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Abstract—Quantum-dot Cellular Automata (QCA) is a promis-
ing successor for CMOS transistor technology, while allowing
the implementation of logic circuits using quantum devices, such
as quantum dots or single domain nano magnets, a new set of
tools must be developed to assist the design and implementation
process. Examples of such tools are the QCADesigner for
handmade layout and physical simulation, and also tools for
majority logic optimization. Since no tool is available for assisting
the QCA layout generation, we propose tool to automatically
generate the layout of QCA circuits. This tool, designated by
QCA-Layout Generator (QCA-LG), was integrated in a general
QCA technology design flow, accepting the most used formats of
the synthesis tools and producing the layout output according
to the QCADesigner tool. Therefore, the layout of a logical
circuit described in VHDL is automatically generated, and can be
further optimized by hand and simulated using the QCADesigner.
Examples of layouts automatic generated by the QCA-LG are
presented for simple logical circuits, and are also compared with
optimal layouts designed by hand.

I. INTRODUCTION

In the medium term scenario, the present CMOS technology
will fail to support the growth rates needed by the industry.
The QCA is a computation paradigm that can be implemented
in different physical systems, and at least the following
were proposed: i) metal-island quantum-dots and tunneling
effect junctions [1]; ii) nano magnetic particles with single
magnetic moment domain behaviour [2]; iii) molecular [3].
The quantum-dot is one of the most promising technologies,
achieving a good efficiency in terms of operation speed and
density of integration. As in QCADesigner [4], in this project
is assumed the quantum-dot implementation of QCA. In the
last few years, software tools have been developed to assist
the design and of QCA circuits and layouts. A design flow
for QCA technology has been proposed in [5]. In this design
flow, only the last three phases, logic mapping, technology
mapping, and simulation, are different from the design flow
for the CMOS technology. Logic mapping can be optimized
by favouring the usage of majority function. Although this
logic mapping can be done with available tools, such as
the ones from Synopsys[6] and MVSIS[7], results are not
optimal. Therefore, two methods [8], [9] have been proposed
to automatically map the logic functions to majority gates.

QCADesigner [4] is a well known simulation tool and
layout editor. QCADesigner is used to manually draw the
layout and perform physical simulation. This tool, that has
been widely used to develop and simulate QCA circuits, has

the possibility of importing and exporting already generated
layouts into files, according to a predefined format.

The main goal of this paper is to propose and to present the
QCA-LG tool that was specifically designed and programmed
to automatically generate the layout of QCA combinational
circuits. This technology mapping tool maps a logic combina-
tional circuit into QCA gates and produces the corresponding
layout. The QCA-LG supports some well-known netlist for-
mats adopted by commercial and academic synthesis tools; it
can store the generated layouts in the format defined by the
QCADesigner.

Therefore, it is achieved for the first time a set of tools that
can map the combinational functions in QCA layouts that can
be visualized and physically simulated.

This paper is organized as follows. In section II a brief
introduction to QCA technology is presented. The QCA-LG
tool is presented in section III, and layouts generated by the
QCA-LG for simple combinational circuits are presented in
section IV. Section V concludes the paper.

II. QCA CIRCUITS AND TECHNOLOGY

QCA is a new computing paradigm based on quantum
dots [10], [11]. QCA computing is based on the electrostatic
interaction between QCA cells. The basic four-dot QCA cell
in Figure 1(a) can be viewed as a square charge container
with four quantum dot locations at the corners. Each cell
has two electrons in excess, localized on antipodal quantum
dots due to the Coulomb repulsion. In Figure 1, white circles
represent unoccupied dots while a black circle denotes that
the dot is occupied by an electron. These electrons are only
allowed to tunnel between quantum dots inside a cell, and
therefore, only two different charge distributions are possible
in a cell. Although these two states of an isolated cell are equal
in energy, they are observable and can be used to encode the
logical levels ’0’ and ’1’ of a bit. Moreover, when two or
more cells are put close to each other, the two states are not
energetically equal, due to the electrostatic interaction between
those cells, and thus, the lowest energy state of a QCA system
is achieved. Basic logic gates, such as AND, NOT and OR can
be implemented by placing together QCA cells according to
different configurations. Among these basic gates the basic
structure of QCA logic is the three input majority gate M de-
picted in Figure 1(b), whose output is defined by the majority
vote of the three inputs: M(A,B, C) = A.B + B.C + A.C;



thus, the logic product can be performed as M(A,B,′ 0′) and
the logic sum as M(A,B,′ 1′).

(a) QCA
cell

(b) QCA layout of a
majority gate

Fig. 1. QCA cell and gates.

Traditional implementations have been considered in this
work for all the basic logic gates, except the QCA inverters.
A binary wire is formed by juxtaposing QCA cells in a linear
array, that can be also seen as a set of half cells [12]. Since it is
known that a wire of half cells works as an inverter chain [13],
a QCA inverter can be attained by simply introducing or
removing a half cell to a given wire. We adopt this approach in
this work because is more efficient: it was chosen to remove
a half cell and to distribute the spare space along the inter
cell spacing in a wire, in a way that start and end points of
the original wire composed by complete cells is preserved
(see Figure 2). In order to safely remove a half cell from a
given wire, the wire must have a minimum number of cells,
otherwise it is not possible to distribute the half cell distance
in a way that they properly interact with each others.

Fig. 2. Traditional and the proposed structure for signal inversion: the input
cell is labeled as A, the usual inverter’s output is Y, and the output of the in
wire inverter is X.

The QCA binary wires are made of QCA cells and two
different approaches have been proposed to solve crossing
conflicts: in plane crossing and multi layer crossing [14]. Multi
layer crossover was adopted by the QCA-LG tool. However,
with small changes, the QCA-LG can also support in plane
crossover. Although multi layer crossover seems safer and
gives better simulation results, it is expected to be harder to
fabricate than in plane crossovers. It should be noticed that,
in multi layer crossover a connection through an even number
of separation layers acts as a QCA inverter.

For the clocking mechanism in QCA, four clock signal
of equal frequencies can be considered: one of these clocks
is considered the reference (phase = 0) and the others are
delayed one, two, and three quarters of a period, respectively

(phase = π/2, π, 3π/2, ). Each of these clock signals imposes
its pace to a given set of layout regions[15]. Signals are pushed
from one clock region to another as the phase of the clock of
these regions increases. A given clock zone receives the signal
from adjacent clock zones, having a clock in advance by one
quarter period.

III. QCA-LG: A TOOL FOR GENERATING QCA LAYOUTS

The main goal of this work is to automatically generate
a quantum dot layout for a given combinational circuit, in
a format compatible with the QCADesigner tool, and not to
develop a professional “Place and Route” tool. The flow of
the program actions is shown in Figure 3. The input interface
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Fig. 3. Block diagram of the operations carried out by the tool.

allows data be read from files representing logic circuits,
according to two different formats: i) LSI, which is a format
supported by the Synopys symthesis tools; ii) Gate, the logic
netlist format used by the original MVSIS and the SIS[16]
successor tools.

A Lex&Yacc parser was specified for each of the two
different formats. The use of Lex&Yacc facilitates support of
new formats.

Libraries with only the supported components have to be
specified in order to, given a design, generate a netlist bases
only on those components. Libraries with only majority gates,
NOT gates, and 2-inputs AND, OR, NAND and NOR gates
were specified, both for the LSI and the Gate tools. The circuits
are intrenally represented by the tools as directed graphs and
stored in a hash, where each object represents a gate of the
circuit or a primary input.

A. Circuit Expansion

Expansion is the first operation performed over the circuit
representation; every shared node is duplicated. At the end of
this step the fanout of every gate is only one. This operation
makes the place and route task easier, avoiding wire crossing
at the expense of an increase in the circuit area.

The logic replication is not supposed to increase the circuit
delay, but it can happen, since the extra area implies extra
length in some wires, and sometimes this forces wires to be
split up over some more clock zones.

Circuit expansion is performed by visiting the nodes of the
graph (gates) using a breadth-first approach exploration of the
circuit. Starting from each primary output towards the inputs,
every node is marked as visited if it was not visited yet; on
the other hand, every time a node is revisited it is duplicated,
not only the node itself but also, all the nodes included in the



sub tree rooted by it. The duplication is a recursive process
that may “explode” if there are loops in the circuit. However,
in combinational logic circuits no computational loops should
occur.

This operation splits the circuit in independent sub circuits;
each one of these sub circuit is rooted at a primary output of
the circuit and is separately processed in the gate placement
step.

Fig. 4. Circuit Expansion operation; grey gates are copies.

B. Gate Placement

From the gate level to the physical level, three different
referentials of 2D Cartesian coordinates are used:

• gate level coordinates - used to define the relative po-
sitions of the gates; each unit in the vertical direction
represents one gate level, the vertical distance between
the inputs and the corresponding output; a unit in the
horizontal direction represents the minimum width of one
wire, in practice three cells, so that the separation of
two adjacent wires corresponds to the width of two QCA
cells.

• cell level coordinates - the unit in this referential corre-
sponds to the size of one cell in each direction.

• physical coordinates - which are obtained by translating
the cell coordinates into the physical coordinate system,
namely the one adopted by the QCADesigner; the unit
is the nanometer, and each QCA cell has 18.0 units of
width and length, and the spacing between each cell is
2.0 units in booth directions.

The coordinates of a gate in a sub-circuit are computed in
three phases, all manipulating coordinates in the gate level
referential.

The first phase determines the level of each gate in the
graph, by applying breadth-first search starting from the pri-
mary outputs. The graph level is the y axis value in gate level
coordinates and to the inputs of a gate it is assigned the gate
level plus one.

In the second step the gates within each level are numbered;
these numbers range from 0 to (3∗ymax)−1. Three subsequent
numbers are assigned to each of the inputs of the ngate,
starting from the left most input n = 3 ∗ ngate and ending
in the right most input n = 3 ∗ ngate + 2. Note that only for
Majority Gates there is a central n = 3 ∗ ngate + 1.

In the third phase, the x gate level coordinate is calculated
according to the following expression:

x = (1 + 2n)
(3ymax−y + 1)

2
− n, (1)

corresponding to the coordinates of the nodes in a complete
ternary tree.

After these three steps, the gates in the present sub circuit
are arranged as an incomplete ternary tree (see Figure 5), in
which some nodes lack the middle child. This is the case of all
non majority gates, which leads to an undesired waste of area.
Therefore, it can be concluded that the proposed method is
optimal for circuits exclusively based on majority gates, which
are the most efficient in the QCA computation paradigm. It is
important to notice that inverters are ignored in the this step,
because they will be treated separately.

Gate Placement
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Fig. 5. Gate placement operation; black circles show wasted area.

C. Gate Shaping

After defining the place in the gate level coordinates, the
place and size of each gate are computed.

Gate Shaping

g1

BA

Fig. 6. Gate shaping operation.

At this point, takes place the mapping from the gate
level referential to the cell level referential. This mapping
corresponds to simple linear equations in each dimension, of
the type xcell = (xgate + xgateoffset)xfactor and ycell =
(ygate)yfactor+ycelloffset where xgateoffset is used to sep-
arate the various sub circuits along the layout, and ycelloffset
is used to adjust the gate position, namely when the input wires
have to be split into more than one clock zone, as it will be
explained later.

QCA Inverters are built directly in the wires. NAND and
NOR gates are processed as AND and OR gates, respectively,
with an additional Inverter at the gates output.



1) Integrated routing: The input wires of each gate are
directly connected to the corresponding output cell. The input
wire length is calculated from the coordinates of each gate
and the coordinates of its inputs. If the wire length exceeds
the maximum clock zone length [17], it will be split into more
than one clock zone.

For gates with two or three inputs, if the longest wire has
to be split into more than one clock zone, then the shortest
wire also has to be split into the same number of clock zones
to maintain the input arrival timing. This usually means the
shortest wires have to become longer, in order to respect the
minimum clock zone length. Since the horizontal alignment
of the first cell of all input wires must be ensured, when
one wire gets longer the others must also get longer in the
vertical direction. When an increase in wire length occurs, it
is necessary to guaranty that the number of cells per clock zone
does no exceed the maximum clock zone length, repeating the
last steps if needed.

A half QCA cell replaces a full QCA cell when a given
input wire is connected to a NOT, NAND or NOR gate.
This replacement implies some extra space between cells.
This feature can not be easily achieved when drawing the
layout by hand using QCADesigner; even if “snap to grid”
option is turned off, the half QCA cell is not available as an
individual design object. However, QCADesigner is able to
import and simulate any rectangular shaped object with an
arbitrary number of quantum dots.

2) Circuit synchronization: In order to ensure the proper
operation of the circuit, it is necessary to set the clock zone of
each cell output to the preceding clock zone of the input cell of
the next gate towards the primary outputs. To achieve this goal,
the clock zone of the majority gate is set arbitrarily and then
the clock zones of the input wires are set accordingly given
that signals flow from the inputs, in an earliest clock zone,
along the input wire (ascending clock zones) to the output,
which corresponds to the latest clock zone. The clock zone in
which the input wires start is then saved in the gate’s record
for future use.

As the circuit is drawn from the outputs towards the inputs,
except for the primary outputs, every gate is drawn after the
gate they feed. Thus the clock zone of the output cell of each
gate is known as soon as its directly dependant gate is drawn.

D. Input Signals Distribution

As one given primary input signal can be used as input
for more than one logic gate, that signal must be distributed
from one unique source to all the places where it is needed.
The expansion of the circuit generates copies of some logic
gates, which means that some input signals must be delivered
to some extra points.

An input signal also must arrive at its destination(s) syn-
chronous with the other signals. To assure this temporal
coherence, signals’ destinations are sorted by (descending)
priority, considering that the primary input of the circuit is
place above the leftmost destination and as low as possible. A
main distribution horizontal wire will start above the left most

Input Distribution
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Fig. 7. Representation of the Input Signals Distribution operation.

input copy, and will be extended to the right until it reaches the
x position of the right most input. All the distribution wires are
placed in a different layer than the logic gates. This operation
is performed using the cell level coordinates; the expression
used to evaluate the “urgency” to arrive at a given destination
(x,y) at a given moment (clk) is:

pri(x, y, clk) = (x−xmin)+(y−ymax)−(clk−clkmin)∗Zone,
(2)

where xmin is the minimum horizontal coordinate value found
among all destinations of the signal (left most), ymax is
the maximum vertical coordinate (lower, as y values grow
downwards) and clkmin is the minimum earliest zone. Zone
is the maximum length allowed for a clock zone. The des-
tination is considered to have higher priority as the distance
to the primary input grows and the number of clock zones to
transverse gets reduced.

An iterative method is used to determine where the main
distribution wire has to be placed, and where the signal has
to be derive to secondary distribution wires, to achieve logic
gate where it is needed. On each iteration, the borders of
the clock zones in the main distribution wire are updated
according to the most restrictive destination. The sorted set
of destinations is scanned and, given the present position of
the main distribution wire, it is checked if it is possible to
respect the maximum and minimum length allowed for a clock
zone. If the signal can travel correctly to every destination, the
main distribution wire achieves its final position, otherwise
the main distribution wire is pushed up; this operation is
carefully performed in order to avoid collisions with main
distribution wires of other primary inputs. These actions are
taken in each iteration. The initial conditions are critical to
ensure this iterative method stops, they depend heavily on the
most restrictive destination. Consequently the sorting step is
fundamental to assure the success of the method.

The output layout format aims to be compatible with
QCADesigner (version 2.0.3) [4]. The produced layout is
stored as a QCA layout block, and can be imported into any
QCADesigner layout.

IV. GENERATED QCA LAYOUTS

Figure 8 presents an handmade designed layout of a binary
2 to 1 multiplexer. Simulation results for this layout were



obtained with QCADesigner, where it was observed the exis-
tence of one clock cycles delay between inputs and the correct
output, as expected.

Fig. 8. Handmade layout of a 2 to 1 multiplexer.

The automatically generated layout for the binary 2 to 1
multiplexer is presented in Figure 9. This layout was also
simulated and the delay between the inputs and the correct
output was of two clock cycles.

Fig. 9. Layout of a 2 to 1 multiplexer generated by the tool.

The QCA-LG tool was also used to produce the QCA layout
of several other combinational circuits, including decoders,
half and full adder, which can be found at the website
dedicated to the project (http://sips.inesc-id.pt/las/QCA-LG/).

V. CONCLUSIONS

The proposed QCA-LG tool can be used to produce suitable
QCA layouts for combinational circuits. The QCA-LG accepts
standard netlist formats, such as LSI and Gate, and generates
QCA layouts that can be physically simulated by the well
known QCADesigner tool. The presented results show that the
developed QCA-LG tools are able to automatically generate
layouts for small sized circuits. However, for medium and
large sized circuits the wasted area can be significant, namely
for circuits not exclusively composed by majority gates. More

research has to be performed in order to optimize the gates
placement, which is statically performed and can be one of
the main sources of inefficiency.

With QCA-LG the design flow for QCA technology is
almost complete. Combinational VHLD/Verilog circuits can be
mapped into logic netlists with existing synthesis tools. These
netlists can be transformed into QCADesigner compatible
layout using QCA-LG, and validated by physical simulation.

QCA-LG is still under development and an evaluation
version of the QCA-LG tools is available for download at
http://sips.inesc-id.pt/las/QCA-LG/.
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