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1. INTRODUCTION 
Public urban rail transit is a major mode of transportation in many cities around the 
world. The latest report by the International Association of Public Transport (2018) 
estimates that metro systems had a total global ridership of 53768 million in 2017, with 
Asia-Pacific and Europe leading the numbers. The massive usage of urban rail transit 
underscores the importance of government efforts to ensure that metro systems are 
reliable, safe, and efficient for the public. Among the challenges tackled by metro 
operators is the effective resolution of bottlenecks in passenger traffic, including 
insufficient capacity for passenger demand, a task that has even more relevance in 
the context of the current COVID-19 pandemic to ensure the satisfaction of health 
safety norms. 
 
Passenger route choices are not deterministic as they depend on the subjective 
perception of travel time, required transfers, convenience factors, and on-site train 
arrivals and waiting times, among others (Daaman, Bovy and Hoogendoorn, 2005; 
Xinyue, Liping, Haiying et al., 2018). This makes it difficult to infer the volume of 
passengers along specific segments of the network at a given time.  
 
In this study, we model individual passenger routes and the overall passenger flow in 
a rail network based only on automated fare collection data containing passenger 
entrances and exits within the urban rail system. To accomplish this task, we present 
a computational approach that assesses the likelihood of each possible route choice 
by aligning card validation timestamps against real-time route scheduling. In the 
absence of vehicle geolocation data, the locations of the trains at different times can 
be estimated by analyzing passenger volume peaks at the exit station gates. We can 
then use this information together with an analysis of the trip durations to better infer 
the likelihood that a passenger took a specific route by analyzing the location and 
timings of his or her entry and exit from the urban rail system.  
 
The approach offers two main advantages. It requires minimal information that is easily 
obtainable in most urban rail transit systems. This allows it to be implemented easily 
without the use of complex and privacy-invasive sensors and monitoring devices. 
Previous approaches require additional information such as models representing initial 
passenger route choice behaviors (Xu, Xie, Li, et al., 2018) and train arrival times (Sun 
& Xu, 2012; Zhao, Zhang, Tu, et al., 2016). Second, it is adaptable to changes in the 
network not only because of unforeseen events like malfunctions and delays, but also 
changes in operational schedules and policies. This makes it robust and reliable in the 
presence of changes over time unlike previous approaches that assume fixed and 



 
 

 

 
 
 

 
 
 

 

 
 
 

EUROPEAN TRANSPORT CONFERENCE 2021 

 
 

 

 

2                                                                                                    © AET 2021 and contributors 
 
 

precise train arrival times for each station (Sun & Xu, 2012; Zhao, Zhang, Tu, et al., 
2016). 
 
In this paper, we apply the said approach on the automated fare collection dataset of 
the Lisbon Metro for the month of October 2019 and discuss the corresponding results. 
The paper is structured as follows. Section 2 contains a brief background of the Lisbon 
Metro and the automated fare collection dataset used in this paper. Section 3 
introduces the proposed approach for estimating passenger route choices and 
passenger flow. Section 4 shows the results and validation of the said approach, and 
Section 5 contains the concluding remarks. 
 
2. BACKGROUND 
 
2.1 Description of the Task 
The targeted task is to estimate the route choices of passengers in a mass transit 
system, in which the system is composed of a set of interconnected lines, with each 
line serviced periodically by vehicles passing through a series of stations. Passengers 
may enter and exit the system through any station and may take as vehicles as many 
times as they want while within the network. We define the route of a passenger as 
the path taken from the station of entry to the station of exit. We then formalize the 
task as follows: given the passengers’ time and location of entry and exit in the transit 
system, how can we predict the actual routes that were taken by each passenger? 
 
2.2 Lisbon Metro 
In this paper, we use the Lisbon Metro as an example application domain for the 
passenger route choice estimation approach. The Lisbon Metro is an urban rail rapid 
transit system in Lisbon, the capital city of Portugal. As of 2021, it consists of 4 lines: 
azul (blue), amarela (yellow), verde (green), and vermelha (red) with a total of 56 
stations (Metropolitano de Lisboa, E.P.E., 2021). As with most other urban rail transit 
systems, the different lines interconnect with one another through certain common 
stations. Figure 1 shows a map of the rail network. 
 
As the rapid transit system of a capital city, the Lisbon Metro serves a massive number 
of passengers. In 2019, the annual ridership of the Lisbon Metro reached 173 million 
people (Miguel, 2020). Similar with most other urban rail systems, the Lisbon Metro 
makes use of an automated fare collection system, in which passengers use cards to 
enter and exit the stations. After entering, the passenger is free to ride any train within 
the network as many times as they want, before exiting at any station. With each 
entrance and exit made by each passenger, the automated fare collection system 
records the following information: the timestamp (date and time), the station, and a 
unique identifier for the passenger (i.e., the number of the card used for the entry or 
exit). The collection of all such records from the automated fare collection system 
forms the dataset that we will be using for estimating passenger flow and route choices 
within the network. Specifically, we will be focusing on data for the month of October 
2019 containing over 33 million entrances and exits. 
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Figure 1. Lisbon Metro network map. 

 
 
3. ESTIMATION OF PASSENGER ROUTE CHOICES 
In this section, we present a two-step approach for estimating passenger route choices 
in urban rail transit systems. The approach is divided into two parts: (a) estimating the 
locations of the trains in the network, and (b) estimating the likelihood of each 
passenger’s route choice based on the train locations.  
 
3.1 Estimation of Train Locations 
The first step is to estimate the locations of each train in the network over time. To this 
end, peaks in the volume of passengers exiting the stations are identified based on 
automated fare collection data. For any given day, we can form a time series for each 
station by aggregating the number of exit records per station into 15-second intervals. 
We then perform a rolling average and rolling deviation on the time series to identify 
passenger exit peaks along a line to estimate the precise location of vehicles. We 
define a passenger volume spike as a peak in the time series that is at least one 
standard deviation higher than rolling mean. This scheme aims to ensure that only 
peaks deviating from typical behavior along a given period are considered and has 
previously been used similarly for robust peak detection in other studies (Dons, 
Laeremans, Orjuela et al., 2019; Cloud, Tarlen, Liu et al., 2019). 
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Using the Lisbon Metro as an example, Figure 2 shows the aggregated passenger 
exits on Santa Apolónia station on a single day. The red dots represent the passenger 
volume spikes, as identified through the peaks that are at least one standard deviation 
away from the rolling mean. From this, it is apparent that there are periodic spikes in 
the number of people exiting the station, caused by groups of people alighting from 
the trains that arrive periodically. We identify such spikes in passenger volume and 
use them as a basis for estimating the train locations within the network. 
 

 
Figure 2. Volume of passengers over time for October 7 in Santa Apolónia station. 

Red dots show spikes in passenger volume, blue line shows the rolling mean, yellow 
line shows the rolling standard deviation, and green line shows one standard 

deviation away from the rolling mean. 
 
We then identify the travel time durations of each train through each line. This data 
can easily be obtained based on the urban rail system’s operational protocols or, in 
the absence of this data, could be estimated from averaging times of actual train 
operations. Given a line consisting of stations 𝑠1, 𝑠2, … , 𝑠𝑛, the train arrival offset at 
station 𝑠𝑖, referred to as offset(𝑠𝑖), is the total amount of time it takes for a train to 
arrive at a station 𝑠𝑖 from station 𝑠1. Thus, offset(𝑠𝑖) can be defined recursively, where 

offset(𝑠1) = 0 and offset(𝑠𝑖) = offset( 𝑠𝑖−1) + δ(𝑠𝑖−1, 𝑠𝑖), where δ(𝑠𝑖−1, 𝑠𝑖) is the time 
takes for the train to arrive to 𝑠𝑖 from 𝑠𝑖−1. Note that the train arrival’s offsets on the 
same line moderately differ from the reverse direction. 
 
Using the Lisbon Metro’s green line as an example, Figure 3 shows the train arrival 
offsets of each station for both directions. 
 

 
Figure 3. Train arrival time offsets from the first station in Linha Verde (green line). 

 
The next step is to align the passenger volume peak data for each station according 
to the projected passing of the train along the stations using the previously identified 
offsets. To do this, we perform a shift by subtracting the corresponding train arrival 
offset from each of the passenger volume peaks in each station. We then estimate the 
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likelihood that a train started on the first station at a given time. To this end, we define 
a likelihood score based on the total distance from the closest passenger volume 
spikes. Given a starting time 𝑡, the likelihood score ℒ(𝑡) is computed as: 

ℒ(𝑡) = 1 −
1

𝛼2
∑

(𝑐𝑙𝑜𝑠𝑒𝑠𝑡(𝑠, 𝑡, 𝛼) − 𝑡)2

𝑐𝑜𝑢𝑛𝑡(𝑠, 𝑡, 𝛼) + 1
𝑠 𝜖 𝑆

 

where 𝑆 is the set of stations in the target line and 𝛼 is a constant time duration 
threshold. The 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 function returns the time of the closest passenger volume peak 

(after shifting) that occurs after 𝑡, bounded by a maximum value of 𝑡 + 𝛼. The 𝑐𝑜𝑢𝑛𝑡 
function returns the total number of exits made within the range [𝑡 − 𝛼, 𝑡 + 𝛼] (after 
shifting). Intuitively, the numerator represents the squared error of the train arrival 
times for each station from the closest passenger volume peak, while the denominator 
weighs the errors according to the volume of passengers to give more importance to 
stations with larger volumes of passengers around that time. The 1 constant is added 
to ensure that the operation is defined even in the absence of passenger exits. Finally, 
the summation of the errors is normalized to the range [0,1], where 1 represents a 
perfect alignment of the train arrivals with passenger volume peaks. We can identify 
the times where trains are likely to have started from the first station of the line by 
identifying the peaks of the likelihood score plot. 
 
Illustrating, Figure 4 shows the times of the passenger volume spikes in Linha Verde 
(green line) before and after shifting. Based on our assumption that the arrival of a 
train on a station implies a possible spike in passenger volume at the exit gates, we 
are able to draw a vertical line on the shifted plot and observe volume spikes close to 
that line. We can visually observe in the figure that this hypothesis holds true, 
particularly on the latter half of the line. This makes sense because people are more 
likely to get off at later stations according to the natural flow of the line direction. Figure 
5 shows ℒ(𝑡) computed for various values of 𝑡, showing the likelihood peaks at times 
where the passenger volume peaks are well-aligned, with the purple dots showing the 
peaks which represent the predicted times that the trains have started travelling from 
the first station in this direction. 
 

 
Figure 4. Passenger volumes spikes per station on Linha Verde (green line) before 

and after shifting according to train arrival time offsets. 
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Figure 5. Likelihood score computed across different times, showing the score peak 

at times where the passenger volume peaks are well-aligned. 
 
Now that the predicted starting times of the trains have been identified, actual train 
arrival times for each station can be easily inferred. To compute the train arrival times 
at a given station 𝑠𝑖, we simply add the offset(𝑡𝑖) to each of the estimated starting times 
from the lines passing through 𝑠𝑖. Using this information, given a passenger’s entrance 
and exit information from the automated fare collection data, potential routes taken 
from entrance to exit can now be explored. 
 
3.2 Prediction of Passenger Route Choices 
Before route choices are predicted, we first pair the entrance and exit records in the 
automated fare collection dataset. Given that each record contains the following 
information: (a) entrance or exit, (b) timestamp, (c) station, and (d) identifier, we can 
match each passenger’s entrance record with its corresponding exit record 
considering the card identifiers and trip precedencies. There may be some cases 
where an entrance or exit record is missing its corresponding pair in the dataset. These 
can occur due to operational anomalies (e.g., malfunctions, cases where passengers 
were allowed to enter/exit without passing through the gates in extraordinary 
situations). Understandably, route choice estimation for incomplete trips should be 
proceeded by well-established principles for boarding or alighting station inference 
(Cerqueira et al. 2020). Nevertheless, the likelihood of incomplete trip records for rail 
systems with closed gates is generally low. 
 

 
Figure 6. Ratio of incomplete trips over all trips per day in the Lisbon Metro. 
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In fact, after pairing the entrance and exit records in the Lisbon Metro, Figure 6 shows 
the ratio of incomplete trips (i.e., missing entrance or missing exit) over all trips for 
each day in the month of October. Overall, only 2.09% of the trips are incomplete, 
although there was an unusually high number of incomplete trips on the 12th of the 
month, likely caused by an unusual operational event. To remove the additional 
uncertainty associated with route choices along incomplete trip records, we excluded 
these records from the conducted experimental analysis. 
 
We define a route as a path that a passenger takes to get from an entry to an exit 
station. A route may contain one or more segments, which represent a single train ride 
on any given line. Given a passenger’s time and location of entry and a candidate 
route, the expected exit time of the passenger by following that route can be computed. 
To estimate the expected exit time along a route, travel can be simulated considering 
the train arrival times for the relevant stations.  
 
To accommodate for cases where a passenger misses the next available train (e.g., 
train is full, walked too slowly from gate to the train platform, waiting for a friend), we 
introduce a parameter 𝑚𝑎𝑥_𝑙𝑎𝑔 which represents the maximum number of trains 
skipped per segment of the route. Thus, for each route the algorithm returns a set of 
expected exit times, each computed based on the number of trains skipped in different 
segments of the route. To formalize, given the time of entrance and a candidate route, 
we estimate the time of exit using the following algorithm: 
 

curr_time := {time of entrance} 
foreach segment in route: 
 source, dest := start and end station of the segment 

 train_arrivals := set of arrival times of trains at source 
 travel_time := offset(dest) – offset(source) 

 next_time := {} 

 foreach curr in curr_time: 
  next_train_idx := index of the next train arrival from curr 
  for i in 0..max_lag: 

   next_time.push(train_arrivals[next_train_idx + i] + travel_time 
 curr_time := next_time 

return curr_time 

 
Given a set of estimated exit times 𝑅 = {𝑟1, 𝑟2, … } from a specified route and the actual 

exit time 𝑡𝑒𝑥𝑖𝑡 of the passenger, an error score can be computed as min
𝑟𝑖∈𝑅

(𝑟𝑖 − 𝑡𝑒𝑥𝑖𝑡)2. 

The error scores of different candidate routes could be compared to assess the 
likelihood that each route was taken, with a smaller score representing a better 
likelihood. A threshold can also be placed to ensure that the error is small enough to 
assert confidence in the prediction. 
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In the Lisbon Metro dataset, consider for instance a passenger who entered through 
Alameda station at 12:59:15 and exited through Campo Grande station at 13:11:27. 
Two possible routes that this passenger could have taken are as follows: (a) green 
line from Alameda to Campo Grande and (b), red line from Alameda to Saldanha, 
followed by the yellow line from Saldanha to Campo Grande. As visualized in Figure 
7, from the time of entry, the expected exit time if route (a) was taken is 13:10:40, while 
the expected exit time if route (b) was taken is 13:22:56. Since the actual duration of 
the passenger’s trip was 13:11:27, it is more likely that route (a) was taken. 
 

 
Figure 7. Two possible routes from Alameda to Campo Grande, shown in light green 

(a) and pink (b). It is more likely that the passenger took route (a) based on the 
distance between the expected arrival at Campo Grande and the actual exit time. 

 

 
Figure 8. Actual passenger exit times in comparison with the expected exit times for 

two different routes from Alameda to Campo Grande. 
 
In Figure 8, we can see a plot of the actual exit times of each passenger who entered 
through Alameda and exited through Campo Grande, as well as the expected exit 
times of route (a) in light green and route (b) in pink, both computed with a 𝑚𝑎𝑥_𝑙𝑎𝑔 
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of 1. Most passenger exits are closer to the expected exit times of route (a), which is 
the more direct path that does not require any transfers. Nevertheless, it can be seen 
that there are a few passengers likely to have taken the other route based on their exit 
timing. 
 
4. RESULTS 
We apply the proposed algorithm to the Lisbon Metro dataset along October, 2019, 
with the analyses being incident on October 7th. First, we identify all pairs of stations 
within the network. For each pair (𝑠𝑎, 𝑠𝑏), 𝑠𝑎 ≠ 𝑠𝑏, we identify all candidate route 
choices from station 𝑠𝑎 to 𝑠𝑏 though a standard exhaustive graph search algorithm. To 
limit the candidate route choices, we impose the restriction that a route cannot contain 
the same station twice. We then apply the proposed approach to predict the route that 
is more likely to have been taken by each passenger who entered through 𝑠𝑎 and 

exited through 𝑠𝑏. 
 
We used a 𝑚𝑎𝑥_𝑙𝑎𝑔 of 1, based on the assumption that most passengers will not skip 
trains apart from cases passenger did not walk fast enough to the platform to catch 
the next available train. We consider 𝛼 = 180 seconds, which is chosen as a time 
window wide enough to capture a single episode of a passenger volume spike in a 
station. We also used a minimum error threshold of 1802 = 32400 to only consider 
predictions that are within 180 seconds of the closest expected exit time. Because of 
this, not all passenger trips are assigned a predicted route choice, i.e., if the exit time 
is not within 180 seconds of the expected exit times of the candidate routes, the route 
choice is deemed “unknown”. This is to be expected given the presence of small 
markets, stores and coffee shops within the network. In the dataset, 89% of the trips 
were successfully assigned to a candidate route choice (i.e., not “unknown”). 
 
In our analysis, we highlight two common criteria for passenger preference: (a) least 
number of transfers between lines (a measure of convenience and time), and (b) least 
number of crossed stations (a measure of distance and time). There are a total of 49 
stations across all lines in the metro, resulting in 2352 possible entrance-exit pairs. 
Out of these pairs, 636 (27.04%) are non-trivial entrance-exit pairs where the route 
with the least transfers is different from the route with the least number of stations. On 
the other, 1716 (72.95%) are entrance-exit pairs where there exists an ideal route that 
has both the least number of transfers and the least number of stations. We refer to 
these pairs as trivial pairs since the passenger’s route choice in these cases is 
straightforwardly met under the above criteria. 
 
Among the 636 non-trivial station pairs, the preferred route is the one with least 
transfers in 562 (88.36%) of the pairs. On the other hand, the preferred route is the 
one with the least number of stations in 54 (8.49%) of the pairs. As for the remaining 
pairs, either the preferred route was neither of the two, or it could not be determined 
because no trips were made under that pair for that day. Figure 9 shows the 
distribution of the ratio of passengers who took the route with the least transfers and 
the route with the least stations across all non-trivial pairs. 
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Figure 9. Ratio of passengers who took route with least transfers (left) and route with 

least stations (right) among non-trivial pairs. 
 

Table 1. Some Examples Among Non-Trivial Pairs 

 
Entry 

Station 
Exit 

Station 
Route with Least 

Transfers 
Ratio 

Route with Least 
Distance 

Ratio 

(a) AN AS 
 AN → BC → AS 
(1 transfer, 18 stations) 0.98 

AN → AM → SS → AS 
(2 transfers, 12 stations) 0.02 

(b) TP OR 
 TP → SS → OR 
(1 transfer, 14 stations) 0.96 

TP → BC → AM → OR 
(2 transfers, 12 stations) 0.02 

(c) CP AE 
CP → CG → AE 

(1 transfer, 6 stations) 0.56 
CP → SA → AM → AE 
(2 transfers, 3 stations) 0.44 

(d)  AM AV 

AM → SS → AV 
(1 transfer, 5 stations) 0.28 

AM → SA → MP → AV 
(2 transfers, 4 stations) 0.01 

AM → BC → AV 
(1 transfer, 7 stations) 

0.7 

(e) PI  CS 
PI → CG → CS 

(1 transfer, 15 stations) 
0.11 

PI → MP → BC → CS  
(2 transfers, 5 stations) 

0.86 

(f) CS PI 
CS → CG → PI 

(1 transfer, 15 stations) 
0.06 

CS → BC → MP → PI  
(2 transfers, 5 stations) 

0.57 

(g) JZ IN 
JZ → BC → IN 

(1 transfer, 10 stations) 
0.47 

JZ → SS → AM → IN  
(2 transfers, 6 stations) 

0.51 

 

  
Figure 10. Visualizations of examples (b) and (c) where the route with least transfers is preferred (left) 

and examples (e) and (g) where the route with least stations is preferred (right). 
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Table 1 shows selected cases among non-trivial pairs. In examples (a) to (d), the route 
with the least transfers was the preferred route, while in examples (e) to (g) the 
preference is towards routes with the least number of stations. As shown in Figure 10, 
for passengers travelling from Campo Pequeno (CP) to Areeiro (AE), more 
passengers preferred to take the route with only one transfer, even it had a longer 
distance. However, this is not always the case, as for passengers travelling from 
Jardim Zoologico (JZ) to Intendente (IN), slightly more passengers took the route with 
more transfers but with lower distance. This is likely because of the perceived trade-
off between convenience and speed. In the cases where people chose the shorter 
route over the one with the least transfers, the latter route appears to be significantly 
longer. 
 
Among the trivial pairs, on the other hand, Figure 11 shows the ratio of passengers 
choosing the ideal route (least transfers and number of stations). Unsurprisingly, the 
ideal candidate route is the preferred route choice in almost all cases. However, there 
are cases where evidence suggests this is not the case, potentially caused by card 
profiles who undertake recreative or working activities along the network. Table 2 
shows some pairs that show this. 
 

 
Figure 11 Ratio of passengers who took ideal route in trivial station pairs. 

 
Table 2. Some Cases Where Many Preferred an Alternative to the Ideal Route 

Among Trivial Pairs 

 Entry 
Station 

Exit 
Station 

Ideal Route Rati
o 

Alternative Route Ratio 

(h) PO  SA PO → SS → SA 
(1 transfer, 8 stations) 

0.4 PO → MP → SA 
(1 transfer, 11 stations) 

0.58 

(i) AH SA AH → SS → SA 
(1 transfer, 5 stations) 

0.4 AH → MP → SA 
(1 transfer, 8 stations) 

0.59 

(j) CM SA CM → SS → SA 
(1 transfer, 6 stations) 

0.44 AS → MP → SA 
(1 transfer, 9 stations) 

0.53 

(k) AP BC AP → AM → BC 
(1 transfer, 14 stations) 

0.36 AP → SS → BC 
(1 transfer, 16 stations) 

0.55 

(l) EN BC EN → AM → BC 
(1 transfer, 13 stations) 

0.44 EN → SS → BC 
(1 transfer, 15 stations) 

0.52 

 
In examples (h), (i), and (j), it appears that under the prediction parameters, although 
the ideal route to Saldanha (SA) from various stations in the northern half of the blue 
line is through a transfer in São Sebastião (SS), relatively higher number of individuals 
preferred to transfer in Marquês de Pombal (MP) instead. This observation can be 
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partially explained by the large walking distance associated with the Alameda’s 
transfer. Similarly, in examples (k) and (l), a comparable number of passengers chose 
to transfer in São Sebastião (SS) instead of Alameda (AM) on the way to Baixa-Chiado 
(BC). These examples demonstrate instances where the predicted route choice 
contradicts the obvious choice and may be of interest to metro administrators. 

 

 
Figure 12 Visualizations of selected examples (h) and (k). 

 

5. CONCLUSION 
In this paper, we proposed a novel approach for predicting passenger route choices 
in a transport network using automated fare collection data. In contrast with state-of-
the-art principles on route estimation, the proposed method requires minimal card 
ticketing information and is parameterizable to contemplate the missing of trains due 
to arbitrarily-high movement from gate to the platform and unavailable capacity at 
vehicles at peak hours. The proposed method is further robust to unforeseen events, 
such as malfunctions and operational delays, and dynamically adaptable to topological 
changes in the network as long as those are standardly captured in the reference 
General Transit Feed Specification source.  
 
We applied the approach to a real trip record data collected from the Lisbon 
metropolitan system and found that different users place different choices along the 
same entry-exit station pairs. Although the majority of preferred routes along the 
network corresponds to those with the least transfers, a considerable amount of 
choices do not follow this assumption. In our manuscript, we comprehensively present 
cases wherein the route’s choice by the majority of passengers is guided by the 
shortest distance and not by the number of transfers.  
 
The implications of these observations are paramount, highlighting the need for an 
accurate estimation of route choices as they can considerably change the current 
perceptions on line demand and in-vehicle occupation levels. In this context, the need 
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for more robust principles, as the ones placed in this work, are essential for detecting 
demand-driven bottlenecks, particularly relevant to ensure the satisfaction of safety 
norms during pandemic periods. The fine grained location of patients along a urban 
rail transit systems can therefore support the vehicle scheduling and their re-
capacitation along different periods, as well as guide complementary initiatives for the 
positive conditioning of route choices. 
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