
  

QCA Layout Generator

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Computação Quântica: arquitecturas e simulação de 
operação de dispositivos

Geração automática de Layout QCA para circuitos 
combinatórios

Tiago Teresa Teodósio

Júri
Presidente: Doutor José António Beltran Gerald

Orientador: Doutor Leonel Augusto Pires Seabra de Sousa
Vogal: Doutor Paulo Ferreira Godinho Flores

Dezembro de 2007



  

QCA Layout Generator

 QCA Theory

 QCA Logic Gates

 QCA Synchronization

 Layout Generation
Expansion

Placement

Shaping

Routing

Synchronization

Signal Distribution

 Implementation

 Generated Layouts

 Conclusions

Summary



  

QCA Layout Generator

The basic four-dot QCA cell is a square charge container with four quantum dot 
locations at the corners. Each cell has two electrons in excess, localized on 
antipodal quantum dots due to the Coulomb repulsion. White circles represent 
unoccupied dots while a black circle denotes that the dot is occupied by an 
electron. These electrons are only allowed to tunnel between quantum dots 
inside a cell, and therefore, only two different charge distributions are possible 
in a cell. Although these two states of an isolated cell are equal in energy, they 
are observable and can be used to encode the logical levels ’0’ and ’1’ of a bit.

QCA Cell

QCA Theory * QCA Logic Gates * QCA Synchronization
Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)

Implementation * Generated Layouts * Conclusions

Electrical energy minimization  drives the free cell to 
the polarization of the neighbor cells.

This is the working principle of the three input 
majority gate, where the sum of the electrical field 
from all three inputs is used to drive the central cell.

The signal inversion is based on the same principle, 
but with a different geometric arrangement of the 
driver cells. 



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

All logic  functions can be 
implemented using only majority 
gates and inverters, once a majority 
gate can be used to perform AND 
and OR logic operations.
MAJ( A, B, C ) = A.B + B.C + A.C
MAJ( A, B, ’0’ ) = AND( A, B )
MAJ( A, B, ’1’ ) = OR( A, B )

QCA Majority Gate

QCA Inverter Gate

Both logic gates and 
interconnection wires are 
made of QCA cells.

Two alternatives exist  to 
perform wire crossover: 
multi layer and planar.

Multi layer crossover

Planar crossoverQCA “in wire” Inverter using 
one QCA half-cell.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

The QCA cell is controlled by a clock signal that 
allows/inhibits electron tunneling between quantum 
dots, thus freezing the cell by moments to strongly 
drive other cells, and then letting it be driven by 
other cells.

QCA synchronization  system is based in four clock 
signal of the same frequency but dephased one 
quarter period between them. Therefore, signals can 
be pumped through QCA wires.

QCA wire split into clock zones.

QCA clock signals.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

Read the input logic netlist and create a 
directed graph.

Expand  the circuit by replication of the 
shared nodes.

Determine the (x,y) coordinates
of each gate, (black circles 
represent wasted space).

Determine the shape  of 
each gate and implicitly 
route signals from inputs.

Create distribution wires  for 
the shared inputs and perform 
delay equalization.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

This operation makes the place and route task 
easier, avoiding wire crossing at the expense of an 
increase in the circuit area.
The method applied for replication consists on 
performing breadth-first exploration of the circuit, 
starting from each primary output towards the 
inputs.
Every time a node is revisited it is duplicated, as 
well as all the nodes included in the sub tree 
rooted at it.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

The determination of the coordinates where each gate will be placed is done in three phases.
1 – Determine the level in the graph for each gate. The graph level is the y coordinate in gate level 
coordinates, and the maximum level found indicates the maximum y coordinate, called ymax .
2 – Assign different numbers to the gates within each level. When visiting a given gate, with ngate as 
number, its inputs receive a number determined as follows:

● n = 3 ∗ ngate, for the left input;
● n = 3 ∗ ngate + 1, for the central input;
● n = 3 ∗ ngate + 2, for the right input.

3 – Calculate the x coordinate of the gate level coordinates.

Three different referentials 
are considered:
● gate level coordinates,
● cell level coordinates,
● physical coordinates.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

x_cell = (x_gate + x_gate_offset)*x_factor,  x_factor = 3 cells
y_cell = (y_gate)*y_factor + y_cell_offset,    y_factor = 6 cells

Inverter gates will be place in wires. NAND and 
NOR gates will be treated as AND and OR gates, 
respectively, where an additional Inverter gate is 
considered at the gate’s output.

Mapping from the gate level referential 
to the cell level referential.

Build QCA logic gates with QCA cells

Alternative topologies



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

The input wires of each gate connect directly to 
the output cells of the gates at its inputs. This 
way the routing is done implicitly and as a part 
of gate representation. Input wire length is 
calculated from both the coordinates of each 
gate and the coordinates of its inputs.

A half QCA cell replaces a full QCA cell when a given input wire is connected to an 
inverting gate, which means an Inverter, NAND or NOR gate; and this 
replacement implies some extra space between cells to keep the original wire 
length.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

In order to ensure the proper operation of the 
circuit it is necessary to set the clock zone of 
each gate’s output cell as the preceding clock 
zone of the input cell of the next gate towards 
the primary outputs.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

The expansion of the 
circuit generates copies of 
some logic gates, which 
means some input signals 
must be delivered to some 
extra points.

The expression used to evaluate 
the “urgency” to arrive at a given 
destination(x,y) at a given 
moment (clk) is:

pri(x, y, clk) = (x − xmin ) + (y − ymax ) − (clk − clkmin ) ∗ Zone



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

Linux

C language
Lex & Yacc

QCA-LG



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts 1/3 * Conclusions

Automatically generated 1-bit full adder layout.

/* LSI code */
COMPILE;
DIRECTORY MASTER;
MODULE ADDER4;

INPUTS  A,B,CI;
OUTPUTS  S,CO;

LEVEL FUNCTION;
DEFINE

A = (A);
B = (B);
CI = (CI);
S = (S);
CO = (CO);

i0( N_CI = Z ) = 
INV(CI=A);

m1( CO = Z ) = 
MAJ3(A=A,B=B,CI=C);

i1( N_CO = Z ) = 
INV(CO=A);

m2( MAJ_AUX = Z ) = 
MAJ3(A=A,

B=B,
N_CI=C);

m3( S = Z ) = 
MAJ3(N_CO=A,

MAJ_AUX=B,
CI=C);

END MODULE;
END COMPILE;
END;



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts 2/3 * Conclusions

4

Automatically generated 1-bit full adder simulation results.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts 3/3 * Conclusions

Automatically generated 1-bit 2:1 multiplexer.

Simulation results for the 1-bit 2:1 multiplexer.



  

QCA Layout Generator
QCA Theory * QCA Logic Gates * QCA Synchronization

Layout Generation (Expansion, Placement, Shaping, Routing, Synchronization, Signal Distribution)
Implementation * Generated Layouts * Conclusions

QCA allows high throughput and deep pipeline.

CMOS technology will be needed to bound the real analog world to QCA.

QCA-LG tool is able to automatically generate layouts for small sized circuits.

The optimization effort should be focused on the gate’s placement.

With QCA-LG the design flow for QCA technology is now almost complete.



  

QCA Layout Generator

The End


