were obtained with a region sizek = 1
50

ld, whereld is the length of the image

diagonal.

In proposed solution, the choice between global and locally adaptive techniques is

made by the user during the vectorization process. This implies that users must be able to

identify, by looking at the digitized image, which is the best technique. However, it must

always be possible to use the trial and error approach to choose the more effective method,

since results of each image processing step should be displayed and last action could be

quickly undone in order to perform a different one. Figure 3.8 illustrates a vectorization

of a drawing, depicting the evolution of part of the drawing. In this case the user has an

original image in grayscale format, performed both contrast and edge enhancement steps

and then executed a binarization using fixed threshold. However, the yielded binary image

has low quality. Therefore, the user went back one step and tried a different binarization

method, which produced a better binary version of digitized drawing. Then, user applied

the noise reduction and thinning steps, obtaining a good final result.

3.2 Image Vectorization 43

 * *
 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * * *
 * * * * *
 * * * * *
 * * * *
 * * * * *
 * * * * *
 *

 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * *
 * * * *
 * * * *
 * * * *
 * * * *
 * * * *

 * *
 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * * *
 * * * * *
 * * * * *
 * * * *
 * * * * *
 * * * * *
 *

 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * *
 * * * *
 * * * *
 * * * *
 * * * *
 * * * *
 * * * *

(a) (b)

Figure 3.9: Pictorial example of speckle noise reduction: original image (a) underwent
several iterations of the noise reduction algorithm based on the kFill filter, which yielded
the final image (b).

3.2.4 Binary Noise Reduction

Unappropriate storage, mishandling and aging of paper drawings can seriously de-

grade the quality of the original document. Additionally, the acquisition process can

introduce noise on the captured images. Although image processing steps performed ear-

lier attenuated some noise on image, salt-and-pepper noise (also called speckle noise) is

usually present on image yielded by binarization.

Speckle noise removal on binary images improves greatly the reliability and robust-

ness of thinning and line detection algorithms (see Figure 3.9. However, complete noise

removal is hard to achieve in real time applications. In proposed approach I aim to per-

form just an efficient noise reduction that executes in a short period of time. To reduce

speckle noise in binary images the most common method consists in removing only single

pixel noise. To that end, is used a straightforward technique which applies a3×3 mask to

each pixel, comparing it with its eight neighbors and changing its state accordingly. Un-

fortunately, this simple technique fails on removing larger noise features and even single

pixel noise in the boundary of regions might persist.

Although more complex, the binary noise reduction algorithm based on kFill filter,

proposed by O’Gorman [85], is able to reduce both isolated and border noise up to a

selected size. Additionally, it allows control of corner rounding and length shortening

effects. Furthermore, this algorithm enables the connectivity persistence, by providing

the possibility of ensuring that filling operation does not join two disconnected regions

neither separate connected regions.

44 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

Therefore, by considering characteristics of engineering drawings, the algorithm pro-

posed by O’Gorman seems appropriate for binary noise removal during vectorization.

Configured to retain90◦ corners and keep the connectivity, this algorithm performs an

efficient binary noise reduction on digitized technical drawings.

3.2.5 Thinning

Since purpose of proposed vectorization process is to find a sketchable version of

original drawing and I am concerned mainly with topology and geometry, the thickness

of lines that composes the original drawing is not important. I am only interested in its

one pixel wide skeleton. These skeleton represents an approximation to medial axis of

lines in original drawing and is used by the line tracking algorithm to construct the vector

version of drawing. In proposed approach I consider that drawings does not contain filled

shapes, only lines and arcs. However the presented work can be extended to consider such

elements by using a segmentation method that separates the filled shapes from lines and

then performing contour detection on the filled elements instead of thinning.

Lam et al made comprehensive reviews [67, 68] of several skeletonisation methods

and conclude that there are no general thinning algorithm. In fact, to obtain the best

results, advantages and drawbacks of distinct thinning techniques must be compared to

select the more appropriate method for each situation.

The algorithm proposed by Hu and Li [57] is able to determine the intersection pixel

with precision, but fails on maintaining line connectivity, which make it unappropriate for

my intents. Jansen and Vossepoel [61] proposes a method based on iterating a sequence

of vectorization and morphological operations until a fitting criteria is met, but since I do

not aim to achieve a precise version of original image such complexity is dispensable.

The thinning algorithm proposed by O’Gorman [84] is both simple and effective in

computing the skeleton of elongated segments, such as line segments or arcs. The major

drawback of this method is the lack of precision when determining line crossings and

corners of thick lines. However, such precision is not relevant in the present vectoriza-

tion process. Thus, due to its simplicity and efficiency in thinning lines and arcs, the

O’Gorman algorithm were chosen to implement the thinning step in the proposed vector-

ization pipeline. An overview of thinning techniques was presented in Section 2.3.2.

3.2 Image Vectorization 45

(0,0)

(3,1)

3
2 2 2 2

1

4

4

5

X

7 0 1

2

345

6

(0,0)

(3,1)

3
2 2 2 2

1

4

4

5

X

7 0 1

2

345

6

(a) (b)

Figure 3.10: Freeman chain coding: chain direction codes (a), and an example of line
structure with starting coordinates and direction codes. The resulting Freeman code for
this image is:(0, 0)3, 2, 2, 2, 2, 1, 5(3, 1)4, 4, 5, 1

3.2.6 Polygonization

Since my classification mechanism is based on shape geometry and spacial relation-

ships, some loss of detail during this process is acceptable and does not greatly affect the

query results. This is crucial when deciding which vectorization method to use. There-

fore, I use an adaptation of the primitives chain-coding method proposed by O’Gorman

[86] followed by a polygonization procedure.

The thinning process yields a line image, which is composed by single-pixel width

lines. These lines are indeed chains of ON pixels that are connected from one pixel to

neighboring pixels. To transform these lines from pixel space to its concise represen-

tation chain coding techniques are commonly used. These methods provides a lossless

transformation, preserving all topological and morphological information.

Freeman chain coding [40] is a popular and effective method for analyzing simple

line images. This algorithm searches the image in raster order for the first ON pixel and

stores its coordinate location. Then its eight-connected neighbors (Figure 3.10 (a)) are

examined and the direction of the first ON neighbor is stored. Next the neighbors of

the later pixel are analyzed in the same way, coding the chain iteratively until no more

connected ON pixels exist. When each pixel coordinates are stored it is erased (set to

OFF). This process repeats through the last ON pixel of the image. However, branches and

crossings are not considered by the Freeman chain coding. Thus, composite lines joined

at junctions in thinned image are represented as separate lines in the result produced by

this algorithm, as depicted in Figure 3.10 (b)).

O’Gorman proposed [86] an extension for the Freeman chain code. It was designed to

46 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b)

Figure 3.11: Thinned binary image (a) and vector version of drawing (b).

preserve information on branching and junction topology. The Primitives Chain Coding

(PCC) presented by O’Gorman, introduces codewords to represent not only the connec-

tion direction but also other line features such as start and end points of lines, bifurcations

and cross junctions. Likewise previous method, to generate a PCC representation of a

line image a raster-order search is performed until an ON pixel is found and then its lo-

cation is stored. Additionally, a PCC code for a start or break feature is also stored. The

PCC chain coding starts from this point by analyzing on each iteration sets of up to three

successive pixels which are PCC coded and then erased. Any features encountered are

coded, branches are followed to their ends and loops are followed to their initial coding

location. This coding process ends when the last pixel of the line structure is coded and

erased. Then the raster search continues from the starting position of the previous line

structure, repeating the coding process for any ON pixel found in the image.

I adapted this well-known primitive chain coding method in order to construct sets

of linked points instead of codes, thus identifying branches and intersections. Each of

these sets yields an approximation to a smooth curve, which can be represented by a set

of connected line segments. To compute this set I used a polygonization procedure based

on the Douglas-Peucker algorithm [29], that reduces the number of points within a given

threshold, as described in Section 2.4. Consequently, the presented method produces an

approximate vector version of the original drawing composed by a set of line segments,

as depicted in Figure 3.2.6.

3.3 Feature Extraction

Content-based retrieval of pictorial data, such as digital images, drawings or graphics,

uses features extracted from the corresponding picture. Typically, two kinds of features

3.3 Feature Extraction 47

Ve
ct

or

D
ra

w
in

g Line Segment
Intersections

Removal

Line Set
Simplification

Polygon
Detection

Polygon Set
Simplification

Topological
and Geometric

Feature
Extraction

Geometry Matrix
Computation

Topology Graph
Creation

G
eo

m
et

ry

M
at

rix
To

po
lo

gy

G
ra

ph

Figure 3.12: Feature extraction block diagram decomposition.

are used; visual features (such as color, texture and shape) and relationship features (topo-

logical and spatial relationships among objects in a picture). However, in the context of

this work, engineering drawings, color and texture are irrelevant features and only topo-

logical relationships and geometric features are considered to make presented approach

less restrictive.

Proposed feature extraction process drawings through a set of stages until they are

mapped into a geometry matrix and a topology graph. These are then submitted to Fon-

seca’s framework in order to produce two feature vectors, from which are computed a set

of descriptors using spectral information. These descriptors may be inserted on the main

indexing structure during classification or used to query the database when searching for

similar drawings. Figure 3.12 depicts the block decomposition of the proposed feature ex-

traction process. First, I apply a line segment intersection removal to the drawing, which

is considered as a set of line segments. Then, I apply a line simplification step, followed

by a polygon detection and another simplification step. Finally, topological and geometric

features are extracted from simplified set of polygons. These features are then converted

into a topology graph and a geometry matrix, respectively.

3.3.1 Simplification

The success of my approach content-based retrieval depends in great extend of the

quality of the extracted features and these depends on accurate shape detection algorithms

and efficient simplification methods. Regarding drawing simplification, the presented

solution includes two distinct steps. The two simplification steps eliminate useless shapes

from drawing before extracting its features. Most technical drawings contain detailed

descriptions of objects, which are not necessary for a visual search and increase the cost

48 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b)

Figure 3.13: Arrangement of segments before (a) and after (b) traditional snap rounding.

of searching. Thus, I try to remove visual details (i.e. small-scale features) while retaining

the perceptually dominant elements and shapes in a drawing. To that end, I first simplify

vector information, producing a set of lines. After detecting polygons from these set of

lines, I simplify the set of polygons produced by the detection algorithm.

3.3.1.1 Line Set Simplification

To simplify the initial set of lines I first apply a snap rounding algorithm. This is

a well known method that creates fixed-precision sets of line segments from arbitrary

precision vectors. In my approach I use this method not only to ensure a finite-precision

approximation to the original drawing, but also to produce a simplified version, where

small features are discarded.

The snap rounding method tiles the plane where the line segments lay with a grid

of unit squares. These squares are usually calledpixels. A pixel is consideredhot if it

contains one or more vertices of lines. After all line segments has been visited and all hot

pixels has been found, each vertex of the arrangement is replaced by the center of the hot

pixel containing it. Then each edge is replaced by a polygonal curve with vertices on the

center of the hot pixels crossed by the original edge. Figure 3.13 depicts an example of

traditional snap rounding on a arrangement of lines.

Goodrichet al. [42] presented a deterministic plane-sweep algorithm that performs a

robust snap rounding approximation of a set of line segments. They also give a simpler

randomized incremental construction with running time equivalent to the deterministic

version. The method presented by Goodrichet al. preserves the more important topology

of lines and runs in sub-linear time. Unfortunately, even the randomized algorithm is not

easy to understand and implement.

3.3 Feature Extraction 49

On the other hand, the traditional snap rounding procedures will produce arrange-

ments of lines with its vertices well separated but the edges might be very close to non

incident vertices, as depicted in Figure 3.14. In this example, vertices of segmentss andt

in original set of lines are replaced by the center of the hot pixels that contains them, pro-

ducings′ andt′ respectively. In the rounded segments the distance between the rightmost

vertex of segments′ and the segmentt′ are extremely small. However, with traditional

snap rounding no further simplification will be made.

To overcome this problem, Halperin and Packer [46] proposed an augmented proce-

dure, the iterated snap rounding, which rounds a set of lines such that each vertex is at

least half the width of a pixel away of any non-incident edge. Despite possible degrada-

tion of quality of the approximation, this algorithm also preserves the topology of original

arrangement of lines and the authors presented a straightforward implementation of the

proposed method.

In Figure 3.15 is illustrated an example of two different rounded arrangements of a

single set of line segments. The one produced by a traditional snap rounding algorithm

leaves all lines disconnected, while the segments in the arrangement yielded by the it-

erated snap rounding are connected. Considering that my algorithm uses closed shapes

(polygons) to classify drawings and sketched queries, it is obvious that, for my purposes,

the iterated snap rounding methods produce more suitable results.

Therefore, I decided to use the iterative snap rounding method presented by Halperin

and Packer to achieve an effective line set simplification, since there are need high quality

on approximation in my approach, but only geometry and topology preservation, which

is clearly accomplished by this method. Although iterated snap rounding algorithm was

s

t
t’

s’s

t
t’

s’

(a) (b)

Figure 3.14: Arrangement of segments with a vertex very close to a non-incident line after
(b) snap rounding.

50 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b) (c)

Figure 3.15: Results produced by Snap Rounding (b) and Iterated Snap Rounding (c)
when applied to a set of line segments (a).

conceived to convert arbitrary precision sets of line segments into fixed precision repre-

sentations, it fulfills my needs for initial line set simplification of vector drawings. My

main concern, the topology and geometry of relevant shapes are preserved by this algo-

rithm. Moreover, most irrelevant shapes are discarded by it. The resulting set of polygonal

curves are then converted in a set of line segments that will be used as input to the polygon

detection algorithm.

3.3.1.2 Polygon Simplification

The novel polygon detection algorithm described in Section 3.3.2 is used, in proposed

approach, to identify shapes on drawings. This algorithm yields a set of minimal poly-

gons. It contains the polygons with minimal number or edges that can be constructed from

a given set of lines. For instance, when the polygon detection algorithm takes the simple

set of lines depicted in Figure 3.16 (a) as input it will yield a set of two minimal polygons,

one with four edges and other with six edges, as shown in Figure 3.16 (b). However, the

detection algorithm considers the intersection points as vertices of the polygon even if

edges are collinear. Thus, the detected rectangle is indeed a polygon with six edges, but

the two horizontal edges on top are collinear, as well as the two vertical edges on left.

(a) (b)

Figure 3.16: Example of polygon detection on a simple drawing: (a) original set of lines
and (b) detected polygons with vertices marked.

3.3 Feature Extraction 51

(a)

(b)

Figure 3.17: Example of polygon detection and coherence simplification on a simple
drawing: (a) detection algorithm yields desired result and (b) an heuristic simplification
must be applied to set of detected polygons.

Notwithstanding, this kind of results does not fulfill my needs, since drawings must

be classified according to topology and this way two similar drawings can have different

topologies just because one of a different number of edges. An example of such problem

is depicted in Figure 3.17. Drawings represented by line sets depicted in (a) and (b) have

similar topology. However, polygon detection algorithm yields sets of polygons with

completely different topology. In the first one there are two adjacent shapes, while in the

second there is one polygon including the other.

To overcome the topology incoherence in results yielded by polygon detection algo-

rithm, I developed a coherence simplification heuristic that privileges adjacency between

polygons, by avoiding inclusion of adjacent shapes. Therefore, when one polygon is in-

cluded in another and shares some edges with it I transform these polygons in two adjacent

polygons, as show in Figure 3.17 (b).

I developed a simple algorithm, INCLUSION-SIMPLIFICATION , that performs this

coherence simplification in polynomial time. This algorithm compares all polygons and

when two of them shares at least on edge it checks if one of them are included in the other.

When one polygon includes the other the algorithm performs two boolean operations in

order to determine the polygons: intersection and exclusive-or.

52 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

INCLUSION-SIMPLIFICATION(Θ)
1 for eachP in Θ
2 do for eachO in Θ
3 do if P 6= O
4 then REMOVE-INCLUSION(P, O, Θ)
5 return Θ

REMOVE-INCLUSION(P, OΘ)
1 if ADJACENT(P, O)
2 then if (P ⊆ O OR O ⊆ P)
3 then
4 RemoveP from Θ
5 RemoveO from Θ
6 append(P ∩O) to Θ
7 append(P XOR O) to Θ
8 return return

The INCLUSION-SIMPLIFICATION algorithm changes the set of polygonsΘ in order

to remove all inclusions of polygons that share at least one edge. This algorithm sweeps

all polygons invoking for each one the REMOVE-INCLUSION procedure. This procedure

compares each polygon with all other checking for adjacency. If an adjacent polygon

is found it is necessary to see if it included or includes the given polygons. When it

happens both polygons are removed from the polygon set and the polygons produced by

the intersection and exclusive-or operations are appended to it.

The two boolean operation over polygons play an important role in the INCLUSION-

SIMPLIFICATION algorithm. After the detection of a pair of polygons to simplify it is

necessary to perform boolean operations on that pair in order to compute the disjoint

polygons. Figure 3.18 depicts the result of applying an intersection (b) and an exclusive-

or (c) to a simple set of two polygons (a), in which the darker polygon includes the lighter

one. In this particular case the exclusive-or operation yields two distinct polygons. Thus,

simplification algorithm will produce the three polygons depicted in (b) and (c).

Before removing the undesired inclusions using the method described above, I must

discard the small polygons which are irrelevant for classification in order to simplify the

drawing and speed up the whole process by reducing the number of polygons on drawing.

To discard irrelevant small polygons I developed a small polygon removal heuristic,

which detects small polygons on drawings and removes or merges them according to their

3.3 Feature Extraction 53

(a) (b) (c)

Figure 3.18: Example of boolean operations over polygons: (a) original set of two poly-
gons, (b) intersection result and (c) exclusive-or result.

adjacency relationships with others.

Initially, a threshold value (ε) must be specified to determine which polygons are

considered small. In my approach, this value is relative to the size of the Axis-Aligned

Bounding Box (AABB) of the whole drawing. Threshold value isε = (1/n)× l, wherel

is the length of the larger edge of the AABB andn determines the level of simplification

desired (n ≥ 2). High values ofn results in almost no simplification and are useful if

the goal is to remove only very small details. On the other hand, ifn ≤ 5 the number of

removed polygons will be large and only the dominant shapes will be preserved. Withε

specified it is possible to identify small polygons on drawing. To avoid complex calculus I

do not use the polygonP itself but its Oriented Bounding Box (OBB),referred asOBBP ,

when searching for small polygons. A polygonP is considered small if the area ofOBBP

is smaller thanε2 or if length of shorter edge ofOBBP is less thanε. These conditions are

formalized in procedure IS-POLYGON-SMALL , which receives a polygonP , computes its

oriented bounding box (OBBP) and returnstrue if P could be considered small orfalse

otherwise.

IS-POLYGON-SMALL (P)
1 OBBP = ORIENTED-BOUNDING-BOX(P)
2 if AREA(OBBP) < ε2

3 then return true
4 if SHORTER-EDGE(OBBP) < ε
5 then return true
6 return false

After all polygons have been checked against the conditions listed above, is created

a set of small polygons (SSP), containing the polygons that satisfy any of these condi-

tions. The detection of small polygons is performed by the DETECT-SMALL -POLYGONS

algorithm which yields theSSP .

54 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

DETECT-SMALL -POLYGONS(Θ)
1 SSP = empty setfor eachP in Θ
2 do if IS-POLYGON-SMALL (P)
3 then Add P to SSP
4
5 return SSP

Polygons onSSP are then analyzed to see which of them must be removed. This is

done in three sequential steps. The first compares each polygon with all others onSSP

within this set, producing a set of adjacent polygons (SAPSSP) and the joins adjacent

polygons into only one.

MERGE-SMALL -POLYGONS(Θ)
1 SSP = DETECT-SMALL -POLYGONS(Θ)
2 for eachP in SSP
3 do
4 SAPSSP = ADJACENT-POLYGONS(P, SSP)
5 for eachP ′ in SAPSSP

6 do
7 P = MERGE(P, P ′)
8 RemoveP ′ from SSP
9

10 return SSP

Next, polygons that no longer are considered small are removed fromSSP and the re-

maining polygons onSSP are compared against all others to check for adjacency. When

a small polygon is adjacent to a larger one, they are merged and it is removed immediately

from SSP .

MERGE-POLYGONS(Θ, SSP)
1 SSP = DETECT-SMALL -POLYGONS(SSP)
2 for eachP in SSP
3 do
4 SAPΘ = ADJACENT-POLYGONS(P, Θ)
5 for eachP ′ in SAPΘ

6 do
7 P = MERGE(P ′, P)
8 RemoveP from SSP
9 RemoveP from Θ

10
11 return SSP

At the end, all polygons that remains inSSP are simply removed from the original

3.3 Feature Extraction 55

(a) (b) (c) (d)

Figure 3.19: Example of small polygon removal: (a) original set of polygons, (b) af-
ter small polygon identification, (c) after merging of small polygons and (d) simplified
polygons.

set of polygons,Θ. The overall simplification by removal of small polygons is detailed in

REMOVE-SMALL -POLYGONS.

REMOVE-SMALL -POLYGONS(Θ)
1 SSP = MERGE-SMALL -POLYGONS(Θ)
2 SSP = MERGE-POLYGONS(Θ, SSP)
3 Θ = Θ \ SSP
4 return

Figure 3.19 illustrates an example of a small polygon removal on a simple drawing.

In Figure 3.19 (a) is depicted the original drawing, composed by a set of polygons yielded

by the polygon detection algorithm presented in Section 3.3.2. Classification of polygons

according to their size is depicted in Figure 3.19 (b), where the polygons considered small

are represented in a darker gray. After merging of small polygons has been completed,

the set of small polygons were reduced, as depicted in Figure 3.19 (c), and they will

be merged with the larger ones or discarded. Finally, the drawing with three polygons

that results from simplification of the original set of fourteen polygons are presented in

Figure 3.19 (d). In this example, the two small adjacent rectangles at bottom left are

merged into only one but the resulting polygons remains classified as a small polygon.

Since it is isolated, the last step of this removal procedure discards this shape, which

does not appear in simplified version of drawing. Similarly, the octagon inside the large

polygon are also discarded at the end. On the other hand, the small square the larger one is

merged with it, because they are adjacent. But, since the large square includes the smaller,

the merge of this two shapes yields the larger. Unlike the two small rectangles referred

above, the three adjacent small rectangles and one small triangle are merged into a new

polygon that is no longer considered small. Thus, it becomes a relevant shape that will

not be removed or merged with adjacent large square. Likewise, the square, hexagon and

triangle at right, are also merged into only one shape which is maintained since it does not

56 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

satisfies any of the conditions necessary to be classified as a small polygon. Finally, the

small square that lays outside the larger one, adjacent to it, is merged with it, producing

the larger shape that composes the simplified drawing.

3.3.2 Polygon Detection on a Vector Drawing

Unlike image processing, where data consist of raster images, the polygon detection

algorithm described in this section deals with drawings in vector format, consisting of line

segments. This requires completely different approaches, such as described next.

To perform polygon detection from a set of line segments I divide this task in four ma-

jor steps. First line segment intersections were detected and removed using the Bentley-

Ottmann algorithm [64] and then the resulting set of lines is simplified by applying the

algorithm described in Section 3.3.1.1. Next step creates a graph induced by the draw-

ing, where vertices represent endpoints or proper intersection points of line segments and

edges represent maximal relatively open subsegments that contain no vertices. The third

step finds the Minimum Cycle Basis (MCB) [103] of the graph induced in previous step,

using the algorithm proposed by Horton [62]. Last step constructs a set of polygons based

on cycles in the previously found MCB. This is straight-forward if I transform each cycle

into a polygon, where each vertex in the cycle represents a vertex in the polygon and each

edge in the cycle represents an edge in the polygon.

3.3.2.1 Removal of Line Segment Intersections

In a vector drawing composed by a set of line segments there might exist many in-

tersections between these segments. To detect polygonal shapes proper segment inter-

sections must be removed, thus creating a new set of line segments in which any pair

of segments share at most one endpoint. Hence, the first step of my approach to detect

polygons in vector drawings consists in detecting allM intersections betweenN line seg-

ments in a plane. This is considered one of the fundamental problems of Computational

Geometry and it is known that any algorithm, within the model of algebraic decision tree,

have a lower bound ofΩ(N log N + M) time to solve it [6, 14].

In [3] Balaban proposes two algorithms for finding intersecting segments, a determin-

istic and asymptotically optimal for both timeO(N log N + M) and spaceO(N) algo-

3.3 Feature Extraction 57

(a) (b)

Figure 3.20: SetΦ of line segments (a) and graphG induced byΦ (b).

rithm and a simpler one that can perform the same task inO(N log2 N +M)-time. Before

that, Chazelle and Edelsbrunner [14] reached a time optimal algorithmO(N log N + M)

with space requirement ofO(N + M). The randomized approach devised by Clark-

son and Shor [15] produced a algorithm for reporting all intersecting pairs that requires

O(N log N + M) time andO(N) space.

In 1979 Bentley and Ottmann proposed an algorithm that solved this problem in

O((N + M) log N) time andO(N + M) space [64]. This algorithm is the well-known

Bentley-Ottmann algorithm and after more than 20 years it is still widely adopted in prac-

tical implementations because it is easy to understand and implement [87, 55].

In realizing that this is not the most complex part of my approach, I decided to use

the Bentley-Ottmann algorithm, since its time and space complexity is pretty acceptable

for my purposes and its published implementations are quite simple.

The next step is to remove all proper intersections between line segments, divid-

ing each intersected segment in sub-segments without proper intersections, only shar-

ing endpoints. In order to find and remove intersections, performing at once the two

presented steps, I used a robust and efficient implementation of the Bentley-Ottmann

algorithm, described by Bartuschka, Mehlhorn and Naher [5] that computes the pla-

nar graph induced by a set of line segments. Their implementation, represented in this

document by COMPUTE-INDUCED-GRAPH, computes the graphG induced by setΦ in

O((N +M) log N) time. Since this algorithm is quite long I choose not to present it here.

I refer readers to [5] for a detailed description.

58 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

.
.

.

.

.

.

.

3

1

2

4

5

r

Figure 3.21: A planar graph with a exponential number of cycles

In this implementation the vertices ofG represent all endpoints and proper intersec-

tion points of line segments inΦ, and the edges ofG are the maximal relatively open

subsegments of lines inΦ that do not contain any vertex ofG. The major drawback of

this implementation lies in that parallel edges are produced in the graph for overlapping

segments. Since setΦ is a result of the line set simplification process described in Sec-

tion 3.3.1.1 of it does not contains such segments. Considering, for example, the setΦ

shown in Figure 3.20 (a), COMPUTE-INDUCED-GRAPH will produce the graphG, de-

picted in Figure 3.20 (b), where each edge represents a non-intersecting line segment.

3.3.2.2 All Cycles of a Graph

Detecting polygons is similar to finding cycles on the graphG produced in the pre-

vious step. The first known linear-time algorithm for listing all cycles of a graph was

presented by Syslo [103]. This algorithm requiresO(V) space andO(V × C) time,

whereV is the number of vertices andC the number of cycles inG. Later Dogrus̈oz and

Krishnamoorthy proposed a vector space algorithm for enumerating all cycles of a planar

graph that runs inO(V 2×C) time andO(V) space [25]. Although asymptotically slower,

this algorithm is much simpler than Syslo’s and is amenable to parallelization.

Unfortunately, the total number of cycles in a planar graph can grow exponentially

with the number of vertices [72]. An example of this situation is the graph presented in

Figure 3.21. In this case, the number of cycles, including the interior region numbered

1, is O(2r) with r = k/2 + 1, wherek is the number of vertices, since one can choose

any combination of the remaining regions to define a cycle [25]. This is why it is not very

feasible to detect all polygons that can be constructed from a set of lines. In this approach,

I choose just to detect the minimal polygons, those that have a minimal number of edges

and cannot be constructed by joining other minimal polygons.

3.3 Feature Extraction 59

3.3.2.3 Minimum Cycle Basis of a Graph

Considering that I just want to detect the minimal polygons this can be treated as

searching for a MCB. So, the second step of my approach consists in obtaining a MCB

of graphG. A cycle basis is defined as a basis for the cycle space ofG which consists

entirely of elementary cycles. A cycle is called elementary if it contains no vertex more

than once. The dimension of the cycle space is given by thecyclomatic number2 (ν =

E − V + P) [30, 11], whereE is the number of edges andV the number of vertices inG

andP is the number of connected components ofG.

Horton presented the first known polynomial-time algorithm to find the shortest cycle

basis of a graph, which runs inO(E3V) time [62] or inO(E4) on simple planar graphs

[49], which is the case. While asymptotically better solutions have been published in the

literature, the Bentley-Ottmann algorithm is both simple and usable for my needs. The

pseudo-code of this algorithm is listed in MINIMUM -CYCLE-BASIS and shortly described

bellow. A further detailed description of this algorithm and concepts behind it can be

found in [62].

M INIMUM -CYCLE-BASIS(G)
1 Γ← empty set
2 Π← ALL -PAIRS-SHORTEST-PATHS(G)
3 for eachv in VERTICES(G)
4 do for each(x, y) in EDGES(G)
5 do if Πx,v ∩ Πv,y = {v}
6 then C ← Πx,v ∪ Πv,y ∪ (x, y)
7 addC to Γ
8 ORDER-BY-LENGTH(Γ)
9 return SELECT-CYCLES(Γ)

The ALL -PAIRS-SHORTEST-PATHS finds the shortest paths between all pairs of ver-

tices in graphG and can be performed inO(V 3) time andO(V 2) space using Floyd-

Warshall or Dijkstra algorithms [17]. ORDER-BY-LENGTH orders the cycles by ascend-

ing length and can be implemented by any efficient sorting algorithm. This is a non-

critical step because it has aO(V ν log V) upper bound in time complexity, which is in-

significant in comparison with other steps of this algorithm.

2The cyclomatic number is the smallest number of graph edges which must be removed from a graph of
E edges andV vertices such that no cycle remains.

60 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

(a) (b)

Figure 3.22: Shortest cycle basisΓ of graphG (a) and setΘ, constructed fromΓ, of
polygons detected in original set of line segmentsΦ

In SELECT-CYCLES I use a greedy algorithm to find the MCB fromΓ set of cy-

cles. To do this Horton [62] suggests representing the cycles as rows of a 0-1 incidence

matrix, in which columns correspond to the edges of the graph and rows are the inci-

dence vectors of each cycle. Gaussian elimination using elementary row operations over

the integers modulo two can then be applied to the incidence matrix, processing each

row in turn, in ascending order of the weights of cycles, until enough independent cy-

cles are found. This step dominates the time complexity from other steps, since it takes

O(Eν2V) time. Knowing thatG is always a simple planar graph I can conclude that

as a whole the MINIMUM -CYCLE-BASIS algorithm has a worst case upper bound of

O(Eν2V) = O(E3V) = O(E4) operations and a space requirements ofO(V 2). Figure

3.22 shows an example ofΓ, the set of cycles resulting from applying the MINIMUM -

CYCLE-BASIS to graphG shown in Figure 3.20.

3.3.2.4 Polygon Construction

The last step of my approach to detect polygons in vector drawings consists in con-

structing a setΘ of polygons from the MCB. An algorithm to perform this operation can

easily run inO(CV) time, whereC is number of cycles in MCB. Such an algorithm is

listed in POLYGONS-FROM-CYCLES which returns a setΘ of polygons.

3.3 Feature Extraction 61

POLYGONS-FROM-CYCLES(Γ)
1 Θ← empty set
2 for eachC in Γ
3 do P ← new polygon
4 for eachv in VERTICES(V)
5 do add vertexv to P
6 add polygonP to Θ
7 return Θ

Figure 3.22 illustrates the resulting setΘ of polygons generated by applying POLYGONS-

FROM-CYCLES to Γ depicted in Figure 3.22.

3.3.2.5 Polygon Detection Outline

I can now outline DETECT-POLYGONS. This algorithm is able to detect a setΘ

of polygons from a initial setΨ of line segments. To perform this task I pipelined the

algorithms referred previously for line segment intersection removal, MCB finding and

cycle-to-polygon conversion. The first step consists in removing fromΨ all segment

intersections, inducing a graphG. Next it is necessary to findΓ, a Minimal Cycle Bases

of G. Finally, a set of polygonsΘ must be constructed fromΓ.

DETECT-POLYGONS(Ψ)
1 G← COMPUTE-INDUCED-GRAPH(Ψ)
2 Γ← M INIMUM -CYCLE-BASIS(G)
3 Θ← POLYGONS-FROM-CYCLES(Γ)
4 return Θ

As referred in section 3.3.2.1, COMPUTE-INDUCED-GRAPH runs inO((N+M) log N)

time andO(N +M) space. The SHORTEST-CYCLE-BASIS runs inO(V 4) operations and

has a space requirement ofO(V 2), making this the critical step in the complexity of this

algorithm, since the POLYGONS-FROM-CYCLES just needsO(CV) time.

Since the numberV of vertices in the graph is no greater than the sum of line end-

points (2 × N) with detected intersectionsM , I can then conclude that the proposed

algorithm has time and space complexities ofO(V 4) = O((N + M)4) andO(V 2) =

O((N + M)2), respectively.

62 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

Lines Intersections Nodes Edges Time (ms)
6 9 21 24 10

36 16 58 68 50
167 9 169 177 3986
286 47 389 376 8623
518 85 697 679 36703
872 94 1066 10050 128995

2507 10 2407 2526 1333547

Table 3.1: Results of algorithm tests

3.3.2.6 Experimental Results on Polygon Detection

The polygon detection algorithm proposed here was implemented in C++ and tested

in a Intel Pentium III 1GHz 512MB RAM computer running Windows XP . I tested

the algorithm with sets of line segments created from simple vector drawings, technical

drawings of mechanical parts and hand-sketched drawings. Table 3.1 presents the results

obtained from these tests.

Based on these results I conclude that performance is acceptable for on-line process-

ing in sets with less than three-hundred lines like hand-sketches or small-size technical

drawings. If the line set have about 2500 lines the algorithm will take more than twenty

minutes to detect the polygons. Still this remains a feasible solution for batch processing

of medium-size technical drawings or simplified large technical drawings.

3.3.3 Topological Information Gathering

Following the suggestion made by Fonseca [34], only two topological relationships

are used to describe the topology of shapes in the drawings, inclusion and adjacency.

While these relationships are weakly discriminating, they do not change with rotation and

translation, allowing unstrained drawing classification.

After a recursive decomposition of drawing according to relationships referred above,

I construct a topology graph that represents these relationships among relevant shapes.

This graph is submitted to Fonseca’s framework which will use it for computing topolog-

ical descriptors for that drawing. Figure 3.23 illustrates two important results produced

during the feature extraction process, the simplified set of detected polygons and the re-

3.3 Feature Extraction 63

1 23

45

6

7

8

9

0

7

1 2 3 4 5

6 8

9

Adjacency

Inclusion

Figure 3.23: Set of simplified polygons (left) and correspondent topology graph (right).

spective topology graph, yielded by the topological relationship extraction. To extract

topological relationships I use an simple but efficient sweep algorithm that compares each

polygon with the ones within a specified range to check for any relationship among them.

This procedure is divided in three distinct stages.

TOPOLOGY-EXTRACTION(Θ)
1 ξ ← CONSTRUCT-EVENT-QUEUE(Θ)
2 SL = empty set of polygons
3 for eache in ξ
4 do
5 if e is a leftmost event
6 then
7 P ← polygon referenced bye
8 for eachPSL in SL
9 do

10 COMPARE-POLYGONS(P, PSL)
11 AddP to SL
12 if e is a rightmost event
13 then
14 P ← polygon referenced bye
15 RemoveP from SL
16 G← CONSTRUCT-TOPOLOGY-GRAPH(Θ)
17 return G

The TOPOLOGY-EXTRACTION algorithm starts by creating an ordered event queue (ξ)

which contains events corresponding to thexx-coordinates of leftmost and rightmost ver-

tices of all polygons. Each element inξ contains a flag indicating if it corresponds to a left

or a rightmost point and a reference to the respective polygon. The event queue is ordered

by thex-coordinate of the vertex and when this value is the same for several vertices the

leftmost vertices are placed before the rightmost vertices, making it easier to determine

which polygons must be compared. Simultaneously, is created an empty set of polygons

to represent the sweep line (SL) where ”active” polygons will be stored.

64 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

In a second step, the algorithm sweeps the event queueξ and for each evente it adds

or removes polygons from the sweep line accordingly and compares, before adding, the

respective polygon with the ”active” ones - the polygons on the sweep line structure -

which can eventually have an adjacency or inclusion relationship with it. To allow a fast

selection of candidate polygons, are considered for comparison the ones that have more

than one vertex inside or over the border of the axis aligned bounding box.

During the comparison of polygons (COMPARE-POLYGONS), each pair is checked

for adjacency and inclusion by applying common computational geometry methods, de-

scribed in [88]. When any relationship is found among two shapes, it is stored within the

polygon structure for later graph construction.

The third stage of the relationship extractor algorithm processes the relationships

gathered during polygon comparison and constructs (CONSTRUCT-TOPOLOGY-GRAPH)

the respective topology graph, depicted in Figure 3.23. In this graph each node represents

a polygon. When a polygons includes another the node of the first is parent of the node

of the second. Adjacency relationships among polygons produce sibling relationships in

the respective graph nodes.

The graph yielded by the topological relationships extractor algorithm is then submit-

ted to Fonseca’s framework to be converted in topological descriptors using the methods

described by Fonseca in [34].

3.3.4 Geometrical Feature Extraction

Fonseca and Jorge proposed a [38] a simple, fast and compact approach to recognize

geometric shapes through the analysis of the convex hull of the shape. They identified

a set of relevant features that when properly combined provide and effective method to

describe geometric shapes for recognition.

To determine these features, Fonseca and Jorge calculate the convex hull (ch) of the

shape and then compute four special polygons. The first two are the largest triangle (lt)

and quadrilateral (lq) inscribed in the convex hull [10]. The third special polygon is

the non-aligned smallest area enclosing rectangle (er). Then they calculate areas and

perimeters of these special polygons, as well as width and height ofer and the perimeter

of original polygon. These relevant features are listed in Table 3.2.

3.3 Feature Extraction 65

Feature Description
Ach Area of the convex hull
Aer Area of the enclosing rectangle
Alq Area of the largest quadrilateral
Alt Area of the largest triangle
Her Height of the (non-aligned) enclosing rectangle
Pch Perimeter of the convex hull
Per Perimeter of the enclosing rectangle
Plq Perimeter of the largest triangle
Tl Total length,i.e. perimeter of original polygon

Wer Width of the (non-aligned) enclosing rectangle

Table 3.2: List of relevant geometrical features.

Furthermore, they combine these geometric features to produce a feature vector.

These combinations are mainly ratios between carefully selected features [37]. From

these combinations I selected the more relevant to classify shapes for retrieval and create

with them the SIBR geometric feature vector, depicted in Figure 3.24.

[
Pch

Tl

Ach

P 2
ch

Her

Wer

Alq

Aer

Ach

Aer

Alq

Ach

Alt

Alq

Alt

Ach

Plq

Pch

Plt

Pch

Pch

Per

]
Figure 3.24: SIBR geometric feature vector used in construction of geometry matrix.

Thus, to determine the geometrical features from drawings and sketches I suggest

the use of a geometry matrix containing geometrical features of detected polygons. Each

line of this matrix contains a feature vector describing the geometry of a single polygon.

Using features proposed by Fonseca and Jorge to describe each polygon I was able to

produce a matrix that effectively describes the geometry of vector drawings and sketches.

Therefore, construction of geometry matrix is based on SIBR geometric features vec-

tors from all detected polygons. To that end, the GEOMETRY-EXTRACTION algorithm

I devised iterates through all detected polygons (stored inΘ) and computes geometric

features of each polygon. The COMPUTE-FEATURE-VECTOR method uses the CAL I3

library [39], which were developed by Fonseca and Jorge to implement their approach on

shape recognition. This method determines the geometric feature vectorVgeom of a given

3CAL I is a software library for the development of Calligraphic Interfaces centered mainly on a simple
Shape Recognizer. This recognizer is a fast, simple and compact approach to identify scribbles (multi-
stroke geometric shapes) drawn with a stylus on a digitizing tablet. In my approach I only use one of the
several functionalities provided by this library. Considering a polygon as a single scribble, I submit it to
CAL I in order to extract its features.

66 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

polygonP by submitting it to CAL I recognizer and then selecting the interesting features.

Then, vectorVgeom is added to the geometry matrixMgeom as a new line.

GEOMETRY-EXTRACTION(Θ)
1 Mgeom = empty geometry matrix
2 for eachP in Θ
3 do
4 Vgeom = COMPUTE-FEATURE-VECTOR(P)
5 AddVgeom as a new line in matrixMgeom

6 return Mgeom

At the end of this iterative process, the geometry matrixMgeom is aN × 11 matrix,

whereN is the number of detected polygons and eleven is the number of selected features

to describe shape geometry. This geometry matrix describes the geometry of the detected

polygon set,i.e. the geometry of the drawing or sketch.

3.4 Indexing, Query and Matching

In previous section I described the feature extraction process which yields two struc-

tures: topology graph and geometry matrix. These structures are used not only to classify

existing drawings but also to describe sketched queries. Thus, the feature extraction pro-

cess is exactly the same in classification and retrieval.

3.4.1 Classification

During classification of existing drawings, each drawing underwent a feature extrac-

tion process. Resulting topology graph and geometry matrix must then be stored in a

database which will be queried later. To that end, I used the indexing mechanism pro-

vided by Fonseca’s framework. Therefore, both graph and matrix are passed to Fonseca’s

framework, which computes the correspondent descriptors and inserts them in two in-

dexing structures, one for topological information and another for geometric information.

Descriptor computation is based on spectral information and indexing uses a NB-Tree

structure. Both subjects are beyond the scope of this work. They were developed within

Fonseca’s framework and we refer the reader to Fonseca’s PhD [34] for detailed informa-

tion.

3.4 Indexing, Query and Matching 67

Q
ue

ry

C
an

di
da

te

D
ra

w
in

gs

Search by
Topology

Refine using
Geometry

Similarity
Algorithm

Figure 3.25: Block diagram for the matching process.

3.4.2 Retrieval

The proposed SIBR system includes a calligraphic interface to support the speci-

fication of hand-sketched queries.Moreover, digitized drawings can be used to specify

queries. Digitized drawings could be edited, using sketches to add, remove or change

visual elements. Thus, any query in the SIBR system is considered a sketched query even

if it originates on a hard-copy version of the ought drawing.

Sketched queries underwent the feature extraction process in order to extract the spa-

tial relationships, construct the topological graph and compute the geometry matrix. Like

in classification, the graph and matrix produced by the feature extraction are submit-

ted to Fonseca’s framework to compute the corresponding multidimensional descriptors.

These descriptors will be used in the matching process as a query to the respective in-

dexing structure. However, computing the similarity between a hand-sketched query and

all drawings in a database can entail prohibitive costs especially when considering large

sets of drawings. To speed up searching, I divide my matching scheme in a three-step

procedure as shown in Figure 3.25. The first step uses the topology descriptor to search

for topologically similar drawings, working as a first filter to avoid unnecessary geomet-

ric matches between false candidates. In the second step I use geometric information to

further refine the set of candidates. Finally, I apply a comparison method to get a measure

of similarity between the sketched query and drawings retrieved from the database.

The matching procedure first ranks drawings in the database according to topologi-

cal similarity to the sketched query. This is accomplished, within Fonseca’s framework,

by performing a KNN4 query to the topology indexing structure, using the respective

descriptor computed from the sketched query.

Results returned by the topology indexing structure represent a set of descriptors sim-

4Given a point query Q in multi-dimensional space, K-Nearest Neighbor (KNN) queries return the K
closest answers according to given distance metric in the database with respect to Q. For more details on
KNN queries, I refer readers to [98].

68 Chapter 3. Sketch and Image Based Retrieval of Engineering Drawings

ilar to the query descriptor. Each returned descriptor correspond to a specific graph or

subgraph stored in the topology database, which will be used in the geometry matching.

This first filter based on topology reduces drastically the number of drawings to compare,

selecting only drawings with a high probability of being similar to the sketched query.

3.5 Summary

In this chapter I described an integrated solution for retrieval of engineering drawings

using sketches and images. My approach uses the framework for content-based retrieval

presented by Fonseca [34] and incorporate his matching algorithms and indexing structure

with my vectorization, simplification and feature extraction algorithms.

First, I presented an overview of my approach. Then I described in detail a vector-

ization methodology that converts digitized drawings in raster format into a set of line

segments with minimal user intervention.

In the detailed description of feature extraction I started by describing the iterated

snap rounding algorithm used for line set simplification. Then, I presented the polygon

simplification algorithms that eliminates small polygons by merging them with others

or by purely discarding them. These polygon simplification algorithms also removes

undesirable inclusions. Next I described a novel algorithm for polygon detection on a

set of line segments. Then, I present the algorithm devised for topological information

gathering, that constructs a graph describing the topological relationships among detected

shapes. Next, I described the geometric feature extraction procedure that uses feature

vectors from detected shapes to produce a geometry matrix describing the geometry of

the set of detected polygons.

Finally, I presented the classification and retrieval processes. These uses the fea-

ture extraction described earlier to compute the topology graph and geometry matrix for

drawings and queries, respectively. Then, this topological and geometrical information

is submitted to Fonseca’s framework for insertion, when classifying, or searching, when

retrieving, in the indexing structure.

4
Prototypes

To exercise the retrieval approach presented in previous chapter I developed two dis-

tinct prototypes. The Sketch and Image Based Retrieval (SIBR) prototype processes

sketched queries and matches candidate drawings against the query, selecting and dis-

playing results. This prototype allows using not only sketches to specify queries, but

also digitized images or a mix of both. Additionally, I create the Database Builder proto-

type, which implements the classification part of presented approach, classifying existing

drawings and producing a logical database with descriptors. In this chapter I will describe

these prototypes.

4.1 Sketch and Image Based Retrieval Prototype

In order to create a retrieval system that takes advantage of users’ natural ability at

sketching and drawing, I developed an application to retrieve technical drawings from

the mould industry, through hand-sketched queries and digitized drawings. SIBR system

retrieves sets of technical drawings by contents from large databases.

The SIBR prototype uses a calligraphic interface to allow specifying queries trough

sketches. Moreover, it is able to convert raster images into vector drawings and use these

as queries. Users can add new elements to vectorized drawings by sketching new shapes

or they can delete entities by using a simple gesture command. This way, they can start

with a digitized drawing and then apply editing commands to refine it.

In some cases, digitized drawings can be very complex. In other situations users may

not want to search for the entire drawing. To these end, SIBR system makes it possible to

use part of a sketch or vectorized drawing as a query. To accomplish this, SIBR prototype

69

70 Chapter 4. Prototypes

Sketching Interface Results Console

SVG WriterSK Writer

Stroke
Collector

Polygon
Detector

SK Reader

Polygon
Simplifier

CALI
Topology
Extractor

DXF Reader

Matching
Stroke

Completion
Component

Sketch
Simplifier

Image
Acquisition
Interface

Vectorization
Component

TIFF Reader

Figure 4.1: Conceptual view of Sketch and Image Based Retrieval Prototype architecture.

provides tool for selecting a region on the sketch and submitting it as a query. Thus, it is

possible to discard visual elements without deleting them, making further searches easier.

4.1.1 Architecture

To ensure modularity, SIBR prototype was developed based on a three tier architec-

ture which comprises user interface, application core and file management. Figure 4.1

depicts a conceptual view of SIBR architecture. The top tier is responsible by all inter-

action with users, the bottom tier manages the interactions with the file system and te

application core tier contains the components that implement all the algorithms used in

the retrieval process.

4.1.1.1 User Interface Tier

The user interface tier of the SIBR prototype is composed by three distinct com-

ponents: sketching interface, results console and image acquisition interface. The first

captures the strokes drawn by users and generates the visual feedback that are given to

4.1 Sketch and Image Based Retrieval Prototype 71

Stroke drawn by user Auto-completed stroke

Scribble drawn by user Scribble after auto-completion

Figure 4.2: Example of single stroke (top) and multi-stroke (bottom) auto-completion.

users, such as identifying detected shapes that will be used by the query. To give visual

feedback about the polygons detected on the sketch, the Polygon Detector component

sends information about detected polygons to the Sketching Interface.

A common complain made by users during the preliminary evaluation tests was the

difficulty in drawing closed shapes. Frequently they had to delete and repeat the stroke

because it was not closed, and the system ignores it. To overcome this problem I included

two auto-completion features in the SIBR prototype. These features, the single stroke

completion and multi-stroke completion are implemented by the Stroke Completion com-

ponent. In the first one the component analyzes the stroke alone and in the second it

compares it with existing strokes and tries to create a closed shape. Figure 4.2 depicts

examples of single stroke and multi-stroke auto-completion.

Results console component manages the drawings that must be returned to the user

as a result of a submitted query. To that end, it receives a set of drawing identifiers from

the Matching component, along with information about similarity between the submitted

query and each result. Using the received identifiers and working in conjunction with the

DXF Reader component, the Results Console is able to display the respective drawings

to the user.

From informal conversations with users during the first evaluation tests I infer that

searches based on printed drawings will be useful. Therefore, I included in this proto-

type a functionality that allows retrieving drawings through the use of scanned images of

technical drawings. A scenario for using this new functionality occurs when users have a

72 Chapter 4. Prototypes

printed hard copy of the drawing and want to find similar results stored in the database.

The image acquisition interface component implements the interaction with users

when using digitized drawings to specify queries. This component gives to users control

over the vectorization process, allowing them not only to indicate the source image but

also to follow the vectorization steps, changing some parameters if needed.

4.1.1.2 Application Core Tier

Each stroke captured by the sketching interface is sent initially to stroke completion

component and then, after it has been processed there, is sent to the stroke collector com-

ponent. This component manages all strokes drawn by the user, constructing a sketch

with them. Besides working with strokes made directly by users, stroke collector can also

use sketches drawn previously and stored in files. To that end, this component can receive

a complete sketch from the SK reader component or send the stored set of strokes to be

saved by one of the writer components. The sketch is stored as a set of polygonal curves

representing each one a stroke drawn by users. When users trigger a query process, the

sketch stored in the stroke collector are sent to the sketch simplifier component to start

processing.

The sketch simplifier component implements the algorithms for line set simplification

described in previous chapter. This component tries to reduce the number of points that

define the sketch, maintaining its relevant features. The simplified version of the sketch

is then sent to the polygon detector component.

Polygon detector component receives the simplified sketch, in the form of several sets

of polygonal lines, and processes it to detect polygons. The results of this computation

are sent simultaneously to the stroke collector to produce visual feedback for users and to

polygon simplification component to continue processing the sketch.

The polygon simplifier component implements the algorithm described in Section 3.3.1.2,

which receives a set of detected polygons sent by the polygon detector component, pro-

cesses them in order to simplify the set and finally sends the simplified set to CALI and

topology extractor components.

The topology extractor component implements the algorithm for topology extraction

4.1 Sketch and Image Based Retrieval Prototype 73

described in Section 3.3.3. It analyzes the simplified set of polygons sent by the polygon

simplifier and extracts the topological relationships among them, building a graph with

this relationships.

To determine geometrical information of each polygon in the simplified set produced

by the polygon simplifier I use the CALI component, an implementation of the CAL I

library described briefly in Section 3.3.4 and developed within the PhD work of Manuel

Jõao da Fonseca [34].

The query component combines information produced by the topology extractor and

CALI to create topology and geometry descriptors, as described in Section 3.3. These

descriptors will be processed by the matching component to find drawings with similar

descriptors in the database. A set of drawing identifiers is produced as a result of this

processing. This set of identifiers is finally sent to the results console component, which

is responsible for displaying the respective drawings to the user.

4.1.1.3 File Management Tier

Sketches collected by the SIBR can be saved in a file for later analysis. There are two

distinct file types that can be used: the well known SVG1 format or a proprietary file type

format, which I called sk-file. Thus, I create two distinct components to write sketches on

files, one for each file type.

The usage of SVG format allows a broader use of collected sketches, is possible, for

instance, to open them in many different applications, including several web browsers.

This way the visualization and analysis of sketches produced by users is simplified, since

I can use off-the-shelf applications to accomplish it.

However, a major disadvantage of SVG format is the large amount of data needed to

represent a complex sketch, producing a large XML file. Additionally, I am not satisfied

with the performance of XML parser initially integrated in SIBR prototype. To reduce

the file size and improve the parsing of existing files I define a proprietary format (sk-

file) which is simply composed by sets of strokes stored as pairs of floating-point values

representing the vertices of a polyline.

1Scalable Vector Graphics (SVG) is a modularized language for describing two-dimensional vector and
mixed vector/raster graphics in XML.

74 Chapter 4. Prototypes

SIBR allows later analysis of sketches drawn by users and saved in the proprietary

format. The SK-Reader component reads the content of a sk-file and send it has a set

of strokes to the Stroke Collector. Using this feature I was able to review and edit the

sketches using the SIBR, repeating the processing with improved versions of application

components and comparing results. On the opposite side of my approach, it is necessary

to read the original drawings. To that end, I developed a component to read DXF2 files,

since engineering drawings I use are all stored in this format or can be easily converted.

The DXF reader component parses DXF files containing two dimensional drawings and

produces a set of entities that represents the drawing. These entities are then used by the

Results Console component to produce a visual representation of the drawing.

In SIBR prototype I do not implement an image acquisition component capable of

directly connect to a scanner because it will add some extra development that is not within

the scope of my work and will make harder to maintain the cross platform compatibility

of presented prototypes. However, it is not hard to incorporate a TWAIN3 component in

the Microsoft Windows version of SIBR prototype. Instead I included a TIFF4 reader

component to import digitized drawings. Additionally, the capability of reading raster

files allows a remote use of paper drawings, which can be scanned remotely and sent in a

TIFF file.

4.1.2 Graphical User Interface

This prototype uses a calligraphic interface to allow the retrieval of a set of drawings

similar to a hand-sketched query performed by the user. Reflecting the composition of the

user interface tier, the GUI of the SIBR Prototype is divided in three main areas: sketching

area, buttons area and results area, as depicted in Figure 4.3. The sketching area allows

2Drawing eXchange Format (DXF) is a native vector file format of Autodesk’s AutoCAD CAD appli-
cation. DXF is probably one of the most widely supported vector formats in the world.

3TWAIN is an image capture API for Microsoft Windows and Apple Macintosh operating systems. The
standard was first released in 1992, and is currently ratified at version 1.9 as of January 2000. TWAIN is
typically used as an interface between image processing software and a scanner or digital camera.

4Tag Image File Format (TIFF) is a common format for exchanging raster images between application
programs. This format was developed in 1986 by an industry committee chaired by the Aldus Corporation
(now part of Adobe). Microsoft and Hewlett-Packard were also on the committee. One of the more common
image formats, TIFFs are common in desktop publishing, faxing and other imaging applications, since it
is an lossless uncompressed image file format that produces no artifacts as is common with other image
formats.

4.1 Sketch and Image Based Retrieval Prototype 75

Figure 4.3: Screen-shot of Graphical User Interface of SIBR.

the specification of a query using sketches composed by a set of strokes. Additionally,

the vector version of the digitized drawings is also displayed here. If users want to edit

that drawing they sketch over it. It is also possible to select just part of the sketch to use

as a query. At the right side of the interface, there is the results area composed a set of

five blank panels, where results similar to the sketched query are displayed. Returned

drawings are ordered from top to bottom, being the most similar on the top. Since each

query returns twelve drawings and it is not feasible to show them all at once, only five

drawings are displayed simultaneously. The scroll bar located at right allows browsing,

up and down, trough the twelve drawings.

Executing a query usually takes several seconds, sometimes even a couple of minutes,

depending on the complexity of the sketch and of the existing drawings and on the size

of the database. At the bottom right of the window a progress bar gives some feedback

about the evolution on the classification and retrieval process. Additionally, the current

step of the process is also displayed on the status bar.

4.1.2.1 Using Sketches

To perform a query using only sketches, user must draw on the sketching area a

rough approximation of the wanted drawing, or part of it, and submit that sketch as a

query. When the ought drawing does not appear within the twelve results returned by

76 Chapter 4. Prototypes

Deleting stroke on sketch Sketch after deletion

Figure 4.4: Using delete gesture to remove a stroke.

the SIBR system, it is always possible to edit the drawing, removing, adding or changing

some features and then submit the new version of the sketch. This can be repeated as

many times as user wishes until the desired drawing is found.

The user can, at any time, restart sketching from scratch by pressing the ”New Query”

button. In this case the sketching area will be deleted and drawings displayed in results

area will be cleared.

While editing a sketch, the user can delete part of it. To that end, the ”Delete” gesture

must be used. The ”Delete” gesture consists on drawing a zig-zag stroke over the shapes

to delete, as depicted in Figure 4.4.

When the sketch is too complex, too big or have undesired shapes, user can select

just part of it to use as a query. To accomplish this, SIBR application provides a tool

for selecting a region on the sketch and submitting it as a query. Thus, it is possible to

discard visual elements without deleting them making further searches easier. To select

a region user must change from ”Sketch Mode” to ”Select Mode” and then use the pen

to specify the region. To enter ”Select Mode” it is necessary to press the pen over the

sketching area without moving for two seconds. After entering select mode, the cursor

over the sketching area will change to a cross and the stroke will appear in dashed white,

as depicted in Figure 4.5.

To discard the selection, the pen must be pressed over the sketching area, maintained

without moving for a couple of seconds and then lifted up. From now on the whole sketch

will be used as a query. After a region has been selected by the user, the SIBR switches

immediately from ”Select Mode” to ”Sketch Mode”. Now the sketching area outside the

4.1 Sketch and Image Based Retrieval Prototype 77

selected region appears with a darker background and its border is clearly identified by

a dashed white line. When a region is selected, users can still sketch freely on any part

of the sketching area, inside or outside of the selected region. However, only the strokes

drawn inside the selected region will be considered for query purposes.

4.1.2.2 Using Images

The SIBR system allows searching for a drawing based on its paper version with-

out using sketches. To that end, it is necessary to have a flatbed scanner connected to a

computer to digitize the paper drawing. Additionally, the correspondent image acquisi-

tion software must be installed on that machine and it must be able to save the acquired

images in TIFF format. Almost all scanners available will digitize drawings without prob-

lems. Even the cheaper flatbed scanner solutions will work well with SIBR for retrieval

purposes.

After the drawing has been scanned and saved in a TIFF file it can be used by the

SIBR application. A major advantage of this approach to use raster files instead of direct

connection to scanner lays on the possibility of using remotely digitized images, which

can be shared over a network or even sent by e-mail.

As soon as the image file is opened a new window is displayed (Figure 4.6). Here the

users will control the vectorization process. In some steps of the vectorization, the system

will ask the user about methods or parameters to apply during processing. Every one of

these questions is accompanied by a suggestion. When users are not sure of which option

produces the best results, they can follow the suggestion made by the system. However,

Figure 4.5: Selecting part of a sketch

78 Chapter 4. Prototypes

Figure 4.6: Screen-shot of image processing window

if at any time of the vectorization process the resulting image does not satisfy the users,

they can undo one or more steps and then repeat them with different options.

Depending on the quality of the scanned drawing, not all steps of the vectorization

process are required. Thus, the users can sometimes skip a step they consider unnecessary

if it is an optional step (refer to Section 3.2, Figure 3.8 for more details on vectorization

steps). This way the time spent in the vectorization process could be shortened.

Moreover, experienced users can consult the histogram of the image and use their

knowledge to help them choosing properly the more efficient methods and parameter to

apply during the image vectorization. On the other hand, novice users can perform their

choices by simply following the suggestions made by the system or using a trial and error

approach.

To allow an effective control of the vectorization process, the image-processing shows

the current status of the vectorization. On the top of the window is indicated which version

of the image is displayed below. Additionally, this also shows which steps were performed

and which were skipped. Under the image are shown the last step performed and the

following one. At the bottom of the window a set of buttons allows the control of the

process.

When the vectorization is finished the result is drawn by the system on the sketching

4.2 Database Builder 79

Figure 4.7: Mixing images and sketches to retrieve a technical drawing.

area and is from now on considered as a sketch. Therefore, the procedure to execute a

query with it is exactly the same as with a hand-made sketch.

4.1.2.3 Mixing Sketches and Images

Since digitized images after vectorization are considered as a sketch, the users can

treat it exactly the same way they treat a sketch. Thus it is possible to sketch over it,

adding new shapes, delete existing ones and select only part of the sketch to use as a

query.

Mixing sketches and vector drawings give the users the capacity to derive more com-

plex queries. They can add new elements to vectorized drawings by sketching new shapes

or they can delete entities by using a simple gesture command. This way, they can start

with a digitized drawing and then apply editing commands to refine it. Figure 4.7 presents

a query that was refined by adding shapes to the original figure in order to detail more in-

formation. The figure illustrates also a selection of part of the drawing to use as a query,

without deleting the remaining elements.

4.2 Database Builder

I will now describe the prototype that implements classification part of the content-

based retrieval architecture presented in Chapter 3. This application classifies existing

drawings, by creating logical descriptors based on features extracted from drawings. Be-

80 Chapter 4. Prototypes

Polygon Detector
Polygon
Simplifier

CALI
Topology
Extractor

DXF Reader Classification

Drawing
Simplifier

ID Mapping

Figure 4.8: Conceptual view of Database Builder prototype architecture.

fore creating the database with the logical information (descriptors) extracted from draw-

ings, Database Builder performs simplification steps to reduce the number of elements

in a drawing, thereby speeding up both classification and query. I simplify drawings by

reducing adjacent lines to one, by discarding small area polygons and by removing spu-

rious lines. This way I get a simple version of the technical drawing while retaining

its main features. This will yield less descriptors and consequently a smaller database.

Furthermore, simpler drawings will be easier to match to hand-sketched queries.

The classification of a technical drawing might take from a few seconds to several

minutes, depending of its complexity. Therefore, the classification of a large set of draw-

ings may take several hours. However, since this is an operation that will be performed

only once, users can execute it in batch mode. To that end, Database Builder offers the

possibility of automatically classifying a set of drawings without user intervention. Users

only need to specify where drawings can be found and the system will do the rest.

4.2.1 Architecture

Extracting features from existing drawings is similar to extracting features from sketches.

Thus, it is obvious that some components used in the retrieval part of SIBR system are also

used in the Database Builder. Therefore, the polygon detector, polygon simplifier, topol-

ogy extractor and CALI components are simultaneously used by both prototypes. Even

the drawing simplifier component is basically similar to sketch simplifier component used

in SIBR prototype.

The Database Builder prototype have two components that are not shared with the

4.2 Database Builder 81

SIBR prototype. The ID mapping component is responsible for assigning an unique iden-

tifier to each classified drawing and store it on the database.

4.2.2 Graphical User Interface

The GUI of the Database Builder prototype, depicted in Figure 4.9, has a small form

on top of the window with three fields to specify the working parameter of the classifica-

tion module. In the first field users can specify the folder containing drawings to classify.

If this folder has subfolders, drawings on these will be classified too. Only drawings

saved in DXF format with the ”dxf” extension will be considered. The database folder

field specifies the folder where is located the database.

The initial ID field allows the specification of the value of the initial identifier for

the drawings to classify. This identification number is necessary because the drawings

stored in the database are identified by it. Since the database can already have classified

drawings, the identifier of the new ones must not conflict with the existing drawings iden-

tification. Moreover, users might want to group drawings by identifier according to some

criteria.

In order to give some feedback to the users during processing, Database Builder appli-

cation has a log window where the status of the classification is displayed. Additionally,

a log file is also saved for later analysis. After checking that values on the fields are cor-

Figure 4.9: Screen-shot of Database Builder prototype during a classification process.

82 Chapter 4. Prototypes

rect, the user can press the ”Build” button to start the classification of drawings in DXF

format that are in the specified folder. Descriptors of these drawings are then added to the

database in specified folder.

4.3 Summary

In this chapter I presented the prototypes developed to exercise the content-based

retrieval approach described in previous chapter. The Sketch and Image Based Retrieval

(SIBR) prototype exercises the retrieval part of the architecture and the Database Builder

implements the drawing classification part.

The SIBR prototype use a calligraphic interface to allow the specification of queries

using hand-drawn sketches. It is also possible to use digitized drawings to specify queries

or a mixing both images and sketches. In order to convert the digitized drawing into a

vector representation, a vectorization process must be executed. During this process the

user controls each step and receives constant feedback on evolution of conversion.

I also described the conceptual view of architecture for each prototype. Due to its

complexity, the SIBR prototype was based on a three tier architecture, composed by the

user interface, application core and file management. On the other hand, the Database

Builder, being a simpler application do not need such division, since it is composed by

few components. Moreover, most of these components are the same used in SIBR.

5
Experimental Results

During the development of the work presented in this dissertation three experiments

with users were carried out researchers of IMMI group. These experiments were per-

formed within theSmartSketchesEuropean project. All tests were made with users from

CENTIMFE1, a partner in theSmartSketchesconsortium, and took place at CENTIMFE

headquarters in Marinha Grande, Portugal.

To take advantage of users’ natural ability at sketching and drawing, we, at IMMI re-

search group, first performed tests with users to understand how they sketch 2D views of

parts. From the collected data and after analyzing all the information, I completed the first

version of a Sketch-Based Retrieval (SBR) prototype. Then, to evaluate it and the perfor-

mance of its algorithms, we made a preliminary usability evaluation2. During these tests

users sketched queries, commented the returned results and answered a questionnaire.

Based on the results from these tests I improved the prototype, producing a second

version with a new user interface, enhanced algorithms and new functionalities: the SIBR

prototype. This new version of the system was then evaluated by six users and a larger

database than in the first tests. Results from these usability tests revealed that users liked

the new interaction paradigm, which combines sketches and images to specify queries.

Moreover, users were pleased with the returned results and satisfied with the time they

have to spend, from sketching to the final results.

As annex to this document I included the protocols and questionnaires presented to

users during our usability tests, the databases used in the evaluation experiment and the

complete sets of queries used and correspondent results returned by retrieval prototypes.

1CENTIMFE is a technological training center for the Portuguese Mould Industry.
2The preliminary usability evaluation tests for the SBR prototype has already been summarized by

Fonseca’s in his PhD thesis [34].

83

84 Chapter 5. Experimental Results

5.1 Sketching Experiment

A Sketch-Based Retrieval system should be able to find a small set of drawings in

a large technical drawing database through a hand-sketched query performed by users.

However, to take advantage of users’ natural ability at sketching and drawing, one must

understand how they sketch 2D views of parts.

To accomplish this step we made an sketching experiment with users where we asked

them to sketch some drawings while we collected the produced data. For this experiment

we use a TabletPC with Sketch Reader installed to collect sketches drawn by users.

5.1.1 Sketch Reader Prototype

To understand how users sketch 2D views of parts I developed a sketching prototype,

called Sketch Reader, which collects strokes drawn using a pen on a digitizing tablet.

Using this application I were able to gather sketch information produced by them.

The user interface of the Sketch Reader Prototype, depicted in Figure 5.1, is divided

in two main areas: a large sketching area above a smaller log output area. Users sketch

in the sketching area and collected information is displayed in the log output area. This

information is also stored in a log file for later use.

Figure 5.1: Sketch Reader: sketching prototype application

5.1 Sketching Experiment 85

Figure 5.2: User during a sketching session.

Besides working with strokes made directly by users, this prototype can also use

sketches stored in files. To that end, this application can read a previously saved sketch.

Thus, sketches collected by the Sketch Reader can be saved in a file for later analysis.

This way, Sketch Reader allows later analysis of sketches drawn by users and saved

in the proprietary format. Using this feature we were able to review and edit the sketches

using the Sketch Reader, repeating processing of sketches drawn during the experiments

for further analysis.

5.1.2 Users

To perform this sketching experiment, we involved three draftspeople from CEN-

TIMFE, with a good know-how on drafting with CAD tools and with a great ability to

recreate mentally the depicted parts.

These users had no prior experience in sketching queries for any kind of SBR system.

This way, they were initially unbiased. However, after the first sketching session we

gave them some tips on how they should sketch to produce good queries for our retrieval

system.

Figure 5.2 portraits a user during a sketching session. There it is possible to see the

user holding the paper drawing while drawing a sketch on our prototype.

86 Chapter 5. Experimental Results

5.1.3 Experiment Steps

The experiment was divided in two parts. In the first part we introduced some con-

cepts about the experiment and in the second users executed a set of requested tasks. Dur-

ing the first part all users were present, while the second part was composed by individual

sessions. The whole process can be summarized in the following steps:

• Introduction to the SBR system (all users simultaneously);

• Description of the experiment (all users simultaneously);

• First sketching session (one user at a time);

• Second sketching session (one user at a time);

Sketching sessions were photographed and videotaped, taking place without our interven-

tion. The next steps composed each session:

1. Present the drawing of the part to the user;

2. Ask the user to sketch a 2D view of the part using a Tablet PC running a sketching

prototype;

3. Save the sketch in a file for later analysis and processing;

4. Repeat steps one to three for the remaining parts.

5.1.4 Technical Drawings

A set of five technical drawings of mechanical parts was selected to be presented to

users. All of the five drawings had at least the top view of the part. Two of them had other

views and another one also had a 3D view of the part. The first drawing (D1) had all the

2D views, some 3D views and other detailed views of the part. Figure 5.3(a) presents the

top view of this drawing. The second drawing, which was the most complex of the set,

included the top view (illustrated in Figure 5.3 (b)), a side view and several cut views.

This drawing was very rich in additional information, such as call out measurements and

labels. The next three drawings were edited using a CAD application in order to remove

5.2 Sketches 87

(a) (b)

Figure 5.3: Top view of drawings D1 (a) and D2 (b).

(a) (b) (c)

Figure 5.4: Drawings D3 (a), D4 (b) and D5 (c).

the views and unnecessary information, providing only the top view of the parts. Unlike

previous drawings, which were presented in the original A0 sheet with several views and

additional data, these drawings were presented in an A4 sheet with only the information

depicted in Figure 5.4.

5.2 Sketches

Next I will describe sketches of the drawings presented previously, produced by users

during the two sketching sessions. An exhaustive listing of sketches made by users during

these tests are available in Annex A.

5.2.1 First Sketching Session

The first sketching session occurred without any suggestion on how users should

perform their sketches, in order to obtain unbiased results. The main purpose of this

session was to understand the way users represent naturally the technical parts, without

any interference or constraints.

88 Chapter 5. Experimental Results

Unfortunately, due to some time constraints, user C did not sketch drawings D3, D4

and D5 during the first sketching session. Nevertheless, sketches made by users A and B

were enough for us to achieve important conclusions.

In drawing D1 all users sketched, immediately after the contour, the larger shape at

top, then the two small half-circles at bottom and finally the half-ellipse at top, adjacent to

the contour. Only from this step forward they started to diverge, sketching distinct details.

During the sketch of the more complex drawing of the set, D2, users were concerned

not only with the major shapes of the part, but especially with the small screw-holes. Like

in all other sketches users started by drawing the contour of the part and then the inner

shapes.

As before, users started sketching drawing D3 by the contour. After that, they sketched

the larger inner shape and added some details carefully, paying special attention to accu-

racy. Both sketches are composed by a large number of strokes, which makes them quite

complex, as depicted in Figure 5.5 (a) despite the apparent simplicity of drawing D3.

When presented with drawing D4 both users started sketching, as always, the contour

of the part. After that each one sketched different elements, but both ended by sketching

the sets of three and five small circles. In these sketches users drew almost every shape

existing in original drawing with an high level of accuracy.

Although the last drawing presented to users did not represent a very complex part, it

had a lot of details. Users tried to represent these details with some accuracy, namely the

small ”staircase” shapes and the little shapes outside the large polygons. In this particular

drawing, users did not drew the contour of the whole part at the beginning, but they started

by drawing the contour of what can be called the three dominant shapes: a trapezoid at

right and two rectangles, a thinner one at middle and a larger one at left. After sketching

these three shapes users started adding details to their representation of D5.

Table 5.1 presents the time per drawing spent by each user. We can see that there is

some difference between users, but they do not take less than two minutes.

5.2 Sketches 89

Table 5.1: Sketching times for the first session

Drawings
User D1 D2 D3 D4 D5

A 05m 40s 06m 04s 04m 04s 06m 22s 06m 38s
B 02m 12s 06m 31s 02m 38s 03m 52s 03m 51s
C 02m 50s 04m 13s * * *

* User C did not sketch drawings D3 to D4, therefore we have no times for him.

5.2.2 Second Sketching Session

At the beginning of the second sketching session we gave some suggestions to users

on how we expect them to sketch. We told them that the main point was to make a

quick sketch, without many details, representing only the main features they perceive

from each drawing. Another suggestion was to avoid over-sketching, since it will just add

complexity without improving the description of the part.

As a result of these suggestions sketches produced in this session were much simpler

than the ones produced before and the time spent on each drawing decreased significantly.

When presented with drawing D1, users sketched them in less than a minute. Like

before, they started by sketching the contour, then the larger inner shape and finally the

smaller inner half-ellipses.

From a quick comparison between these sketches and those performed in previous

sketching session it is clear that users only drew the main features. This way it is possible

to see clearly which shapes they consider more relevant on drawing D1.

Once again, users started sketching D2 by representing its contour and then the

smaller shapes. Here, user A took simplification seriously and sketched a minimal repre-

sentation of the part, focusing only on the main components. On the other hand, user B

depicted not only the larger shapes but also the screw-holes.

From a quick analysis of these sketches and taking in account the drawing order, we

can say that they identified the same main features in D2: the contour of the part, the

larger inner shape that follows the contour and the division in half of the inner shape.

The part depicted by D3 was sketched in a much simpler way on the second sketching

session, as Figure 5.5 illustrates. Like in previous drawings, user A chose a simplified

90 Chapter 5. Experimental Results

(a) (b)

Figure 5.5: Sketches representing drawing D3 produced by user B in first (a) and sec-
ond (b) sketching sessions.

representation, sketching a rough approximation of the contour and just one shape inside.

The sketches produced by users B and C are extraordinarily similar, reproducing the same

shapes that they consider more relevant.

It is clear from the analysis of sketches produced by users B and C to represent the

part depicted in drawing D3 that they considered the contour and the three inner shapes

as the more relevant elements.

The sketch of part D4 made by user A is quite simple, like all the others he did in

this session. As before, all users sketched the contour of the part, followed by the inner

shapes. Sketches made by user A and user C depicted basically the same shapes of the

part, which were the ones that user B sketched in first place, before sketching the details.

Therefore, I can state that all users identified the same relevant shapes from the current

part (shapes sketched by users A and C).

To conclude the second session, we presented drawing D5 to all users. This time

they sketched much simpler representations of the part, ignoring lots of small details they

sketched in the first session.

To sketch this part all users adopted the same methodology, sketching first the two

main shapes, the large rectangle at the left and the trapezoid at the right, and then the

shape inside the trapezoid. The simplified representation sketched by user A includes

an additional stroke dividing vertically the rectangle in order to recreate the two almost

rectangular shapes on the left of the part. Sketches produced by users B and C had a little

more detail, namely in the format of the rectangular shape.

As in first session, we measure the sketching times for every user during this second

session. Table 5.1 presents the time per sketch spent by each user. Results show that users

5.2 Sketches 91

Table 5.2: Sketching times for the second session

Drawings
User D1 D2 D3 D4 D5

A * 00m 44s 00m 21s 01m 00s 00m 39s
B 00m 58s 01m 21s 00m 31s 01m 06s 00m 45s
C 00m 46s 01m 04s 00m 27s 00m 34s 01m 02s

* User A was interrupted several times while sketching D1, therefore it was not possible to correctly
measure its time.

spent less time in this session, taking no more than one and a half minute to complete

their action.

5.2.3 Analysis of the Sketching Experiment

From this sketching experiment I can conclude that the use of sketched queries to find

drawings in large technical drawing databases is validated by the coherence found among

sketches performed by all the users of our experiment.

Additionally, all users recognized the same relevant shapes in each drawing. I also

noticed that users consider the contour of the part as the most relevant shape, since they

always started by sketching it.

Moreover, I found out that users’ natural ability for sketching and drawing can be

used naturally in a Sketch-Based Retrieval system. This is an important conclusion, since

it validates the concept I present in this dissertation, from users point of view.

However, to best explore this advantage, one must provide users with some informa-

tion on how proposed SBR system will expect them to sketch queries. The comparison

of sketches from the two sessions shows that users produce results more suited for a SBR

system when they know what is supposed to draw.

In the second session, we asked users to avoid over-sketching and to ignore details.

As a result we got simpler sketches, closer to what was expected to have for queries,

and reduced sketching times. While in the first session users took between two to seven

minutes to sketch each drawing, in the second session they spent no more than one minute

and a half. From Figure 5.6 we can also see that times are more similar between users

during session two that during the first one.

92 Chapter 5. Experimental Results

Figure 5.6: Time comparison.

Another relevant observation from this experiment was the way users sketched. They

tend to leave unclosed shapes that are supposed to be closed. This situation is illustrated

in Figure 5.7, where we show part of a sketch made by a user (left) and the corresponding

region on the original drawing (right).

Moreover, although many sketches depicted in this document appear to have closed

shapes, a closer inspection will reveal that several of them are opened. Some are clearly

visible, as illustrated in Figure 5.7 (a), while others have only very small gaps. A variant

of this problem appeared during the sketch of small closed shapes, namely small circles.

An example of this situation is depicted in Figure 5.7 (c), where the user made an approx-

imation of a circle leaving a gap between the two endpoints of the stroke.

5.2.4 Conclusions from sketching experiment

From the sketching sessions, I noticed that users sketch a lot of details and use too

much accuracy, unless we tell them to be more objective. I also observed that all users

(a) (b) (c)

Figure 5.7: Detail of a sketch made during second session (a), same detail of the original
drawing (b) and amplified sketch of a small circle (c).

5.3 Preliminary Usability Evaluation 93

identify the same relevant shapes of a drawing, validating our approach of using sketches

as queries. This experiment was also important to see how users perform their sketches,

providing information on how to improve and enhance the SBR prototype.

As a conclusion from this experiment I identified a couple of features and improve-

ments to include in the SBR system. For instance, observation mentioned before unveils

the necessity of an intelligent sketch editor. This editor should be able to perform auto

completion of shapes during sketch.

5.3 Preliminary Usability Evaluation

This section presents the results of these preliminary usability tests of the SBR proto-

type. The main goals of this experiment were to test classification and retrieval algorithms

and collect users’ opinions about the results returned by the system. Additionally, they

also evaluated the user interface, suggesting changes to improve the final version.

This experiment was also important to see how users sketch queries using a Tablet PC

and a pen, and what their expectations were about the answers from the system. Collected

data provided valuable information to redesign the SBR user interface, to improve the

sketching method, enhance the retrieval algorithm and integrate new features.

5.3.1 Users

To perform this experiment, we involved three draftspeople from CENTIMFE, with

a good know-how on drafting with CAD tools. These users have no prior experience

in sketching queries for any kind of SBR system. This way, they are initially unbiased.

However, after the first sketching session we gave them some tips on how they must sketch

to produce ”good queries” for our retrieval system.

5.3.2 Usability Test Session

Our test sessions were made entirely of individual sessions. This method was adopted

to minimize the impact of the experiment in users work routine. Each individual session

can be summarized in the following steps:

94 Chapter 5. Experimental Results

• Description of the experiment;

• Introduction to the SBR prototype;

• Accomplishment of tasks (querying) using two sets of queries;

• Answering to the questionnaire;

• Informal conversation about the SBR system.

During the execution of tasks users were encouraged to make comments (”think

loud”) and even raise questions to observers. This form of interaction proved to be very

fruitful, since we were able to collect useful information from users. The following steps

composed each querying session:

1. Presentation of a set of basic drawings to the user;

2. Ask the user to sketch a query for each presented drawing, submitting it to the

system and analyze the returned results;

3. Presentation of a set of simple technical drawings to the user;

4. Ask the user to sketch a query for each presented drawing, submitting it to the

system and analyze the returned results.

After the querying session each user answered to a questionnaire about their previous

experience in drawing, their opinion about the SBR system and about its user interface.

At the end of each session we had an informal conversation with the user focusing the

concepts beyond SBR the functionality of the prototype and its application to real situa-

tions in the mould industry. From these conversations we gathered relevant information,

since users were not constrained by previously prepared questions.

5.3.3 Drawings Database

The drawings database used in this experiment was constructed by joining two sets of

drawings, one with basic drawings and the other with simple technical drawings of plates,

totalizing 78 drawings. Some instances of these drawings are simply rotated or inverted

5.3 Preliminary Usability Evaluation 95

Q1 Q2 Q3 Q4 Q5 Q6

Figure 5.8: Basic drawings to search in the database.

Q7 Q8 Q9 Q10 Q11 Q12

Figure 5.9: Simple technical drawings to search in the database.

versions of others in the database, because I intended to check that the retrieval algorithm

is orientation independent.

The set of basic drawings has 38 elements, composed mainly by simple shapes or

combinations of two or three simple shapes, as depicted in Section D.1.

The set of simple technical drawings has forty elements, which are simplifications of

technical drawings of mould plates. Some plates just have small differences between them

like, for example, an additional small triangular cut on the corners. Others are composed

by the same shapes, but with different sizes. A complete list of drawings in this set are

depicted in Section D.2.

5.3.4 Queries

In this evaluation, users were asked to search for twelve drawings in the database,

using the SBR system. First, users sketched six basic drawings drawings, depicted in Fig-

ure 5.8, and then they sketched more six simple technical drawings, listed in Figure 5.9.

We choose this order of tasks, to provide some training to users while sketching basic

drawings. This way, when users perform the second task they already are used to the

prototype.

96 Chapter 5. Experimental Results

5.3.5 Final Questionnaire

The questionnaire is divided in three parts and can be found in Annex C. One was

designed to collect general information about users experience on sketching, drawing

tools usually used and input devices preferred and most used. In the second part we

questioned users about the use of the SBR prototype to retrieve technical drawings. Users

were asked about the time spent to get results and about the quality of results. Finally,

there are a set of questions to evaluate the user interface in terms of window layout,

size of the main areas and icons of buttons. The time to complete the questionnaire was

approximately ten minutes.

5.3.6 Sketches

Sketches made by users to query the database are presented in this section and some

of them are depicted. The Sketch-Based Retrieval Prototype stored these sketches auto-

matically, for later analysis. All sketched-queries made by users and respective results

returned by the SBR Prototype are depicted in Annex E.

5.3.6.1 Basic Drawings

Sketches drawn to search for a triangle have noticeable differences from the original

shape. Among these differences we highlight the fact that users ignored angles and aspect

ratio of triangles. This situation occurred in sketch S1A drawn by user A. However, our

algorithm was always able to return the correct drawing within the first ten results. In this

case the correct result was the first one, as depicted in Figure 5.10.

When users had to sketch a more complex shape, for instance the Chantal’s Comb

(Q2), it was clear that they had some difficulty in representing it at the first try. While

sketching this shape, users used the ”undo” command very often, because they made a lot

of mistakes.

To execute queries for Q3 and Q4 users had to draw a triangle and a square or rectan-

gle. As in Q1 the triangles sketched for Q3 and Q4 did not respect angles or aspect ratio.

Moreover, users did not distinguish sketching a rectangle and a square, as illustrated in

Figure 5.11, where user C sketched the rectangle and the square similarly.

5.3 Preliminary Usability Evaluation 97

Sketched Query Returned Results

Figure 5.10: Sketch for Q1 made by user A and returned drawings.

Sketch S3C Sketch S4C

Figure 5.11: Sketches made by user C for Q3 (left) and Q4 (right).

The lack of accuracy in sketches had a major effect in the query for Q3, since the

desired drawing never appeared in the first place of the returned results. On the other

hand the query for Q4 produced good results despite the inaccurate sketches. In this case,

sketch S4C from user C produced a good set of results, with the wanted drawing in first

place.

In queries for Q5 and Q6 users searched for similar drawings with a small geometric

difference, one had two triangles inside a rectangle while the other had a square and a

triangle. This difference was clearly represented in sketches produced by users. Addi-

tionally to the lack of accuracy factors referred previously, users also had no concerns

about shape alignments, since in original drawing triangles were aligned and have the

same size, unlike the correspondent sketches.

98 Chapter 5. Experimental Results

Figure 5.12: Sketch of two concentric circles.

Figure 5.13: Detail of the sketch made by user A for Q9.

5.3.6.2 Simple Technical Drawings

The major problem encountered by users when sketching a query for Q7, and for

the rest of the drawings, was the accuracy used to draw circles. However, after a few

tries users successfully sketched what they wanted. Despite problems encountered during

sketching, users were very pleased with results returned by the first SBR prototype.

Sketching a query for Q8 highlighted the problem of drawing circles, because users

represented all six circles of the original drawing. The task of sketching these circles

was error-prone and sketched circles were just rough approximations of a real circle, as

depicted in Figure 5.12.

Despite the lack of accuracy in sketches for Q8, the SBR prototype always returned

the ought drawing in first place. Moreover, the first four results were the same for the

three different queries (one for each user).

The major difference between Q8 and Q9 was that users had to draw two squares

instead of two circles in the corners of the part. In spite of roughly sketched circles,

squares were easily identified, since users sketched them differently, as shown in Fig-

ure 5.13. Here is visible how user A sketched an inaccurate circle but drew the square

more carefully. Indeed the sketched square was closer to a rectangle than to a square but

the resemblance is greater than that between the sketched circle and the circle itself.

In all sketches users respected the topological relationships among shapes. Sketches

5.3 Preliminary Usability Evaluation 99

Original Drawing Sketched Queries

Figure 5.14: Original drawing (Q10) and sketches performed by each user.

made for query Q10 were a good example of this, because regardless the accuracy of the

shapes geometry, users drew shapes taking in account their relative position. In this case

all users sketched the outer rectangle and the five circles with little geometric accuracy

but respecting the placement of shapes in the original drawing, as depicted in Figure 5.14.

Drawings to search for Q11 and Q12 were more complex to sketch than previous ones,

because both had several circles with different sizes and some of them were concentric.

Although users did not represent all the circles, our system returned the wanted drawing

within the first eight results. Typically, users only sketched one of the concentric circles.

5.3.7 Test Analysis

During test sessions each user performed a set of sketched-queries, with the objective

of obtaining the complete filename of each searched drawing. To achieve this, users had

to locate the wanted drawing in the result list returned by the SBR prototype.

Since sketches are rough approximations of original drawings, it is acceptable that

the wanted drawing is not the first returned result. Therefore, I checked the position

of the desired drawing within the returned results for each query and summarized it in

Figure 5.15. From the analysis of the depicted chart it is clear that in the majority of the

queries, wanted drawings were in the first five returned results. Moreover, it is possible

to see that in all queries, except one, the desired drawing was within the ten first results,

giving some trust to the user.

These results report to successful queries: queries that produce a set of results that

include the desired drawing. Unsuccessful queries occurred mainly due to incorrect poly-

gon identification, caused by the lack of accuracy in sketches.

Another measure used to evaluate the prototype was the number of necessary sketched

queries to achieve the desired drawing. The correspondent values are presented in Fig-

100 Chapter 5. Experimental Results

0

5

10

15

20

25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Query

O
ve

ra
ll

P
os

iti
on

User A
User B
User C

Figure 5.15: Overall position of the desired drawing in the results list.

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Query

 S
ke

tc
he

s User A
User B
User C

Figure 5.16: Number of sketches drawn before finding the correct result.

ure 5.16. Looking at this chart one can observe that in the majority of the cases there is

a successful query with the first sketch. However, there are some situations where users

had to repeat the sketch. Most of the times another iteration was enough to achieve a

successful query. Even in the worst situation users re-sketch the query only three times.

To be useful a SBR system must provide good results in a short time. To that end we

measured the total time that includes the sketching and the query execution time. Values

for each query are shown in Figure 5.17. Query execution took from two to ten seconds in

the Tablet PC used in this evaluation. From this graphic it is clear that almost all queries

take less than one minute.

Defining what is considered a short time was one of the purposes of this usability test.

From informal conversations with users and analyzing their feedback during the sketching

session I noticed that they were satisfied with the amount of time spent sketching and

waiting for results.

5.3 Preliminary Usability Evaluation 101

0
20
40
60
80

100
120
140
160

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Query

Ti
m

e
(s

ec
on

ds
)

User A
User B
User C

Figure 5.17: Time spent performing queries.

5.3.8 Questionnaire analysis

The first set of questions in the questionnaire (see Annex C) of these evaluation tests

was meant to know previous experience of the user and what kind of input devices they

use and prefer to use. From results, we can conclude that users have a good experience

with CAD tools, for 2D, 3D and modeling. Moreover, we can say that users usually use

the mouse as input device.

From the second part of the questionnaire, we tried to extract some feedback from

users about the performance of the SBR prototype to retrieve technical drawings using

sketches. Results show that users like the idea of specifying a query using sketches,

that the quality of results and the time needed to find the desired drawing were very

satisfactory.

Finally, from the third part of the questionnaire, we wanted to know what users think

about the user interface of the SBR prototype. All users considered the drawing area

too small and the buttons area too big, but they liked the general layout of the window.

Regarding the presentation of results, users referred that it was difficult to locate at a

glance a specific drawing among ten similar ones. They suggested displaying only five

results at a time.

5.3.9 Conclusions from preliminary usability tests

In the preliminary usability evaluation we tried to evaluate the main retrieval algo-

rithms and the user interface of the SBR prototype. To that end we involved three users

from the mould industry that performed some sketching tasks to search for drawings us-

ing our SBR prototype. We also asked users to answer a questionnaire in order to identify

102 Chapter 5. Experimental Results

their profile and to get some feedback about prototype functionalities and user interface.

One of the things that I observed during the execution of tasks was that users did not

care about where in the order of retrieval the intended drawing appears, the important fact

being that it was there. One of the users produced this comment:

”It [the SBR system] found it [the drawing]! That is what counts!”

Although we just involved three users in our preliminary usability test, I think that

the main objectives were achieved. We presented a first version of the SBR prototype to

users from the mould industry and received great feedback from them. Users liked the

interaction paradigm, were satisfied with the results returned by SBR prototype and were

pleased with the short time they have to spend to get what they want.

From users’ comments and suggestions, and from observations, I was able to improve

the prototype and algorithms. In next section I present the results of the final evaluation

tests made with the evolved version of the prototype and using a larger number of users

and a larger database of drawings.

5.4 Final Usability Evaluation

This chapter describes the experiment and presents the results of the final usability

evaluation. The overall objective of these tests was to evaluate the changes and new

features added to the new version of the prototype, developed taking into account the

results from the first usability tests. A major goal of this evaluation session was to get

feedback from users about the new functionalities, the revamped user interface and the

quality of results.

5.4.1 Users

To perform this experiment, we conducted test sessions with five draftspeople from

CENTIMFE and a designer from Anı́bal Abrantes3. All of them have a good know-how

on drafting with CAD tools. Three users have no prior experience in sketching queries

3Anı́bal Abrantes is a pioneer company on the Portuguese mould industry. Founded in 1946, is known
as ”Mould University” and had already produced about 8000 molds for more than fifty different countries

5.4 Final Usability Evaluation 103

Figure 5.18: User and observer during the training phase.

for any kind of SBR system. The other three had already participated in the preliminary

evaluation tests, knowing the SBR system. We gave some tips to novice users on how to

sketch ”good queries” for a retrieval system. Additionally, we made a brief demonstration

of the new functionalities to all users, so they can take full advantage of this second

version of the SBR system, the SIBR prototype.

5.4.2 Usability Test Session

Each usability test session was divided in four distinct parts. In the first part we

explained the experiment and introduced the SBR prototype to users. Next, they perform

four simple queries to become familiarized with the system. During the third part users

executed a set of queries, searching for technical drawings. Finally, users answered a

questionnaire, where we try to figure out their profile, their opinions about the prototype

and their evaluation of the user interface. We also asked users, in an informal manner,

about their opinions suggestions and ideas.

Users were encouraged to make comments (”think loud”) and even raise questions to

observers, in the training phase and during the execution of tasks. This form of interaction

proved to be very fruitful, since we were able to collect useful information from users,

which were not constrained by previously prepared questions.

During the querying session we presented a printed drawing to users and asked them

to sketch a query for that drawing, to submit it to the system and to analyze the returned

results. If the desired drawing did not appear in the set of twelve results the user was

104 Chapter 5. Experimental Results

Q1 Q2 Q3 Q4 Q5

Figure 5.19: Technical drawings selected as queries.

free to enrich the query with additional shapes, delete some of the existing or start a new

sketch from scratch. These steps were repeated for each of the five drawings.

5.4.3 Drawings Database

The drawing database used in this experiment was constructed by joining three sets

of drawings, one with basic drawings, other with simple technical drawings of plates and

another one with twenty technical drawings of parts, totalizing 98 drawings. The first two

sets of the database are the same that were used in the first tests and the third set was

extracted from complex mould drawings. These three sets of drawings are depicted in

Annex D.

5.4.4 Queries

During these tests, drawings Q1 to Q5, depicted in Figure 5.19, were show to users

in this order. After presenting each drawing to users, we asked them to search for it using

the SIBR prototype and sketched queries.

We start by presenting to users one of the simplest part drawings of the database

(Q1). Then a more complex drawing was presented (Q2). However, the complexity of

this drawing is relative because it is composed of a set of similar shapes and with a clear

symmetry. Next, we present a drawing that had a few small shapes mixed with larger ones

(Q3). The penultimate drawing presented to users (Q4) had several shapes, very different

among them and lots of small details. Finally, a drawing very similar with the first one

but more complex was presented to users (Q5).

5.4 Final Usability Evaluation 105

Sketch S3A1 Sketch S3A2

Figure 5.20: Sketched queries made by user A for Q3.

5.4.5 Final Questionnaire

In this final evaluation tests we use a questionnaire similar to the one used in the pre-

liminary tests. The main differences are related to the prototype new functionalities, about

which some questions were added. Users took approximately ten minutes to complete the

questionnaire. Its content can be found in the Annex C.

5.4.6 Sketches

In this section I present the sketches made by users to query the database, the most

relevant sketches and some sets of results returned by our system. The complete set of

sketched queries and correspondent results are depicted in Annex E.

When searching for a drawing, the better way to find it is sketching a query depicting

its more relevant features. If the user tries to perfect the sketch by adding more features,

but fails to drawn a precise representation of the drawing it will be less similar to it.

Figure 5.20 depicts such case, where the user sketched a simple query (S3A1: first sketch

made by user A when searching for query Q3) with a few strokes and the correct drawing

were returned within the top ten results but, when the sketched drawing was changed by

adding more features (S3A2), the correct drawing were returned only in the 12th position,

because the new sketch is less accurate.

However, even the main features need to be represented with some precision. If only

a rough approximation is sketched, the results might be unsatisfactory. This way it is

possible that two apparently similar sketches produce completely different results.

Nevertheless, a sketched query for a drawing does not need to have all elements. Each

drawing has a set of relevant shapes that characterizes it. If the user is able to identify such

106 Chapter 5. Experimental Results

(b)

(c)
(a)

Figure 5.21: Sketch S2C (a) made by user C for Q2 and details of sketch (b) and drawing
(c).

shapes it will be enough to sketch them in order to obtain successful search results.

Sketch S2C, depicted in Figure 5.21 (a), illustrates an example of a situation where a

good capacity to understand which shapes distinguishes a drawing from all others enables

the user to quickly sketch a simple query that produces a good result. In this case was

sketched the outer rectangular shape and two inner shapes. User C has been especially

careful when sketching the inner shapes, easily perceived by comparing details, depicted

in Figure 5.21, of sketch drawn (b) and wanted drawing (c).

The methodology for specification of queries used in sketch S2C proved well with

proposed algorithms. In this case, the SIBR system returned ought drawing in first place,

which is an excellent result for a sketch with only three strokes that was meant to describe

a very complex drawing.

Therefore, to sketch a query that produces good results it is important that the user

is able to identify relevant shapes and then sketch them with some precision. If relevant

shapes are sketched roughly the quality of the results may decay. Sketches made by users

when searching for drawing Q4 demonstrate that.

Several different shapes with small details compose drawing Q4. Consequently, the

identification of relevant shapes is not straightforward and the irregularity of most shapes

makes precise sketching difficult. However, users A and D were able to sketch successful

queries at first attempt (see Figure 5.22, sketches S4A and S4D) while user E needed five

iterations before submitting a successful query to the system, depicted in Figure 5.22,

sketch S4E5.

5.4 Final Usability Evaluation 107

Sketch S4A Sketch S4D Sketch S4E5

Figure 5.22: ”Good” sketches made for Q4 that returned successful results.

Sketch S4C4 Sketch S4E2 Sketch S4E4

Figure 5.23: Sketches made for Q4 that returned unsuccessful results.

User A sketched Q4 accurately (S4A), representing all main features of the drawing

with precision. As a result of this careful sketching, the SIBR system returned the wanted

drawing in second place, compensating the large number of strokes used and the time

spent. On the other hand, user D focused on distinctive features of wanted drawing and

sketched them precisely with few strokes (S4D). Such query returned the correct result

among the top ten. Similar result was achieved when sketch S4E5 were submitted to the

SIBR system, which is not surprising since both users identify the same relevant shapes

and sketch them similarly.

Problems commonly arise when users are unable to sketch relevant shapes with a

minimum accuracy or when they do not even identify correctly the relevant shapes. Some

examples of such situations are illustrated in Figure 5.23. When the depicted sketched

queries were submitted to our SIBR system the wanted drawing was not among the top

twelve returned results.

User C tried three different queries for Q4 before sketching S4C4. Despite a correct

identification of relevant shapes in all four queries, the lack of precision in sketching

yielded only unsuccessful queries. As a result of these misses, user decided to give up

looking for drawing Q4 in the database, assuming that it does not exists there.

A different problem occurs with user E, which initially fails to identify the more

108 Chapter 5. Experimental Results

Figure 5.24: Detail of second SBR prototype showing the ”Show all results” button and
part of results area scroll bar

relevant shapes on Q4. Consequently, only two shapes compose sketch S4E2, one inner

half circle and an outer contour. Despite the inner half-circle could be considered as

accurate the outer shape is too distinct from the contour of the wanted drawing. Moreover,

drawing Q4 is clearly divided in two adjacent outer shapes, but user E ignores that fact

and only sketches one outer shape.

Since using S4E2 as a query does not yielded successful results, user E added more

features to it and produced sketch S4E4. Now the more relevant features are already

identified, but too roughly sketched to obtain good results. Although its failed fourth

attempt, user E decided to make other iteration. Understanding that adding features or

making small changes to current sketch will not be enough, user E started a new one

from scratch. This sketch contains the three relevant shapes of Q4 represented with good

accuracy. Submitting this fifth sketch as a query to the SBR system yielded ought drawing

among the top ten results.

5.4.7 Test Analysis

During these test sessions each user performed a set of sketched-queries, with the

objective of identifying each searched drawing in the results area of the prototype or

alternatively in the ”All Results” window. We choose to allow these two options because

all results can be consulted either using the scroll-bar on results all area or clicking on

a control button that opens the ”All Results” window, which displays simultaneously all

twelve returned results.

Observing users behavior when the wanted drawing was not in the top five results, we

noticed that they prefer to open the ”All Results” window rather than use the scroll bar to

change the displayed drawings in the results area. A possible reason for this might be the

relative small width of the scroll bar, when compared to the button size (see Figure 5.24).

5.4 Final Usability Evaluation 109

Figure 5.25: Overall position of the desired drawing in the results list.

Moreover, some users complained about the short width of the scroll bar and the

difficulty they had when trying to use it. It is well know among user interface designers

that small targets are difficult to click and users prefer to use the larger ones. Therefore,

the correct solution will be to increase the width of the scroll bar, or even remove that

feature, since users prefer to view all twelve results in a separate window when ought

drawing are not among the top five.

Additionally, I checked the position of the desired drawing within the returned results

for each query and summarized it in Figure 5.25. In this chart unsuccessful queries are

ignored since it only considers queries that returned the wanted drawing among the top

twelve results.

Contrary to the preliminary evaluation tests, wanted drawings were not in the top five

returned results for the majority of the queries. Now the overall position of the desired

drawing in the results list is distributed more evenly. A possible cause for this might be

the fact that now we have complex drawings in the database. Since complex drawings

share features, a specific query might be similar to more than one drawing.

However, 47% of all submitted queries returned the desired drawing in the top five

results, as depicted in Figure 5.27 (b). If I only consider successful queries, then more

than a half of them yielded the wanted drawing in the top five results.

In the current analysis I consider a miss when the user was unable to submit a query

that returns the desired drawing among the top twelve results. During this second evalua-

tion tests the retrieval system returned the correct result for almost all queries. Only three

times the SIBR prototype fails to find the desired drawing. Two of these misses were

when searching for Q4, which proved to be a problematic drawing due to its complexity

and to the difficulties users had in identifying its relevant features.

110 Chapter 5. Experimental Results

While three users made its first contact with the SBR system during these second

evaluation tests, the other three had already participated in the first evaluation tests of the

SBR system. Therefore, we decided to classify users in two different categories according

to its experience using an SBR system. Users C, D and E already know the system and

are acquainted with sketching queries. On the other hand, users A, B and F have no prior

experience in using sketches to search for technical drawings.

Considering users experience, I analyzed the results yielded by submitted queries.

In Figure 5.26 we depict the average overall position for each query, grouped by user

experience. It is possible to see that queries made by experienced users produce better

results, in average, than the ones submitted by first-time users.

Additionally we measured the number of necessary sketched-queries to achieve the

desired drawing. Trough the analysis of obtained data I concluded that in more than

fifty percent of the cases the wanted drawing was obtained with only one query (see

Figure 5.27 (b)). Moreover, almost all successful results were achieved with less than

three queries. Using the queries and the database described above, the SIBR system

was able to find the ought drawing in 90% of the queries, which satisfies users (see next

section).

During these tests we choose not to measure the time each user took sketching, since

we prefer to gather their comments and it will be difficult to account time while talking.

Figure 5.26: Average overall position of query results grouped by user experience.

5.4 Final Usability Evaluation 111

(a) (b)

Figure 5.27: Pie charts representing query results distribution (a) and number of sketches
drawn before finding a correct result (b).

5.4.8 Questionnaire Analysis

After each sketching session we ask users to answer to a questionnaire . Due to time

restrictions, the last user skipped this step of the evaluation tests. Therefore we only have

five answered questionnaires.

The questionnaire, listed in Annex C, was divided in three parts. In the first part we

intend to gather information about users’ experience. From obtained results, we know

that all subjects are CAD users, with experience in both 2D and 3D design. Additionally,

we also know that all users have previous experience with sketching tools, but not in their

everyday work.

From the answers given by users when asked about input devices we conclude that

keyboard and mouse are the most used. This conclusion is coherent with the fact that

CAD is the most commonly used tool, since the interaction with this kind of system is

made mainly trough keyboard commands and mouse point-and-click operations.

Despite the common use of keyboard, when we ask the users about which device they

prefer it was not pointed by them. Users clearly prefer to use the mouse as input device,

but the current computer aided design tools force them to use intensively the keyboard.

The second set of questions aims to extract some feedback from users about the con-

cept of sketch-based retrieval and the performance of the prototype. Results showed that

users are very pleased with the possibility of using sketches to retrieve technical drawings

and are even more interested in the new feature of using existing drawings to help in query

112 Chapter 5. Experimental Results

specification.

Finally, the last set of questions focused on the user interface. According to obtained

results, users are pleased with the user interface of this final prototype. The main com-

plains are about the icons used on the ”Show All Results” and ”Acquire Image” buttons,

the absence of clues about the delete gesture and the selection method.

5.4.9 Conclusions from final usability tests

In this chapter, I have described the usability tests for the second Sketch-Based Re-

trieval prototype. The improved retrieval algorithm and the revamped interface were

meant to be evaluated by designers or draftspeople. To that end we involved six users from

the mould industry that performed some sketching tasks to search for drawings using the

SIBR prototype. After each sketching session we asked users to answer a questionnaire

in order to identify their profile and to get some feedback about prototype functionalities

and user interface.

We intend to involve a large number of users in these tests, but it proved to be an

impossible task, since it is very hard to find designers or draftspeople available to engage

in this kind of activities. However, we consider that our main goal for this user evaluation

was achieved. Users were satisfied with the interaction paradigm and with the concept of

using sketches to retrieve technical drawings. Moreover, they were very pleased with the

new functionalities provided by the final prototype, namely the query using drawings on

paper and the query-by-example.

Suggestions and comments made by users during these tests in conjunction with our

observations will lead to improvements in this final prototype and in the retrieval algo-

rithms, pointing out directions for future work.

5.5 Discussion

During the development of a system for retrieving technical drawings using sketches

and images we invested on a strong collaboration between the research team and the final

users. To that end we organized three experiments involving draftspeople from the mould

industry.

5.5 Discussion 113

Initially, a sketching experiment took place at CENTIMFE on July 2003. With this

experiment we intended to study the way users sketch technical parts, in order to figure

out how our retrieval system can take advantage of users’ natural ability at sketching.

Using a sketching prototype developed specifically for this experiment and involving three

draftspeople we gathered important information that was used to create the first version

of our Sketch Based Retrieval prototype.

From the analysis of the sketches made by users during the sketching sessions I no-

ticed that all users identified the same relevant shapes of a drawing. This fact validates

proposed approach of using sketches to specify queries on a database of technical draw-

ings. Additionally, we observed that some users sketch accurately and with lots of details,

unless we tell them to be less precise and ask them to sketch only what they consider rel-

evant. Therefore, users will need some training before using efficiently the SIBR system.

Employing the information gathered in the sketching experiment, I developed the

SBR prototype. In September 2003 we organized a preliminary usability evaluation to

this prototype. With this experiment we tested the performance and accuracy of retrieval

algorithms and evaluated the user interface. This experiment involved the same three

draftspeople that engaged the previous one. They performed some sketching tasks to

search for drawings using our SBR prototype and then answered to a questionnaire.

The first usability evaluation revealed that users were pleased with the results asso-

ciated with their sketched queries. Moreover, from informal conversations and question-

naire analysis we noticed that users were satisfied with the amount of time spent sketching

and waiting for the results. However, the drawings and queries used in these tests have

relatively low complexity.

Users’ comments and suggestions alongside with observations we made during the

first user evaluation lead to major changes in the prototype. A revamped user interface

and a set of new features were incorporated in the final SIBR prototype. Furthermore, a

completely renewed feature extraction component was developed. The second prototype

underwent a usability evaluation in July 2004. This second usability evaluation was simi-

lar to the first one, but now we used a larger database with more complex drawings and a

new prototype with additional functionalities.

Analysis of the information gathered during the second usability evaluation tests

114 Chapter 5. Experimental Results

showed that we achieved a successful evolution from the first to the second prototype. De-

spite some complaints about the ”select region” procedure, users were generally pleased

with the interface. Besides, the improved retrieval algorithms returned accurate results

within an acceptable time when searching for complex drawings in the database.

Unfortunately, we were unable to construct a really large database, with several hun-

dreds of complex drawings, since we only have restricted access to technical drawings

from the mould industry. Currently our database contains about one hundred drawings

and only twenty of them are real technical drawings of mould parts.

Although results from usability evaluation tests were very promising, I think that

the number of users involved and the size of the database used did not come up to my

expectations. I would like to have had performed tests with thousands of drawings and

dozens of users, to state with more confidence that proposed system has good performance

and accuracy for large sets of drawings.

5.6 Summary

In this chapter I presented the three user tests performed during the development of

my work. In the first tests I studied how real users sketch queries to search for technical

drawings. During these initial tests we gathered sketches made by draftspeople and ask

them some feedback about the concept of retrieve drawings using sketches. At the end, we

conclude that users were pleased the idea of sketch-based retrieval. In addition, we assert

that they were able to quickly sketch a query for a complex engineering drawing. From

the analysis of collected sketches we identified the features of an engineering drawing

that users consider relevant to draw in a query.

Based on results of these first sketching experience, I developed a prototype that was

able to retrieve vector drawings from a database. A preliminary usability evaluation were

performed in order to test classification and retrieval algorithms and collect users’ opin-

ions about the results returned by the system and suggestions for improvements. Users

liked the interaction paradigm, were satisfied with the results returned by the SBR proto-

type and were pleased with the short time they have to spend to get what they want.

From comments and suggestions provided by users, and from our observations, I was

5.6 Summary 115

able to improve the prototype and algorithms, producing the final SIBR application. This

prototype was also evaluated by users. In this final usability evaluation we engaged six

draftspeople and use a database with little less than one hundred drawings.

Despite some minor complaints regarding some interaction methods, users were pleased

with the interface and with the results yielded by the retrieval algorithms. From this final

tests we concluded that this paradigm for retrieval of technical drawings will work in a

real environment and that our algorithms are able to fulfill users’ expectation regarding

speed and accuracy.

116 Chapter 5. Experimental Results

6
Conclusions and Future

Work

This chapter presents the final conclusions, identifying the most relevant contributions

of my work and discussing the strengths and weaknesses of algorithms and methodologies

presented in this thesis. In addition I point possible directions for future work in each field.

My main goal was to develop a set of techniques to retrieve technical drawings from

databases using sketches as queries. As a result of task analysis and interaction with

them, this goal was b roadened to allow query specification by combining images with

sketches. To achieve it I took advantage of the framework presented by Fonseca in his

PhD work [34] to retrieve technical drawings from large databases, focusing my research

on algorithms and usability issues postponing efficiency concerns to future work.

In order to yield a novel method for retrieving 2D engineering drawings, I developed

techniques to extract visual features from technical drawings and sketches and integrate

them with Fonseca’s framework for retrieval in large sets of drawings. Thus, my thesis

focused on vectorization and simplification of engineering drawings, shape detection and

feature extraction.

During this research I devised a methodology for vectorizing engineering drawings

that proved to be simultaneously effective and accurate enough. Although this technique

uses existing algorithms, the proposed combination of these minimizes user intervention,

a desirable goal to perform line simplification, producing good results with simple techni-

cal drawings digitized using a flatbed scanner. However, this approach proved difficult to

scale to very complex drawings, which take too much time to perform the raster to vector

conversion ”on-the-fly”. Since vectorization is used to specify queries interactively, ide-

ally this process should not take more than a few seconds. Moreover, if scanned drawings

117

118 Chapter 6. Conclusions and Future Work

have additional elements such as text, symbols or dimensioning notes, this method would

need to perform text/symbols/graphics segmentation, which could be easily added to the

vectorization pipeline. Although several algorithms exist for this purpose, their inclu-

sion would add extra complexity to this approach without commensurable returns. Thus,

for this work I assumed that scanned drawings have no additional elements, which al-

though acceptable to prove the concept should be revised in a fully functional prototype.

Therefore, further improvements regarding strategies for segmentation and recognition

of graphical entities in engineering drawings should be studied and integrated in a final

application. Moreover, developing a stable and robust stand-alone vectorization process

would be a major advance, since no currently known methods can work that way [106].

The curve simplification algorithms integrated in this work were not developed specif-

ically for this purpose. Instead I reused exiting ones, while performing only the necessary

adaptations. Indeed, there are many distinct solutions for line simplification available

today, covering a wide range of applications. However, there is room for improvement.

Further research should focus on context sensitive simplification of engineering drawings

aimed at classification for sketch-based retrieval.

Despite the considerable body of work in shape detection from raster images, I could

not find an algorithm to detect polygons in sets of line segments. Thus, I developed a novel

technique to solve this problem in polynomial time and space. I consider this algorithm

one of the most important results from my thesis work [32]. It identifies all minimal

polygons that can be constructed from a given set of line segments using well-known and

simple to implement algorithms to find and remove intersections between line segments

and to find a MCB of a graph, instead of using theoretically more efficient but less simple

to code methods. For instance, we could adapt the method presented by Hartvigsen and

Hardon [49] to find the MCB on planar graphs or the optimal algorithm for detecting line

segment intersections in a plane presented by Chazelle and Edelsbrunner [14].

The whole approach to interaction constitutes an important result of my work, since it

represents a new interaction paradigm for retrieval of engineering drawings. Three exper-

iments with users, performed during the development of this work, validate the approach

and support the concept of mixing sketches with printed images to retrieve existing draw-

ings from databases. Unfortunately the number of designers and draftspeople involved

were below my expectations. For instance, at the final usability evaluation only six users

119

participated in the experience. However, they were generally very pleased with the con-

cept of mixing images and sketches for retrieving technical drawings. Furthermore, most

users showed a keen interest on having such a tool available in their daily work and this is

the subject of ongoing development. Usability tests revealed that this approach is indeed

suited to quickly find drawings using sketches. Moreover, the results yielded by queries

shown that the proposed methodology is effective. Further testing with more users and

larger databases would yield more conclusive data. However, the indexing structure, that

could be a possible bottleneck during retrieval, has shown good performance for data sets

with around one million elements [34]. Because of this, I believe that the present approach

has the potential to scale up to realistic more settings.

This thesis proposed a solution that combines images and sketches to retrieve tech-

nical drawings from large databases. To that end, I used the framework for retrieval in

sets of drawings developed by Fonseca [34]. While the presented prototype applications

have been developed mostly as concept demonstrators, the strong feedback received from

draftspeople makes us confident that they can evolve into a fully functional system inte-

grated in a production environment.

120 Chapter 6. Conclusions and Future Work

A
Sketches from Sketching

Experiment

In this annex I present the sketches made by users during the sketching experiment

that took place in CENTIMFE. This experiment was divided in two distinct sessions, as

described in Section 5.1. Thus, sketches presented here respect that division.

121

122 Appendix A. Sketches from Sketching Experiment

A.1 First Sketching Session 123

A.1 First Sketching Session

Sketches representing drawing D1

User A User B User C

Sketches representing drawing D2

User A User B User C

Sketches representing drawing D3

User A User B

Sketches representing drawing D4

User A User B

Sketches representing drawing D5

User A User B

124 Appendix A. Sketches from Sketching Experiment

A.2 Second Sketching Session

Sketches representing drawing D1

User A User B User C

Sketches representing drawing D2

User A User B User C

Sketches representing drawing D3

User A User B User C

Sketches representing drawing D4

User A User B User C

Sketches representing drawing D5

User A User B User C

B
Testing Protocols

This annex presents the protocols presented to users during the two usability eval-

uations, performed at CENTIMFE. First I present the protocol used in the preliminary

usability evaluation. Next, I present the protocol for the final usability evaluation.

125

126 Appendix B. Testing Protocols

B.1 Protocol for Preliminary Usability Evaluation 127

B.1 Protocol for Preliminary Usability Evaluation

Sketch-Based Retrieval Prototype
Usability evaluation session

Thank you for having accepted to participate in this experiment. Its main objectives

are the evaluation of the underlying ideas of our Sketch-Based Retrieval prototype and

the validation of its algorithms. This prototype allows the retrieval of technical drawings

using sketches to specify the desired drawing.

The schedule of this session is described in the following table, indicating the esti-

mated time for each of the foreseen tasks, with an expected total time of about 1 hour and

30 minutes.

1 Experiment Description 10 m
2 Accomplishment of tasks using our prototype50-60 m
3 Questionnaire about users, prototype and tasks10 m

This experiment intends to evaluate the utility and the effectiveness of our prototype,

so, all comments and suggestions are welcome. “Think loud” during task execution and

do not feel inhibited to point out negative or positive aspects, of the prototype.

To finish, we would like to thank you the time and effort spent.

128 Appendix B. Testing Protocols

Consent form

Part of this evaluation session will be videotaped and we would like to include some

excerpts in a small film about the system. Please indicate whether you authorize or not

the diffusion of the excerpts where you appear:

Yes2

No 2

Name:

Signature:

B.1 Protocol for Preliminary Usability Evaluation 129

First set of Tasks
(Simple Drawings)

Duration: 20 min

Please perform the following 6 (six) queries using the Sketch-Based Retrieval System

and comment the returned results. Do not hesitate in making comments in loud voice, or

in asking for help whenever necessary. Start the construction of each model only after

you have been told to do so.

Query Comments

Q1

Q2

Q3

Q4

Q5

Q6

130 Appendix B. Testing Protocols

Second set of Tasks
(Plate Drawings)

Duration: 30 min

Please perform the following 6 (six) queries using the Sketch-Based Retrieval System

and comment the returned results. Do not hesitate in making comments in loud voice, or

in asking for help whenever necessary.

Start the construction of each model only after you have been told to do so.

Query Comments

Q7

Q8

Q9

B.1 Protocol for Preliminary Usability Evaluation 131

Query Comments

Q10

Q11

Q12

132 Appendix B. Testing Protocols

B.2 Protocol for Final Usability Evaluation

Sketch and Image Based Retrieval Prototype
Usability evaluation session

Thank you for having accepted to participate in this experiment. Its main objective is

the evaluation of the underlying ideas of our Sketch and Image Based Retrieval prototype.

This prototype allows the retrieval of technical drawings using sketches and images to

specify the desired drawing.

The schedule of this individual session is described in the following table, indicating

the estimated time for each of the foreseen tasks, with an expected total time of about 50

minutes.

1 Experiment Description and Training 10 m
2 Accomplishment of tasks using our prototype30 m
3 Questionnaire about users, prototype and tasks10 m

This experiment intends to evaluate the utility and the effectiveness of our prototype,

so, all comments and suggestions are welcome. “Think loud” during task execution and

do not feel inhibited to point out negative or positive aspects, of the prototype.

To finish, we would like to thank you the time and effort spent.

B.2 Protocol for Final Usability Evaluation 133

Consent form

Part of this evaluation session will be videotaped and we would like to include some

excerpts in a small film about the system. Please indicate whether you authorize or not

the diffusion of the excerpts where you appear:

Yes2

No 2

Name:

Signature:

134 Appendix B. Testing Protocols

Sketch-Based Retrieval Tasks
Duration: 30 min

Please search for the following five drawings using the Sketch-Based Retrieval Sys-

tem and comment the returned results. Do not hesitate in making comments in loud voice,

or in asking for help whenever necessary. Start the construction of each query only after

you have been told to do so.

Query Comments

Q1

Q2

B.2 Protocol for Final Usability Evaluation 135

Query Comments

Q3

Q4

Q5

136 Appendix B. Testing Protocols

C
Questionnaires

This annex presents the questionnaires presented to users during usability evaluation

tests. First, I present the questionnaire of the preliminary evaluation tests. Next, I present

the questionnaire used in the final evaluation tests.

137

138 Appendix C. Questionnaires

C.1 Questionnaire of the preliminary evaluation tests 139

C.1 Questionnaire of the preliminary evaluation tests

Questionnaire

General questions

1 - Do you have previous experience on free-hand sketching? Yes2 No 2

2 - What kind of drawing tools do you usually use?(You can select more than one option)

a) CAD 2D 2

b) CAD 3D 2

c) Modeling 2

d) Other:

3 - How long have you been using drawing tools?

4 - What input devices have you already used?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

5 - What input device do you use most for drawing?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

6 - What input device do you prefer for drawing?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

140 Appendix C. Questionnaires

Questions about the Prototype

Please characterize the adaptation of our Sketch-Based Retrieval prototype to retrieve

technical drawings, according to:

1 - Use of sketches to specify queries. Bad Excellent

Comments:

2 - Number of iterations to achieve the wanted result. Bad Excellent

Comments:

3 - Total time to get the wanted result. Bad Excellent

Comments:

4 - Quality of results. Bad Excellent

Comments:

5 - Critics and suggestions to the Sketch-Based Retrieval prototype:

C.1 Questionnaire of the preliminary evaluation tests 141

Questions about the User Interface

Please characterize the user interface of our Sketch-Based Retrieval system, accord-

ing to:

1 - Size of the Sketching area. Too Small2 OK 2 Too Big2

2 - Size of the Result area. Too Small2 OK 2 Too Big2

3 - Size of the Buttons area. Too Small2 OK 2 Too Big2

4 - Layout of the window. Are the three areas well distributed in the window?

Yes2 No 2

5 - Quality of Button Icons

a) Quit button Bad Excellent

Comments:

b) Help button Bad Excellent

Comments:

c) Query button Bad Excellent

Comments:

d) Undo button Bad Excellent

Comments:

e) New button Bad Excellent

Comments:

142 Appendix C. Questionnaires

f) Up button Bad Excellent

Comments:

g) Down button Bad Excellent

Comments:

6 - Functionality Bad Excellent

Comments:

7 - Critics, suggestions or new functions to integrate in the user interface of the prototype:

C.2 Questionnaire of the final evaluation tests 143

C.2 Questionnaire of the final evaluation tests

Questionnaire

General questions

1 - Do you have previous experience on free-hand sketching? Yes2 No 2

2 - What kind of drawing tools do you usually use?(You can select more than one option)

a) CAD 2D 2

b) CAD 3D 2

c) Modeling 2

d) Other:

3 - How long have you been using drawing tools?

4 - What input devices have you already used?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

5 - What input device do you use most for drawing?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

6 - What input device do you prefer for drawing?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

144 Appendix C. Questionnaires

Questions about the Prototype

Please characterize the adaptation of our Sketch-Based Retrieval prototype to retrieve

technical drawings, according to:

1 - Use of sketches to specify queries. Bad Excellent

Comments:

2 - Use of drawings on paper to specify queries. Bad Excellent

Comments:

3 - Number of iterations to achieve the wanted result. Bad Excellent

Comments:

4 - Total time to get the wanted result. Bad Excellent

Comments:

5 - Quality of results. Bad Excellent

Comments:

6 - Critics and suggestions to the Sketch-Based Retrieval prototype:

C.2 Questionnaire of the final evaluation tests 145

Questions about the User Interface

Please characterize the user interface of our Sketch-Based Retrieval system, accord-

ing to:

1 - Size of the Sketching area. Too Small2 OK 2 Too Big2

2 - Size of the Result area. Too Small2 OK 2 Too Big2

3 - Size of the Buttons area. Too Small2 OK 2 Too Big2

4 - Layout of the window. Are the three areas well distributed in the window?

Yes2 No 2

5 - Quality of Button Icons

a) Quit button Bad Excellent

Comments:

b) Help button Bad Excellent

Comments:

c) New button Bad Excellent

Comments:

d) Open Image Bad Excellent

Comments:

e) View Image Bad Excellent

Comments:

146 Appendix C. Questionnaires

f) Undo button Bad Excellent

Comments:

g) Redo button Bad Excellent

Comments:

h) Query button Bad Excellent

Comments:

j) Show All Results button Bad Excellent

Comments:

6 - Editing Options Bad Excellent

(Delete, Select, Add, Query-by-Example)

Comments:

7 - General Functionality Bad Excellent

Comments:

8 - Critics, suggestions or new functions to integrate in the user interface of the prototype:

D
Databases

In this annex I present the databases used in usability evaluations. These databases

consisted in vector drawings previously classified. The drawings were grouped according

to its complexity. Thus, I used a set of thirty eight basic drawings, a set with forty simple

technical drawings of mould plates and a set with twenty technical drawings of real parts.

While the first two sets were used in the preliminary usability evaluation, only in final

tests all the databases were used.

147

148 Appendix D. Databases

D.1 Basic Drawings 149

D.1 Basic Drawings

150 Appendix D. Databases

D.2 Simple Technical Drawings of Mould Plates

D.3 Technical Drawings of Parts 151

D.3 Technical Drawings of Parts

152 Appendix D. Databases

E
Sketched Queries

In this chapter I present the queries to the database sketched by users during usability

evaluations. Additionally, for each query are also displayed the set of candidate drawings

returned by the prototype.

153

154 Appendix E. Sketched Queries

E.1 Preliminary Usability Evaluation 155

E.1 Preliminary Usability Evaluation

E.1.1 User A

Query Q1, user A Query Q2, user A

Query Q3, user A Query Q4, user A

Query Q5, user A Query Q6, user A

Query Q7, user A Query Q8, user A

156 Appendix E. Sketched Queries

Query Q9, user A Query Q10, user A

Query Q11, user A Query Q12, user A

E.1.2 User B

Query Q1, user B Query Q2, user B

Query Q3, user B Query Q4, user B

E.1 Preliminary Usability Evaluation 157

Query Q5, user B Query Q6, user B

Query Q7, user B Query Q8, user B

Query Q9, user B Query Q10, user B

Query Q11, user B Query Q12, user B

158 Appendix E. Sketched Queries

E.1.3 User C

Query Q1, user C Query Q2, user C

Query Q3, user C Query Q4, user C

Query Q5, user C Query Q6, user C

Query Q7, user C Query Q8, user C

E.2 Final Usability Evaluation 159

Query Q9, user C Query Q10, user C

Query Q11, user C Query Q12, user C

E.2 Final Usability Evaluation

E.2.1 User A

Query Q1, user A, first attempt

160 Appendix E. Sketched Queries

Query Q1, user A, second attempt

Query Q2, user A

Query Q3, user A, first attempt

Query Q3, user A, second attempt

E.2 Final Usability Evaluation 161

Query Q4, user A

Query Q5, user A, first attempt

Query Q5, user A, second attempt

162 Appendix E. Sketched Queries

E.2.2 User B

Query Q1, user B, first attempt

Query Q1, user B, second attempt

Query Q1, user B, third attempt

E.2 Final Usability Evaluation 163

Query Q2, user B

Query Q3, user B

Query Q4, user B

Query Q5, user B, first attempt

164 Appendix E. Sketched Queries

Query Q5, user B, second attempt

E.2.3 User C

Query Q2, user C

Query Q3, user C

E.2 Final Usability Evaluation 165

Query Q4, user C, first attempt

Query Q4, user C, second attempt

Query Q4, user C, third attempt

Query Q4, user C, fourth attempt

166 Appendix E. Sketched Queries

Query Q5, user C

E.2.4 User D

Query Q1, user D

Query Q2, user D

E.2 Final Usability Evaluation 167

Query Q3, user D

Query Q4, user D

Query Q5, user D, first attempt

Query Q5, user D, second attempt

168 Appendix E. Sketched Queries

E.2.5 User E

Query Q1, user E

Query Q2, user E

Query Q3, user E

E.2 Final Usability Evaluation 169

Query Q4, user E, first attempt

Query Q4, user E, second attempt

Query Q4, user E, third attempt

Query Q4, user E, third attempt

170 Appendix E. Sketched Queries

Query Q4, user E, fourth attempt

Query Q4, user E, fifth attempt

Query Q4, user E, sixth attempt

Query Q5, user E

E.2 Final Usability Evaluation 171

E.2.6 User F

Query Q1, user F

Query Q2, user F, first attempt

Query Q2, user F, second attempt

172 Appendix E. Sketched Queries

Query Q2, user F, third attempt

Query Q2, user F, fourth attempt

Query Q3, user F, first attempt

Query Q3, user F, second attempt

E.2 Final Usability Evaluation 173

Query Q4, user F, first attempt

Query Q4, user F, second attempt

Query Q4, user F, third attempt

Query Q4, user F, fourth attempt

174 Appendix E. Sketched Queries

Query Q5, user F, fifth attempt

Query Q5, user F

Bibliography

[1] A. Badel, J. P. Mornon, and S. Hazout. Searching for Geometric Molecular Shape
Complementary Using Bidimensional Surface Profiles.Journal of Molecular Bi-
ology, 10:205–211, December 1992.

[2] D. V. Bakergem. Image Collections in The Design Studio. InThe Electronic Design
Studio: Architectural Knowledge and Media in the Computer Age, pages 261–272.
MIT Press, 1990.

[3] Ivan J. Balaban. An optimal algorithm for finding segment intersections. InProc.
11th Annual ACM Symposium Comp. Graph., pages 211–219. ACM, 1995.

[4] Dana H. Ballard and Christopher M. Brown.Computer Vision. Prentice Hall, 1982.

[5] Ulrike Bartuschka, Kurt Mehlhorn, and Stefan Naher. A robust and efficient im-
plementation of a sweep line algorithm for the straight line segment intersection.
In Proceedings of Workshop on Algorithm Engineering, pages 124–135, Venice,
Italy, September 1997.

[6] M. Ben-Or. Lower bounds for algebraic computation trees. InProceedings of the
15th Annual ACM Symp. Theory of Computing, pages 80–86. ACM, 1983.

[7] S. Berchtold, D.A. Keim, and H.P. Kriegel. Using extended feature object for
partial similarity retrieval.The International Journal on Very Large Data Bases,
6(4):333–348, 1997.

[8] Stefan Berchtold and Hans-Peter Kriegel. S3: Similarity in CAD Database Sys-
tems. InProc. of the Int. Conference on Management of Data (SIGMOD’97), 1997.

[9] Luca Boatto, Vincenzo Consorti, Monica Del Buono, Francesco Melcarne, Marco
Meucci, Andrea Morelli, Marco Mosciatti, Stefano Scarci, and Marco Tucci. An
interpretation system for land register maps.Computer, 25(7):25–33, 1992.

[10] James E. Boyce, David P. Dobkin, III Robert L.(Scot) Drysdale, and Leo J. Guibas.
Finding extremal polygons. InSTOC ’82: Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 282–289, New York, NY, USA,
1982. ACM Press.

175

176 Bibliography

[11] Augustin-Louis Cauchy. Recherche sur les polyèdres. J. Ecole Polytechnique,
9(16):68–86, 1813.

[12] Ian Chai and Dov Dori. Orthogonal zig-zag: an efficient method for extracting
straight lines from engineering drawings. InProceedings of the International Work-
shop on Visual Form (IWVF ’91), Capri, Italy, May 1991.

[13] S. K. Chang, B. Perry, and A. Rosenfeld.Content-Based Multimedia Information
Access. Kluwer Press, 1999.

[14] Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting
line segments in the plane.Journal of the ACM, 39:1–54, 1992.

[15] Ken Clarkson and Peter W. Shor. Applications of random sampling in computa-
tional geometry, ii.Discrete and Computational Geometry, 4:387–421, 1989.

[16] M. Clayton and H. Wiesenthal. Enhancing the Sketchbook. InProc. of the Associ-
ation for Computer Aided Design in Architecture (ACADIA’91), Los Angeles, CA,
1991.

[17] Thomas Cormen, Charles Leiserson, and Ronald Rivest.Introduction to Algo-
rithms. MIT Press, McGraw-Hill, 2nd. edition, 1990.

[18] Robert G. Cromley. Hierarchical methods of line simplification.Cartography and
Geographic Information Systems, 18(2):125–131, 1991.

[19] Robert G. Cromley. Principal axis line simplification.Computers and Geosciences,
18(8):1003–1011, 1992.

[20] E.R. Davies and A.P.N. Plummer. Thinning algorithms: A critique and a new
methodology.Pattern Recognition, 14(1–6):53–63, 1981.

[21] Christian Demant, Bernd Streicher, and Peter Waszkewitz.Industrial Im-
age Processing : Visual Quality Control in Manufacturing, chapter Chapter 8.
”Overview:Image Acquisition and Ilumination”. Springer Verlag, 1999.

[22] E. S. Deutsch. Thinning algorithms on rectangular, hexagonal, and triangular ar-
rays.Communications of the ACM, 15(9):827–837, 1972.

[23] G.P. Dinnen. Programming pattern recognition. InProc. Western Joint Computer
Conf., pages 94–100, 1955.

[24] Ellen Y. Do. What’s in a Diagram that a Computer Should Understand? In
Proc. of The Sixth Int. Conf. on Computer Aided Architectural Design Futures
(CAADF’95), pages 103–114. The Global Design Studio, 1995.

[25] U. Dogrus̈oz and M. Krishnamoorthy. Cycle vector space algorithms for enumer-
ating all cycles of a planar graph. Technical Report 5, Rensselaer Polytechnic
Institute, Dept. of Computer Science, Troy, New York 12180 USA, January 1995.

Bibliography 177

[26] Dov Dori. Orthogonal zig-zag: an algorithm for vectorizing engineering drawings
compared with hough transform.Adv. Eng. Softw., 28(1):11–24, 1997.

[27] Dov Dori, Y. Liang, J. Dowell, and Ian Chai. Sparse-pixel recognition of primitives
in engineering drawings.Machine Vision and Applications, (6):69–82, 1993.

[28] Dov Dori and Wenyin Liu. Sparse pixel vectorization: An algorithm and its per-
formance evaluation.IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21(3):202–215, 1999.

[29] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature.Canadian Cartogra-
pher, 10:112–122, 1973.

[30] Leonhard Euler. Elementa doctrinae solidorum.Novi Commentarii Academiae
Scientiarum Petropolitanae, 4:109–140, 1752.

[31] Chin-Shyurng Fahn, Jhing-Fa Wang, and Jau-Yien Lee. A topology-based com-
ponent extractor for understanding electronic circuit diagrams.Comput. Vision
Graph. Image Process., 44(2):119–138, 1988.

[32] Alfredo Ferreira, Manuel J. Fonseca, and Joaquim A. Jorge. Polygon Detection
from a Set of Lines. InProceedings of 12o Encontro Portugûes de Computaç̃ao
Gráfica (12th EPCG), pages 159–162, Porto, Portugal, October 2003.

[33] Manuel Fonseca, Bruno Barroso, Pedro Ribeiro, and Joaquim Jorge. Sketch-Based
Retrieval of ClipArt Drawings. InProceedings of the Advanced Visual Interfaces
(AVI’04), Gallipoli, Italy, May 2004. ACM Press.

[34] Manuel J. Fonseca.Sketch-Based Retrieval in Large Sets of Drawings. PhD thesis,
Instituto Superior T́ecnico / Universidade T́ecnica de Lisboa, 07 2004.

[35] Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro, and Joaquim A. Jorge. Re-
trieving ClipArt Images by Content. InInternational Conference on Image and
Video Retrieval (CIVR’04), Lecture Notes in Computer Science. Springer-Verlag,
07 2004.

[36] Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro, and Joaquim A. Jorge. Retriev-
ing Vector Graphics Using Sketches. In Andreas Butz, Antonio Krüger, and Patrick
Olivier, editors,Proceedings of the 4th International Symposium on Smart Graph-
ics (SG’04), volume 3031 ofLecture Notes in Computer Science, pages 66–76.
Springer-Verlag, May 2004.

[37] Manuel J. Fonseca and Joaquim A. Jorge. CALI: Uma Biblioteca de Componentes
para Interfaces Caligráficas. InActas do 9o Encontro Portugûes de Computaç̃ao
Gráfica, Marinha Grande, Portugal, February 2000.

[38] Manuel J. Fonseca and Joaquim A. Jorge. Experimental evaluation of an on-line
scribble recognizer.Pattern Recognition Letters, 22(12):1311–1319, Jan 2001.

178 Bibliography

[39] Manuel J. Fonseca, César Pimentel, and Joaquim A. Jorge. CALI: An Online
Scribble Recognizer for Calligraphic Interfaces. InProceedings of the 2002 AAAI
Spring Symposium - Sketch Understanding, pages 51–58, Palo Alto, USA, March
2002.

[40] Herbert Freeman. Computer processing of line-drawing images.ACM Computing
Surveys, 6(1):57–97, 1974.

[41] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halder-
man, David Dobkin, and David Jacobs. A search engine for 3d models.ACM
Transactions on Graphics, 22(1), January 2003.

[42] Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanen-
baum. Snap rounding line segments efficiently in two and three dimensions. InPro-
ceedings of the thirteenth annual symposium on Computational geometry, pages
284–293. ACM Press, 1997.

[43] Ovidiu Grigore and Remco C. Veltkamp. On the implementation of polygonal
approximation algorithms. Technical Report UU-CS-2003-005, Institute of Infor-
mation and Computing Sciences, Utrecht University, 2003.

[44] Mark Gross and Ellen Do. Demonstrating the Electronic Cocktail Napkin: a paper-
like interface for early design. InProc. of the Conf. on Human Factors in Com-
puting Systems (CHI’96), pages 5–6, 1996.

[45] Mark D. Gross. Indexing Visual Databases of Designs with Diagrams. In A. Kouta-
manis, H. Timmermans, and I. Vermeulen, editors,Visual Databases in Architec-
ture, pages 1–14, Avebury: Aldershot, UK, 1995.

[46] Dan Halperin and Eli Packer. Iterated snap rounding.Comput. Geom. Theory
Appl., 23(2):209–225, 2002.

[47] R.M. Haralick. Performance characterization in image analysis: Thinning, a case
in point. Pattern Recongnition Letters, 13:5–12, 1992.

[48] R.M. Haralick and L.G. Shapiro. Addison-Wesley, 1992.

[49] David Hartvigsen and Russel Mardon. The all-pairs minimum cut problem and
the minimum cycle basis problem on planar graphs.SIAM Journal on Computing,
7(3):403–418, August 1994.

[50] Paul S. Heckbert and Michael Garland. Survey of polygonal surface simplification.
Technical report, Carnegie Mellon University, 1997.

[51] John Hershberger and Jack Snoeyink. Speeding up the douglas-peucker line-
simplification algorithm. InProceedings of the 5th International Symposium on
Spatial Data Handling, volume 1, pages 134–143, Charleston, South Carolina,
USA, 1992.

Bibliography 179

[52] John Hershberger and Jack Snoeyink. Ano(n log n) implementation of the
douglas-peucker algorithm for line simplification. InProceedings of the 10th An-
nual Symposium on Computational geometry, pages 383–384. ACM Press, 1994.

[53] C.J. Hilditch. Linear skeletons from square cupboards. In B. Meltzer and
D. Michie, editors,Machine Intelligence, number 4, pages 404–420. Edinburgh
University Press, 1969.

[54] C.J. Hilditch. Comparison of thinning algorithms on a parallel processor.Image
Vision Comput., 1(3):115–132, August 1983.

[55] John Hobby. Practical segment intersection with finite precision output.Computa-
tional Geometry: Theory and Applications, 13(4), 1999.

[56] John D. Hobby. Polygonal approximations that minimize the number of inflec-
tions. In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete
algorithms, pages 93–102. Society for Industrial and Applied Mathematics, 1993.

[57] G. Hu and Z.N. Li. An x-crossing preserving skeletonization algorithm.Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 7:1031–1053,
1993.

[58] Robert A. Hummel. Histogram modification techniques.Computer Graphics Im-
age Processing, 4(3):209–224, September 1975.

[59] Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations
and algorithms. In G. T. Toussaint, editor,Computational Morphology, pages 71–
86. Elsevier Science, 1988.

[60] Jasmee Jaafar. Line generalization: least square with double tolerance. In
C.A.Brebbia and P.Pascolo, editors,Management Information Systems 2002: GIS
and Remote Sensing, volume 4 ofManagement Information Systems. WIT Press,
2002.

[61] Rik D. T. Janssen and Albert M. Vossepoel. Adaptive vectorization of line drawing
images.Comput. Vis. Image Underst., 65(1):38–56, 1997.

[62] J.D.Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph.
SIAM Journal on Computing, 16(2):358–366, April 1987.

[63] J.Jimenez and J.L.Navalon. Some experiments in image vectorization.IBM Jour-
nal of Research and Development, 26(6):724–734, 1982.

[64] J.L.Bentley and T.Ottmann. Algorithms for reporting and counting geometric in-
tersections.IEEE Transactions on Computers, pages 643–647, 1979.

[65] Christopher B. Jones and Ian M. Abraham. Line generalisation in a global carto-
graphic database.Cartographica, 24(3):32–45, 1987.

180 Bibliography

[66] R. Katsuri, S. T. Bow, W. El-Masri, J. Shah, J. R. Gattiker, and U. B. Mokate. A
system for interpretation of line drawings.IEEE Trans. Pattern Anal. Mach. Intell.,
12(10):978–992, 1990.

[67] Louisa Lam, Seong-Whan Lee, and Ching Y. Suen. Thinning methodologies: A
comprehensive survey.IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 14(9):869–885, 1992.

[68] Louisa Lam and Ching Y. Suen. An evaluation of parallel thinning algorithms for
character recognition.IEEE TPAMI, 17:914–919, 1995.

[69] Wing Ho Leung and Tsuhan Chen. Retrieval of Sketches Based on Spatial Relation
Between Strokes. InProc. of the IEEE Int. Conf. on Image Processing (ICIP’02),
volume 1, pages 908–911, Rochester, New York, USA, September 2002. IEEE
Press.

[70] Wing Ho Leung and Tsuhan Chen. User-Independent Retrieval of Free-Form
Hand-Drawn Sketches. InProc. of the IEEE Int. Conf. on Acoustics Speech and
Signal Processing (ICASSP’02), volume 2, pages 2029–2032, Orlando, Florida,
USA, May 2002. IEEE Press.

[71] X. Lin, S. Shimotsuji, M. Minoh, and T. Sakai. Efficient diagram understanding
with characteristic pattern detection.Computer Vision, Graphics and Image Pro-
cessing, 30:84–106, April 1985.

[72] Prabhaker Mateti and Narsingh Deo. On algorithms for enumerating all circuits of
a graph.SIAM Journal on Computing, 5(1):90–99, March 1976.

[73] Robert B. McMaster. Automated line generation.Cartographica, 24(2):74–111,
1987.

[74] R. Mehrotra and J. E. Gary. Feature-Based Retrieval of Similar Shapes. InProceed-
ings of the 9th International Conference on Data Engineering (ICDE’93), pages
108–115, Vienna, Austria, 1993.

[75] Avraham A. Melkman. Online construction of the convex-hull of a simple polyline.
Information Processing Letters, 25:11–12, 1987.

[76] Ugo Montanari. Continuous skeletons from digitized images.Journal of the ACM,
16(4):534–549, 1969.

[77] Stefan M̈uller and Gerhard Rigoll. Engineering drawing database retrieval using
statistical pattern spotting techniques. InLecture Notes in Computer Science, vol-
ume 1941, page 246. Springer-Verlag, 2000.

[78] Stefan M̈uLlergot and Gerhard Rigoll. Searching an engineering drawing database
for user-specified shapes. InProc. of the Int. Conf. on Document Analysis and
Recognition (ICDAR’99), pages 697–700, Bangalore, India, 1999.

Bibliography 181

[79] Mohammad Nabil, Anne H.H. Ngu, and John Shepherd. Picture Similarity Re-
trieval Using the 2D Projection Interval Represent ation.IEEE Transactions on
Knowledge and Data Engineering, 8(4):533–539, August 1996.

[80] Mohammad Nabil, John Shepherd, and Anne H.H. Ngu. An image retrieval system
for distributed system. Orlando, Florida, August 1998.

[81] Nabil Jean Naccache and Rajjan Shinghal. An investigation into the skeletonization
approach of hilditch.Pattern Recognition, 17(3):279–284, 1984.

[82] Vijay Nagasamy and Noshir A. Langrana. Engineering drawing processing and
vectorization system. Comput. Vision Graph. Image Process., 49(3):379–397,
1990.

[83] V.S. Nalwa.A Guided Tour of Computer Vision. Addison-Wesley, 1993.

[84] Lawrence O’Gorman. K x k thinning.Computer Vision Graphics and Image Pro-
cessing (CVGIP), 51(2):195–215, August” 1990.

[85] Lawrence O’Gorman. Image and document processing techniques for the right
pages electronic library system. InInternational Conference on Pattern Recogni-
tion (ICPR), pages 260–263, 1992.

[86] Lawrence O’Gorman. Primitives chain code. InProgress in Computer Vision and
Image Processing (CVIP92), pages 167–183, 1992.

[87] Joseph O’Rourke.Computational Geometry in C, chapter Section 7.7 ”Intersection
of Segments”, pages 264–266. Cambridge University Press, 2nd edition, 1998.

[88] Joseph O’Rourke.Computational Geometry in C. Cambridge University Press,
2nd edition, 1998.

[89] Jong Park and Bong Um. A New Approach to Similarity Retrieval of 2D Graphic
Objects Based on Dominant Shapes.Pattern Recognition Letters, 20:591–616,
1999.

[90] Juan-Carlos Perez and Enrique Vidal. Optimum polygonal approximation of digi-
tized curves.Pattern Recogn. Lett., 15(8):743–750, 1994.

[91] John L. Pfaltz and Azriel Rosenfeld. Sequential operations in digital picture pro-
cessing.Journal of the ACM, 13(4):471–494, 1966.

[92] John L. Pfaltz and Azriel Rosenfeld. Computer representation of planar regions by
their skeletons.Communications of the ACM, 10(2):119–122, 1967.

[93] Stephen M. Pizer, E. Philip Amburn, John D. Austin, Robert Cromartie, Ari
Geselowitz, Trey Greer, Bart Ter Haar Romeny, and John B. Zimmerman. Adaptive
histogram equalization and its variations.Computer Vision, Graphics and Image
Procesing, 39(3):355–368, 1987.

[94] William K. Pratt. Digital Image Processing. John Wiley & Sons Inc., 1991.

182 Bibliography

[95] P.V.C.Hough. A method and means for recognizing complex paterns. U.S. Patent
3,069,654, 1962.

[96] Jean-Yves Ramel and Nicole Vincent. Strategies for line drawing understanding. In
Proceedings of the 5th IAPR Intl. Workshop on Graphics Recognition, Barcelona,
Catalonia, Spain, 2003. IAPR.

[97] A. Rosenfeld and J.L. Pfaltz. Distance functions on digital pictures.Pattern Recog-
nition, 1(1):33–61, July 1968.

[98] Nick Roussopoulos, Stephen Kelley, and Fréd́eric Vincent. Nearest neighbor
queries. InProceedings of the 1995 ACM SIGMOD international conference on
Management of data, pages 71–79. ACM Press, 1995.

[99] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image Retrieval: Current Tech-
niques, Promising Directions, and Open Issues.Journal of Visual Communication
and Image Representation, 10(1):39–62, March 1999.

[100] Michael Seul, Lawrence O’Gorman, and Michael J. Sammon.Practical Algorithms
for Image Analysis. Cambridge University Press, 2000.

[101] B. Shapiro, J. Pisa, and J. Sklansky. Skeleton generation from x–y boundary se-
quences.Computer Graphics and Image Processing, 15:136–153, 1981.

[102] R. W. Smith. Computer processing of line images: a survey.Pattern Recogn.,
20(1):7–15, 1987.

[103] Maciej M. Syslo. An efficient cycle vector space algorithm for listing all cycles of
a planar graph.SIAM Journal on Computing, 10(4):797–808, November 1981.

[104] H. Tamura. A comparison of line thinning algorithms from digital geometry view-
point. In ICPR78, pages 715–719, 1978.

[105] Karl Tombre, Christian Ah-Soon, Philippe Dosch, Adlane Habed, and Gérald
Masini. Stable, robust and off-the-shelf methods for graphics recognition. InProc.
of the 14th Int. Conf. on Pattern Recognition, pages 406–408, Brisbane, Australia,
1998. IAPR.

[106] Karl Tombre, Christian Ah-Soon, Philippe Dosch, Gérald Masini, and Salvatore
Tabbone. Stable and robust vectorization: How to make the right choices. In
Proceedings of the 3rd IAPR Intl. Workshop on Graphics Recognition, pages 3–16,
Jaipur, India, 1999. IAPR.

[107] Øivind Due Trier and Torfinn Taxt. Evaluation of binarization methods for docu-
ment images.IEEE Trans. Pattern Anal. Mach. Intell., 17(3):312–315, 1995.

[108] Pascal Vaxivìere and Karl Tombre. Celesstin: Cad conversion of mechanical draw-
ings. Computer, 25(7):46–54, 1992.

[109] Liu Wenyin and Dov Dori. From raster to vectors: Extracting visual information
from line drawings.Pattern Analysis and Applications, 2(1):10–21, April 1999.

Bibliography 183

[110] Ellen R. White. Assessment of line-generalization algorithms using characteristic
points.The American Cartographer, 12(1):17–27, 1985.

[111] S. Di Zenzo and A. Morelli. A useful image representation. InProceedings of
the Fifth International Conference on Image Analysis and Processing, Singapore,
1989. World Scientific Publishing.

184 Bibliography

