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Abstract12

Given an indeterminate string pattern p and an indeterminate string text t, the problem of order-13

preserving pattern matching with character uncertainties (µOPPM) is to find all substrings of t14

that satisfy one of the possible orderings defined by p. When the text and pattern are determ-15

inate strings, we are in the presence of the well-studied exact order-preserving pattern matching16

(OPPM) problem with diverse applications on time series analysis. Despite its relevance, the17

exact OPPM problem suffers from two major drawbacks: 1) the inability to deal with indeterm-18

ination in the text, thus preventing the analysis of noisy time series; and 2) the inability to deal19

with indetermination in the pattern, thus imposing the strict satisfaction of the orders among all20

pattern positions.21

This paper provides the first polynomial algorithm to answer the µOPPM problem when22

indetermination is observed on the pattern or text. Given two strings with length m and O(r)23

uncertain characters per string position, we show that the µOPPM problem can be solved in24

O(mr lg r) time when one string is indeterminate and r ∈ N+. Mappings into satisfiability25

problems are provided when indetermination is observed on both the pattern and the text.26
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1 Introduction31

Given a pattern string p and a text string t, the exact order preserving pattern matching32

(OPPM) problem is to find all substrings of t with the same relative orders as p. The problem33

is applicable to strings with characters drawn from numeric or ordinal alphabets. Illustrat-34

ing, given p=(1,5,3,3) and t=(5,1,4,2,2,5,2,4), substring t[1..4]=(1,4,2,2) is reported since it35

satisfies the character orders in p, p[0]≤p[2]=p[3]≤p[1]. Despite its relevance, the OPPM36

problem has limited potential since it prevents the specification of errors, uncertainties or37

don’t care characters within the text.38

Indeterminate strings allow uncertainties between two or more characters per position.39

Given indeterminate strings p and t, the problem of order preserving pattern matching40

uncertain text (µOPPM) is to find all substrings of t with an assignment of values that satisfy41

the orders defined by p. For instance, let p=(1,2|5,3,3) and t=(5,0,1,2|1,2,5,2|3,3|4). The42
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2:2 Order-Preserving Pattern Matching Indeterminate Strings

substrings t[1..4] and t[4..7] are reported since there is an assignment of values that preserve43

either p[0]<p[1]<p[2]=p[3] or p[0]<p[2]=p[3]<p[1] orderings: respectively t[1..4]=(0,1,2,2)44

and t[4..7]=(2,5,3,3).45

Order-preserving pattern matching captures the structural isomorphism of strings, there-46

fore having a wide-range of relevant applications in the analysis of financial times series,47

musical sheets, physiological signals and biological sequences [32, 39, 36]. Uncertainties of-48

ten occur across these domains. In this context, although the OPPM problem is already a49

relaxation of the traditional pattern matching problem, the need to further handle localized50

errors is essential to deal with noisy strings [33]. For instance, given the stochasticity of51

gene regulation (or markets), the discovery of order-preserving patterns in gene expression52

(or financial) time series needs to account for uncertainties [35, 34]. Numerical indexes of53

amino-acids (representing physiochemical and biochemical properties) are subjected to er-54

rors difficulting the analysis of protein sequences [38]. Another example are ordinal strings55

obtained from the discretization of numerical strings, often having two uncertain characters56

in positions where the original values are near a discretization boundary [33].57

Let m and n be the length of the pattern p and text t, respectively. The exact OPPM58

problem has a linear solution on the text length O(n+mlgm) based on the Knuth-Morris-59

Pratt algorithm [41, 39, 22]. Alternative algorithms for the OPPM problem have also been60

proposed [21, 12, 20]. Contrasting with the large attention given to the resolution of the61

OPPM problem, to our knowledge there are no polynomial-time algorithms to solve the62

µOPPM problem. Naive algorithms for µOPPM assess all possible pattern and text assign-63

ments, bounded by O(nrm) when considering up to r uncertain characters per position.64

This work proposes the first polynomial algorithms able to answer the µOPPM problem.65

Accordingly, the contributions are organized as follows. First, we show that an indeterminate66

string of length m order-preserving matches a determinate string with the same length in67

O(mr lg r) time based on their monotonic properties. Second, and given two indeterminate68

strings with the same size, we provide a linear encoding of the µOPPM into a satisfiability69

formula with properties of interest. Third, given a pattern and text strings with lengths70

m and n, we show that the µOPPM problem can be solved in linear space and its average71

efficiency boosted under effective filtration procedures.72

2 Background73

Let Σ be a totally ordered alphabet and an element of Σ∗ be a string. The length of a string74

w is denoted by |w|. The empty string ε is a string of length 0. For a string w=xyz, x, y75

and z are called a prefix, substring, and suffix of w, respectively. The i-th character of a76

string w is denoted by w[i] for each 1≤i≤|w|. For a string w and integers 1≤i≤j≤|w|, w[i..j]77

denotes the substring of w from position i to position j. For convenience, let w[i..j]=ε when78

i>j.79

Given strings x and y with equal length m, y is said to order-preserving against x80

[41], denoted by x ≈ y, if the orders between the characters of x and y are the same, i.e.81

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for any 1 ≤ i, j ≤ m. A non-empty pattern string p is said to82

order-preserving match (op-match in short) a non-empty text string t iff there is a position83

i in t such that p ≈ t[i−|p|+1..i]. The order-preserving pattern matching (OPPM) problem84

is to find all such text positions.85
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2.1 The Problem86

Given a totally ordered alphabet Σ, an indeterminate string is a sequence of disjunctive87

sets of characters x[1]x[2]..x[n] where x[i] ⊆ Σ. Each position is given by x[i]=σ1..σr where88

r≥1 ∧ σi∈Σ.89

Given an indeterminate string x, a valid assignment $x is a (determinate) string with90

a single character at position i, denoted $x[i], contained in the x[i] set of characters, i.e.91

$x[1]∈x[1], .., $x[m]∈x[m]. For instance, the indeterminate string (1|3, 3|4, 2|3, 1|2) has 24
92

valid assignments. Given an indeterminate position x[i] ⊆ Σ, $xj [i] is the jth ordered value93

of x[i] (e.g. $x0[i]=1 for x[i]=1|2). Given an indeterminate string x, let a partially assigned94

string §x be an indeterminate string with an arbitrary number of uncertain characters re-95

moved, i.e. §x[1]⊆x[1], .., §x[m]⊆x[m].96

Given a determinate string x of length m, an indeterminate string y of equal length97

is said to be order-preserving against x, identically denoted by x ≈ y, if there is a valid98

assignment $y such that the relative orders of the characters in x and $y are the same, i.e.99

x[i] ≤ x[j] ⇔ $y[i] ≤ $y[j] for any 1 ≤ i, j ≤ m. Given two indeterminate strings x and y100

with length m, y preserves the orders of x, x ≈ y, if exists $y in y that respects the orders101

of a valid assignment $x in x.102

A non-empty indeterminate pattern string p is said to order-preserving match (op-match103

in short) a non-empty indeterminate text string t iff there is a position i in t such that p ≈ t[i-104

|p|+1..i]. The problem of order-preserving pattern matching with character uncertainties105

(µOPPM) problem is to find all such text positions.106

To understand the complexity of the µOPPM problem, let us look to its solution from a107

naive stance yet considering state-of-the-art OPPM principles. The algorithmic proposal by108

Kubica et al. [41] is still up to this date the one providing a lowest bound, O(n+q), where109

q=m for alphabets of size mO(1) (q=m lgm otherwise). Given a determinate string x of110

length m, an integer i (1≤i<m) is said in the context of this work to be an order-preserving111

border of x if x[1..i] ≈ x[m-i+1..m]. In this context, given a pattern string p, the orders112

between the characters of p are used to linearly infer the order borders. The order borders113

can then be used within the Knuth-Morris-Pratt algorithm to find op-matches against a text114

string t in linear time [41].115

Given a determinate string p of length m and an indeterminate string t of length n, the116

previous approach is a direct candidate to the µOPPM problem by decomposing t in all its117

possible assignments, O(rn). Since determinate assignments to t are only relevant in the118

context of m-length windows, this approach can be improved to guarantee a maximum of119

O(rm) assignments at each text position. Despite its simplicity, this solution is bounded by120

O(nrm). This complexity is further increased when indetermination is also considered in121

the pattern, stressing the need for more efficient alternatives.122
.123

2.2 Related work124

The exact OPPM problem is well-studied in literature. Kubica et al. [41], Kim et al. [39]125

and Cho et al. [22] presented linear time solutions on the text length by respectively combin-126

ing order-borders, rank-based prefixes and grammars with the Knuth–Morris–Pratt (KMP)127

algorithm [40]. Cho et al. [21], Belazzougui et al. [12], and Chhabra et al. [20] presen-128

ted O(nm) algorithms that show a sublinear average complexity by either combining bad129

character heuristics with the Boyer–Moore algorithm [13] or applying filtration strategies.130

Recently, Chhabra et al. [18] proposed further principles to solve OPPM using word-size131

packed string matching instructions to enhance efficiency.132

CPM 2018



2:4 Order-Preserving Pattern Matching Indeterminate Strings

In the context of numeric strings, multiple relaxations to the exact pattern matching133

problem have been pursued to guarantee that approximate matches are retrieved. In norm134

matching [7, 44, 2, 47], matches between numeric strings occur if a given distance threshold135

f(x, y)≤θ is satisfied. In (δ,γ)-matching [14, 26, 24, 23, 42, 43, 45], strings are matched if the136

maximum difference of the corresponding characters is at most δ and the sum of differences137

is at most γ.138

In the context of nominal strings, variants of the pattern matching task have also been139

extensively studied to allow for don’t care symbols in the pattern [37, 25, 9], transposition-140

invariant [42], parameterized matching [11, 6], less than matching [1], swapped matching141

[3, 46], gaps [15, 16, 31], overlap matching [5], and function matching [4, 8].142

Despite the relevance of the aforementioned contributions to answer the exact order-143

preserving pattern matching and generic pattern matching, they cannot be straightforwardly144

extended to efficiently answer the µOPPM problem.145 .146

3 Polynomial time µOPPM for equal length pattern and text147

Section 3.1 introduces the first efficient algorithm to solve the µOPPM problem when one148

string is indeterminate (r ∈ N+). Section 3.2 discusses the existence of efficient solvers when149

both strings are indeterminate. Based on the reducibility of the graph coloring problem to150

the formulations proposed in Section 3.2, we hypothesize that op-matching indeterminate151

strings with an arbitrary number of uncertain characters per position (r ∈ N+) is in class152

NPC. The proof of this intuition is, nevertheless, considered out of the scope, being regarded153

as future work.154

3.1 O(mr lg r) time µOPPM when one string is indeterminate155

Given a determinate string x of length m, there is a well-defined permutation of positions,156

π, that specifies a non-monotonic ascending order of characters in x. For instance, given157

x=(1,4,3,1), then x[0]=x[3]<x[2]<x[1] and π=(0,3,2,1). Given a determinate string y with158

the same length, y op-matches x if it y satisfies the same m-1 orders. For instance, given159

x=(1,4,3,1) and y=(2,5,4,3), x orders are not preserved in y since y[0]6=y[3]<y[2]<y[1].160

The monotonic properties can be used to answer µOPPM when one string is indeterm-161

inate. Given an indeterminate string y, let xπ and yπ be the permuted strings in accordance162

with π orders in x. To handle equality constraints, positions in yπ with identical characters163

in xπ can be intersected, producing a new string y′π with s length (s≤m). Illustrating, given164

x=(4,1,4,2) and y=(2|7, 2, 7|8, 1|4|8), then π=(1,3,0,2), xπ=(1,2,4,4), yπ=(2, 8|4|1, 7|2, 8|7)165

and y′π=(yπ[0], yπ[1], yπ[2] ∩ yπ[3])=(2, 8|4|1, 7). To handle monotonic inequalities, y′π[i]166

characters can be concatenated in descending order to compose z=y′π[0]y′π[1]..y′π[s] and the167

orders between x and y verified by testing if the longest increasing subsequence (LIS) [29]168

of z has s length. In the given example, z=(2, 8, 4, 1, 7), and the LIS of z=(2, 8,4, 1,7) is169

w=(2,4,7). Since |w|=|y′π|=3, y op-matches x.170

I Theorem 1. Given a determinate string x and an indeterminate string y, let xπ and yπ be171

the sorted strings in accordance with π order of characters in x. Let the positions with equal172

characters in xπ be intersected in yπ to produce a new indeterminate string y′π. Consider zi173

to be a string with y′π[i] characters in descending order and z=z1z2..zm, then:174

|w| = |y′π| ⇔ y ≈ x where w = longest increasing subsequence in z (1)175
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Proof. (⇒) If the length of the longest increasing subsequence (LIS), |w|, equals the number176

of monotonic relations in x, |y′π|, then y ≈ x. By sorting characters in descending order177

per position, we guarantee that at most one character per position in y′π appears in the178

LIS (respecting monotonic orders in x given y′π properties). By intersecting characters179

in positions of y with identical characters in x, we guarantee the eligibility of characters180

satisfying equality orders in x, otherwise empty positions in y′π are observed and the LIS181

length is less than |y′π|. (⇐) If |w|<|y′π|, there is no assignment in y that op-matches x182

due to one of two reasons: 1) there are empty positions in y′π due to the inability to satisfy183

equalities in x, or 2) it is not possible to find a monotonically increasing assignment to y′π184

and, given the properties of y′π, yπ cannot preserve the orders of xπ. J185

Solving the LIS task on a string of size n is O(n lgn) [29] where n=|z|=O(rm). In ad-186

dition, set intersection operations are performed O(m) times on sets with O(r) size, which187

can be accomplished in O(rm lg r) time. As a result, the µOPPM problem with one inde-188

terminate string can be solved in O(rm lg(rm)).189

Given the fact that the candidate string for the LIS task has properties of interest, we190

can improve the complexity of this calculus (Theorem 2) in accordance with Algorithm 1.

Algorithm 1: O(mr lg r) µOPPM algorithm with one indeterminate string
Input: determinate x, indeterminate y (|x|=|y|=m)
π ← sortedIndexes(x); // O(m) if |Σ| = mO(1) (O(m lgm) otherwise);
xπ ← permute(x,π), yπ ← permute(y,π); // O(m+mr)
j ← 0; y′π[0] ← {yπ[0]};
foreach i ∈ 1..m-1 do // O(mr lg r)

if xπ[i] = xπ[i-1] then y′π[j] ← y′π[j] ∩ {yπ[i]}; // O(r lg r)
else j ← j+1; y′π[j] ← {yπ[i]};

s ← |y′π|, nextMin ← -∞;
foreach i ∈ 0..s-1 do // O(mr)

nextMin ← min{a | a ∈ y′π[i], a>nextMin}; // O(r)
if 6 ∃ nextMin then return false;

return true;

191

I Theorem 2. µOPPM two strings of length m, one being indeterminate, is in O(mr lg r)192

time, where r ∈ N+.193

Proof. In accordance with Algorithm 1, µOPPM is bounded by the verification of equalities,194

O(mr lg r) [27]. Testing inequalities after set intersections can be linearly performed on the195

size of y, O(mr) time, improving the O(mr lg(mr)) bound given by the LIS calculus. J196

The analysis of Algorthim 1 further reveals that the µOPPM problem with one inde-197

terminate string requires linear space in the text length, O(mr).198

3.2 µOPPM with indeterminate pattern and text199

As indetermination in real-world strings is typically observed between pairs of characters200

[33], a key question is whether µOPPM on two indeterminate strings is in class P when201

r=2. To explore this possibility, new concepts need to be introduced. In OPPM research,202

character orders in a string of length m can be decomposed in 3 sequences with m unit sets:203

I Definition 3. For i=0,...,m−1:204

Leqx[i]={max{ k : k<i, x[i]=x[k] }} (∅ if there is no eligible k)205

Lmaxx[i]={max{argmaxk{ x[k] : k<i, x[i]>x[k] }}} (∅ if there is no eligible k)206

CPM 2018



2:6 Order-Preserving Pattern Matching Indeterminate Strings

Lminx[i]={max{argmink{ x[k] : k<i, x[i]<x[k] }}} (∅ if there is no eligible k)207

Leq, Lmax and Lmin capture =, > and < relationships between each character x[i] in208

x and the closest preceding character x[k]. These orders can be inferred in linear time209

for alphabets of size mO(1) and in O(m lgm) time for other alphabets by answering the210

“all nearest smaller values” task on the sorted indexes [41]. Fig.1 depicts Leq, Lmax and211

Lmin for x=(1,4,3,1). Given determinate strings x and y, A=Leqx[t+1], B=Lmaxx[t+1] and212

C=Lminx[t+1], if x[1..t] ≈ y[1..t] then:213

x[1..t+ 1] ≈ y[1..t+ 1]⇔ ∀a∈A(y[t+ 1] = y[a])∧∀b∈B(y[t+ 1] > y[b])∧∀c∈C(y[t+ 1] < y[c]). (2)214

1 4 3 1

<

>
=

Pattern 1 4 3 1
Leq[i] ∅ ∅ ∅ {0}
Ordered indexes (asc) 0 3 2 1
Lmax[i] (nearest asc smaller not in Leq[i]) ∅ {0} {0} ∅
Ordered indexes (desc) 2 0 1 3
Lmin[i] (nearest desc smaller not in Leq[i]) ∅ ∅ {1} ∅

Figure 1 Orders identified for p=(1,4,3,1) in accordance with Kubica et al. [41].

When allowing uncertainties between pairs of characters, previous research on the OPPM215

problem cannot be straightforwardly extended due to the need to trace O(2m) assignments216

on indeterminate strings.217

I Lemma 4. Given a determinate string x, an indeterminate string y, and the singleton218

sets A=Leqx[t+ 1], B=Lmaxx[t+ 1] and C=Lminx[t+ 1] containing a position in 1..t. If219

x[1..t] ≈ y[1..t] is verified on a specific assignment of y characters, denoted §y, then:220

x[1..t+ 1] ≈ y[1..t+ 1]⇔ ∃$y[t+1]∈§y[t+1]∀a∈A∃$y[a]∈§y[a]∀b∈B∃$y[b]∈§y[b]∀c∈C∃$y[c]∈§y[c]221

$y[t+ 1] = $y[a] ∧ $y[t+ 1] > $y[b] ∧ $y[t+ 1] < $y[c]222

Proof. (⇒) In accordance with Leq, Lmax and Lmin definition, for any a∈A, b∈B and c∈C223

we have x[t+1]=x[a], x[t+1]>x[b] and x[t+1]<x[c]. If there is an assignment to y[1..t+1] in224

§y that preserves the orders of x[1..t+ 1], then for each a∈A, b∈B and c∈C $y[t+ 1]=$y[a],225

$y[t + 1]>$y[b] and $y[t + 1]<$y[c] (where $y[t + 1] ∈ §y[t + 1], $y[a] ∈ §y[a], $y[b] ∈ §y[b],226

$y[c] ∈ §y[c]). (⇐) We need to show that x[1..t + 1] ≈ y[1..t + 1]. Since x[1..t] ≈ y[1..t],227

for i < t, ∃$y[i]∈§y[i],$y[t+1]∈§y[t+1]: x[t + 1]>x[i] ⇔ $y[t + 1]>$y[i]. Assuming x[t + 1]>x[i]228

for some i ∈ {1..t}: by the definition of Lmax, ∀b∈Bx[b]>x[i]; by the order-isomorphism of229

x[1..t] and $y[1..t] in §y[1..t], there is $y[i] ∈ §y[i] and $y[b] ∈ §y[b] that ∀b∈B$y[b]>$y[i];230

and by the assumption of the lemma, ∀b∈B$y[t+ 1]>$y[b]; hence $y[t+ 1]>$y[i]. Similarly,231

x[t + 1]<x[i] (and x[t + 1]=x[i]) implies $y[t + 1]<$y[i] (and $y[t + 1]=$y[i]), yielding the232

stated equivalence. J233

Given two strings of equal length, the µOPPM problem can be schematically represented234

according to the identified order restrictions. Fig.2 represents restrictions on the indeterm-235

inate string y=(2, 4|5, 3|5, 1|2) in accordance with the observed orders in x=(1,4,3,1). The236

left side edges are placed in accordance with Lemma 4 and capture assessments on the or-237

ders between pairs of characters. The right side edges capture incompatibilities detected238

after the assessments, i.e. pairs of characters that cannot be selected simultaneously (for239

instance, y[0]=2 and y[3]=1, or y[1]=4 and y[2]=5). For the given example, there are two240

valid assignments, $y1=(2,4,3,2) and $y2=(2,5,3,2), that satisfy x[0]=x[3]<x[2]<x[1], thus241

y op-matches x.242
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y[0] y[1] y[2] y[3]

2 4

5

3

5

1

2

<

>

y[0] y[1] y[2] y[3]

2 14

5

3

25

Figure 2 Schematic representation of the pairwise ordering restrictions for text y=(2, 4|5, 3|5, 1|2)
and pattern x=(1,4,3,1). In the left side, all order verifications are represented, while in the right
side only the order conflicts are signaled (e.g. y[1]=4 cannot be selected together with y[2]=5).

To verify whether there is an assignment that satisfies the identified ordering restrictions,243

we propose the reduction of µOPPM problem to a Boolean satisfiability problem.244

Given a set of Boolean variables, a formula in conjunctive normal form is a conjunction of245

clauses, where each clause is a disjunction of literals, and a literal corresponds to a variable246

or its negation. Let a 2CNF formula be a formula in the conjunctive normal form with at247

most two literals per clause. Given a CNF formula, the satisfiability (SAT) problem is to248

verify if there is an assigning of values to the Boolean variables such that the CNF formula249

is satisfied.250

I Theorem 5. The µOPPM problem over two strings of equal length, one being indeterm-251

inate, can be reduced to a satisfiability problem with the following CNF formula:252

φ =
m−1∧
i=0

( ∨
$y[i]∈y[i]

zi,$y[i]

)
∧
m−1∧
i=0

( ∧
$y[i]∈y[i]

∧
j∈Leq[i],$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] = $y[j]

)
253

∧
∧

$y[i]∈y[i]

∧
j∈Lmax[i]
$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] > $y[j]

)∧ ∧
$y[i]∈y[i]

∧
j∈Lmin[i]
$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] < $y[j]

))
(3)254

Proof. Let us show that if x op-matches y then φ is satisfiable, and if x does not op-match255

y then φ is not satisfiable. (⇒) When x ≈ y, there is an assignment of values to y, $y,256

that satisfy the orderings of x. φ is satisfiable if there is at least one variable assigned257

to true per clause ∨$y[i]∈y[i] zi,$y[i] given conflicts ¬zi,$y[i] ∨ ¬zj,$y[j]. As conflicts do not258

prevent the existence of a valid assignment (by assumption), then ∃$y ∧i∈{0..m−1} zi,$y[i] and259

φ is satisfiable. (⇐) When x does not op-match y, there is no assignment of values $y∈y260

that can satisfy the orders of x. Per formulation, the conflicts ¬zi,$y[i]∨¬zj,$y[j] prevent the261

satisfiability of one or more clauses ∨$y[i]∈y[i] zi,$y[i], leading to a non-satisfiable formula. J262

If the established φ formula is satisfiable, there is a Boolean assignment to the variables263

that specify an assignment of characters in y, $y, preserving the orders of x (as defined264

by Leq, Lmax and Lmin). Otherwise, it is not possible to select an assignment $y op-265

matching x. φ has at most r×m variables, {zi,σ | i ∈ {0..m-1}, σ ∈ Σ}. The Boolean value266

assigned to a variable zi,σ simply defines that the associated character σ from y[i] can be267

either considered (when true) or not (when false) to compose a valid assignment $y that268

op-matches the given determinate string x. The reduced (3) formula is composed of two269

major types of clauses: ∨$y[i]∈y[i]zi,$y[i], and (¬zi,$y[i] ∨ ¬zj,$y[j]∨bool) where bool is either270

given by $y[i] = $y[j], $y[i] < $y[j]or $y[i] > $y[j]. Clauses of the first type specify the need to271

select at least one character per position in y to guarantee the presence of valid assignments.272
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The remaining clauses specify ordering constraints between characters. If an inequality,273

such as $y[i] > $y[j], is assessed as true, the associated clause is removed. Otherwise,274

(¬zi,σ1 ∨ ¬zj,σ2) is derived, meaning that these σ1 and σ2 characters should not be selected275

simultaneously since they do not satisfy the orders defined by a given pattern. For instance,276

the pairs of characters in orange from Fig.2 should not be simultaneously selected due to277

order conflicts. To this end, (¬z0,2∨¬z3,1) and (¬z1,4∨¬z2,5) clauses need to be included to278

verify if y ≈ x. Considering y=(2, 4|5, 4|5, 1|2) and x=(1,4,3,1), schematically represented279

in Fig.2, the associated CNF formula is:280

φ = z0,2 ∧ (z1,4 ∨ z1,5) ∧ (z2,4 ∨ z2,5) ∧ (z3,1 ∨ z3,2) ∧ (¬z0,2 ∨ ¬z3,1) ∧ (¬z1,4 ∨ ¬z2,5)281

I Theorem 6. Given two strings of lengthm, one being indeterminate with r=2, the µOPPM282

problem can be reduced to a 2SAT problem with a CNF formula with O(m) size.283

Proof. Given Theorem 5 and the fact that the reduced CNF formula has at most two literals284

per clause – φ is a composition of ∨$y[i]∈y[i]zi,$y[i] clauses with |y[i]| ∈ {1, 2} and (¬zi,$y[i] ∨285

¬zj,$y[j]∨bool) clauses – µOPPM with r=2 and one indeterminate string is reducible to286

2SAT. The reduced formula has at most 10m clauses with 2 literals each, being linear in m:287

[clauses that impose the selection of at least one character per position in y] Since y288

has m positions, and each position is either determinate (unitary clause) or defines an289

uncertainty between a pair of characters, there are m clauses and at most 2m literals;290

[clauses that define the ordering restrictions between two variables] A position in the291

indeterminate string y[i] needs to satisfy at most two order relations. Considering that292

i, Leq[i], Lmax[i] and Lmin[i] specify uncertainties between pairs of characters, there293

are up to 12 restrictions per position: 4 ordering restrictions between characters in y[i]294

and y[Leq[i]], y[Lmax[i]] and y[Lmin[i]]. Whenever the order between two characters is295

not satisfied, a clause is added per position, leading to at most 12m clauses.296 J297

I Theorem 7. The µOPPM between determinate and indeterminate strings of equal length298

can be solved in linear time when r=2.299

Proof. Given the fact that a 2SAT problem can be solved in linear time [10]∗, this proof300

directly derives from Theorem 6 as it guarantees the soundness of reducing µOPPM (r=2)301

to a 2SAT problem with a CNF formula with O(m) size. J302

As the size of the mapped CNF formula φ is O(m) and the a valid algorithm to verify303

its satisfiability would require the construction of a graph with O(m) nodes and edges, the304

required memory for the target µOPPM problem is Θ(m).305

When moving from one to two indeterminate strings, previous contributions are insuf-306

ficient to answer the µOPPM problem. In this context, the Leq, Lmax and Lmin vectors307

need to be redefined to be inferred from an indeterminate string:308

I Definition 8. .309

Leqx[i|j]={k : k<i, ∃p $xj [i]=$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1310

∗2SAT problems have linear time and space solutions on the size of the input formula. Consider for
instance the original proposal [10], the formula φ is modeled by a directed graph G=(V,E), with two
nodes per variable zi in φ (zi and ¬zi) and two directed edges for each clause zi ∨ zj (the equivalent
implicative forms ¬zi ⇒ zj and ¬zj ⇒ zi). Given G, the strongly connected components (SCCs) of G
can be discovered in O(|V | + |E|). During the traversal if a variable and its complement belong to the
same SCC, then the procedure stops as φ is determined to be unsatisfiable. Given the fact that both
V=O(m) and E=O(m) by Lemma 6, this procedure is O(m) time and space.
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Lmaxx[i|j]={k : k<i, ∃p $xj [i]>$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1311

Lminx[i|j]={k : k<i, ∃p $xj [i]<$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1312

Fig.3 schematically represents the order relationships of x=(2, 1|3, 3) and the associated313

Leq, Lmax and Lmin vectors. In this scenario, x[2] needs to be verified not only against314

x0[1] but also against x1[1] in case x0[1] is disregarded.315

x[0] x0[1] x1[1] x[2]

2 1 3 3

<

>

Pattern 2 1 3 3
i 0 1 1 2
j 0 0 1 0
Leq[i|j] ∅ ∅ ∅ {1}
Ordered indexes (asc) 1 0 2 3
Lmax[i|j] ∅ ∅ {0} {0,1}
Ordered indexes (desc) 2 3 0 1
Lmin[i|j] ∅ {0} ∅ ∅

Figure 3 Order relationships of x=(2, 1|3, 3) and the corresponding Lmax and Lmin vectors.

I Corollary 9. Given Leq, Lmax and Lmin (Def.8), there are O((rm)2) order relationships316

when r ∈ N+ since each character in a given position establishes at most O(m) relationships317

with characters in preceding positions.318

I Lemma 10. Given indeterminate strings x and y, let Aj=Leqx[t+1|j], Bj=Lmaxx[t+1|j]319

and Cj=Lminx[t+1|j] (Def.8) be the orders associated with $xj [t+1]. If x[1..t] ≈ y[1..t] is320

verified on a partial assignment of y characters, denoted by §y, then:321

x[1..t+ 1] ≈ y[1..t+ 1]⇔∃j∈{0,1}∃$y[t+1]∈§y[t+1]∀a∈Aj ,b∈Bj ,c∈Cj322

∃$y[a]∈§y[a],$y[b]∈§y[b],$y[c]∈§y[c]

(
$y[t+1] = $y[a] ∧ $y[t+1] > $y[b] ∧ $y[t+1] < $y[c]

)
323

Proof. (⇒) Similar to the proof of Lemma 4, yet A, B and C conditional to x[t+ 1] (Def.3)324

are now given by Aj , Bj and Cj conditional to xj [t + 1] (Def.8). If there is an assignment325

to y[1..t + 1] in §y that preserves one of the possible orders in x[1..t + 1], then for any326

a ∈ Aj , b ∈ Bj and c ∈ Cj : $y[t + 1]=$y[a], $y[t + 1]>$y[b] and $y[t + 1]<$y[c] (where327

$y[t+ 1] ∈ §y[t+ 1], $y[a] ∈ §y[a], $y[b] ∈ §y[b], $y[c] ∈ §y[c]).328

(⇐) We need to show that x[1..t+ 1] ≈ y[1..t+ 1]. Since x[1..t] ≈ y[1..t], it is sufficient329

to prove that for i≤t: exists $x[i] ∈ §x[i], $x[t + 1] ∈ §x[t + 1], $y[i] ∈ §y[i], $y[t + 1] ∈330

§y[t+ 1] such that $x[t+ 1]=$x[i]⇔ $y[t+ 1]=$y[i], $x[t+ 1]>$x[i]⇔ $y[t+ 1]>$y[i] and331

$x[t+ 1]<$x[i]⇔ $y[t+ 1]<$y[i]. This results from Def.8, the order-isomorphism property332

and Lemma 4. J333

x[0] x0[1] x1[1] x[2]

y[0]=2 y[1]=0 y0[2]=3

y1[2]=4

y[1]=0

Figure 4 Conflicts when op-matching y=(2, 0, 3|4) against x=(2, 1|3, 3).
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Fig.4 represents encountered restrictions when op-matching x=(2, 1|3, 3) against y=(2, 0, 3|4).334

The right side edges capture the detected incompatibilities, i.e. pairs of characters that can-335

not be selected simultaneously. For the given example, there are 2 valid assignments –336

$y1=(2,0,3) and $y2=(2,0,4) – satisfying $x0[1]<$x0[0]<$x0[2], thus x ≈ y.337

To verify whether there is an assignment that satisfies the identified ordering restrictions,338

Theorem 11 extends the previously introduced SAT mapping given by (3).339

I Theorem 11. Given Leq, Lmax and Lmin (Def.8), µOPPM problem over two indeterm-340

inate strings of equal length can be reduced to a satisfiability problem with the following CNF341

formula:342

m−1∧
i=0

∨
$y[j]∈y[j]
$x[j]∈x[j]

zi,$x[i],$y[i] ∧
m−1∧
i=0

∧
$y[j]∈y[j]
$x[j]∈x[j]

( ∧
j∈Leq[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(
¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]∨$y[i] = $y[j]

)
343

∧
∧

j∈Lmax[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]
∨$y[i]>$y[j]

)
∧

∧
j∈Lmin[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]
∨$y[i]<$y[j]

))
(4)344

Proof. If x ≈ y then φ is satisfiable, and if x does not op-match y then φ is not satisfiable.345

(⇒) When x op-matches y, there is an assignment of values in x and y such that $x ≈ $y.346

φ is satisfiable if there is at least one valid assignment zi,$x[i],$y[i] per ith position. As347

conflicts ¬zi,$x[i],$y[i] ∨ ¬zj,$x[j],$y[j] do not prevent the existence of a valid assignment (by348

assumption), one or more variables zi,$x[i],$y[i] can be selected per position. φ can then be349

satisfied by fixing a single variable zi,$x[i],$y[i] per ith position as true and the remaining350

variables as false. (⇐) When x does not op-match y, there is no assignment of values $x∈x351

and $y∈y such that $x ≈ $y. Per formulation, in the absence of an order-preserving match,352

conflicts will prevent the assignment of at least one variable zi,$x[i],$y[i] per ith position, thus353

making φ formula unsat. J354

If (4) formula is satisfiable, there is a Boolean assignment to the variables such that355

there is an assignment of characters in y, $y, and in x, $x, such that both strings op-356

match. Otherwise, it is not possible to select assignments such that x ≈ y. Given r=2, the357

established φ formula has at most 4m variables, {zi,σ1,σ2 | i ∈{0..m-1}, σ1, σ2 ∈ Σ}. The358

Boolean values assigned to these variables define whether characters σ1 ∈ x[i] and σ2 ∈ y[i]359

belong to an op-match. The reduced formula is composed of two major types of clauses:360

(4.1) at least one combination of characters, $x[i] and $y[i], should be selected per ith361

position;362

(4.2) clauses specify ordering constraints between pairs of characters σ1 ∈ y[i] and363

y[Leq[i]], y[Lmax[i]] and y[Lmin[i]]. If the inequalities $y[i]=$y[j], $y[i]>$y[j] and364

$y[i]<$y[j] are assessed as false, these leads to clauses of the form (¬zi,σ1 ∨ ¬zj,σ2),365

meaning that these characters should not be selected simultaneously in the given posi-366

tions (see Fig.4).367

To instantiate the proposed mapping, consider x=(2, 1|3, 3) and y=(2, 0, 3|4), schemat-368

ically represented in Fig.3. The associated CNF formula is:369

φ = z0,2,2 ∧ (z1,1,0 ∨ z1,3,0) ∧ (z2,3,3 ∨ z2,3,4) //(4.1)370

∧(¬z0,2,0 ∨ ¬z1,3,0) ∧ (¬z1,3,0 ∨ ¬z2,3,3) ∧ (¬z1,3,0 ∨ ¬z2,3,4) //4.2371
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I Theorem 12. The µOPPM problem for two indeterminate strings of equal length is redu-372

cible into a satisfiability problem over a CNF formula with O((mr)2) size.373

Proof. The reduced formula (4) is in the two conjunctive normal form (CNF) with at most374

4m clauses given by (4.1) and a maximum of O(mr) orders per position (Corollary 9),375

totalling at most O((mr)2) order conflicts between characters (4.2). J376

Given the unique properties of the above satisfiability formulation, effective backtracking377

in accordance with (4.1), as well as dedicated conflict pruning principles derived from (4.2),378

can be considered to develop efficient SAT solvers able to solve the µOPPM problem.379

4 Polynomial time µOPPM380 .381

I Lemma 13. Given a pattern string of length m and a text string of length n, one being382

indeterminate, the µOPPM problem can be solved in O(nmr lg r) time.383

Proof. From Lemma 7, verifying if two strings of length m op-match is in O(mr lg r) time384

(indetermination in one string) since at most n−m+1 verifications need to be performed. J385

Lemma 13 confirms that the µOPPM problem with one indeterminate strings is in class386

P. This lemma further triggers the research question “Is O(nmr) a tight bound to solve the387

µOPPM?”, here left as an open research question.388

Irrespectively of the answer, the analysis of the average complexity is of complementary389

relevance. State-of-the-art research on the exact OPPM problem shows that the average390

performance of algorithms in O(nm) time can outperform linear algorithms [20, 17, 19].391

Motivated by the evidence gathered by these works, we suggest the use of filtration392

procedures to improve the average complexity of the proposed µOPPM algorithm while393

still preserving its complexity bounds. A filtration procedure encodes the input pattern394

and text, and relies on this encoding to efficiently find positions in the text with a high395

likelihood to op-match a given pattern. Despite the diversity of string encodings, simplistic396

binary encodings are considered to be the state-of-the-art in OPPM research [20, 17]. In397

accordance with Chhabra et al. [20], a pattern p can be mapped into a binary string p′398

expressing increases (1), equalities (0) and decreases (0) between subsequent positions. By399

searching for exact pattern matches of p′ in an analogously transformed text string t′, we400

guarantee that the verification of whether p[0..m-1] and t[i..i+m-1] orders are preserved401

is only performed when exact binary matches occur. Illustrating, given p=(3,1,2,4) and402

t=(2,4,3,5,7,1,4,8), then p′=(1,0,1,1) and t′=(1,1,0,1,1,0,1,1,0), revealing two matches t′[1..4]403

and t′[4..7]: one spurious match t[1..5] and one true match t[4..8].404

When handling indeterminate strings the concept of increase, equality and decrease needs405

to be redefined. Given an indeterminate string x, consider x′[i]=1 ifmax(x[i])<min(x[i+1]),406

x′[i]=0 if min(x[i])≥max(x[i+ 1]), and x′[i]=∗ otherwise. Under this encoding, the pattern407

matching problem is identical under the additional guard that a character in p′ always408

matches a don’t care position, t′[i]=∗, and vice-versa. Illustrating, given p=(6,2|3,5) and409

t=(3|4,5,6|8,6|7,3,5,4|6,7|8,4), then p′=(0,1) and t′=(11∗01∗10), leading to one true match410

t[3..5] – e.g. $t[3..5]=(6,3,5) – and one spurious match t[5..7]. Exact pattern matching411

algorithms, such as Knuth-Morris-Pratt and Boyer-Moore, can be adapted to consider don’t412

care positions while preserving complexity bounds [40, 13].413

The properties of the proposed encoding guarantee that the exact matches of p′ in t′414

cannot skip any op-match of p in t. Thus, when combining the premises of Lemma 13 with415

the previous observation, we guarantee that the computed µOPPM solution is sound.416
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The application of this simple filtration procedure prevents the recurring O(mr lg r)417

verifications n−m+1 times. Instead, the complexity of the proposed method to solve the418

µOPPM problem becomes O(dmr lg r + n) (when one string is indeterminate) where d is419

the number of exact matches (d � n). According to previous work on exact OPPM with420

filtration procedures [20], SBNDM2 and SBNDM4 algorithms [28] (Boyer-Moore variants)421

were suggested to match binary encodings. In the presence of small patterns, Fast Shift-Or422

(FSO) [30] can be alternatively applied [20].423

A given string text can be read and encoded incrementally from the standard input as424

needed to perform µOPPM, thus requiring O(mr) space. When filtration procedures are con-425

sidered, the aforementioned algorithms for exact pattern matching require O(m) space [20],426

thus µOPPM space requirements are bound by substring verifications (Section 3): O(mr)427

space when one string is indeterminate and O((mr)2) when indetermination is considered428

on both strings.429

5 Concluding remark430

This work addressed the relevant yet scarcely studied problem of finding order-preserving431

pattern matches on indeterminate strings (µOPPM). We showed that the problem has a432

linear time and space solution when one string is indeterminate. In addition, the µOPPM433

problem (when both strings are indeterminate) was mapped into a satisfiability formula of434

polynomial size and two simple types of clauses in order to study efficient solvers for the435

µOPPM problem. Finally, we showed that solvers of the µOPPM problem can be boosted436

in the presence of filtration procedures.437
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