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Overview
Previous books provided the background on the learning of local descriptive models from unlabeled (or single-

label) high-dimensional data. The relevance of guaranteeing the flexibility and robustness (Books III-IV), as well as

the statistical significance (Book V), of these models was largely discussed and motivated for biomedical and social

domains. When moving from these data contexts towards labeled data contexts, the learning of (class-conditional)

descriptive models can be seen as a direct byproduct of previous contributions and, therefore, it is typically less

relevant. Instead, the learning of decision models becomes the primary goal.

This book targets the specific task of learning effective (associative) classification models from both tabular and

structured data contexts. Illustrative biomedical decisions include the discrimination of biological phenotypes, the

anticipation of medical conditions, and the learning of biological and clinical markers. Illustrative social decisions

include the classification of individuals’ behavior and profile, the evaluation of (web) contents, and the support

for trading, administrative and commercial decisions. These applications typically rely on high-dimensional data,

where the number of features (such as genes, clinical features, contents or actions) may exceed the number of

class-conditional observations (such as samples and individuals).

In this context, the learning should be able to minimize the susceptibility of the learning function to: 1) over-

fit the input data by guaranteeing that uninformative regions are discarded, and 2) underfit the input data by

guaranteeing that the decisions are made from statistically significant regions. This observation, together with the

gathered evidence of the relevance of learning from local regions and the limited role of dimensionality reduc-

tion and sparse kernels, stress the importance of learning local classification models from high-dimensional data

contexts.

As such, classification, the task of learning a mapping model to label unlabeled observations from a training set

of labeled observations, becomes centered on informative and discriminative regions. In this learning context, the

mapping model is referred as an associative model and the learning task (associative classification) is driven by

three major requirements:

• effective discovery of relevant regions, where the relevance is essentially related with their homogeneity

(coherency and quality), discriminative power and statistical significance;

• adequate scoring and composition of regions (training function);

• robust matching and scoring schema to test a new observation against the learned model (testing function);

The first part of this book (Chapters 1-4) addresses these requirements to guarantee an adequate learning from

both tabular data [R5.1] and structured data [R5.2].

However, in order to address the hypothesis of this thesis, we need to guarantee not only the accuracy, but

also the statistical significance of classification decisions [R5.3]. In other words, the focus should not be uniquely

placed on the optimization of the average performance of classifiers, but also on the minimization of the perfor-

mance variability. Guaranteeing the statistical significance of classification decisions is of increasing importance to

validate biomarkers and computer-aided decisions associated with medical decisions, as well as to support trading,

marketing and other social initiatives with potential high costs. Chapters 5-6 address this additional requirement,

thus minimizing the propensity of associative classifiers to underfit high-dimensional data (inference of decisions

from non-significant regions and/or from a subset of all relevant regions).

Under these contributions, we guarantee the learning of robust (associative) classifiers with controlled risks

of under/overfitting data. However, since the majority of real-world decisions change over time, it is increasingly
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important to temporally frame decisions to solve predictive tasks [R5.4]. In this context, Chapter 7 extends previous

contributions to answer the task of classifying an attribute of interest across different time periods, referred as

multi-period classification.

Follows a brief discussion of the problems tackled by each chapter of this book.

[R5.1] Chapters 1-3 guarantee an adequate learning of associative classifiers from (high-dimensional) tabular data.

Chapter 1 addresses the major criticisms of existing associative classifiers, including: scarcity of matchings, inability

to adequately score noisy regions, inadequate scoring in the presence of imbalanced data, biases towards small

(non-significant) regions, inappropriate space exploration, absence of adequate dissimilarity guarantees between

regions, and inability to model regions discriminating more than a single class. For this aim, we augment the

pattern-based biclustering contributions proposed in Book III with adequate discriminative criteria for the selection

of relevant regions. These regions are composed within an associative model using new integrative scores and

matched against testing observations using essential relaxations.

Chapter 2 extends these contributions when the learning is driven by regions with varying properties, includ-

ing flexible coherency assumptions, coherency strength and quality. Discovery, training and testing functions are

adequately revised for this end, and their relevance when learning from biological and social datasets assessed.

Chapter 3 explores advanced aspects of associative classification from tabular data. First, we propose associative

classifiers able to learn from sparse data. Second, we provide principles to learn ensemble models when the input

data is characterized by the presence of local and global regularities. Third, we discuss the benefits and limitations

of learning classifiers from stochastic (versus deterministic) biclustering models. Fourth, we show the applicability

of the classifiers from this book towards tabular data with non-identically distributed features. Finally, we extend

the previously proposed classifiers to effectively accommodate background knowledge.

[R5.2] Chapter 4 extends the classification scope towards (high-dimensional) structured data. In this context, we

aim to develop effective classifiers to learn from labeled observations from a data space with an arbitrary-high

multiplicity of temporal attributes, able to model regions with discriminative, temporal and integrative (cross-

attribute) regularities. To adequately learn from these discriminative regions, both deterministic and stochastic

classifiers are proposed and their behavior confronted. We further specialize these learning functions towards data

contexts given by three-way time series and multi-sets of events, where these regions are respectively associated

with discriminative cascades and arrangements of informative events.

[R5.3] Chapters 5-6 extend previous contributions in order to guarantee the statistical significance of classification

decisions. The application of associative classifiers over high-dimensional data often leads to decisions inferred

from small regions, which are typically informative or discriminative by chance. In this context, three additional

requirements need to be tackled:

• guarantee the statistical significance of discriminative regions [R5.3.1];

• assess the impact of associative training and testing functions on the significance [R5.3.2];

• optimize classification performance while providing guarantees of significance [R5.3.3].

Chapter 5 measures the impact of learning from regions with varying statistical significance and revises the

learning functions accordingly. For this end, since the contributions proposed throughout Book V are insufficient

towards this end, they are extended to guarantee not only that the probability of a region to occur deviates from

expectations (significantly informative), but also that its support significantly varies between class-conditional data

partitions (significantly discriminative).

Despite the relevance of these contributions, they are insufficient to guarantee statistically significant decisions.

Illustrating, the commonly applied pruning procedures during the training stage and matching relaxations during
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the testing stage often interfere with the guarantees of significance. In this context, Chapter 6 measures the impact

of these learning options on the propensity towards false positive and negative decisions per class and propose

principles to minimize them. Furthermore, it combines both accuracy (average error) and significance (variability

of error) views since the blind optimization of significance levels can impact accuracy. Finally, this chapter conducts

a systematic experimental assessment of the benefits and limitations of the enhanced classifiers for different high-

dimensional data domains, providing supporting evidence for the validation of the thesis hypothesis.

[R5.4] The classifiers enhanced throughout this book place a single decision per testing observation. However,

real-world decisions change over time. As such, Chapter 7 provides principles to guarantee that classifiers are able

to learn from structured codomains given by sequences of classes. Despite the relevance of this task (referred as

multi-period classification) to answer a wide-set of real-world predictive problems, existing research fails to model

the stochastic dependencies between the periods under classification and requires dedicated learning functions

(preventing the use of the previously proposed classifiers). In this context, we provide a formal view on this task

and propose new methods able to surpass the limitations of peer attempts driven from long-term prediction and

multi-label classification.

Index of Requirements and Contributions

Tables 2-6 exhaustively list the proposed contributions throughout this book.

Table 1: Major contributions to learn effective associative classifiers from high-dimensional tabular data (Chapter VI-1).

R5: Learning effective (associative) classifiers for high-dimensional data;
R5.1: Learning effective associative classifiers from tabular data contexts;

C5.1a: Structured view on the limitations and potentialities of associative classification;
C5.1b: Systemic analysis of the impact of varying coherency assumption, coherency strength, quality, discriminative power and
significance on the performance of associative classifiers;

R5.1.1: Effective discovery and selection of relevant regions;
C5.1.1a: New weighted notion of support to adequately assess the discriminative power of noisy regions;
C5.1.1b: Efficient discovery of regions able to discriminate groups of classes and generation of rules with disjunctions of labels;
C5.1.1c: New discriminative criteria able to deal with data imbalance and rules with disjunctions of labels;
C5.1.2a: Adequate exploration of high-dimensional data spaces: focus on diverse sets of regions with dissimilarity guarantees;
C5.1.2b: Revised learning methods that effectively and efficiently use the discriminative power to guide the space exploration;
C5.1.2c: Integration of discriminative power, homogeneity and significance views to guide the learning;

R5.1.2: Effective scoring and composition of regions (training);
C5.1.2.1: New integrative training scores able to effectively combine the discriminative power, size and quality of a region;
C5.1.2.2: Adequate data structures relating regions according to their properties and scores for an efficient testing;

R5.1.3: Effective matching and labeling of new observations against the structure of scored regions (testing);
C5.1.3.1: Relaxations on the matching criterion to guarantee an adequate number of matches per testing observations;
C5.1.3.2: Effective calculus to compute class strength, able to deal with: 1) matched rules with disjunctions of labels, and 2) aligned
with the proposed integrative scores;

R5.1.4: Learning classifiers from regions with varying homogeneity;
R5.1.5: Effective learning functions to classify sparse data;
R5.1.6: Effective learning from both global and local regularities underlying data;
R5.1.7: Understand the impact of learning classifiers from stochastic local descriptive models;
R5.1.8: Adequate learning of classifiers in the presence of background knowledge;
R5.2: Learning effective associative classifiers from structured data contexts;
R5.3: Significant classification decisions from high-dimensional data;
R5.4: Multi-period classification: extend previous contributions for the learning of sequences of classes;

Table 2: Proposed contributions on the learning of classifiers from regions with varying homogeneity (Chapter VI-2).

R5.1.4: Learning classifiers from regions with varying homogeneity;
R5.1.4.1: Learning classifiers from regions with varying coherency;

C5.1.4.2.1a: Penalization schema for non-constant regions based on their degree of flexibility (to guarantee the diversity of regions
and tackle domination of learning by a subset of relevant regions);
C5.1.4.2.1b: Integrative discovery of discriminative regions with multiple coherency assumptions (lift and statistical views);
C5.1.4.2.2a: Extended testing score to compute the strength of each class from multiple interestingness criteria;
C5.1.4.2.2b: New matching criteria to test observations against non-constant regions based on the allowed adjustment factors;

R5.1.4.2: Learning classifiers from regions with varying quality;
C5.1.4.2a: Extended discovery guarantee the presence of (discriminative) regions with varying quality and coherency strength;
C5.1.4.2b: Revised integrative score to better weight the quality of a region (deviations from pattern expectations);
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Table 3: Contributions to learn classifiers from sparse data, data with regularities of varying extent, stochastic
descriptors of data, complex tabular data and data domains with available background knowledge (Chapter VI-3).

R5.1.5: Effective learning functions to classify sparse data;
C5.1.5a: Principles to bypass the interpretation of missing elements from structurally sparse data (surpassing the need for imputation);
C5.1.5b: Sound classification from regions with arbitrary-high number of true and/or false missings;
C5.1.5c: Extension (and shown compliance) of training and testing functions to correctly handle sparse data;
C5.1.5d: Adequate data structures and searches for an efficient classification of sparse data;

R5.1.6: Effective learning from both global and local regularities underlying data;
C5.1.6: Extended associative classifiers with new voting schema to combine the (probabilistic) decision outputs of global kernels;

R5.1.6.1: Minimize bias from decisions with low confidence;
C5.1.6.1a: Exclusion of class-conditional observations without clear local regularities from associative learning, and exclusion of
class-conditional observations without clear global regularities from global kernels;
C5.1.6.1b: Exclusion of decisions with low confidence (e.g. few matches) and loose strength (e.g. contradictory matches) from voting;

R5.1.7: Understand the impact of learning classifiers from stochastic local descriptive models;
C5.1.7a: Principles on how to use membership vectors to guarantee an adequate and easily parameterizable coverage of the data space;
C5.1.7b: Principles to use membership vectors to guarantee more accurate scores and prevent the scarcity of matched regions;
C5.1.7c: Preliminary learning functions to infer decisions from class-conditional parametric models;

R5.1.8: Adequate learning of classifiers in the presence of background knowledge;
C5.1.8.1a: Principles for guiding classifiers in the presence of annotations extracted from knowledge bases and literature;
C5.1.8.1b: Demonstrated compliance of FleBiC to effectively incorporation of constraints with nice properties (succinct, monotonic,
anti-monotonic, convertible and prefix-monotone) targeting the informative data regularities;
C5.1.8.1c: Incorporation of a new class of constraints with nice properties targeting discriminative and class-conditional regularities;

Table 4: Proposed contributions to learn associative classifiers from structured data (Chapter VI-4).

R5.2: Learning effective associative classifiers from structured data contexts;
C5.2a Survey on pattern-based and stochastic learning from temporal data and integrative strategies to handle multiple attributes;
C5.2b Comparison of deterministic and stochastic learning functions and principles for their adequate selection;

R5.2.1: Applicability to varying data structures;
C5.2.1.1a: Definition of an integrative and temporal data structure conducive to learning;
C5.2.1.1b: Principles to map multi-dimensional/relational data, multi-sets of events and three-way time series into the target structure;
C5.2.1.1c: Extension of mappings for labeled data contexts and principles for the retrieval of annotations;
C5.2.1.2: Principles to handle data structures characterized by a mixture of non-identically distributed temporal and static attributes;

R5.2.2: Effective pattern-based classifiers;
C5.2.2: Extension of contributions C3.1-2 to learn associative classifiers from discriminative, integrative and temporal patterns;

R5.2.2.1: Adequate discovery of informative and discriminative regions;
C5.2.2.1a: Revised support notion to guarantee its tolerance to structural and temporal misalignments;
C5.2.2.1b: Extended discovery driven by discriminative criteria based on variant of rule’s lift (based on the revised support);
C5.2.2.1c: Efficient composition of rules with disjunctions of labels in the consequent;

R5.2.2.2: Adequate scoring and composition of regions (training);
C5.2.2.2.1: New integrative score based on the (revised) support, length and lift of the target integrative and temporal regions;
C5.2.2.2.2a: Composition of regions within a tree structure promoting an adequate traversal for an efficient detection of matches;
C5.2.2.2.2b: Pruning of regions to deal with heightened imbalance on the score and/or number of regions per class;

R5.2.2.3: Effective testing of new observations;
C5.2.2.3a: New matching criteria sensitive to both structural and temporal misalignments;
C5.2.2.3b: Degree of matching relaxations dependent on the number, score and class-consistency of matched regions;
C5.2.2.3c: Penalization factor based on the temporal mismatches between a testing observation and the learned regions;
C5.2.2.3d: New class strength calculus based on the proposed integrative score;

R5.2.2.4: Adequacy of behavior for regions given by discriminative responses;
C5.2.2.4: Specialization of the proposed behavior to adequately model cascades and arrangements of events, including: a) postpro-
cessing procedure, b) module aggregation and causality identification, and c) principles to foster efficiency;

R5.2.2.5: Advanced weighting of occurrences along time (selective/decaying memory);
C5.2.2.5: Easily parameterized behavior to prioritize occurrences on certain time periods (according to linear or exponential functions)
to attenuate the impact of older discriminative events on decisions;

R5.2.3: Effective stochastic classifiers;
R5.2.3.1: Modeling regions of interest associated with temporal and integrative views;

C5.2.3.1a: Reuse of contributions C3.3 for the class-conditional learning of generative models sensitive to local regularities;
C5.2.3.1b: Extension of contributions towards classification by either: 1) decoding of regions for classic associative classification, or
2) testing the likelihood of new observations to be described by the learned class-conditional models (default);
C5.2.3.1c: Principles for an efficient testing (based on pruning and non-redundant computation of the sum of joint probabilities);

R5.2.3.2: Adequacy of behavior when learning from multi-sets of events and three-way time series;
C5.2.3.2a: Customized behavior for three-way time series to support: 1) incremental learning, 2) modeling of numeric data, and 3)
correct interpretation of multi-item assignments;
C5.2.3.2b: Specialization for multi-sets of events: proper initialization of delimiter emissions and efficient decoding of time frames;
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Table 5: Contributions for the learning of classifiers from significantly discriminative and informative
regions and with minimized propensity to overfit and underfit high-dimensional data (Chapters VI-5 and VI-6).

R5.3: Significant classification decisions from high-dimensional data;
R5.3.1: Effective classification based on statistically significant regions;

C5.3.1.1: Structured view on the major limitations of state-of-the-art work towards this end;
C5.3.1.2a: Statistical view of the discriminative power of regions from tabular and structured data;
C5.3.1.2b: Integrative statistical views on the significance of the informative and discriminative power of a region;
C5.3.1.3: Principles to guarantee adequate learning for data with a scarcity of simultaneously informative and discriminative regions;
C5.3.1.4a: Revised associative classifiers from tabular data: revised region discovery and scoring schema to accommodate significance
criteria based on C4 contributions;
C5.3.1.4b: Discussion of whether alternative stochastic learners are able to similarly provide guarantees of significance;
C5.3.1.5: Revised associative classifiers from structured data based on C4.5 contributions;
C5.3.1.6a: New class of decision trees based on revised building of trees with paths given by significant regions whenever possible;
C5.3.1.6b: Revised random forests to further address the underfitting propensity of local classifiers;

R5.3.2: Training and testing functions with guarantees of statistical significance;
C5.3.2.1a: Principles to assess the impact of associative training functions on the number of false positives and negatives;
C5.3.2.1b: Principles to assess the impact of testing functions (matching criteria) on the number of false positives and negatives;
C5.3.2.1c: Revised behavior of associative classifiers based on the proposed principles;
C5.3.2.2: Extensibility of these contributions for alternative classifiers;

R5.3.3: Indicators of the statistical significance guarantees of classification decisions to support real-world decisions;
C5.3.3.1: Annotation of rules with an integrative statistical measure of their discriminative and informative significance;
C5.3.3.2: Annotation of classification decisions with an indicative score of their significance based on the statistical guarantees
provided by the discovery, training and testing functions;

R5.3.4: Integrative view of accuracy (average error) and significance (variability of error);
C5.3.4.1a: Principles to jointly optimize accuracy and significance views;
C5.3.4.1b: Principles to learn from data with few significant regions and with imbalanced number of rules per class;
C5.3.4.2: Extensive experimental evaluation (using C1 methodology) of the proposed learning methods (using C2-C5 contributions)
over high-dimensional data from distinct domains;

Table 6: Contributions to classify a class at different time periods for predictive tasks (Chapter VI-7).

R5.4: Multi-period classification: extension of previous contributions for the learning of sequences of classes;
R5.4.1: Task formalization and evaluation (standardize and validate upcoming contributions);

C5.4.1.1a: Data-indepent and model-independent formalization of the multi-period classification task;
C5.4.1.2a: Evaluation metrics for assessing multi-period classifiers from extended three-dimensional confusion matrices;
C5.4.1.2b: Extended assessment for sequences of ordinal labels;
C5.4.1.2c: Distance metrics to account for temporal misalignements and error accumulation between estimated and observed sequences;

R5.4.2a: Modeling the stochastic dependencies underlying the sequence under classification;
R5.4.2b: Embedding existing (single-label) classifiers able to learn from tabular/structured data;

C5.4.2.1: New hybrid method able to trade-of the properties of iterative and direct single-output methods from long-term predictions;
C5.4.2.2a: Cluster-based multi-period classifier (adequate reduction and recovery of the space of sequences) able to model dependencies
between classes and guarantee indepndence from the underlying single-label classifier;
C5.4.2.2b: Dynamically parameterizable behavior of the cluster-based methods (based on the number of periods, labels, observations,
and diversity and representativity of sequential behavior) to minimize the number of false positive and false negatives;
C5.4.2.3a: Variant based on the segmentation of the sequence of classes to minimize the flexibility issues of multiple-output peers;
C5.4.2.3b: Principles for segmenting sequences based on sensitivity analysis, stochastic properties of the observed sequences, the
periodicities and local stationarity when available, and the analysis of clustering error (within-cluster sum of squares);
C5.4.2.3c: Variant combining a moving sliding-windows with voting schema to guarantee a more accurate modeling of the true stochas-
tic dependencies between the periods under prediction.
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Effective Associative Classification

from Discriminative Biclustering Models
High-dimensional biomedical and social data are characterized by the presence of local regularities, whose dis-

covery has been largely motivated throughout the previous books. An additional common property of these data

contexts is the presence of a large extent of either uninformative or non-discriminative regions. In this context,

learning classification models from high-dimensional data is challenged by the need to focus the learning in regions

of interest. This chapter aims to address this challenge in the context of high-dimensional tabular data, where re-

gions can be flexibly described by biclusters (subsets of features and observations) with specific homogeneity,

significance and discriminative power.

Different strategies have been considered in literature to reduce the complexity of the learning function and

its propensity to overfit or underfit high-dimensional data, including feature selection, dimensionality reduction

transformations and sparse priors. Despite their relevance, these options are neither able to flexibly select relevant

regions nor discard non-relevant regions [512, 660]. To address this problem, classifiers able to approximate local

regularities, such as associative classifiers, can be considered to focus the learning on specific regions of interest

given by discriminative biclusters [99, 497, 634].

However, and despite the large extent of research available, associative classification still suffers from three

major drawbacks. First, existing associative classifiers are not able to adequately learn from noisy and real-valued

regions. This is related with the fact that the contributions on this field were developed in the context of transac-

tional and discrete data contexts [99, 497], where discriminative patterns were seen as the basis for the learning.

Understandably, regions may show higher support or discriminative power at the cost of tolerating noisy elements.

In this context, it is also important to guarantee that these noisy regions do not jeopardize the learning.

Second, in the presence of labeled tabular data with more than two classes, regions may not be able to dis-

criminate a single class, yet able to discriminate a subset of overall classes. Illustrating, a given pattern may be

inhibited on a specific class or elicited on a subset of all classes. Although regions with such pattern are not able to

discriminate a single class, they may have an important value for learning.

Third, one of the criticisms of associative classification is related with the fact that new (testing) observations

may not be well-described by the selected discriminative regions from labeled (training) observations. This often

leads to decisions with low level of confidence due to both the lack of evidence or class-contradictory evidence.

Finally, existing associative classifiers are not able to adequately explore the data space (learning is easily

jeopardized by the presence of a few large regions) and provide dissimilarity guarantees [99, 131].

This chapter aims to provide a structured view on the existing efforts towards associative classification from

discriminative biclusters, and further extend these efforts with new principles to address the identified challenges.

This is done in line with three major requirements associated with the learning of associative classifiers: 1) effective

discovery and selection of regions of interest, 2) adequate training functions for their scoring and composition, and

3) robust testing functions to guarantee an accurate labeling of unlabeled observations. The major contributions

of this work are seven-fold:

• structured view on the contributions and criticisms of existing associative classification models;
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• new weighted notion of support and lift to adequately assess the discriminative power of noisy regions;

• new discriminative criteria able to deal with data imbalance and rules with disjunctions of labels;

• discovery of dissimilar regions with varying coherency, quality and significance;

• efficient composition of rules based on regions able to discriminate groups of classes;

• new integrative training scores able to effectively combine the discriminative power of a region and its addi-

tional properties;

• more effective calculus to compute class strength during the testing stage, able to deal with disjunctions of

labels and the proposed integrative scores;

• effective relaxations to guarantee an adequate number of matches per testing observations.

These contributions are integrated within a new associative classifier, BiC (Biclustering-based Classifier). We

provide initial empirical evidence of the relevance of the listed contributions.
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Figure 1.1: Requirements and principles for learning associative classifiers from high-dimensional spaces.

Figure 1.1 structures the tackled challenges and contributions for the adequate learning of associative classifiers

from high-dimensional data. Accordingly, this chapter is organized as follows. Section 1.1 provides the background

on the target problem. Section 1.2 surveys the contributions and limitations from state-of-the-art research on as-

sociative classification. Section 1.3 describes the solution space by proposing BiC. Section 1.4 gathers experimental

results that support the utility of BiC. Finally, concluding remarks and implications are synthesized.

1.1 Background

This section motivates and formulates the task of learning effective associative classifiers from flexible biclustering

models.
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A labeled tabular dataset A is described by n labeled observations (rows) ai=(xi ∈ X,ci ∈ C), where X={Y1, ..,Ym}

is a space of m features (columns) and C is a finite set of either nominal or ordinal classes. Given A, consider the

set of n observations to be X={x1, .., xn}, and the set of m feature-vectors to be Y={y1, .., ym}. In this context, A is

defined by n×m elements, ai j ∈ Y j, corresponding to the observed value for the xi observation and y j feature.

As previously defined, a region from a tabular data space A is a bicluster, B=(I, J), i.e. a subspace given by a

subset of observations, I ⊆ X, and features, J ⊆ Y. A region of interest is given by a bicluster satisfying specific

criteria of homogeneity (coherence and quality), statistical significance and discriminative power.

1.1.1 Problems of Classification from High-Dimensional Data

As illustrated in Figure 1.2, learning from a high-dimensional data space is complex since many of its elements

are either non-informative or non-discriminative [512, 660]. In this context, different contributions have been

proposed to guarantee an adequate learning focus.

Figure 1.2: Learning from high-dimensional data spaces: importance of discovering relevant regions given by coherent,
statistically significant and discriminative biclusters.

First, feature selection focus on one region given by a subset of features only, B=(X, J) (where J ⊆ Y). Under-

standably, its use is insufficient to address the target problem since regions that are highly discriminative on a com-

pact subset of overall observations are prone to be excluded. Due to the inherent complexity of class-conditional

regularities in real-world data contexts, the selection of these regions is critical. Furthermore, feature selection

is commonly applied in the absence of statistical significance criteria. As such, a compact subset of features can

be selected as long as the combination of their values discriminate a particular (or all) classes, yet the observed

combination of values may be discriminative by chance. In Section I-1.2, an instantiation of this last problem was

provided, as well as a closer look on the challenges of applying feature selection either as a filter or as a wrapper.

Second, an alternative way of reducing dimensionality is to approximate and apply a mapping reduction func-

tion, also referred as a projection, from the observed data space into a new data space with lower dimensionality.

Although these functions were originally proposed to transform real-valued data spaces, φ : Rm → Rd where d<m,

additional attempts (developed in the context of hyper-dimensional mappings and support vectors) have been

proposed for their application over data spaces with non-identically distributed features [71]. However, even in

the presence of non-trivial mapping functions, to our knowledge there are not projections able to select multiple

relevant regions and flexibly neglect non-relevant regions from the input data space.

Finally, stochastic learners have been augmented with sparse priors to improve their ability to learn from high-

dimensional data contexts. In these data contexts, irrelevant and redundant parameters rapidly converge to zero

with these priors [378, 214]. Basics I-1.17 and Pointer I-1.18 provide respectively a description of the properties

of these learners and a compact overview of some of the state-of-the-art options. However, these classifiers suffer

from a similar problem as previous alternatives. Since sparsity is determined by the parametric model, they cannot

flexibly select regions of interest. As such, the sparsity is primarily used to either discard non-relevant features

and/or specific ranges of values per feature.
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In the presence of high-dimensional data, the majority of existing classifiers are applied with on one or more

of the previously enumerated options. In this context, these classifiers are insufficient to guarantee an effective

learning since they are associated with: 1) the inclusion of non-relevant regions (promoting overfitting1), and 2)

the exclusion of relevant regions (promoting overfitting2) [512, 105].

1.1.2 Motivating Associative Classification

As largely motivated in Section I-1.2, biological and social data is characterized by the presence of flexible structures

of regions. Learning classifies from regions given by (discriminative) biclusters is increasingly relevant to learn

biological and clinical markers [429, 122], classify users’ behavior [257], evaluate contents [159] and support

trading and commercial decisions [334, 35]. These observations stresses the need to move from global towards

associative models.

Def. 1.1 Given a set of observations in X labeled with a class in C, a descriptive model (either locally or globally)
approximates the class-conditional regularities of the space, M(X|C). In particular, an associative model, also
referred as a discriminative biclustering model, is a composition of p association rules, {r1, .., rp}, where each rule
ri : Bi ⇒ Ci maps a region of interest Bi (rule’s antecedent given by a discriminative bicluster) with a set of labels
Ci ⊂ C (rule’s consequent).

In this context, an associative model is associated with a structure of rules given by regions of interest character-

ized by the coherence (type of homogeneity), quality (homogeneity strength), significance, discriminative power

of the underlying biclusters. The structure of an associative model is essentially defined by the number, size and

positioning of the biclusters [429]. The coherence of a bicluster is defined by the observed correlation of values.

The quality of a bicluster is defined by the type and amount of accommodated noise. The statistical significance of a

bicluster determines its deviation from expectations. The discriminative power of a bicluster measures its probabil-

ity to only occur significantly for a subset of overall classes. In this context, an increase in the coherence strength

(respecting Def.II-3.1 and Def.II-3.2), quality (low ηi j according to Def.II-3.2), statistical significance (according to

Book V) and discriminative power P(Ck |Bk) of a given bicluster denotes an increase in the relevance (and thus an

increase score) of the associated rule.

In the presence of a set of discriminative biclusters, moving from descriptive to classification settings becomes

a matter of defining effective training and testing functions.

Def. 1.2 A classification model is a mapping function between observations and classes, M : X → Σ, to label
(unlabeled) observations. An associative classification model defines a matching criteria M to label observations
against a (possibly pre-computed) associative model.

An illustrative simplistic associative classifier is one that learns rules associated with biclusters above certain

support (number of observations) and confidence (discriminative power), and that classifies a new/testing obser-

vation based on the sum of class-conditional scores associated with the biclusters that best describe its values.

Basics I-1.12 provides an illustrative instantiation of a similar associative classifier.

1.1.3 Limitations of Existing Associative Classifiers

Despite the argued need for associative classification to learn from high-dimensional data, some criticisms have

been pointed in the past with regards to their performance. This is a result of three major observations. First, their

inability to focus on statistically significant regions of interest. The majority of existing associative classifiers are

primarily concern with the discriminative power of the modeled regions, and therefore do not guarantee whether

or not these regions occur by chance. Empirical evidence from the application of decision trees and pattern-based

classifiers over high-dimensional datasets are associated with decisions made from regions with 3 to 5 features, as

1Also referred as propensity to underfit relevant regions (≡overfit input data).
2Also referred as propensity to overfit the incomplete set of regions (≡underfit input data).
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the combination of values on such features become able to discriminate a given class. Understandably, such small

regions are not able to provide guarantees of statistical significance and therefore the resulting classifiers show

undesirably high risk of underfitting towards the input dataset, which penalizes decisions.

Related with this problem, there is the fact that associative models have its roots on transactional data analysis

with discriminative pattern mining [409, 184], and therefore are not natively prepared to deliver regions tolerant

to noise. Although extensions have been proposed to tackle this observation, these extensions are not able to

weight the relevance of regions by their quality. As a result, larger regions due to the accommodation of noise tend

to score high due to their size and (possibly) discriminative power, even if that comes at a cost of quality. In this

context, these regions can unfairly jeopardize the learning.

Second, the performance of associative classifiers is highly hampered by the inability to guarantee that a testing

observation has a reasonable number of matchings in order to determine its label with confidence. This is a result

of two major issues: 1) inadequate space exploration where many informative and discriminative regions of the

input data space are discarded; and 2) restrictive matching criteria. In this context, empirical evidence shows that

testing observations are often associated with either a few (possibly contradictory) matchings or no matchings at

all.

Finally, the majority of existing associative classifiers rely on discriminative patterns without guarantees of

dissimilarity. In this context, the existence of similar rules can jeopardize matching scores and reinforce an incorrect

labeling decision.

An additional important observation, although with less impact on the gathered criticisms, is the fact that the

decision rules learned from existing associative classifiers are only able to discriminate a single class. However, in

the presence of labeled tabular data with more than two classes, regions may not be able to discriminate a single

class, yet be able to discriminate a subset of overall classes with high confidence.

1.2 Related Work

The discovery of discriminative regions has been mainly driven by research on discriminative pattern mining [99]

and, more recently, by research on discriminative biclustering [122]. Below, we cover the contributions according

to the introduced requirements: discovery of discriminative regions (Section 1.2.1), their composition (Sections

1.2.2) and use to label observations (Sections 1.2.3).

1.2.1 Discovery of Discriminative Regions

Discriminative Pattern Mining. The discovery of discriminative patterns has received a wide-attention in recent

years, with multiple works providing categorizations on how to find discriminative patterns and on how to learn

classification models from these regions [99, 660, 497]. Bringmann et. al [99] categorize associative classifiers

along two axes: whether they learn from a pre-computed set of regions or iteratively discover new (or extend

existing) regions, and whether they select regions independently or guided by the properties of the target learning

function.

On the first axis, earlier studies focus on mining all frequent patterns (constant biclusters) per class at a time

in order to compose rules with high discriminative power. The input data is thus partitioned and the mining task

applied independently on each partition. From the computed set of patterns, many metrics have been proposed to

fix adequate class-conditional support levels and to assess the correlation strength φ between a pattern and a class,

as well as to relate both these views within a single score [99]. Illustrative associative classifiers with alternative

scoring schema include CBA [409] (φ=confidence), classifiers based on emerging patterns [184] (φ=growth),

CMAR [401] (φ=χ2), CPAR [696] (φ=foil gain) and RCBT [146] (φ based on top-k covering rule groups) and lazy

classifiers that only retrieve classification rules once a test instance is given [649]. Alternative correlation scores

can be given by information gain, Fisher score and lift [99].
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However, even in the presence of constraints and condensed pattern representations to deliver compact sets of

distinct patterns, these methods easily became computationally expensive for large or dense data spaces with low

support thresholds. An alternative to avoid the generation of the exhaustive pattern set is to perform branch-and-

bound or iterative-deepening searches [497]. These searches extend the (anti-)monotonic principles to guarantee

that only regions with discriminative are explored. Examples of associative classifiers parameterized with these

searches are Harmony [656], DDPMine [131], MbT [206], and decision trees.

On the second axis, model-dependent approaches rely on the knowledge regarding the behavior and expected

outputs of a given classifier to affect the discovery and selection of patterns [99]. As such, their behavior contrasts

with model-independent approaches, which are not able to offer ground guarantees on whether the discovered set

of patterns is the most adequate.

Recently, classifiers appearing in both sides of these axes have been proposed using diverse sets of patterns

by relying on ensemble models and enriched with machine learning-inspired sampling and verification techniques

[715].

Despite the listed contributions, discriminative pattern mining suffers from three major limitations: 1) inability

to discover real-valued regions none prone to discretization problems; 2) inability to model non-constant regions;

and 3) inability to discover regions with arbitrary levels of noise.

Discriminative Biclustering. The previous scope of research can be enlarged by considering flexible and noise-

tolerant regions through discriminative biclustering. Many biclustering algorithms have been proposed to find

biclusters with varying structure, coherence and quality [429]. In Table III-1.3 we surveyed varying methods with

regards to their optimality guarantees, search paradigm and the properties of the underlying merit function (the

means to guide the search towards the discovery of biclusters with certain desirable properties of interest).

Biclustering can be extended for associative classification by defining |C| class-conditional searches and ade-

quately scoring the discriminative power of biclusters. Recently, Odibat and Reddy [497] proposed principles to

push the discriminative criteria deep into the biclustering task in order to narrow the search space.

Discriminative biclustering methods have been recently proposed with alternative score variants, including

FDCluster [661], DRCluster [660], among others [122, 612]. Di-RAPOCC [497] considers a bicluster to be dis-

criminative if it has high confidence and low inter-class overlapping (biclusters discovered in one class should have

a minimal number of rows in other classes).

The major problems with the existing discriminative biclustering approaches are three-fold. First, restrictions

on the allowed number, size and positioning of biclusters [310], degrading associative classification in high-

dimensional data contexts. An exhaustive coverage of (potentially relevant) regions with varying properties of

interest is critical to guarantee that testing observations match a substantial number of regions (thus increasing

the confidence of decisions). Second, the few (discriminative) biclustering algorithms able to discover regions

with parameterizable quality and coherency show critical limitations (listed in Table III-6.1). Finally, the existing

algorithms do not guarantee the statistical significance of the discovered discriminative biclusters.

In this context, although the biclustering algorithms proposed throughout Book III (and enriched with statiscal

guarantees of significance in Book V) can be used to surpass these limitations, they are neither natively prepared

to incorporate discriminative criteria when observations are labeled nor to extend the proposed statistical tests to

guarantee the significance of a discriminative rule.

1.2.2 Associative Training Functions

Given a set of regions of interest, different composition functions have been considered to train a classification

model, ranging from simplistic sets of weighted association rules of the type B ⇒ c to more structured mod-

els. Examples include the integration of these regions within naive Bayesian classifiers [396] and decision trees

[248], as well as support vector machines (SVMs) over feature-spaces given by multi-class discriminative subspaces
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[612]. The work by Carreiro et al. [122] studies alternative ways to compose discriminative biclusters to perform

classification.

Although many training variants exist, let us consider the training steps of CMAR [401] as the prototypical

case. First, association rules are learned from regions satisfying minimum support (sup) and confidence (conf)

thresholds. Second, each rule is scored using a χ2 test and inserted in a tree structure (CMAR-tree) according to

their priority. A rule R1 : B1 ⇒ c is said to have priority over R2 : B2 ⇒ c if R1 ⊇ R2or if con f (R1) > con f (R2) ∨

(con f (R1)=con f (R2)∧ sup(R1) > sup(R2))∨(con f (R1)=con f (R2)∧ sup(R1)=sup(R2)∧|I1| < |I2|). Finally, the CMAR-tree

is pruned based on the observed priority of rules to guarantee a balanced number of rules across classes.

In this context, adequate scoring methods are required to weight the interestingness of each association rule,

ranging from simple metrics, such as the support-and-length (an indicator of the subspace’s significance) and the

confidence (an indicator of discriminative power) of each rule. More complex scoring methods include relevance

criteria derived from probabilist induction [634] and optimization metrics based on confusion matrices [204].

Recently, extended association rules have been proposed to allow for both disjunctive patterns and disjunctions

of classes per rule [420].

1.2.3 Associative Testing Functions

Complementarily to training functions, multiple testing schema have been also proposed for associative classifiers

[122, 99, 130]. Given a training function and a new observation, its labeling is typically accomplished by recovering

the regions of the learned rules whose pattern ϕB best matches the values of the new observation and computing

the strength of each class. The strongest condition is outputted as the estimated class if we want a deterministic

output, otherwise the relative strength per class can be seen as its probabilistic value. Illustrating, CMAR [401]

retrieves subspaces with exact matching and computes the classes’ strength using a weighted χ2 (WCS) calculus.

However, in many settings the exact matching criterion is restrictive as it can lead to a small (possibly empty)

subset of regions and neglects the contributions of regions with good but non-exact matchings. To tackle these

problems, previous work by Henriques and Antunes [321, 302] proposes relaxations on the matching functions

(allowing, for instance, the presence of shifts and the matching of a subset of overall values), as well as weights

to penalize non-exact matchings [302]. In these contexts, the rule score is proportionally affected by the extent

of the shift or by the percentage of matching values (above a minimum threshold). Lazy classifiers that retrieve

classification rules once a new (testing) observation is given have been also proposed to address this challenge

[649, 122].

1.3 Solution

Learning of effective associative classifiers is driven by three major requirements:

• effective discovery of biclusters, implying the search for a flexible structure of (dissimilar) biclusters, each

satisfying specific homogeneity, significance and discriminative criteria;

• effective composition of biclusters (training function);

• effective matching of biclusters (testing function).

To satisfy these requirements, we propose BiC (Biclustering-based Classifier). Accordingly, BiC: 1) extends

the proposed biclustering algorithms to guarantee an effective and efficient discovery of discriminative biclusters

only (Section 1.3.1); 2) relies on state-of-the-art training functions with revised scoring schema to adequately test

biclusters with varying tolerance to noise and coherency strength (Section 1.3.2); and 3) defines testing functions

that minimize the problems associated with the scarcity of matching and jeopardizing of scores (Section 1.3.3).
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1.3.1 Discovery of Discriminative Biclusters

In order to guarantee the relevance of the discovered regions, BiC extends the proposed pattern-based biclustering

algorithms proposed throughout Book III towards labeled data contexts. Three reasons justify this choice:

• pattern-based biclustering provides optimality guarantees, allowing the exact quantification of their the im-

pact for learning classification models from high-dimensional data contexts.

• pattern-based biclustering offers flexible and parameterizable biclustering models, where the coherency (both

coherency strength and assumption), quality (tolerance to noise) and statistical significance can be easily

affected. As such, this enables the optimization of the properties of the underlying regions to improve the

behavior of the target associative classifiers;

• pattern-based biclustering is not prone to discretization problems, handle arbitrary levels of sparsity, can

effectively incorporate (domain-driven) constraints to guide the search and, among others, accommodate

principles to guarantee the scalability of the searches.

To guarantee an optimal trade-off among flexibility, optimality and efficiency, these algorithms establish a for-

mal link between biclustering and pattern mining (including frequent itemset mining, association rule mining,

sequential pattern mining and graph mining). In this context, the pattern-based notions of support (number of

observations) and pattern length (number of features) is applicable to the target regions, as well as confidence and

interestingness metrics applied over decision rules. A consistent integration of these algorithms, seizing efficiency

gains from their combined used, was described in Chapter III-9.

BiC extends these integrative pattern-based biclustering searches for each class-conditional data partition (Fig-

ure 1.3). In this context, it returns |C| sets of biclusters, where |C| is the number of classes. The default parame-

terizations of these algorithms (largely discussed in [310, 311, 303] and throughout Book III) were preserved in

BiC.

Figure 1.3: Class-conditional discovery of pattern-based biclustering models.

1.3.1.1 Multi-Label Discriminative Criteria

Under the proposed strategy, BiC is only able to deliver class-conditional biclusters with (possibly) significant

support. In order to guarantee their discriminative power different strategies can be considered. First, a bicluster

can be considered discriminative if its pattern ϕB (Def.III-1.1) is found to be frequent only in the context of a

single class. In other words, a class-conditional bicluster is discriminative if similar biclusters are not found for

the remaining classes. Understandably, this criteria cannot detect biclusters that are not able to discriminate an

isolated class, yet are able to discriminate a group of classes.

Second, a bicluster can be considered discriminative if its pattern ϕB is found to be infrequent for at least one

class. Although this view addresses the previous problem, it suffers from an additional drawback. Illustrating,

consider a dataset with three classes (each labeled on 100 observations), and 0.4 to be the minimum fraction of

observations from a class-conditional data partition that guarantee that a pattern is frequent. In this context, if a

given pattern ϕB shows a support of {supB|c1=38,supB|c2=43,supB|c3=41}, according to the previous formulation

would be considered discriminative for {c2, c3}, although ϕB is clearly non-discriminative.

Third, in order to address the previously depicted challenges, the discriminative power can be given by the

confidence of a rule with multiple labels in the consequence, con fB⇒C (where C ⊆ C) as defined in Def.1.3. In
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this context, non-significant differences in support (even when associated with different frequency outcomes) are

correctly interpreted. Given the previous illustrative case, since con fB⇒c1≈con fB⇒c2≈con fB⇒c3 , B is correctly inter-

preted as non-discriminative. However, the confidence (and peer discriminative scores) can rapidly increase for a

combination of classes in rule’s consequent. In this context, comparing the confidence of different rules is prone to

errors related with the length of the consequent (e.g. con fB⇒{c2,c3} � con fB⇒c2).

Def. 1.3 Given a labeled dataset A, and a bicluster B=(I, J) with coherence across rows and pattern ϕB (expected
values in the absence of adjustment and noise factors according to Def.1.1), then the pattern support, supϕB=|I|,
is the number of observations respecting ϕB. Given a set of labels C in C, the support of C, supC, is the number
of observations with a label in C. Given a decision rule R:B ⇒ C, the rule support, supR=supϕB |C=Σci∈C supϕB |ci ,
is the number observations respecting ϕB with a label in C, and the rule confidence, con fR=con fϕB |C=

supϕB |C

supϕB
, is the

fraction of C-conditional observations from ϕB supporting observations.

Although this problem can be minimized by comparing the confidence of rules with the similar consequent’s

length, it suffers from an additional problem. Confidence is not able to adequately deal with imbalanced data.

Def. 1.4 Given A, a set of labels C in C and a decision rule R : ϕB ⇒ C in A, the lift of a rule is li f tR= supR
supϕB supC

.

Finally, and with the goal of addressing previous problems, the lift of a rule (Def.1.4) can be used as the dis-

criminative criterion since it normalizes confidence by the support of the labels in the consequent. Lift is preferable

over commonly used discriminative power scores since it deals with the: 1) structural data imbalance associ-

ated with the number of observations per class, and 2) induced imbalance associated with the creation of rules

with disjunctive consequents. Revisiting the illustrated scenario, given R1:B ⇒ {c2} and R2:B ⇒ {c2, c3}, then

li f tR1=con fR1/supR1≈
1
3/

1
3≈1, li f tR2=con fR2/supR2≈

2
3/

2
3≈1, clearly indicating that these rules have no discriminative

power. The higher the lift, the higher the discriminative power. A lift close or inferior to 1 indicates a loose

discrimination.

1.3.1.2 Dealing with Noisy Regions

Understandably the previously introduced notions are only valid if the inputted biclusters are perfect, i.e. do

not tolerate noise. Although the introduced support and confidence have been largely applied in the context of

associative classification (due to its original orientation towards transactional data), these notions cannot consider

the presence of noisy elements and of slight deviations on the pattern expectations. Illustrating, assuming the

presence of a bicluster pattern |ϕB|=10 and class-conditional data partition where all the rows match 9 from the 10

elements from ϕB (i.e. each row has one arbitrary noisy element). In this context, the class-conditional support of

this pattern is incorrectly interpreted as 0.

To address this problem, we propose a variant of the introduced support notion in order to count the observa-

tions with noise (percentage of values not satisfying a given coherence strength) below a specific threshold. As this

noise-sensitive counting affects the support calculus, it consequently affects the lift calculus. This guarantees an

adequate discriminative view. Defs.1.5 and 1.6 below define these notions.

In this context, in order to compute these weighted metrics, linear matchings can be performed for each bicluster

and the partitions where the bicluster is absent. Empirical evidence shows that when guaranteeing the dissimilarity

between the outputted set of biclusters, the computational overhead associated with this step is not significant.

Note that this contrasts with the principles proposed in the context of Section 5, where the absence of dissimilarity

guarantees led to the definition of more scalable searches.
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Def. 1.5 Given a coherence strength δ and noise threshold ε, an observation xi respects ϕB if:

κi

|J|
< ε, where κi = Σ j∈Jηi j and ηi j ∈ [−δ/2, δ/2]) (1.1)

Given a pattern ϕB, its weighted support is supϕB =
∑

i∈I∧κi‖J|<ε

(|J|−κi)a, where a=2 by default.

The proposed weighted support can be parameterized with a factor that determines how the level of noise

may impact the computed support. In this context, linear, squared (default) or other penalizations can be easily

specified.

Def.1.6 extends the traditional view of lift from transactional data towards real-valued biclusters possibly follow-

ing non-constant coherencies and arbitrary levels of noise. In this context, lift reveals the noise-sensitive strength

of the rule weighted by the representativity of the labels in the consequent.

Def. 1.6 Given a set of labels C in C and a decision rule R : ϕB ⇒ C in A, let the support of a rule, supR=supϕB |C, be
the number of (possibly noisy) observations respecting ϕB with a label in C. Accordingly, the weighted confidence
and weighted lift of a rule are con fR=supR/supϕB and li f tR=supR/(supϕB supC), where both supR and supϕB are
computed according to Def.1.5.

A final problem is related with the fact that when a bicluster does not satisfy a minimum frequency criteria

for a given partition, it is not modeled, and thus its support is unknown. The absence of support calculus for

certain class-conditional partitions is undesirable as it prevents an efficient scoring rules. To alleviate this problem,

different strategies can be applied, including constraint-guided searches in order to efficiently discover a bicluster

with apriori known pattern ϕB on certain partitions through the use of succinct constraints. This strategy can follow

similar principles to the strategies proposed in Section 7.3.

1.3.1.3 Efficient Learning of Rules with Disjunctive Consequents

As we previously described, we allow for the composition of decision rules with disjunctions of labels in the conse-

quent (according to Def.1.1) to be able to include relevant regions that discriminate groups of labels. These rules

are efficiently generated based on two principles.

First, ϕB⇒c1 and ϕB⇒c2 rules are only candidates for joining consequents when each have promising (yet non-

significant) levels of discriminative power. In this context, the resulting rule ϕB⇒{c1, c2} have to necessarily show an

improvement on the computed lift against both of previous rules. Rules with n-wise consequents are then compared

with rules with a single label to compose rules with (n+1)-wise consequents.

Second, the components associated with the lift calculus are maintained for each rule. This guarantees that the

computation of the lift for the new rule is directly derived from the (intermediate) scores of the candidate rules.

1.3.2 Training

BiC makes available state-of-the-art structures of association models that provide an efficient way to navigate across

rules. The simplest structure is an ordered set of tuples (pattern, coherency, classes, score).

By default, and similarly to CMAR [401], BiC composes a tree structure where rules are inserted according to

their priority based on the support, length and discriminative power.

Additionally, BiC penalizes biclusters that are similar to other biclusters with higher priority. Similarity is

computed using the generalized Jaccard-index on the shared features. Note, however, that the application of

these penalizations have a slight impact since the discovered class-conditional biclusters already have guarantees

of dissimilarity (according to postprocessing principles proposed in Chapter III-7).
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1.3.2.1 Integrative Score

An effective scoring of rules is essential to rank and prune rules in order to guarantee a balanced number of distinct

rules per class or group of classes. We propose an integrative score combining the rule’s discriminative power (using

the proposed noise-sensitive lift), pattern length and pattern support.

Def. 1.7 Given a labeled dataset A and a rule ϕB⇒C in A, the proposed integrative score is defined as:

ωR = α1
supR

supϕB

supC

supC
+ α2

supR

n
supC

supC
+ α3

|ϕB|

m
, (1.2)

where the first component corresponds to the discriminative power of the rule (given by its lift), the second
component to its relative pattern support, and the third component to its relative pattern length. Accordingly,
{α1=0.6,α2=0.2,α3=0.2}, from empirical evidencea.

aConducted sensitivity analysis described in Section VI-2.2.4

The integration of these interestingness criteria is critical to effectively rank regions according to their rele-

vance. Additionally, it overcomes the typical problem related with the prioritization of small (often non-significant)

biclusters by existing associative classifiers, resulting from an overemphasized focus on the confidence of the rules.

1.3.3 Testing

In the testing stage, the learned discriminative associative model is used to label new observations by identifying

the rules that better match the observed values. From the set of matched rules, BiC adapts state-of-the-art calculus

to compute the strength of each class [401, 302]. In particular, below we show how the weighted-χ2 can be

extended to effectively deal with disjunctions of labels on rules’ consequent:

weightedχ2(c) =
∑

match(ϕB⇒C|c∈C)

supc

supC

(χ2
ϕB

)2

MCS
, with MCS = (min{supϕB , supC} −

supϕB supC

N
)2N × e, (1.3)

where N is the number of matches and e is defined as 1
supϕB supC

+ 1
supϕB N−supC

+ 1
N−supϕB supC

+ 1
N−supϕB (N−supC ) .

1.3.3.1 Computing Class Strength

In order to benefit from the proposed integrative score, we propose a new calculus to determine the strength of

each class, referred as weighted integrated score (WIS). Given a testing observation, this calculus is based on three

simple steps. First, the set of matched rules with the testing observation are identified. Second, their priority is

computed according to Def.1.7. Third, whenever the matched rules are associated with more than one label C, a

proportional adjustment is applied to correctly weight the influence of each individual class c ∈ C based on their

relative support. Finally, the weighted scored from the matched rules per class are summed and outputted.

Accordingly, the WIS for a specific class c ∈ Σ is by default given by:

WIS c =
∑

match(R:ϕB⇒C|c∈C)

supc

supC
ωR (1.4)

The strongest class, c ∈ C, is outputted as the estimated class, if we want a deterministic output. Otherwise, the

strength of each class is computed, normalized and returned as the probabilistic output.

1.3.3.2 Matches and Applicable Relaxations

Matching occurs if the values of the testing observation respect a bicluster pattern (Def.1.5). Yet, even in the

presence of a large number of biclusters, the probability of matches to occur can be considerably low.

Thus, the introduction of relaxations is critical to consider matchings when a testing observation respects the

majority (but not all) of the expected values from a bicluster pattern. In this context, we provide a simplistic
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calculus to guarantee that the overall matching error is below a given threshold.

Def. 1.8 Given a rule R : ϕB⇒C with score ωR and a matching threshold θ, an observation xnew matches ϕB if it
respects ϕB ( κnew

|J| < θ, where κnew is given by Def.1.5) with score ωR × (|J|−κi)a, where a=2 by default.

From empirical evidence, BiC uses, by default, 80% as the minimum percentage of matched values and uses a

quadratic penalization of the score based on the percentage of mismatches. Alternative penalizations can be easily

considering by parameterizing a in Def.1.8. These criteria guarantees a sound similarity for matches to occur, yet

allows a parameterizable degree of mismatches to guarantee the presence of a medium-to-large matches per testing

observation in order to guarantee that classification decisions can be made with higher confidence.

1.4 Results and Discussion

Results are organized as follows. First, we compare the performance of BiC against state-of-the-art classifiers on

synthetic data with varying properties. Second, we extend this analysis towards high-dimensional biological and

social data. The proposed classifiers3 were implemented in Java (JVM v1.6.0-24). In particular, we compare BiC

against associative classifiers based on pattern mining (using CMAR [401] after adequate data itemization accord-

ing to the input δ) and biclustering (using FDCluster [661]), as well as against 3 non-associative classifiers prepared

to learn from high-dimensional data without the need to rely on feature selection: support vector machines (SVM),

Bayesian networks (BayesNet) and multivariate discriminants from Weka [286]. The experiments were run in an

Intel Core i5 2.80GHz with 6GB of RAM.

Further empirical evidence for the relevance of the proposed contributions is provided with an increased detail

in the experimental sections of the upcoming chapters (in which BiC’s behavior is extended and revised).

1.4.1 Results on Synthetic Data

To assess BiC we make use of the synthetic data generator proposed in Section II-3.3, which is able to simulate

regularities commonly observed in labeled biological data. In particular, the generated data combine global and

local regularities according to the following parameters:

• data size and dimensionality, number of classes and class imbalance degree;

• mixture of class-conditional multivariate distributions (global regularities);

• number, coherency, noise and plaid effects of planted biclusters (local regularities);

• Uniform or Gaussian distributions to define the discriminative power, support and length of biclusters;

Table II-3.4 describes the parameters used to generate the synthetic datasets. Illustrating, biclusters with varying

discriminative power were planted by generating patterns with a distinct number of supporting observations for

different classes based on the expected confidence µ(φ) ∈ {90%,80%,70%,60%} (with σ(φ)=2%) per bicluster.

Results are an average of 20 instances per setting.

Figure 1.4 validates whether BiC is able to accurately perform classification in synthetic data with varying prop-

erties (default settings according to Table II-3.4). In particular, we measure its ability against peer classifiers to

model discriminative regions with varying: 1) coherence strength (from δ=5% to δ=50%), 2) number of support-

ing observations (from Uniform distributions with the expected value varied from 20% to 50%), 3) amount of

noise (from 0% to 10%), and 4) discriminative power (from 60% to 100%). Results show Bic distinct superiority

against associative classifiers (CMAR [401] and FDCluster [661]) and global classifiers from Weka [286] (support

vector machines, Bayesian networks and multivariate discriminants). In particular, the provided analysis show the

importance of the proposed discovery, training and testing functions to learn from regions with varying size and

coherency strength, to robustly handle noise, and to model regions with looser levels of discriminative power in

the absence of highly discriminative regions.
3Available in http://web.ist.utl.pt/rmch/software/bclassifier
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Three additional observations are retrieved. First, non-associative classifiers are not inherently prepared to

identify discriminative patterns supported by a small subset of overall observations. As such, their performance

levels are only acceptable when at least 50% of observations from a given class support a discriminative pattern.

Furthermore, their performance rapidly deteriorates when the planted profile is not distinctively discriminative

(confidence below 75%). Second, traditional associative classifiers based on patterns derived from frequent item-

sets show the worse performance. In particular, the observed differences in the performance against the remaining

approaches are mainly driven by their inability to accommodate noise (with impact on both the discovery and

testing stages). Third, although classifiers based on discriminative biclusters show improvements against pattern-

based classifiers, their performance is still inferior to BiC. We hypothesize that three major reasons justify these

differences: 1) adequacy of the proposed integrative scores, 2) ability to include disjunctions of labels in rules’

consequent, and 3) relaxations to guarantee an adequate number of testing matches.

Figure 1.4: BiC’s ability to learn from discriminative biclusters against peer classifiers in the presence of regions with
varying support, discriminative power, coherency strength, and noise.

Figure 1.5 further enlarges the previous analysis in order to evaluate the accuracy and efficiency of BiC for data

with varying size and dimensionality. First, the accuracy analysis shows the ability of BiC to consistently preserve

high accuracy levels across data settings. Second, although SVMs and discriminant functions are not well prepared

to deal with the generated datasets, Bayesian networks show an interesting and contrasting property: as the area

of regions grow for larger data settings, their discriminative effects become more easily identified, leading to an

improved accuracy. Third, the efficiency analysis show that BiC is a competitive option with peers (assuming the

absence of scalability principles and its parameterization with flexible coherency assumptions), being able to learn

from a (n=2000,m=5000)-space in less than a minute.

Figure 1.5: Accuracy and efficiency of Bic against state-of-the-art classifiers over synthetic data.
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1.4.2 Results on Real Data

We selected 8 real datasets: 4 from biological contexts and an additional set of 4 from social contexts. The

biological datasets are (high-dimensional) labeled expression data4 for the classification of: 1) distinct types of

lymphoma (m=4026 features); 2) leukemia (m=7129); 3) embryonal tumours outcome (m=7219); and 4) colon

cancer (m=2000). Two of the four datasets from social contexts correspond to the collaborative filtering of items

from the Jester recommender system5, respectively m=100 items (jester D1) and m=150 items (jester D2) rated

using a continuous [-10,10] scale. Only users rating over 80% of the overall items were considered (n=17.438

for D1 and n=9.542 users for D2). Non-rated items are interpreted as missing values by the applied classifiers.

We selected the last five items rated by all users from each dataset as 5 sets of trinary classes for prediction

({0|ai j∈[−10,−2[, 1|ai j∈[−2, 2], 2|ai j∈]2, 10]}) and report the average performance of classifiers across such items. Fi-

nally, we used two datasets from psychological questionnaires with grading questions (integers from 1 to 5) 6:

Cattell’s test (referred as 16PF) with m=163 grades answered by n=49159 individuals and Simon Baron-Cohen’s

test (referred as EQSQ) with m=120 grades answered by 13256 individuals. For these datasets we aim to predict

the self-rated accuracy ({medium,high,very-high}) based on the assessed profile.

An in-depth description of discriminative regions learned by BiC for each one of these datasets is provided with

detail in the next chapter. Below, we center our analysis on the gathered accuracy and sensitivity levels. For this

analysis, BiC was parameterized with BicPAMS in order to be able to discover non-constant coherencies (according

to Chapter III-9). The gathered results (and their variance) were collected from 10 cross-fold validation. The

sensitivity was computed from the case class for the biological datasets and from the less-accurate class for the

social datasets.

Figure 1.6 shows the accuracy and sensitivity levels of BiC against associative and non-associative classifiers.

Results confirm the superiority and critical role of using BiC’s searches with flexible biclustering models. In fact,

most of the observed differences are statistically significant (t-Student tests with 9 degrees of freedom and p-

value<0.05). We hypothesize that this is not only a result of the tackled limitations of existing associative classifiers

(adequate discriminative, scoring and matching criteria) but mainly driven by BiC’s ability to model regions with

varying coherency strength, coherency assumptions and quality. This hypothesis is further motivated by the fact

that, unlikely BiC, the analysis of peer associative classifiers reveals that they are only able to find a few discrimi-

native regions.

Figure 1.6: Comparison of the performance of BiC against associative and global classifiers over real data.

4http://eps.upo.es/bigs/datasets.html
5http://eigentaste.berkeley.edu/dataset/
6http://personality-testing.info/
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1.5 Conclusion and Implications

In this chapter, we motivated the problem of learning classification models from labeled high-dimensional data,

often characterized by the presence of local regularities associated with discriminative regions. Associative classi-

fication was introduced as a means to surpass the biases from the application of distinct forms of dimensionality

reduction. In this context, the criticisms of existing associative classifiers preventing its broader application were

carefully surveyed. To address these criticisms, the contributions and limitations of available research were sur-

veyed, and the requirements for the learning of effective associative classifiers enumerated according to the: 1)

discovery of discriminative and informative regions biclusters with parameterizable properties and dissimilarity

guarantees; 2) adequate scoring and compositions of these regions; and 3) robust testing of new observations

against the composed model. A new associative classifier, BiC, was proposed to satisfy these requirements.

BiC provides three major groups of contributions. First, BiC relies on extended information-gain scores to ade-

quately identify discriminative rules from imbalanced data and with disjunctions of labels in the rules’ consequent.

Second, BiC is able to efficiently identify and adequately score biclusters able to discriminate a group of classes (but

not a single class). Third, BiC considers noise-tolerant support criteria to guarantee the adequate scoring of rules.

Furthermore, it adequately combines discriminative power, support and length within a single integrative score in

order to have that some rules unfairly jeopardize the learning. Fourth, BiC provides effective testing functions that

guarantee: 1) an adequate number of matches per testing observation based on similarity relaxations and 2) a new

robust calculus of classes’ strength.

Results on both real and synthetic high-dimensional datasets reveal that the performance of BiC is associated

with statistically significant gains, both against peer associative classifiers and global classifiers. The collected

empirical evidence positions BiC as a promising approach to learn from high-dimensional data.

Future Work. In this context, three major directions for future are identified. First, an in-depth analysis of the

properties of discriminative regions from labeled biomedical and social data domains. Second, the parameterization

BiC to systematically study the impact that coherency assumptions, noise tolerance and statistical significance has

on the performance and properties of the learned associative models. Third, we expect to use this knowledge as an

input to dynamically adapt the behavior of state-of-the-art classifiers.



2
Classification from Regions

with Non-Constant Coherency
Although existing associative classification models generally rely on constant regions given by discriminative pat-

terns, many meaningful regions in biomedical and social data are given by non-constant coherencies, including

additive, multiplicative, symmetric, order-preserving and plaid coherencies. The discovery of these regions is crit-

ical to identify, for instance, regulatory modules or groups of individuals with non-trivial (yet coherent) behavior

[257, 310, 334].

Furthermore, the discovery of regions with flexible coherence can be used to minimize the existing criticisms of

associative classifiers, namely: 1) guarantee a more diverse set of regions that guarantees a more adequate space

exploration and minimizes the scarcity of matchings; and 2) promote the discovery of larger regions (an implication

of learning from more regions with more flexible coherency assumptions). As a result, the learning becomes less

susceptible to underfit the input data.

Despite the importance of discovering and learning from discriminative regions with non-constant coherencies

in noisy and real-valued settings, there are not yet attempts towards this end [660, 497, 99]. This observation

leads us to the two target research questions by this chapter: How to effectively shape (associative) classifiers to

learn from regions with flexible coherency? How does their performance varies with the properties of the modeled

biclusters?

Learning adequate classifiers from non-constant regions has challenges across their three major steps: 1) the

discovery of (dissimilar) discriminative regions with flexible coherencies is non-trivial, 2) training is challenged by

the fact that more flexible coherencies are associated with larger regions that can unfairly score higher and hamper

the learning, and 3) existing testing functions are not able to match non-constant biclusters.

As such, this chapter addresses the introduced challenges by proposing new principles for learning associative

classifiers from discriminative biclusters with flexible coherence assumptions and parameterizable tolerance to

noise. Follows the five major contributions of this chapter:

• extended discovery of discriminative regions to efficiently model (dissimilar) biclusters with varying quality

and additive, multiplicative, order-preserving and plaid coherency assumptions;

• a new penalization schema for non-constant coherencies based on their degree of flexibility (for preventing

that biclusters with flexible coherencies jeopardize the learning);

• extended integrative score to better weight the quality of a region (deviations from pattern expectations);

• extended testing score to compute the strength of each class from multiple interestingness criteria (lift, sup-

port, quality, length and coherency);

• new matching criteria to test observations against non-constant biclusters (similarity assessment sensitive to

the allowed adjustment factors).

As a result, BiC is extended into a new associative classifier, FleBiC (Flexible Biclustering-based Classifier), to

learn an effective composition of biclusters with multiple coherencies and classify observations using noise-tolerant

and coherency-sensitive scores.

Results on synthetic and real data demonstrate the relevance of modeling non-constant biclusters to enhance the



348 Chapter 2. Classification from Regions with Non-Constant Coherency

flexible
associative

classification

discovery

training

testing

adequate coverage and diversity of regions

statistical discriminative assessment

scoring flexible coherency assumptions

weighting quality

matching non-constant regions

strength from extended integrative score

Figure 2.1: Contribution for learning associative classifiers from regions with flexible homogeneity.

performance of classifiers and show FleBiC’s ability to unravel non-trivial and meaningful discriminative relations

from real-data contexts. In particular, we quantify and statistically assess the gains of FleBiC against BiC and other

classifiers, and analyze non-constant regions retrieved from biomedical and social data domains.

This chapter is organized as follows. Section 2.1 provides the background, motivating the need and current

limitations for learning flexible associative classifiers. Section 2.2 describes FleBiC. Section 2.3 gathers observa-

tions from assessing FleBiC and analyzing the learned associative models. Finally, the major contributions and

implications are synthesized.

2.1 Background

A bicluster can have coherence of values across observations, features or overall elements, where the values typi-

cally follow a constant model [429]. When observations are labeled, a coherency orientation across observations

should be preferred for the learning of decision models. Although discriminative biclusters with coherency across

features can be meaningfully discovered, their use for testing new observations is less trivial. Complementarily to

coherency orientation, additional coherency assumptions can be given by additive, multiplicative and symmetric,

plaid and order-preserving [59, 303].

According to Def.II-3.1, let the elements in a bicluster ai j ∈ (I, J) have coherence across observations given by

ai j=k j+γi+ηi j, where k j is the expected value observed for feature j, γi is the adjustment for observation i, and ηi j is

the noise factor. Given a specific coherence strength δ ∈ [0,maxA−minA], ai j=k j+γi+ηi j where ηi j∈[−δ/2,+δ/2].

According to Def.II-3.2, the γ factors define the coherence assumption: constant when γ=0; multiplicative if ai j

is better described by kiγ j + ηi j; and additive otherwise. An Order-preserving assumption is verified when the values

of features induce the same linear ordering across observations. Symmetries can be considered by re-describing the

data elements by bi × ai j where bi ∈ {-1,1}. A plaid assumption considers the cumulative effect of the contributions

from multiple biclusters on areas where their rows (observations) and columns (features) overlap.

For these coherency assumptions, the bicluster pattern ϕ(I,J) is given by the set of expected values in the absence

of adjustments and noise ∪|J|j=0{k j}. Consider the illustrative additive bicluster (I, J)=({x1, x2}, {y1, y2, y3}) in N+
0 with

coherence across observations, where (x1, J)={1,−3, 2} and (x2, J)={−3, 5,−4}. Assuming δ=1, this bicluster can be

described by ai j=bik j + γi with the pattern ϕ={k1=0,k2=-2,k3=1}, supported by two observations with additive

factors γ1=1 and γ2=3 and a symmetry on the second observation b2=−1.

High-dimensional biomedical and social data is characterized by the presence of biclusters with flexible coher-

ence [303, 429]. Table 2.1 motivates the relevance of selecting regions with flexible coherence by highlighting

biomedical and social contexts where their discovery is critical for learning tasks.

Many biclustering algorithms emerged in the last decade to address this need (Table 2.2). Yet, since they were

originally proposed for learning descriptive models, they have inherent limitations that prevent their adequate use

for (associative) classification. In particular, these attempts are neither able to discover flexible biclustering models

(restrictions on the placed structures, coherency strength, allowed coherency assumptions, tolerated noise and

statistical significance) nor able to provide optimality guarantees, preventing an adequate assessment of how the

properties of the underlying regions affect the behavior of the target associative classifiers.

Nevertheless, and despite the availability of biclustering algorithms able to model non-constant coherencies
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Coherence Illustrative biclusters across biomedical and social domains

Additive
and Multi-
plicative

Coherencies used to allow the occurrence of shifting and scaling factors across observations (Figure III-1.2). Illustrating, two genes may be regulated in the
same subset of conditions (features) but show different expression levels explained by a shifting or scaling factor associated with their distinct responsiveness, or
the bias introduced by the applied measurement and preprocessing [310]. These factors are also critical to analyze physiological and clinical data to handle the
structural differences across individuals [122]. In social domains, these factors are relevant to model social interactions with coherent behavior but differing in
the extent of frequency and popularity of actions, and to group subjects with identical variation of preferences during browsing and collaborative filtering [257].

Order-
Preserving

Order-preserving biclusters were originally proposed to find genes co-expressed within a temporal progression (such as stages of a disease or drug response)
[59]. Yet, they have been also largely applied in static biological contexts where gene expression or molecular concentrations coherently vary across samples
[311]. This coherence can be also applied to: find sets of nodes in (social and biological) networks with an order-preserving degree of influence across another
set of nodes; to support task planning and scheduling; and to discover order-preserving preferences from collaborative filtering data [311, 415]. Order-preserving
biclusters can emulate constant, additive and multiplicative coherencies, leading to more inclusive solutions with larger and less noise-susceptible regions.

Symmetric
In biological contexts, symmetries are key to simultaneously capture activation and repression mechanisms within biological processes associated with biclusters
in transcriptomic, proteomic or metabolic data [429]. In social contexts, symmetries are used to capture opposed (yet correlated) regularities associated with
trading, tweeting, browsing and (e-)commerce activity [311]. Symmetries can be combined with the previous coherencies.

Plaid

Plaid models are essential to describe overlapping regulatory influence in biological contexts and cumulative effects in the interactions between nodes in social
networks [393, 303]. Illustrating, consider a gene activated by a set of biological processes, a plaid coherence can consider their cumulative effect on the
expression of a gene when more than one of these processes is active at a particular time. The plaid model can be also applied to study regulatory cascades, user
behavior and trading operations, as these data contexts are also characterized by non-trivial influences between biclusters [303].

Table 2.1: Relevance of non-constant biclusters when learning from biomedical and social data contexts.

Coherence State-of-the-art algorithms Limitations

Additive
and Multi-
plicative

Major attempts rely on merit functions based on variance, either more suitable to model additive
factors (including residue-based approaches [134, 690]), or multiplicative factors (such as Fabia
[324]). Some approaches unify these seemingly incompatible factors using linear geometry in
hyper-spaces [235], evolutionary computing [532], and swarm intelligence [161].

1) Higher propensity to discover noisy constant biclusters in-
stead of biclusters with strict additive and multiplicative coher-
ence [310];
2) Restrictions on the structure and quality of solutions.

Order
Preserving

Greedy approaches iteratively discover-and-mask biclusters, including the pioneer OPSM [59]
and its extension to model uncertain data with continuous distributions [209]. The few available
exhaustive approaches, such as uClustering [415], identify the largest regions respecting the
ordering constraints, overcoming the quality and flexibility issues of the greedy peers.

1) Greedy solutions with restrictions on the structure (no over-
laps) and no optimality guarantees;
2) Exhaustive approaches have efficiency bottlenecks and are
highly susceptible to noise (perfect orderings only).

Symmetric
Some algorithms [616, 427] are able to combine constant coherencies with symmetries (also
referred as sign-changes).

1) Not integrated with non-constant models;
2) Restricted to time series analysis (contiguous features).

Plaid

First algorithmic attempts rely on greedy searches that discover one bicluster at a time and
subtract the respective contributions from data [393]. Generative alternatives to minimize some
problems and learn the whole biclusters at a time were propose using expectation-maximization
[573], binary matrix factorization based on non-parametric Bayesian models to better approxi-
mate the complex joint distributions of a plaid models [449, 113].

1) Exact additive model of contributions (their composition
may not increase linearly in real contexts);
2) Require all the elements in the dataset to fit the plaid model;
3) Restrictions on the allowed type (generally constant) and
number of biclusters.

Table 2.2: State-of-the-art contributions and limitations of algorithms to discover non-constant biclusters.

for nearly a decade, the existing associative classifiers based on discriminative biclusters are still focused on the

discovery of biclusters with (approximately) constant values across observations [660, 497, 99].

The recent breakthroughs on biclustering proposed by the authors – BicPAM [310], BicSPAM [311], BiP [303]

and BicNET [313] –, largely described through Books III and V, can however be used to tackle these limitations.

Table III-9.1 from Chapter III-9 delves point-by-point how the proposed contributions can be used to tackled the

current limitations enumerated in Table 2.2. Furthermore, these algorithms can: 1) accommodate meaningful con-

straints and relaxations, while seizing their efficiency gains; 2) robustly handle different forms of noise (including

the noise associated with the applied discretization); and 3) effectively learn from sparse data.

As such, their use opens a new door to not only study the impact of using non-constant coherencies for as-

sociative classification, but going further on answering the target research question: How does the performance

of (associative) classifiers varies with the properties (coherency, quality, significance, discriminative power) of the

learned regions?

Def. 2.1 Given a (high-dimensional) tabular dataset A with labeled observations, let a decision rule be Rk : Bk⇒Ck,
where Ck is a subset of classes (Ck ⊂ Σ) and Bk is a region where observations have strong homogeneity (respecting
Def.II-3.1 and Def.II-3.2 with parameterizable ηi j), significant support P(ϕBk ) and discriminative power P(Ck |Bk).
The target task of learning classifiers from non-constant regions can be mapped as the task of: 1) discover-
ing and composing decision rules {R1, ..,Rp} derived from exhaustive structures of discriminative biclusters with
flexible coherence (following additive, multiplicative, symmetric, order-preserving and plaid models) and param-
eterizable quality, and 2) matching observations xnew ∈ X against these rules M : X → C.
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2.2 Solution

To answer the target task (Def.2.1), we propose FleBiC (Flexible Biclustering-based Classifier), an extension of

BiC. In this section, we organize the proposed contributions according to the major steps of FleBiC: 1) discovery of

flexible structures of discriminative biclusters with parameterizable coherence and quality (Section 2.2), 2) effective

composition of biclusters (Section 2.2.1), and 3) effective scoring schema to test new observations (Section 2.2.4).

Finally, Section 2.2.1 analyzes the computational properties of FleBiC and discusses its parameterizations.

2.2.1 Discriminative Regions with Flexible Homogeneity

To enable the integrative discovery of flexible structures of biclusters with varying coherency assumptions (includ-

ing constant, additive, multiplicative, symmetric, order-preserving and plaid models) and parameterizable quality,

we rely on BicPAMS (see Chapter III-9). BicPAMS consistently combines the contributions of state-of-the-art pattern-

based biclustering algorithms (including BicPAM [310], BicSPAM [311], BiP [303] and BicNET [313]) to enable the

integrative search for biclusters with shifts, scales, symmetries, preserved orderings and plaid effects. Besides mak-

ing use of the efficiency principles associated with each of the algorithms1, BicPAMS is able to seize efficiency gains

from the integrative search for regions with distinct coherency assumptions and from the integrated application of

preprocessing and postprocessing steps (details in Section III-9). For the purpose of finding discriminative biclus-

ters, BicPAMS is applied (as illustrated in Figure 1.3). FleBiC applies BicPAMS for each on each class-conditional

data partition, returning |C| biclustering models.

Dissimilarity. Understandably, the search for biclusters with varying coherency and tolerance to noise can result in

voluminous outputs of biclusters, where subsets of biclusters may be highly similar. Understandably, this condition

is undesirable as it can lead to incorrect decisions due to a biased scoring of testing observations related with

matching with multiple similar biclusters. BicPAMS addresses this problem as it is able to adequately postprocess

the discovered biclusters (with varying coherencies and quality) using efficient merging and filtering procedures.

In this context, we also enhanced BicPAMS with principles to guarantee the diversity of biclusters. BicPAMS allows

biclusters contained in larger biclusters as long as there are significant differences with regards to their sizes.

This is an important principle to guarantee the output of biclusters with varying tolerance to noise and, mostly,

to allow that biclusters with strict coherencies (generally included in an order-preserving bicluster) appear in the

learned biclustering model. Similarly, BicPAMS allows biclusters with overlapping areas below a dynamically fixed

threshold. Two biclusters may have a significant overlapping elements, yet their discriminative power be quite

distinct. Since the knowledge regarding the discriminative power of a given bicluster may not be known a priori,

dissimilarity guarantees are provided without too restrictive criteria. In this context, the computed scores in the

training stage can be used to further prune the output set of biclusters and therefore augment their guarantees of

dissimilarity.

Decision Rules. In order to learn classification rules from discriminative biclusters, FleBiC makes use of the

principles implemented in BiC, including: 1) the weighted notion of support to adequately compute basic metrics

for an observed pattern ϕB; 2) principles to guarantee the efficiency retrieval of the (noise-tolerantt) support; 3)

weighted lift criteria to measure discriminative power; and 4) efficiency principles to compose decision rules with

disjunctions of labels in their consequent. FleBiC further extends the discriminative criteria in order to guarantee

the presence of a statistical test that can be used to filter non-discriminative rules. For this aim, FleBiC also performs

χ2 tests according to CMAR [401]. In this context, a multi-hypothesis correction is applied with a 0.1 confidence

threshold. Understandably, in data contexts with a low number of decision rules that discriminate a particular class,

1Pattern-based biclustering enables exhaustive yet efficient pattern mining searches (including frequent itemset mining, association rule mining, sequential
pattern mining, graph mining) by: 1) making use of anti-monotonic principles to narrow the search space and 2) introducing the possibility to parallelize
algorithms, mine approximate patterns and/or rely on data partitioning strategies under certain optimality guarantees.
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this threshold is either relaxed or the filtering bypassed. Independently of whether a particular region is rejected

or not, the gathered p-value is used to affect the (integrative) score of the rule.

2.2.2 Training: Scoring Noisy and Non-Constant Regions

Extended Integrative Score of Rules. We extended the proposed integrative score to combine lift, pattern support

and pattern length with two new criteria. First, the view on the rule’s discriminative power given by the χ2 tests.

Second, a view on the quality of the underlying region in order to benefit matches with regions less susceptible to

noise. In this context, we use the average deviation from the pattern expectations (as specified in Section V-2.2).

With this criterion we guarantee a better balance between the size of regions and the tolerated noise, prioritizing

larger regions as long as they have high quality.

Let Q be the quality of a bicluster either defined by the fraction of noisy elements (symbolic data), Q= 1
|I|Σi∈I

κi
|J|

(where κi is defined according Def.VI-1.5) or by the deviation against expectations (real-valued data). The inte-

grated score is defined as:

ωR = α1(0.7
supR

supϕB

supC

supΣ

+ 0.3χ2
ϕB

) + α2(0.5
supR

n
supC

supΣ

+ 0.5
|ϕB|

m
) + α3Q, (2.1)

where {α1=0.6,α2=0.3,α3=0.1}, from empirical evidence (see Section 2.2.4).

Scoring Non-Constant Coherencies. A problem with the previous score is its inability to address the fact that

different coherencies may show different degrees of flexibility. As illustrated in Figure 2.2, order-preserving bi-

clusters have high flexibility degree as they are able to capture additive and multiplicative coherencies, which in

turn are able to capture constant coherencies. Understandably, regions associated with coherency assumptions

with higher flexibility have higher scores as they are typically associated with larger biclusters. In this context,

biclusters with higher flexibility can jeopardize the learning since biclusters given by more restrictive coherencies

become neglected. For this reason, it is important to introduce a new penalization weight, ω × ν, for non-constant

coherencies based on their degree of flexibility.

Figure 2.2: Varying degree of flexibility of non-constant biclusters.

From empirical evidence, the following penalizations are provided by FleBiC as default: order-preserving

(ν=0.7 with symmetries and ν=0.75 otherwise), additive (ν=0.8 with symmetries and ν=0.85 otherwise), mul-

tiplicative (ν=0.9), and constant with symmetries (ν=0.95). When plaid effects are allowed, the penalization ν

is given by the underlying coherency assumption in the absence of cumulative contributions from the overlapping

biclusters.

2.2.3 Testing: Matching Observations against Non-Constant Regions

To determine if a testing observation respects a non-constant pattern we need to verify if the observed values can be

described by an adjustment factor. Given a non-constant bicluster pattern ϕB and an observation xnew, xnew matches

ϕB if it can be described by ϕB. In this context, three different settings are allowed: 1) γ ,0 (Def.II-3.1) can be
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assumed to describe xnew in the presence of an additive, multiplicative or plaid pattern, 2) xnew values can differ

from ϕB when B is described by an order-preserving assumption as long as the majority of ordering constraints are

satisfied, and 3) bi=-1 (Def.II-3.2) is allowed for xnew (symmetric values or reversed orderings) when xnew is tested

against a symmetric pattern.

Illustrating, given a bicluster with pattern ϕB={1.2,3.3,2.0} on features {y89, y459, y892}. If the bicluster is ad-

ditive and a testing observation has values {3.1,5.3,4.1} on the same features, the values are coherent under a

shifting factor γ=2. If the same bicluster is order-preserving, the testing observation is also coherently described

(y89<y892<y459).

Complementarily to the matching criteria, the class strength calculus (VI-1.4) is also revised to accommodate

the penalization factors associated with the observed coherencies, WIS c =
∑

match(R:ϕB⇒C|c∈C)

supc

supC
ν × ωR

2.2.4 Algorithm

FleBiC (Algorithm 10) relies on the application of class-conditional biclustering using BicPAMS with decreasing

support until a set with a minimum number2 of 20 dissimilar, significant and discriminative biclusters is found per

class whenever possible. Rules with disjunctions of labels in the consequent are generated from these discovered

biclusters to compose the classifier according to the proposed scoring schema and weight penalizations to balance

biclusters with distinct degree of flexibility. In the testing stage, the weighted integrated score is applied with

relaxations to adequately match noisy regions with non-constant coherencies. In the presence of classification

decisions with low-to-medium levels of confidence, the resulting score is integrated with the output of alternative

(probabilistic) classifiers.

Computational Complexity. The computational complexity of FleBiC is bounded by the biclustering task, which

depends on the size of the class-conditional matrix, distribution of values, and merging procedure (details in [310,

311, 303]). Scalability principles from pattern mining (data partitioning strategies and approximate searches), as

well as the effective incorporation of constraints (based on user expectations and available background knowledge)

can be used to guarantee the heightened efficiency of this step for high-dimensional datasets with a very high

number of observations. The composition of rules, as well as training and testing steps are linear on the average

number of features of the outputted sets of biclusters.

Parameterization of FleBiC. Although FleBiC is highly parameterizable, it can be effectively applied with either

default or data-driven parameterizations. In this scenario, biclustering is applied with dynamically fixed behavior

(according to [310, 311, 303]). The parameters associated with the training and testing functions are by default

fixed according to a conducted a sensitivity analysis. For this end, we iteratively varied the combinatorial values

of the controlled parameters (including but not limited to α1, α2, α3) for synthetic data with varying properties

(Table II-3.4) until the harmonic mean of the accuracy and sensitivity was maximized. Since the variations of

the parameters’ values were not significant across the different settings, we considered their average value as the

default parameterization.

Nevertheless, for the purpose of understanding and improving the performance of the target associative clas-

sifiers based on the properties of the underlying regions, FleBiC’s behavior can be easily parameterized. FleBiC

provides the distinct possibility not only to parameterize the coherence criteria, quality and minimum support of

biclusters, but also to control the minimum thresholds associated with their significance and discriminative power.

2Number fixed based on empirical evidence from a sensitivity analysis conduced over the datasets described in Table II-3.4.
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Algorithm 10: FleBiC Core Steps

1 Training
Input: data, /*remaining params dynamically fixed when absent*/ coherencies, PMiner

stopCriteria /*min. disc. biclusters per class*/, discretizer, noiseHandler
2 begin
3 /* multi-symbol assignments to surpass discretization drawbacks [310] */

4 multiSymbolData← discretize(data, discretizer, noiseHandler);
5 transDB← createTransactions(multiSymbolData);
6 foreach c ∈ classes do
7 minSup← 1;
8 {minFeatures, noiseAcc} ← findPatternExepctations(transDB[c]);
9 /* integrated BicPAM/BicSPAM/BiP searches */

10 do
11 biclusters[c]← search(PMiner, c, transDB, minSup, coherencies);
12 /* significance tests and other ratios */

13 scores[c]← computeWeightedScores(biclusters, transDB);
14 if stopCriteriaAchieved(stopCriteria, biclusters[c], scores[c]) then
15 biclusters[c]← merge(biclusters[c], noiseAcc);
16 /* non-mandatory filtering and extension */

17 biclusters[c]← incDiscPower(biclusters[c], transDB, scores[c]);
18 minSup← minSup×0.9;
19 while !stopCriteriaAchieved(stopCriteria, biclusters[c], scores[c]);

20 rules← produceRulesWithDisjointLabels(biclusters, scores);
21 rules← computeIntegratedScoreWeightedByCoherence(rules);
22 flebic← composePriorTreeStructure(rules);
23 flebic← CompactAndDissimilarRuleSets(rules);
24 return flebic;

25 Testing
Input: observation, flebic, relaxation /*squared by def.*/, globalClassifiers /*optional*/

26 begin
27 /* matching depends on the coherencies of regions in flebic */

28 if maxNrClassMatches(observation, flebic)<2 then relaxation← relax(relaxation); foreach c ∈ classes do
29 strength[c]← computeWIS(observation, flebic, c, relaxation);
30 if maxVal(strength)<secondMaxVal(strength)×0.8 then
31 strength← 0.4×strength+classDist(observation,globalClassifiers)×0.6;
32 return maxIndex(strength);

2.3 Results and Discussion

Results are organized as follows. First, we analyze the relevance of discovering discriminative non-constant biclus-

ters and measure the impact of their use in the performance of associative classifiers. Second, we compare FleBiC

with state-of-the-art classifiers. FleBiC3 was implemented in Java (JVM v1.6.0-24) and tested over synthetic and

real data using a 10-fold cross-validation on an Intel Core i5 2.80GHz with 6GB of RAM.

Data Settings. We preserved the synthetic datasets generated in the context of the previous chapter to evaluate

the impact of the proposed extensions over BiC. We selected 8 real datasets: a) 4 biological datasets4 for the

classification of distinct types of lymphoma (m=4026 features), leukemia (m=7129), embryonal tumours outcome

(m=7219), and colon cancer (m=2000), b) 2 collaborative filtering datasets from Jester recommender system5

(with m=100 and m=150) to classify 5 attributes (we report their average) with three classes each; and c) 2

datasets from psychological questionnaires6 with |L|=5 (16PF/Cattell’s test with m=163 and EQSQ/Baron-Cohen’s

test with m=120) to predict the self-rated accuracy (|C|=3).

Relevance of Non-Constant Biclusters. Table 2.3 motivates the need for integrating multiple coherencies for real

data analysis, measuring its impact on the: percentage of confident decisions (testing observations with over 10

matches and a single class with distinctive higher probability), the average bicluster size, and the weighted lift

(Def.VI-1.6) of the discovered rules. For this analysis, FleBiC was parameterized with δ=1/6 coherency strength,

3Available in http://web.ist.utl.pt/rmch/software/bclassifier
4http://eps.upo.es/bigs/datasets.html
5http://eigentaste.berkeley.edu/dataset/
6http://personality-testing.info/
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10% noise-tolerant checks, merging with 70% overlap, and decreasing support until a minimum number of 50

significant rules per class is found. From this analysis we observe that modeling biclusters tolerant to noise,

not susceptible to discretization problems and following flexible coherencies is key to better discriminate classes

(+20pp). The gains increase when moving from the isolate use of each coherence towards their integrated use

(+10pp) as each coherency models unique local regularities. This improved ability to discriminate classes seems to

be also correlated with the larger size of biclusters (each with 5 to 10 new features) and higher correlation strength

of decision rules.

Coherence
Percentage of Highly Confident Decisions Number of Features N(µ,σ) Average Weighted Confidence
Colon Lymph Embryo Leukemia Colon Lymph Embryo Leukemia Colon Lymph Embryo Leukemia

Constant (baseline) 0.45 0.52 0.42 0.49 10±2 8±2 11±3 10±3 0.82 0.94 0.81 0.92

Constant (noisy) 0.69 0.73 0.67 0.72 16±4 13±3 15±4 17±4 0.81 0.94 0.82 0.92
Symmetric 0.66 0.71 0.65 0.68 18±4 14±3 16±4 19±4 0.79 0.91 0.80 0.91
Additive 0.70 0.73 0.68 0.73 24±3 16±3 22±4 26±4 0.79 0.89 0.81 0.91
Multiplicative 0.69 0.71 0.67 0.68 20±3 14±3 19±4 23±4 0.79 0.88 0.80 0.90
Orde-Preserving 0.65 0.71 0.62 0.69 31±5 21±4 29±5 38±5 0.80 0.88 0.80 0.89
Plaid 0.70 0.71 0.69 0.72 22±3 16±2 20±4 24±4 0.80 0.90 0.81 0.90

Integrated (FleBiC) 0.83 0.90 0.82 0.88 21±4 14±3 18±4 22±4 0.89 0.97 0.90 0.95

JesterD1 JesterD2 16PF EQSQ JesterD1 JesterD2 16PF EQSQ JesterD1 JesterD2 16PF EQSQ

Constant (baseline) 0.41 0.42 0.40 0.39 5±1 6±1 5±1 6±1 0.79 0.77 0.73 0.72
Integrated (FleBiC) 0.58 0.56 0.52 0.50 9±2 11±3 7±2 9±2 0.85 0.85 0.78 0.77

Table 2.3: Impact of learning from non-constant biclusters over real data. Results based on top-100 rules, with 30% to 50%
supporting (class-conditional) observations. Criteria: 1) percentage of testing observations (from 10 cross-fold validation) with >10

matchings and clear preference towards a single class (>10%), 2) number of features, and 3) the proposed weighted confidence.

Table 2.4 analyzes some of the properties of the learned regions for both biological and social data contexts.

This analysis demonstrates the relevance of using non-constant coherency assumptions with tolerance to noise to

find regions of interest, further supporting the observed improvements provided in Table 2.3.

Data domain Notes

Gene expression
(colon, embryo,
lymph, leukemia)

Biclusters define subsets of subjects/samples where a subset of genes show a regulatory profile correlated
with the phenotype under classification. Non-constant coherencies are essential to model different ex-
pression levels across subjects/samples explained by shifting, scaling or ordering factors due to structural
differences on the responsiveness of genes across individuals and biases from the applied measurement and
preprocessing.

Collaborative
filtering
(Jester D1 /D2)

Discriminative biclusters allow the isolation of users with different tastes, as well as subcategories of items
(jokes) possibly correlated with the item (joke) with preference under prediction. The scaling, shifting
and ordering factors are critical to guarantee an identical variation of preferences, and thus accommodate
coherent differences in the rating scale (-10 to 10). Plaid and symmetries are not relevant in this context
(their selection does not impact solutions).

Trait surveys
(16PF and EQSQ
questionnaires)

Discriminative biclusters define subsets of individuals with a shared subset of psychophysiological traits
possibly correlated with the self-rated accuracy (class). Scaling, shifting and ordering factors are critical to
deal with the subjectivity of answers’ scales, as some individuals tend to better explore the scale (1 to 5)
independently of the assessed traits. Noise is important to accommodate subtler deviations in profiles and
possible inaccuracies during the answering.

Table 2.4: Properties of the learned discriminative regions from the selected biological and social data contexts.

Table 2.5 provides details on illustrative discriminative biclusters (with shared pattern ϕB but varying proper-

ties such as higher support associated with non-constant coherencies). This analysis shows the importance of using

noise-weighted criteria to better model the support of biclusters (and, consequently, to score rules), and the rele-

vance of using flexible coherencies to increase the probability of matches and thus alleviate the common downsides

of associative models.

FleBiC’s Performance. To complement the previous analyzes, Figure 2.3 assesses the variations in performance

over real data (under 10 cross-fold validation) from parameterizing FleBiC with varying coherencies. This analysis
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data ϕB |ϕB| coherence noise
abs. support
{C, C\C}

weighted
abs. support

Integrative
score

%test
matches

leukemia P1 9 constant 0.0 {9,0} {10.3,0.9} 0.92 14%
leukemia P1 9 constant 0.2 {16,0} {10.3,0.9} 0.92 14%
leukemia P1 9 additive 0.1 {24,0} {17.4,2.1} 0.89 22%
colon P2 8 constant 0.0 {14,0} {16.2,1.9} 0.89 11%
colon P2 8 const. plaid 0.1 {19,1} {15.8,1.6} 0.91 13%
colon P2 8 multiplicative 0.1 {20,1} {17.9,2.4} 0.88 15%
jester D1 P3 7 constant 0.2 {162,6} {311.2,22.9} 0.81 9%
jester D1 P3 7 order 0.1 {421,9} {602.7,61.6} 0.90 17%

Table 2.5: Illustrative rules with fixed pattern ϕB (P1={6,5.4,2.7,8.4, -3.6,6.3,5.1,8.1,7.5}, P2={-3.3,-5.4,-5.7,-6,-2.7,-7.8,-8.1,-6.3},
P3={-6.8,-6.7,-3.2,3.3,3.6,6.9,7.2} when ai j∈[-10,10]) and varying coherence. Comparing their (weighted) absolute support per class,

integrated score and percentage of testing observations (under 10-CV) with θ=0.8 matching threshold.

show significant improvements (t-tests with p-value<0.05) in terms of accuracy and sensitivity7 from the integrated

use of different coherencies, possibly explained by the focus on new biclusters and the less strict matches associated

with flexible coherencies.

Figure 2.3: Accuracy and sensitivity gains of modeling non-constant biclusters from high-dimensional biomedical data.

Finally, Figures 2.4 and 2.5 extend the analyzes provided in Figures 1.4 and 1.5 to validate whether FleBiC is

able to accurately and efficiently perform classification in synthetic datasets with planted regions following non-

constant coherencies (properties according to Table II-3.4). FleBiC’s performance is compared against classifiers

based on discriminative pattern mining (using CMAR [401] after data discretization accordingly to δ) and discrim-

inative biclustering (using FDCluster [661]), and global classifiers based on support vector machines (SVM) and

Bayesian networks (BayesNet) from Weka [286].

Figure 2.4 assesses FleBiC’s ability to correctly classify observations based on planted regions with varying

coherence strength, number of supporting observations, amount of noise, and discriminative power. The gathered

results confirm the distinct superiority of FleBiC against both associative and global classifiers when considering

either constant or non-constant regions, motivating the importance of discovering flexible coherencies robust to

noise and of using adequate scoring criteria.

Figure 2.5 assesses the performance of FleBiC for varying data contexts. Results confirm its competitive, and

sometimes superior accuracy, showing its critical ability to select regions with flexible coherence and quality (no-

propensity to discretization problems). The levels of efficiency in Figure 2.5 show that, although FleBiC’s efficiency

is penalized by the increased complexity associated with the discovery of biclusters with flexible coherence, it is

able to deal with high-dimensional data.

7The case class in biological data and the less accurate class in social data.
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Figure 2.4: FleBiC’s ability to learn from discriminative biclusters against peer classifiers in the presence of regions with
varying support, discriminative power, coherency strength, coherency assumption and noise.

Figure 2.5: Accuracy and efficiency of FleBiC against state-of-the-art classifiers over synthetic data.

2.4 Summary of Contributions and Implications

This chapter extended the previously considered scope of associative classifiers towards data contexts characterized

by the presence of non-trivial yet meaningful and coherent regions. In this context, we motivated and quantified

the impact of discovering discriminative biclusters with non-constant coherencies for classification tasks.

For this end, we extended BiC along its three major steps. First, we provide an integrative discovery of discrim-

inative biclusters with additive, multiplicative, symmetric, order-preserving and plaid assumptions and varying

quality, guaranteeing: 1) an adequate space exploration and 2) combination of regions with distinct properties

by considering neither too restrictive nor loose forms of dissimilarity. Second, we extend BiC’s scoring schema to

correctly weight biclusters with distinct coherency assumptions in order to avoid that the learning is dominated

by a subset of relevant regions. The quality of biclusters is also included in the integrative score to guarantee a

preference towards not only large but also noise-intolerant regions. Finally, the testing phase is enlarged with new

criteria to adequately match observations against non-constant biclusters.

Results gathered from both real and synthetic (high-dimensional) data confirm the underlying hypothesis of our

work: modeling regions with non-constant coherencies and varying quality improves the performance of associative

classifiers. Results also confirm the superiority of FleBiC against state-of-the-art classifiers.

Future Work. Three major directions are identified for upcoming research. First, we expect to rely on the principles

proposed in the context of BicNET to adequately learn from sparse data. Second, since real data is commonly

described as a mixture of both local and global regularities, we aim to study the synergies between associative and

global classification models. Finally, we expect to extend FleBiC to not only accommodate the target coherency

assumptions in this chapter, but additional forms of homogeneity given by alternative biclustering merit functions.



3
Advanced Aspects of Associative

Classification
Although research on classification from tabular data has been increasingly matured through the last three decades,

there are still open challenges and unprecedented opportunities that have been driven an increasingly attention

more recently in the research community.

First, the need to learn classifiers from sparse data, sometimes referred as sparse classification. In this context,

it is critical to adequately learn from: structurally sparse data (possibly derived from biological and social network

data), missing data (where a robust handling/interpretation of missing elements is essential across medical data

domains) and uninformative data (data with non-missing yet irrelevant elements that are apriori known is highly

common across biomedical and social data domains).

Second, the need to learn from non-trivial tabular data, including data contexts characterized by: 1) the simul-

taneous presence of local and global regularities, 2) regions without well-defined boundaries (better described by

the probability to which a given observation and/or feature belongs to a given region of interest), and by 3) the

presence of regions spanning non-identically distributed features.

Finally, the need to effectively incorporate the increasingly available background knowledge (from knowledge

repositories, literature and user expectations) to guide the learning task, thus exploring both effectiveness and

efficiency gains. Similarly to the previous challenges, this opportunity is important to guarantee an adequate focus

on regions from high-dimensional, thus reducing the propensity of classifiers to under/overfit the input data.

This chapter aims to address these challenges and opportunities from the less studied angle of associative

classification. As a result, it provides four major contributions. First, a new classifier able to learn from sparse

data. Second, principles to compose ensembles of classifiers with contrasting behavior. Third, a discussion on the

benefits and limitations of learning stochastic descriptive models for associative classification. Finally, principles to

specify and effectively incorporate available background knowledge with positive impact on the learning. Figure

6.1 synthesizes the tackled challenges and contributions.

advanced associative
classification

sparse data

local and global
regularities

stochastic local
data descriptors

complex tabular data

background knowledge

relevance

principles

structurally sparse data

extensive missing data

uninformative elements

efficiency gains

effectiveness (lower risk
of over/underfitting)

robust imputations

combined views (ensembles)

tackled model uncertainties

pruned searches

competitive learning schema

role of membership vectors

accurate matching scores

adequate data coverage

relevance

principles

guidance

efficiency gains

annotations from literature

'nice' constraints
descriptive properties

discriminative properties

Figure 3.1: Synthesized view on the tackled challenges and seized opportunities to improve associative classification.
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This chapter is structured as follows. Sections 3.1 to 3.5 respectively tackle the problem of learning from: 1) sparse

data, 2) data with regularities of varying extent, 3) stochastic descriptors of data, 4) complex tabular data domains,

and 5) data domains with available background knowledge. Finally, a summary of the contributions is provided.

3.1 Learning from Sparse Data

Background. Three major factors impact the sparsity level of a given tabular dataset: 1) true missings, 2) false

missings, and 3) uninformative elements. First, structurally sparse data is characterized by the presence of true

missings, associated with unnecessary or redundant values and with meaningfully zero entries (e.g. disconnected

nodes from network data).

Second, sparse data can be complementarily characterized by an arbitrary number of false missings, typically

associated with monitoring holes, default expectations, errors, among many other possible reasons for the absence

of imputed values. False missings are common among medical data domains as well in biological and social

domains where the access to certain data is prevented due to high costs or security reasons.

Finally, sparse data can be additionally associated with the a-priori knowledge of non-interesting elements,

which can be seen as candidates for removal. Illustrating, in omic data domains, uninformative elements are

typically associated with non-differential regulation of genes or non-differential concentration of molecular entities.

For other domains, uninformative elements may correspond to: entries with low-counts in tabular data extracted

from text, inconclusive ratings in collaborative filtering data, unprofitable decisions from trading data, or healthy

evaluations from medical data. Among these data contexts, the removal of these uninformative elements is desired

to guarantee a focus on relevant elements and possibly explore efficiency gains.

In this context, there is the need to learn classifiers in general (and associative classifiers in particular) able

to: 1) discard true missings, 2) robustly interpret false missings, and 3) flexibly neglect uninformative elements.

However, despite the relevance of this task, classification models from tabular data are not able to deal with sparse

data. The large majority relies on simplistic imputation methods to guarantee their applicability. In this context,

they show an unnecessary inefficiency and ineffectiveness as they are not able to flexibly remove true missings.

Solution. According to the principles proposed in Section III-9.2, BicPAMS is able to learn biclusters from sparse

data with an arbitrary-high number of true missings (based on the contributions proposed in Chapter III-8 and

uninformative elements. Since BicPAMS relies on pattern-based biclustering algorithms (which in turn are based

on pattern mining searches essentially prepared to mine transactions/sequences of varying length), BicPAMS is

able to elegantly exclude data elements from searches. In this way, the searches can focus on regions of interest

and explore large efficiency gains both in terms of time and memory.

As a consequence, since FleBiC relies on the class-conditional application of BicPAMS without interfering with its

original behavior, it naturally benefits from these underlying advantages. FleBiC is also able to adequately discover

discriminative regions with true missings since BicPAMS is additionally able to identify non-dense biclusters with a

parameterizable maximum fraction of missing elements. Resulting from previous principles, FleBiC can be termed

as a sparse associative classifier.

Furthermore, according to the principles proposed in Section III-3.2.3, BicPAMS is also able to adequately han-

dle false missings by providing multi-item imputation methods. In the context of FleBiC, this implies that the

imputations are computed from the observations with the same class. As such, FleBiC is also able robust to false

missings.

Empirical evidence for the relevance of the enumerated principles to discover regions from sparse data were

presented in Sections III-8.4 and III-2.7.2. Moreover, the soundness of FleBiC from these regions was empirically

shown throughout the two previous chapters.

The proposed principles are not only applicable to FleBiC but extensible to other associative classifiers from
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regions given by discriminative patterns or/and pattern-based biclusters.

3.2 Integrating Associative with Global Functions

Background. Different testing observations may be classified with different degrees of confidence due to the extent

of matches and the consistency of labels from the matched rules. In particular, three undesirable situations can

occur: 1) few matches or matched biclusters with low scores, 2) no label with significantly higher probability (weak

consistency of rules’ consequent), and 3) observations not only characterized by local regularities but also by global

regularities.

The contributions proposed in the context of FleBiC aim to minimize the first two problems. In particular, we

guarantee an adequate: 1) space exploration by focusing on a wide diversity of regions characterized by a varying

quality, coherency strength and coherency assumption; 2) scoring schema that guarantees that the learning is not

jeopardized by a compact set of regions; and 3) matching criteria with relaxations to guarantee a more informative

description of testing observations based on a high number of partial matches. However, the third problem is not

yet tackled.

Solution. In order to guarantee that the third problem is adequately addressed we propose the integration of

FleBiC with other classifiers. Two major principles are proposed towards this end.

First, FleBiC is extended to combine the (probabilistic) decision outputs of global kernels given by well-known

classifiers. By default, FleBiC uses the output of support vector machines, Bayesian networks and multivariate

discriminants due to their contrasting behavior against associative classifiers. Given a testing observation, consider

p to be the ouput vector with the (normalized) strength per class, p={p(c1|xnew), .., p(c|L||xnew)}. In this context,

FleBiC’s output, pL, is weighted with the output of d classifiers with global functions (pGi):

p = αpL +
(1 − α)

d

d∑
i=1

pGi (3.1)

where, from empirical evidence, α≈0.4 (default parameterization).

Second, in the presence of matches but not a delineated preference towards a single label, the labels with

significantly low probability to occur for a given testing observation can be excluded and not used as input to train

the global classifiers. In this context, only the class-conditional partitions associated with the most promising labels

are considered

Contrasting, when there is less than 2 × |C| matches, the inverse strategy is considered: the C ⊆ C labels with

lower probability from global classifiers are excluded from the pL calculus, p(c ∈ C|xnew)=0. As such, this principle

can largely minimize unnecessary biases.

Empirical Evidence. Figure 3.2 quantifies the gains from integrating the output of FleBiC with global classifiers

(given by Bayesian networks, support vectors machines and multivariate discriminant functions) over biological

and social data (details in Section VI-1.4). The observed results support the relevance of the provided principles.

Figure 3.2: Gains in accuracy and sensitivity from integrative local and global classification decisions over real data.
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3.3 Stochastic Learning from Generative Biclustering Models

Background. Associative classifiers are deterministic in nature as they rely on deterministic descriptors of data

(discriminative patterns and biclusters). However, as largely discussed throughout Chapters IV-3 and IV-4, stochastic

descriptors of data can be similarly used to model relevant regions, holding particular properties of interest. In fact,

a large number of stochastic biclustering methods have been proposed [324, 449, 573, 113, 527, 581, 72, 584],

as well as diverse attempts of defining stochastic methods for pattern mining [629, 347, 659, 6, 66, 392, 389].

However, despite the availability of such methods1, their relevance for (associative) classification has not yet been

target and therefore it is unclear.

Solution. To compare the relevance of deterministic versus stochastic biclustering models for (associative) clas-

sification, we first define their properties. According to Def.I-1.10, given a tabular dataset, a biclustering model

is given by a set of biclusters, where each bicluster is defined by a subset of observations and features satisfying

certain criteria of homogeneity, discriminative power and significance. Deterministic approaches for biclustering ei-

ther rely on exhaustive or iterative/recursive searches to identify a set of well-defined biclusters (see Table III-1.3).

Contrasting, stochastic approaches for biclustering learn a parametric model according to a likelihood function

[324, 449]. The biclustering model is either given by: 1) the parametric model (often given by a factorial model

defined by a composition of continuous latent variables), or by 2) a set of well-defined biclusters derived from

the model’s parameters (often recurring to a collapsed Gibbs sampler or peer procedures to infer the posterior

distribution of the binary bicluster membership from these models). As such, stochastic biclustering models are, in

their purest form (before sampling), typically characterized by a set of vectors defining the probability that a given

observation or feature belongs to a given bicluster. Figure VI-3.3 provides an illustrative stochastic biclustering

model.

Figure 3.3: Stochastic biclustering models: presence of membership vectors yet inflexible structures and homogeneity.

In this context, learning a classifier from the introduced parametric models naturally differs from associative

classifiers inferred from deterministic biclustering models. As such, the learning schema needs to be adequately

revised to learn effective classifiers from stochastic biclustering models. Pointer 3.1 provides a classifier proposed

by the authors towards this end. The introduced classifier benefits from the presence of membership vectors. First,

it enables more accurate matching scores based on the generative probability of a given testing observation being

described by the discriminative stochastic biclusters. Second, it gives the possibility to reduce the cut-off threshold

criteria (for deciding whether a feature or observation participates in a given bicluster) in order to guarantee a

better coverage of the data space.

Pointers 3.1 Illustrative classifier from stochastic biclustering models
A classifier from stochastic biclusters can be designed by considering variants of the discovery, training and testing steps of the
previously proposed classifiers. First, during the region discovery step, |C| sets of class-conditional regions are discovered. Each
region is essentially characterized by two vectors of membership probabilities (features and observations) and a third vector with
the expected pattern ϕB spanning all the probable features inferred from the observed values for the most probable observations.
Second, during the training stage, decision rules are inferred by assessing the discriminative power of the retrieved stochastic
regions. This is done by assessing whether similar subsets of most probable features (and their patterns) are also discovered for
other class-conditional partitions. This can be accomplished by testing the similarity of a given feature membership vector (and
respective pattern) against feature membership vectors from other classes. The confidence of a rule is defined by the computed

1Stochastic methods for biclustering and pattern mining should not be mingled with the sparse kernels described in Section 1.2 [78, 215, 378, 214, 217].
Sparse kernels are neither able to flexibly model regions of interest.
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metric of similarity. Finally, during the testing stage, the class-conditional fit of an unlabeled observation is assessed against the
feature membership vector and pattern of all discriminative biclusters. The feature probabilities are used to uniformly weight the
matching score.

As a result, classifiers from stochastic descriptive models hold the benefit of: 1) minimizing the generalization

error, thus reducing their underfitting propensity for high-dimensional data, and 2) address the problem related

with the possible inaccuracy and scarcity of matches between a test observation and the learned regions.

Despite the relevance of these two properties, stochastic biclustering models suffer from additional downsides.

First, stochastic methods for biclustering place restrictive constraints on the allowed number, positioning, coherency

and quality of the biclustering model. This prevents the identification of a flexible structures of relevant regions

with varying coherency and parameterizable quality. Second, these methods are easily prone towards efficiency

bottlenecks in large-scale data contexts (see results provided in Section III-8.4). Finally, and contrasting with

classifiers based on pattern-based biclusters, the use of stochastic biclustering models does not support learning

from sparse data, multi-value assignments, an effective incorporation of background knowledge, among other

benefits of the previously proposed associative classifiers.

3.4 Learning from Complex Tabular Data

Background. Although many of real-world labeled datasets have non-identically distributed features, associative

classifiers inferred from discriminative biclusters are not able to adequately learn from these data contexts. This

is due to the fact that the majority of discriminative biclustering methods are only prepared to learn from data

with identically distributed features (see Section III-3.1.3). Complementarily, since associative classifiers reliant on

discriminative patterns are only prepared to interpret nominal features, they are not able to adequately learn from

data with (discretized) numeric features and ordinal features. In this context, enhancing the proposed associa-

tive classifiers is essential to adequately learn from mixtures of (non-identically distributed) nominal, ordinal and

numeric features, as commonly observed in clinical and heterogeneous data (see Chapter III-3).

Solution. According to the principles proposed in Section III-3.2.3, BicPAMS is able to learn biclusters from complex

tabular data. Furthermore, when BicPAMS is parameterized with the statistical principles proposed in Section V-3.2,

it is additionally able to provide guarantees on the significance of these biclusters.

According to the behavior described in Section VI-1.3.1, FleBiC relies on class-conditional BicPAMS searches to

compose decision rules. Since the behavior of FleBiC does not interferes with the discovered regions, FleBiC can

soundly rely on regions from complex tabular data. In particular, in data domains characterized by the presence

of numeric/ordinal features and nominal features, the homogeneity of the underlying regions can be given by

non-trivial yet meaningful mixtures of coherencies, such as illustrated in Basics III-3.2.

3.5 Effective Incorporation of Constraints

Background. A largely researched problem in the field of classification is centered on how to incorporate the

increasingly available background knowledge to guide the learning process [534, 387, 590]. Despite the substantial

evidence for the relevance of using background knowledge to explore efficiency gains and guarantee accurate

decisions [590, 534, 84, 264, 158, 387], there are not yet contributions on how this knowledge can be used

to adequately affect associative classification. Relevantly, pattern mining has been extended in multiple ways

in the context of domain-driven pattern mining for the accommodation of constraints derived from background

knowledge. Furthermore, previous work by the authors (Chapter III-10) [314] propose an integrative view of

domain-driven pattern mining and (pattern-based) biclustering, enabling potential synergies to enhance associative

classifiers based on discriminative biclustering models.
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Solution. BicPAMS was extended in Chapter III-10 with principles from domain-driven pattern mining to explore

efficiency gains and benefit from the guidance of available background knowledge. In this context, we further

showed how functional annotations and constraints with succinct, (anti-)monotone and convertible properties

could be effectively incorporated during the biclustering task. In particular, to support constraints on biclusters

with different coherency assumptions, we adapted the underlying biclustering searches to support the constraint-

based mining of frequent itemsets, association rules and sequential patterns by extending F2G and IndexSpan

searches (Section III-10.4).

Since FleBiC relies on BicPAMS searches without the need to affect their mining step, it can be used in the

presence of the different forms of background knowledge discussed in Chapter III-10. In particular, FleBiC can

be applied in the presence of an arbitrary number of annotations per observation derived from knowledge-based

repositories and literature. This possibility is particularly interesting as these annotations can provide further

discriminative criteria to support the classification task.

Furthermore, the exhaustive list of meaningful constraints with nice properties for biological and social data

provided in Section III-10.3.2 can be also considered to either guarantee a focus on specific (possibly non-trivial)

regions of interest and to explore efficiency gains from their succinct, (anti-)monotone and convertible properties.

Finally, a new set of constraints with nice properties, yet targeting discriminative aspects of data, can be addi-

tionally specified and easily supported. To illustrate some of these constraints, consider a gene expression dataset

where samples are labeled with one of the three following classes {cancerA,cancerB,noCancer}. In this context,

the user may be interested in discovering regions with specific profiles of interest for each type of cancer, such

as regions with a certain gene activated for cancer type-A (class-conditional succinct constraint) and regions with

more accentuated repressed expression for cancer type-B (class-conditional convertible constraint).

Alternatively, the user may specify conditions on the desirable levels of discriminative power. This can be easily

accomplished through the parameterization of the maximum and minimum support thresholds (either absolute or

relative) across classes. Illustrating, the user may be uniquely interested in discriminative regions with a relative

weighted support (Def.VI-1.6) above 0.5 for a subset of classes and below 0.1 for the remaining classes. An

exhaustive description of the possible types of constraints, as well as their illustrative instantiation across different

data domains, is however out of the scope of this work.

3.6 Summary of Contributions

This chapter covered advanced aspects of associative classification that deserve a closer attention. First, we enhance

associative classifiers with principles for an adequate learning from sparse data, able to explore significant efficiency

gains and robustly deal with missing elements. Second, we show how the benefits from global and local classifiers

can be effectively combined through ensemble models to learn from data characterized by regularities of varying

extent. In particular, we show how the learning schema and outputs can be adequately integrated to guarantee

that loosely discriminative class-conditional models (during training step) or low-confident decisions (during the

testing step) can be complemented with information from alternative classifiers. Third, we discuss the benefits and

challenges from considering stochastic descriptive models for classification, opening new whole set of directions for

future work. Fourth, we show the compliance of FleBiC to learn from tabular data with mixtures of features with

distinct domains, a necessary condition to guarantee the proper applicability of the proposed associative classifiers

on a wider-set of data. Finally, we show that FleBiC is compliant with the constraints discussed in Chapter III-10 and

can be additionally extended to effectively incorporate expectations on the discriminative aspects of the underlying

regions of interest.
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Learning Associative Classifiers

from Structured Data
This chapter extends the scope of learning towards labeled structured data contexts. Learning from labeled struc-

tured data is of heightened importance for a wide-range of biomedical and social applications, including: phenotype

discrimination from gene expression time series; disease prediction from repositories of clinical events; classifica-

tion of user behavior from collections of temporal snapshots of a social network; diagnosis from (multivariate)

physiological signals; financial decision support from repositories of trading actions; marketing initiatives from

(e-)commerce events, and web content organization from user actions. Despite its relevance, the state-of-the-art

on learning classifiers from structured data is challenged by the high-dimensionality of these data contexts and by

the need to model both structural and temporal relations.

An interesting property associated with the listed data domains is that, under the proposed principles in Book IV,

they can be mapped into a set of labeled observations, where an observation is either given by a multi-set of events

or by a multivariate time series. In this context, the requirements associated with the supervised learning from

these data structures can be better specified. The task of learning from labeled multi-sets of events is challenged

by two major requirements: 1) modeling temporal dependencies among discriminative events with arbitrary levels

of sparsity; and 2) modeling arrangements of discriminative events with cross-attribute dependencies. The task

of learning from three-way time series is challenged by the need to discover discriminative cascades characterized

by an inherent: 1) a flexible composition of modules capturing coherent changes of values over time, and 2)

misalignments between observations.

Despite the numerosity of contributions in the field of classification from structured data, they are not able

to adequately answer these tasks. First, classifiers proposed to learn from sequences of events are neither well-

prepared to deal with arbitrary levels of sparsity between events nor able to learn from distinct event types (multiple

attributes). In this context, principles from integrative learning have been proposed, such as the learning from each

attribute separately followed by a voting stage. However, they fail to model important discriminative regularities

that only appear when the multiple attributes are analyzed in a combined manner. Second, although a large

number of classifiers have been proposed for the analysis of multivariate time series, they are not prepared to

model relevant regions given by discriminative cascades. In fact, they are not able to flexibly discard uninformative

regions, which is a critical requirement when dealing with time series with a high multivariate order (in biological

contexts m>1000).

This chapter tackles the research question of whether it is possible to learn effective (associative) classifiers able

to address the criticisms associated with these two learning tasks. Accordingly, Figure 4.1 provides a structured

view on the applicability, requirements and related work on these tasks.

For this aim, although these learning tasks appear to be challenged by different requirements, this chapter

proposes a consistent view on how they can be similarly answered by mapping them into integrative and labeled

time-enriched itemset sequences and by targeting the task of adequately modeling informative and discriminative

regions from these data structures to learn effective classification models.

This task is tackled from two angles. First, we propose deterministic associative classifiers able to learn from
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Figure 4.1: Applications, requirements and current challenges to learn classifiers from labeled structured data.

time-enriched itemset sequences based on relevant regions given by discriminative temporal patterns. Second, we

propose stochastic classifiers able to learn from itemset sequences based on generative models focused on local reg-

ularities. For these ends, we reuse the contributions for the deterministic/stochastic learning of (class-conditional)

local descriptive models proposed in the context of Book IV, and extend them with adequate discriminative criteria

and new training and testing functions. Finally, we refine these contributions to address the specific challenges of

learning from multi-sets of events or three-way time series.

As a result, we should be able to answer the following research question: to which extent are the proposed

deterministic and stochastic classifiers able to learn from structured data? Figure 4.2 provides a structured view on

the solution space. Accordingly, this chapter provides the following major contributions:

• structured view on the contributions and limitations towards the classification of complex temporal data;

• mappings to handle varying labeled data structures (multi-dimensional, relational, multi-sets of events, three-

way time series) into an integrative and temporal data structure (time-enriched itemset sequences) conducive

to learning;

• new associative classifier based on discriminative, integrative and temporal patterns discovered from time-

enriched itemset sequences. In particular, six major contributions:

– revised notions of support and lift to guarantee sensitivity to noise and temporal misalignments;

– extended discovery of patterns driven by discriminative power and efficient composition of rules with

disjunctions of labels in the consequent;

– new integrative score based on the (weighted) support, length and lift of temporal patterns;

– variations on behavior to prioritize occurrences on certain time periods (e.g. favoring of recent events);

– enriched class strength calculus and new matching criteria for testing observations (sensitive to both

structural and temporal misalignments) with degree of relaxations dependent on the number and score

of matched regions;

– specialization of the proposed behavior to adequately model cascades and arrangements of events;

• new stochastic classifiers based on the extension of the proposed (unsupervised) HMMs for the classification

of time-enriched itemset sequences, and customization of their properties to adequately model the specifici-

ties associated with three-way time series and multi-sets of events;

• systematic comparison of the properties of stochastic learners against deterministic learners;
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• principles to handle data structures with a mixture of both temporal and static attributes.
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Figure 4.2: Proposed contributions for learning classification models from labeled structured data.

These contributions are integrated within two associative classifiers: a deterministic classifier, P2MID (Pattern-

based Predictive Models from Integrated Data), and a stochastic classifier, MaCID (Markov-based Classifier from

Integrative Data). Experimental results hold evidence for the utility of the proposed contributions, for the superior

performance of P2MID and MaCID against classic classifiers (applied on denormalized data contexts), and their

critical role for the analysis of structured data contexts with non-trivial mixtures of (possibly temporal) attributes.

This chapter is organized as follows. Section 4.1 provides the background notions on learning classifiers from

structured data. Section 4.2 extensively surveys contributions from related streams of research to learn from tempo-

ral data with multiple attributes. Section 4.3 describes the solution space: proposes associative classifiers – P2MID

and MaCID – learned from integrative temporal data. Section 4.4 compares and discusses the performance of these

classifiers against classic classifiers over real data. Finally, the contributions and implications are summarized.

4.1 Background

The structured data contexts target in this thesis can be essentially defined by a multiplicity of temporal attributes,

where each attribute is characterized by a set of occurring values in time. In this context, an attribute can be

described by a single value, an ordered set of values (sequence), an ordered set of values equally spaced in time

(univariate time series) or by a set of timestamped values (event-set). When considering the multiplicity of at-

tributes, observations became described by three-way time series (assuming attributes have same domains and

length of occurrences), multi-sets of events or even less-trivial combinations of attributes with dissimilar domains.

Let us consider the illustrative case of learning from repositories of health-records to discriminate a medical con-

dition. These repositories can be mapped into structured data domains characterized by n observations (patients)

and the presence of a high-multiplicity of m attributes related with: 1) [event-sets] diagnoses, treatments, prescrip-

tions and lab records, 2) [single values] genetic markers and the patient profile, and 3) [sequences] feature vectors

capturing the progression of the health state of the patient.

Learning from these data contexts is hampered by challenging requirements, whose definition in the context of

unlabeled observations was already provided throughout Book IV. Section IV-1.1 systematized the requirements for

learning local models from three-way time series. In this context, a region is given by a cascade due to its inherent

ability to frame stochastic temporal dependencies associated with the causal elicitation of modules. Section IV-2.1

discussed the major requirements for learning local models from multi-sets of events. In this context, a region is
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given by an informative arrangement of temporally-related events from (possibly) distinct attributes.

When moving from unlabeled to labeled contexts, three new requirements need to be satisfied. First, the

modeled regions must be discriminative in order to guarantee their relevance for classification. Second, these

regions need to be adequately scored and composed to produce classification models well-prepared to effectively

and efficiently test new observations. Finally, these regions need to be adequately matched against a new/testing

observation, and their ability to describe a new observation properly weighted to place decisions.

Def. 4.1 Let a structured data space X be characterized by a set of (temporal) attributes {y1, .., ym} with structured
domains Yi. Given a set of observations {x1, .., xn} with values in X and labeled with a class in C, the classification
task is to learn a model M : X → C to label a new observation x, c=M(x).

Applicability. The presence of labeled structured data provides an unprecedented opportunity to support biomed-

ical, administrative and social decisions. Illustrative applications across these domains include: computer aided

decisions for disease diagnosis/prognosis and treatment care (personalized medicine) from multi-sets of events de-

rived from repositories health records; modeling of discriminative regulatory responses in the context of a specific

drug, stimulus or phenotype; classification of user profile or behavior from the user actions and social interac-

tions; rating of specific objects based on temporally-enriched collaborative filtering data; suggestions based on web

navigation and commercial activity; support to financial decisions based on the market transactions.

4.2 Related Work

Learning from temporal data has been largely researched, with multiple categorization attempts, covering different

learning tasks and data structures [559, 128, 191]. Section 4.2.1 overviews state-of-the-art deterministic and

stochastic classifiers from temporal data structures. Due to the inherent difficulty of most of these contributions

deal with multiplicity of attributes, Section 4.2.2 surveys integrative approaches for classification towards this end.

4.2.1 Deterministic and Stochastic Learning of Classifiers from Temporal Data

Classification from temporal data has been mainly driven by the task of labeling unlabeled sequences based on a

training set of labeled sequences. Sequences are here generically referred to either consider (numeric or symbolic)

time series or orderings of events. In this context, three major types of classifiers can be identified: distance-

based, pattern-based and generative classifiers. Given a similarity metric, a target sequence can be labeled by a

distance-based classifier based on the observed labels from the closest sequences [677].

A pattern-based classifier learns a model based on a set of prototype features for each class, and labels a new

sequence based on the class with the closest features [535]. When temporality is mapped into phasic features,

the model combining these features can be given by traditional classifiers, such as decision trees, Gaussian mix-

tures, support vector machines (SVMs) or neural networks (NNs) [1, 535, 107, 482]. Extended classification

models have been proposed in the presence of sliding features extracted from different sequence segments [362].

Alternative features with impact on the learned models include: sequential patterns to focus on discriminative

precedences among events [635], motifs to focus on discriminative sets of events recurring along the sequence

[490], wavelets [562], alignment-free dictionaries to guide the learning when specific occurrences are annotated

[332], among others [466]. Koch and Naito [371] proposed principles for the extraction of features from sequences

with arbitrary-high multivariate order.

A stochastic classifier generally learns one generative model for each class-conditional set of sequences, and

tests a new sequence based on the class associated with the generative models that describes the testing sequence

with highest likelihood. Common stochastic methods for the classification of sequences include formal languages

[390, 241], hidden Markov models (HMMs) [74, 478], dynamic Bayesian networks (DBNs) [478, 250] and time-
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sensitive Neural Networks (NNs) [369, 652, 433]. Different architectures and algorithms with impact on the

learning behavior of stochastic methods have been compared [37, 269], as well as diverse principles to learn from

multivariate sequences [368, 478].

Three major limitations are associated with the surveyed classifiers. First, they are not able to deal with se-

quences with non-fixed multivariate order. This is a necessary condition for the analysis of multi-sets events char-

acterized by an arbitrary number of co-occurrences per time partition, and a desirable condition for the analysis

of three-way time series since it enables the possibility of removing uninformative elements and assigning or im-

puting multi-items per element. Second, these contributions are insufficient to deal with the structural sparsity of

multi-sets of events and are associated with the loss of temporal distances between events (generally focused on

the observed orderings only). Finally, existing contributions from multivariate time series analysis and multivariate

responses prediction are not applicable for multi-sets of events since different attributes (event types) can have

different domains and a non-fixed number of events per observation.

4.2.2 Learning Integrative Models from Structured Data

Despite the relevance of the surveyed classification models, they are not able to effectively learn from structured

data characterized by a multiplicity of (temporal) attributes with possibly different domains. An attribute is either

associated with a type of event in the context of a multi-set of events or with a univariate parcel of a multivariate

time series. A näıve solution to learn from these data contexts is to fix the number of occurrences per attribute and

mapped them as features (static attributes), followed by the application of classic classifiers. Understandably, this

option is only of interest for data with compact number occurrences per attribute or where labels are determined

by the most recent events. To tackle this problem, integrative classification models have been recently proposed to

deal with the multiplicity of temporal attributes. Table 4.1 surveys such learning settings that can be considered to

surpass some of the challenges of the previously surveyed approaches.

Approaches Limitations

1. Learning from features extracted separately for each attribute. Not able to model cross-attribute dependencies;
Loss of information.

2. Learning one model separately for each attribute – using discriminative
sequential patterns by ignoring temporal distances or sequence classifiers by
removing co-occurrences – followed by a voting stage.

Not able to model cross-attribute dependencies;
Loss of information.

3. Extracting integrated features using (bi)clustering views. Suitability largely depends on the used distances to group
observations and attributes; Not mature research stream.

4. Supervised inference of temporal rules. Not scalable when dealing with large datasets;
Complexity.

5. Mapping attributes into feature vectors using aggregation functions
(preprocessing data by incorporating multiple attributes at several time points). Background knowledge required; Loss of information.

Table 4.1: Major directions for the integrative learning of classification models from multi-attribute temporal data.

A first option is to extract features separately from each temporal attribute and then apply a classic classifier

[32, 414]. An alternative option is to apply one of the surveyed classification models (see previous section) for each

attribute, followed by a voting step [633, 139]. The drawback of these solutions is the loss of critical integrated

views that do not emerge when each attribute is analyzed separately. A third option is to extract features from

multiple time sequences using (bi)clustering methods that rely on edit-distance metrics based on insert-delete-

replace operations [349, 121]. The drawback here relies on: 1) the complexity of defining effective distance

metrics, and on 2) the suitability of the chosen metrics across observations and attributes. An alternative strategy

to avoid sparsity that also results in a significant loss of information is to convert each temporal attribute into

a set of time series (also referred as feature vector) by using an aggregation criterion, such as the counting of

occurrences across sequent periods or alternative ranking and mean functions [47]. Although the supervised

inference of temporal rules can be considered to minimize this problem, this option is not scalable [467]. A final

option is to use a preprocessing stage that incorporates multiple attributes at several time points or intervals [47].
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However, this solution is only practical in the presence of background knowledge, which is used to select specific

occurrences of interest from each attribute.

Figure 4.3 provides an illustrative view on the behavior of these five learning strategies based on the properties

of the input data structure. This state-of-the-art analysis clearly highlights the need for more effective classifiers,

able to simultaneously model temporal and cross-attribute dependencies.

Figure 4.3: Existing data structures and learning methods to model multiple temporal attributes.

4.3 Solution

The solution space for the target learning task is incrementally provided along three sections. Section 4.3.1 pro-

vides the necessary mappings to deal with different data structures and guarantee a standardized and integrative

representation of data with multiple temporal attributes that it is conducive to the learning of classification mod-

els. Under this mapping, Sections 4.3.2 and 4.3.3 propose classifiers able to model regions of interest given by

integrative temporal patterns using, respectively, deterministic and stochastic learning functions.

4.3.1 Data Mappings to Learn from Structured Data

Multi-sets events. We reuse the mapping proposed in Section IV-2.3.1 to compose time-enriched itemset sequences

from collections of events with multiple types of events (attributes). We reconsider this mapping for classification

tasks since: 1) is more conducive to learning tasks (standardized structure offering cross-attribute views and pre-

serving approximate temporal distances), 2) offers an effective way to deal with arbitrary sparsity (use of varying

temporal granularities), and 3) enables the use of the proposed methods in Book IV for the discriminative and

stochastic learning of arrangements of events. This mapping is a result of four major steps: 1) discretization of

numeric events (using lengthy alphabets); 2) balancing of the cardinality of the attributes’ domain; 3) selection

of a temporal granularity and partitioning of the timeline; and 4) grouping of events per partition, removal of

duplicates and preservation of empty itemsets. This mapping remains valid in the context of labeled multi-sets

of events (labels are preserved during the process). However, since observations with different labels often show

radically distinct regularities, both the discretization of attributes and the harmonization of their domains can be

applied separately for each class-conditional partition.

Multivariate time series. Despite the large availability of classifiers to model labeled multivariate time series (see

previous section), they suffer from two major drawbacks: 1) they are generally not able to focus on relevant regions

(such as cascades), and 2) they cannot learn from sparse time series (where uninformative elements are removed)

or from time series with multiple items assigned to some of its occurrences. As such, in order to reuse the efforts

developed in the context of cascade learning, we propose the mapping of multivariate time series into (time-

enriched) itemset sequences and the posterior application of the proposed associative and stochastic classifiers.

This mapping (described in Section IV-1.3) is a result of three steps: 1) adequate discretization (with estimated

coherency strength to produce cut-off points from a dynamically fitted distribution), 2) multi-item assignments
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based on distances to cut-off points and removal of elements, and 3) application of transformations (according

Def.IV-2.4).

In the context of labeled data, class-conditional differences can be further accentuated to facilitate the extraction

of discriminative regions. Illustrating, the observed mean and standard deviation of the class-conditional values per

feature or time point can be used to select normalization procedures aiming to heightened the differences between

observations with different labels.

Multi-dimensional and relational data. Multi-dimensional data can be mapped as multi-sets of events by deriving

events from the entries of a central fact table, grouping these events into a set of observations according to the

identifiers of a linked dimension (the split dimension) and with timestamps derived from the date dimension.

Relational data can be mapped into multi-dimensional data by selecting the entity-relationship table containing the

records of interest and by fixing it as a central fact (linked to additional tables fixed as dimensions). Section IV-2.3.1

details the properties of these mappings and provided strategies to: 1) surpass memory bottlenecks associated with

the high-dimensionality of measures associated with a fact table, and 2) derive events from structured measures.

Labels in these data contexts are commonly derived from one of two sources. First, an additional field from

the split dimension (besides its identifier). Illustrating, in the context of healthcare multi-dimensional data, the

split dimension is often associated with the patient (or provider) dimension, which may contain relevant fields

(including health state, genomic markers, risk profile and psychophysiological traits) that can be used to derive

labels. Second, the occurrence of specific events derived from the fact table are critical alternatives to label data. In

the context of healthcare data, diagnostics and treatments can be used as the desirable classes/medical conditions.

Mixtures of distinct attributes. Although a large variety of data domains can already be covered by the previously

introduced data structures, the proposed mappings are insufficient to learn from data structures characterized by

the presence of static and temporal attributes. Illustrating, healthcare data domains can be given by: timestamped

events associated with diagnostics and treatments; time series associated with recurrent evaluations; and static

attributes capturing the patient profile. In this context, we propose the mapping of these complex data structures

into multi-sets of events (which can be consequently mapped as time-enriched itemset sequences).

For this aim, two principles are proposed. First, time series are consistently seen as events equally spaced

in time. Second, we consider a static attribute as an event with a special timestamp. Special timestamps are

dedicatedly interpreted by algorithms according to their behavior. One option is to use static attributes across

observations with a unique timestamp to guarantee their coherent appearance within the target arrangements. A

complementary option is to assign a recent timestamp whenever the algorithm benefits more recent events (in

order to minimize their exclusion from arrangements). Under these two principles, mixtures of attributes can be

soundly seen as multi-sets of events.

Concluding Note. Throughout this section, we extended previously proposed mappings towards labeled data

contexts and tackled the yet unanswered problem of dealing with domains characterized by a mixture of distinct

(possibly temporal) attributes. A consistent temporal structure resulted from all the previous procedures: integra-

tive, temporally-enriched and labeled itemset sequences. For simplicity sake, the following sections assume that this is

the observed input data structure, independently of whether raw data is described by multi-dimensional databases,

multi-sets of events, three-way time series or any other data structure.

4.3.2 Pattern-based Classifiers for Labeled Structured Data

Under the proposed mappings in previous section, the developed deterministic methods to learn from (temporally-

enriched) itemset sequences in Chapters IV-1 and IV-2 are in this section extended with: 1) discriminative criteria,

2) scoring and composition schema, and 3) matching and labeling criteria.

Different strategies have been proposed in literature on how to use temporal patterns from itemset sequences
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for classification [204, 481]. However, they are only prepared to capture frequent precedences and co-occurrences,

and are thus not able to consider temporal distances between items, which is a critical requirement for the tar-

get classification models. Additionally, they have been developed in the context of specific data domains and,

consequently, the argued levels of performance no longer remain valid for alternative domains.

In order to address these observations, we provide a new associative classifier, referred as P2MID (Pattern-based

Predictive Models from Integrated Data), able to model, score and compose discriminative temporal patterns from

time-enriched itemset sequences (Sections 4.3.2.1 and 4.3.2.2) and test observations against them (Section 4.3.2.3).

Moreover, the resulting classifier is further enhanced in Section 4.3.2.4 to guarantee a tuned behavior towards the

peculiarities associated with the learning of arrangements of discriminative events from multi-sets of events and

discriminative cascade models from three-way time series.

4.3.2.1 Discriminative Temporal Patterns

In its first stage, P2MID generates a set of discriminative time-enriched sequential patterns for each label. Accord-

ing to Def.IV-2.4, a time-enriched sequential pattern is a sequence of itemsets together with their expected time

partition of occurrence, P=<(I1, ϕ̂1), .., (Is, ϕ̂s)> where ϕt=median(∪xi∈ΦPϕk(It ,i)). P2MID computes these temporal

patterns by fixing multiple temporal aggregations (δ ∈ {1, 2, ..}) followed by the discovery of co-occurrences for

coarser-grained aggregations under a penalization factor to benefit the discovery patterns that occur for small time

intervals. Section IV-2.3.2 provides further details and illustrations.

P2MID efficiently composes rules with disjunctions of labels in the consequent according to the principles

introduced in Section VI-1.3.1 (joining rules with promising increase of discriminative power and avoidance of

redundant calculus by storing relevant counts).

In order to guarantee their discriminative power, P2MID revises the concept of support and lift. First, a new

weighted support concept (Def.4.2), that allows for supporting observations to deviate from the expected pattern

with regards to: 1) the matched elements (fraction of noisy elements below a parameterizable threshold), and 2)

their time frame (allowing adjustable temporal shifts). Second, and grounded on this weighted support concept,

we propose a variant of the lift metric to adequately measure the discriminative power of the target rules from

temporal patterns (Def.4.2). Similarly to the benefits of using lift enumerated in Section 1.3.1, its use in the context

of rules from structured data can deal with data imbalance and rules with disjunctions of labels on the consequent.

Def. 4.2 Given a labeled time-enriched itemset sequence A ∈ (X,C), a noise threshold µ, a temporal shift threshold
δ, and a decision rule R : P ⇒ C in A (where P is a temporal pattern according to Def.2.4 and C is a subset of
labels in C):

• the weighted support, supP is the number of observations that respect P. An observation x respects P if
it has the at least a fraction of (1-µ) the total items of P occurring on the same time partitions or at least
within δ distant-partitions;

• the lift of a rule is li f tR= supR
supP supC

, where: supR:P⇒C is the number of observations respecting P (w.r.t. µ and
δ) with a class in C, supP is the weighted support of P, and supC is the fraction of total observations with a
class in C.

Illustrating, consider a temporal pattern P=<({a, f }, t2), ({d}, t4)> and two observations x1=<({a, f , e}, t1), ({g}, t2),

({d, c}, t4)> and x2=<({a, b}, t1), ({d}, t3), ({a}, t4)>. Given µ= 1
4 and δ=1, x1 respects P since all the precedences and co-

occurrences of P are satisfied ({a, f } is observed with one temporal shift and {d} occurs in the same exact partition).

Since x2 has 1
3 > µ of noisy elements, it does not respect P.

4.3.2.2 Composition of Temporal Patterns

P2MID scores the learned rules using an integrative score according to the support, length, and discriminative

power of the retrieved temporal patterns. For this aim, a revised version of (VI-1.2) score is considered. Given an
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labeled dataset A and a rule P⇒C in A, the proposed integrated score is defined as:

ωR = α1
supR

supP

supC

supC
+ α2

supR

n
supC

supC
+ α3

Σs
j=1|I j|

m × p
(4.1)

where m is the number of attributes, p is the average number of occurrences per temporal attribute and <(I1, ϕ1), .., (Is, ϕs)>

is the temporal pattern. The three parcels of this equation respectively measure the discriminative power, relative

support, and relative length of a temporal pattern.

Variations of this score can be easily coded within P2MID. Let us consider the two following variants. First,

temporal patterns with short time frames can be preferred in order to avoid the domination of the learning by

temporal patterns spanning the whole timeline. Second, temporal patterns with itemsets occurring on certain time

partitions can be preferred. Illustrating, more recent occurrences can be prioritized, and thus temporal patterns

containing a large fraction of old occurrences can be penalized.

Similarly to CMAR [401], these rules are inserted in a tree structure if: 1) the χ2 test over the rule is above a

specified α-significance level, and if 2) the tree does not contain a rule with higher priority (based on the computed

integrative score). This tree defines the discriminative pattern-based model, which can be alternatively mapped

into simple ordered set of tuples (pattern s, class c, weight β).

Whenever the tree shows imbalance with regards to the number of rules per class and their scores, the tree is

pruned based on the computed priorities according to CMAR [401].

4.3.2.3 Testing Observations against Temporal Patterns

Finally, the learned associative model (pruned tree) is used to classify a testing observation by identifying the

closest temporal patterns and relying on their matching score for the target labels. The strength of each condition

is calculated by computing the WIS score based on all the rules P ⇒ C that satisfy a matching criterion between

the pattern P and the testing observation. The strongest condition, y ∈ Y, is delivered (deterministic output) or,

alternatively, the computed strength for each class (probabilistic output). The WIS score is parameterized with the

previously defined integrative score: WIS c =
∑

match(R:ϕB⇒C|c∈C)

supc

supC
ωR.

Def. 4.3 Given a rule R : P⇒C with score ωR, an observation xnew matches P if it respects P with regards to a
certain allowed level of noise µ and temporal mismatch δ.

In this context, matching occurs if the the co-occurrences and precedences from a temporal pattern are mostly

preserved for the testing observation, as well as their time frame (different time partitions can be observed as long

as they preserve the input time shift condition).

The number of shifted partitions is used to penalize the rule score, as well as the level of tolerated noise.

According to Def.VI-1.8 both linear and squared penalizations can be considered for this end.

4.3.2.4 Variants to Handle Data Specificities

Learning from Cascades. The proposed associative classifiers can be further extended for the adequate modeling

of discriminative cascades given by the learned temporal patterns. First, to guarantee that the target discriminative

temporal patterns are robust to noise, the postprocessing procedures described in Table IV-1.1 can be directly

applied along the discovery step. These procedures aim to adjust the discovered regions by merging, extending,

filtering and reducing sequential patterns. The fact that sequential patterns are now temporally annotated does

not interfere with the proposed procedures (essentially based on the similarity between two cascades and of the

homogeneity of a single cascade). The time annotations should, nevertheless, be updated whenever a sequential

pattern is modified based on the properties of the introduced/removed items and observations. Complementarily,

other strategies, such as multi-item assignments, can be considered to increase the tolerance of the target regions
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(given by temporal patterns) to noise.

To facilitate the analysis of the learned associative model, the principles proposed in Section IV-1.3 can be

considered to extract modules and their causal or parallel dependencies from a time-enriched sequential pattern.

Although this step is optional for classification, it promotes its interpretability.

Finally, the high-dimensionality of data contexts where regulatory/behavioral cascades are observed poses chal-

lenges in terms of efficiency. As such the discovery of discriminative temporal patterns should consider some of

the principles proposed in Section IV-1.3.4, namely removal of uninformative elements, preference towards ver-

tical data formats, searches oriented to model itemsets with a high number of co-occurrences, data partitioning

principles, searches for approximative or top-K-dissimilar patterns, and the effective incorporation of constraints

associated with preferred forms of homogeneity and expectations on the minimum support, length and items per

cascade.

Learning from Arrangements of Events. Contrasting with the learning of discriminative cascades, the use of

multiple temporal granularities and of time annotations is mandatory for learning arrangements of events to deal

with the arbitrary sparsity of a multi-set of events. Additionally, postprocessing procedures should be also applied

in this context to: provide dissimilarity guarantees between arrangements extracted using multiple temporal gran-

ularities, and to increase their tolerance to noise. In this context, the similarity between two arrangements of

events (for filtering and merging) is given by the alignment-based score in Algorithm 2, and the homogeneity of

an arrangement of events (for extensions and reductions) is given by the number of noisy and/or missing events

across observations.

4.3.3 Stochastic Classifiers for Structured Data

Contrasting with deterministic classifiers, stochastic classifiers can offer a critical probabilistic and noise-sensitive

view of discriminative temporal patterns. To rely on the contributions along Chapters IV-3 and IV-4, we reuse the

proposed hidden Markov models (HMM) and enhance them to classification. In fact, HMMs have been originally

proposed in the context of classification [399], and their maturity, expressive power, inherent simplicity, flexible

parameter-control and propensity to deal with temporal data [390] turn them an interesting candidate for the

target task. Bilmes [73] refers that there is no theoretical limit to HMMs performance given enough hidden states,

rich enough observation distributions, sufficient training data, and appropriate training methods. Furthermore,

the limitations1 associated with the use of HMMs for the unsupervised learning of local descriptive models were

addressed throughout Chapter IV-3. In this context, we proposed expedite architectures to model co-occurrences

and precedences from (temporally-enriched) itemset sequences, data-driven statistics for the adequate initialization

of their transitions and emissions, adequate learning settings, and architectures able to model an arbitrary number

of (dissimilar) patterns without propensity to spurious background matches. These baseline contributions were

extended in Chapter IV-4 to enable the extraction of temporal guarantees from the learned lattices.

Given the introduced stochastic learning functions, the goal becomes centered on defining adequate training and

testing functions for classification. Two options can be considered. The first option is to apply the previous learning

setting on each class-conditional set of observations; retrieve informative regions from the learned lattices using

the decoding principles described in Algorithm 9; and make use of the associative training and testing functions

proposed in the previous section on top of the decoded regions. These regions are given by class-conditional

temporal patterns associated with highly probable paths of transitions and emissions. Despite the consistency of

this option, it suffers from two major problems. First, since the retrieval of regions is done independently for

each class-conditional generative model, there is a heightened propensity that many of the decoded regions are

1Major limitations for the application of HMMs to model relevant regions from time-enriched itemset sequences include: 1) restricted task formulations
(targeting univariate sequences and contiguous items), 2) the need for prior assumptions (expected number, shape and length of patterns), and 3) inadequate
learning settings often characterized by a loose convergence of items associated with spurious background matches.
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not discriminative. Second, there is a significant loss of (potentially) relevant information associated with the

replacement of the learned class-conditional generative models by the decoded regions.

For this aim, we suggest the use of the default HMM-based classification setting, where the learning is applied

on each class-conditional set of observations to produce |C| generative models and then a testing function is directly

applied to test the fit of a new observation against each one of the learned class-conditional models. This second

option minimizes the previous problems. In particular, the discriminative power is guaranteed during the testing

phase by studying the differences in likelihood across the |C| models. Furthermore, since the likelihood of a given

model to describe a testing observation is based on the combinatorial sum of the joint probability of all possible

paths, no loss of information is incurred.

Since the testing stage can be computationally expensive, we rely on the Viterbi algorithm for its efficient

implementation according to the principles for traversing lattices described by Bishop [74].

Variants to Handle Data Specificities. According to the extensions explored in Chapter IV-4, the proposed classi-

fiers based on HMMs can be adapted according to the properties of the input data. Illustrating, when stochastically

modeling data described by numeric attributes only, continuous HMMs can be considered.

The modeling of cascades from three-way time series can be largely improve through the adequate use of: 1)

incremental learning principles (to dynamically adapt architectures throughout the learning based on the observed

path convergence), 2) postprocessing procedures, and 3) architectural changes to adequately interpret multi-item

assignments. The modeling of arrangements of events is dependent on the: 1) adequate adjustment of the proba-

bility associated with emissions of delimeters according to the average sparsity and selected temporal granularity,

and 2) effective retrieval of time frames.

The listed contributions are integrated within a new classifier, referred as MaCID (Markov-based Classifier from

Integrative Data). MaCID can be further extended to allow the: 1) discovery of discriminative regions of interest by

focusing on the differences between class-conditional models, and 2) effective incorporation of constraints based

on user expectations by parameterizing the underlying Markov-based architectures.

4.4 Results and Discussion

P2MID and MaCID classifiers were implemented in Java (JVM v1.6.0-24). MaCID was implemented as an extension

of the HMM-WEKA package2. We run experiments in an Intel Core i5 2.80GHz with 6GB of RAM.

Data. The proposed classifiers were evaluated over the healthcare heritage prize database3, a structured dataset

combining: 1) temporal attributes given by sets of events and feature vectors (time series) collected along two

years, and 2) static attributes based on the patient’s profile. In particular, it integrates detailed claims (multi-

sets of events) and a monthly number of laboratory tests and prescribed drugs (time series) for 113000 patients.

According to Section 4.3.1, the original relational database was mapped into a multi-dimensional database and

finally into a time-enriched itemset sequence for the consistent integration of the different types of attributes.

Three temporal granularities were considered: month, quarter and semester. For the month, quarter and

semester granularities, each patient has respectively an average number of 4 (σ=2), 12 (σ=3) and 24 (σ=4)

events/items per temporal partition/itemset and 36, 12 and 6 event-sets/itemsets per sequence.

We target the classification of three different medical conditions: 1) surgery anticipation for the upcoming quar-

ter, 2) average number of drug prescriptions for the upcoming month (by grouping prescription levels into four

classes {0,1,2−5,6+}), and 3) hospitalization needs in the upcoming period. Upcoming predictions are accom-

plished by removing the last temporal partition from training data. In particular, for the last task, we also removed

health records (HRs) related with hospitalizations, meaning that these predictive models were only learned from

2Software available in http://web.ist.utl.pt/rmch/research/software and implemented according to [74, 478].
3http://www.heritagehealthprize.com/c/hhp/data (under a granted permission)
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attributes related with claims, diagnoses, lab analysis and drug prescriptions. A sample reduction method was ap-

plied over the original population to balance the number of observations per class. A random population of 20000

patients with heightened clinical activity was consider for each one these three tasks.

Evaluation Setting. P2MID and MaCID were compared against classic classifiers (average of C4.5, kNN, Naive

Bayes, NN and SVM from Weka [287]) by mapping the last 4 occurring events per attribute as regular features.

Missing values were imputed for patients with less than four occurrences for the monitored attributes.

Following the principles proposed in Chapter II-1 the assessment of classifiers follows a 10-fold cross validation,

and differences in performance were tested using a t-test over the collected accuracy estimates (preserving folds)

with 9 degrees of freedom. Note that the provided results in this section slightly differ from previously published

results in [302] since P2MID and MaCID assume additional behavioral variations described in this section.

Results. Figure 4.4 illustrates the observed accuracy levels for the different medical tasks. The horizontal line

corresponds to the default accuracy from a random learner based on the number of classes per task, 1
|C|

. P2MID

and MaCID perform better than traditional classifiers across the selected prediction tasks. This improvement is

statistical significant (at α=1%) and motivates the importance of modeling temporal and cross-attribute depen-

dencies. P2MID shows a distinctively better accuracy against MaCID for the surgery prediction task (at α=5%).

This is potentially related with the fact that the anticipation of surgeries is well modeled by specific compact sets of

health-records with heightened discriminative power. Contrasting, MaCID shows higher accuracy for the anticipa-

tion of hospitalizations (at α=1%) due to the relevance of using a more broad view of clinical activity and MaCID’s

ability to better model stochastic uncertainty.

Figure 4.4: Classification accuracy of generative, pattern-based and classic learning models for three different medical tasks
using a month granularity.

The efficiency of the proposed classifiers was assessed for a varying number of patients and events. Figure 4.5

gathers the results from this analysis. The time efficiency of P2MID and MaCID naturally deteriorates more rapidly

than traditional classifiers. This is explained by two factors. Traditional classifiers learn from a very small subset

of the overall events. Contrasting, P2MID needs to perform exhaustive searches under low levels of support and

MaCID performance is penalized by the length and complexity of the underlying architectures. In terms of memory,

Figure 4.5: Understand the behavior of the different predictive models: a) accuracy for varying time scales, and b) efficiency
for varying number of patients and events.
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MaCID performs significantly better than P2MID since the learned lattices are more compact than the voluminous

sets of temporal patterns found by P2MID.

Figure 4.5b compares the accuracy of P2MID and CaMID for varying levels of sparsity (number of events per

time partition) by varying a fixed temporal granularity (δ ∈ {1, 3, 6}) for the anticipation of hospitalization needs.

The use of coarse-grained time partitions (semester granularity) is associated with the deterioration of the perfor-

mance of both classifiers. For pattern-based models, the decrease on the number of partitions leads to the loss of

significant precedences as they are captured as co-occurrences. For stochastic models, the behavior becomes less

centered on sequential data analysis, which contradicts the original purpose of Markov-based models.

Figure 4.6: Impact of temporally
enriching sequential patterns.

Figure 4.6 evaluates the impact of adopting time-enriched sequential patterns

versus simple sequential patterns. The difference in performance is statistically

significant (at α=1%). First, the proposed discriminative models tend to score

preferentially patterns occurring near the time period under prediction. Also, the

allowance of temporal shifts under a penalization factor during the testing stage

offers a time-dependent informative context for classification. Contrasting, simple

sequential patterns cannot offer temporal guarantees, and, therefore, the influence

of both recent and old events to discriminate the class under prediction is not clearly

differentiated. Second, the time partitioning strategy allows to deal with heightened

levels of sparsity by choosing an adequate granularity with impact on the degree of

precedences vs. co-occurrences.

Figure 4.7: Impact of architectural
decisions in MaCID.

Finally, in Figure 4.7, the impact of using alternative HMM architectures is

evaluated. The use of fully-interconnected and left-to-right architectures (LRAs)

have a worse performance against SPA and MIA architectures (see Defs.IV-3.4

and IV-3.6). Since fully-interconnected and LRAs architectures have no ded-

icated states to emit delimiters, there is not an explicitly way of temporally

aligning sequences of event-sets. Furthermore, the inclusion of delimiters is as-

sociated with convergence problems on the emission probabilities. As such, the

proposed extensions create more adequate generative setting sensitive to the un-

derlying sparsity (given by the weight of transition probabilities towards deletion

or insertion states) and attribute interdependencies (given by the most probable

emissions along the main path). Finally, the use of multi-path architectures is

able to minimize the convergence problems associated with the event emissions

when a medical condition is discriminated by multiple arrangements of events.

4.4.1 Discussion

The proposed deterministic and stochastic classifiers show significant performance improvements for the adequate

learning from structured data contexts. Yet, their behavior show contrasting properties that should be known

before selecting the learner.

Pattern-based methods are particularly relevant when a particular class is well discriminated by small (yet highly

consensual and thus statistically significant) regions. Illustrating, when predicting the need for a specific surgery,

specific arrangements based on prior diagnoses and evaluations are typically sufficient to adequately discriminate

this condition. Therefore, P2MID is the choice for data contexts with a large number of either non-discriminative

or uninformative regions.

The proposed stochastic methods offer a more smoothed behavior since they consider all the observed ele-

ments to shape the transition-emission probabilities and rely on a probabilistic view that better models mismatches

across observations due to unexpected noise. As such, they are the natural choice for more complex classification
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tasks, such as the prediction of the needs for an hospitalization, which can be explained/discriminated by a high

multiplicity of interrelated factors (often associated with large number of lengthy arrangements).

Accordingly, the decision on when and how to use stochastic methods depend on three major factors: 1) on

the class-conditional regularities underlying data (MaCID is only required in the scarce presence of discriminative

cascades or arrangements of events); and 2) on whether the relevance of the occurrences along the timeline is

uneven (P2MID is able to differentiate the relevance of an event based on its time of occurrence to, for instance,

prefer more recent events).

4.5 Summary of Contributions and Implications

This chapter addressed the challenging task of learning classifiers from informative and discriminative regions from

(high-dimensional) structured data contexts. For this aim, the major requirements associated with this task were

motivated (including the need to model temporal and integrative cross-attribute views) and the major contribu-

tions and limitations from related work towards this end were surveyed. In this context, we overviewed recent

attempts towards the distance-based, pattern-based and stochastic classification of temporal data and, due to their

limited ability to deal with attribute multiplicity, integrative learning principles. In order to address the observed

limitations, we built upon previous contributions from Book IV and proposed two distinct classifiers.

First, we propose a pattern-based classifier, P2MID, for an associative learning based on discriminative, inte-

grative and temporal patterns. For this aim, P2MID uses discriminative criteria to affect the discovery of relevant

regions and defines a new integrative score of their relevance based on revised notions of support and lift. These

notions are, in this context, adapted to allow for the presence of structural and temporal misalignments on the

observations supporting a given temporal pattern. The allowed misalingments are also tolerated when matching a

testing observation against the learned regions. P2MID was further extended to adequately handle the specificities

of cascades and arrangements of events.

P2MID allows for variations on its default behavior. First, it can be easily parameterized to prioritize occurrences

on certain time periods to, for instance, attenuate the discriminative impact of older events. Finally, the observed

temporal mismatches between a testing observation and the learned regions can be used to proportionally affect

the score.

Second, we propose a stochastic classifier, MaCID, with dedicated architectures able to focus the learning on

specific regions of interest from time-enriched itemset sequences. Contrasting with P2MID, the discriminative prop-

erties of the learned class-conditional models are only assessed during the testing stage based on their likelihood

to describe a new observation. This turns MaCID particularly relevant for data contexts where a class is not easily

discriminated by a low number of compact regions. The customization of MaCID to support incremental learning,

the modeling of numeric data, a correct interpretation of multi-item assignments, the adequate initialization of

emission probabilities, and the efficient annotation of time guarantees are discussed.

In order to guarantee the applicability of these classifiers towards a large multiplicity of real-world data we

guarantee an adequate mapping of multi-dimensional databases, relational databases, multi-sets of events, three-

way time series into an integrative and temporal data structure. Furthermore, we showed how labels can be easily

retrieved for supervised tasks and be used to shape the proposed mappings, and proposed new principles to handle

data structures characterized by a mixture of temporal and static attributes.

The conducted experiments hold evidence for the accuracy and utility of the proposed associative classifiers.

For this aim, we selected distinct healthcare tasks, and confronted the properties of deterministic and stochastic

learners. Their performance is essentially dependent on the observed class-conditional regularities: pattern-based

models are preferred in the presence of discriminative regions, while probabilistic models are preferred when a

given class is better discriminated by a high number of interrelated factors or by global regularities.
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Classification from Significant Regions

Guaranteeing the statistically significance of classification decisions is of increasing importance to validate biolog-

ical and clinical markers and to support computer-aided decisions associated with medical, trading, marketing,

administrative and other initiatives with either high impact on daily lives or high costs. Despite the contributions

proposed along Chapters VI-1-VI-4 to learn accurate classifiers, they are insufficient to guarantee the statistical sig-

nificance of their decisions. As such, this chapter shifts the focus from the optimization of the average performance

of classifiers towards their ability to adequately generalize and thus minimize the variability of performance. As

a result, this chapter combines both accuracy and significance views to address the challenges associated with

learning local classification models from tabular and structured data.

Guaranteeing the statistical significance of classifiers learned from high-dimensional data is challenged by two

major problems. First, global classifiers are commonly applied on reduced data spaces where the significance can

no longer be properly assessed. Feature selection and other forms of dimensionality reduction are used to decrease

the complexity of the learning task, remove uninformative features and reduce the propensity of classifiers to

overfit the input data. However, these procedures cannot flexibly identify regions of interest and introduce new

forms of bias since they are mainly driven by the compactness and discriminative power of the new data space

(neglecting statistical significance). Second, local classifiers commonly infer decisions from regions associated with

minimal subsets of features whose joint values discriminate a class by chance. In particular, the decisions placed

by state-of-the-art associative classifiers and decision trees in high-dimensional data contexts are typically inferred

from non-significant regions (false positives) due to the lack of proper statistical assessments [316]. As a result,

their performance typically suffers from high variability (mainly explained by the bias component of the error) due

to an heightened underfitting propensity. This problem aggravates for data with a considerably low number of

observations (n<m).

Although Book V proposed principles to guarantee the discovery of statistically significant regions from high-

dimensional data, these principles are insufficient to guarantee their significance in labeled data contexts. A region

(either a bicluster, cascade or arrangement) can be significantly informative, yet not significantly discriminate.

As an attempt to address these observations, this work introduces new principles that guarantee the statistical

significance of local classification models without compromising their accuracy. These principles are proposed

in three major steps. First, we propose statistical tests to assess the significance of discriminative regions from

labeled tabular data. Second, we incorporate these principles within the proposed learning methods. Third, we

discuss their relevance not only in the context of associative classification, but also to guide the learning of other

local classifiers. Finally, we extend these contributions towards labeled structured data. Accordingly, four unique

contributions are made available:

• statistical tests to assess the significance of (discriminative) regions from labeled tabular and structured data;

• new class of decision trees and random forests with reduced propensity to underfit high-dimensional data;

• extended associative classifiers with bounds on the provided guarantees of significance;

• annotation of decision rules with statistical indicators of their significance to support real-world decisions.

The relevance of the proposed contributions is corroborated by initial empirical results on both synthetic and
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real-valued data. Clinical data is selected for this end due to the criticality of framing the significance of computer-

aided medical decisions, as well as biological and social data contexts with a limited number of observations.

Figure 5.1 illustrates the identified challenges and proposed contributions to guarantee the significance of

associative decisions. The need to measure the impact of training and testing functions on the significance of

decisions is tackled in the next chapter.
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Figure 5.1: Guaranteeing the significance and relevance of associative decisions in high-dimensional spaces.

This chapter structured as follows. Section 5.1 provides further background on the target task. Section 5.2

describes state-of-the-art contributions. Section 5.3 introduces the solution space. Section 5.4 gathers experimental

results that provide initial empirical evidence for the utility of these contributions. Finally, concluding remarks and

implications from this work are synthesized.

5.1 Background

The impact of learning classifiers from regions of high-dimensional data needs to be properly addressed to primar-

ily minimize their risk of underfitting data (associated with the selection of non-significant regions), but also their

risk of overfitting data (associated with the selection of regions with loose homogeneity). However, the statistical

significance of these regions (from which decision rules are inferred) is often disregarded. Instead, regions are

selected as a consequence of an improved discriminatory power. However, in high-dimensional data spaces, it is

highly probable that a small subset of the original features is able to be informative and discriminate by chance. To

our knowledge, there are not yet studies able to adequately address and quantify the impact of this problem. As

such, this chapter aims to experimentally measure how the significance of the modeled regions affect the perfor-

mance of classifiers. For this end, we further motivate this problem and explain why the contributions proposed in

the context of Book V are insufficient to answer it.

Challenges. The limitations associated with existing classifiers can be better understand when presented sepa-

rately according to the locality of their learning functions. Global classifiers have high propensity to overfit the

input data due to their inability to flexibly exclude uninformative regions [644, 200]. To minimize this problem,

global classifiers can be parameterized with procedures for dimensionality reduction to model (n, p)-spaces where

p�m. However, existing procedures to reduce dimensionality (including feature selection and hyper-dimensional

mappings) are not sufficiently flexible to guarantee the accommodation of all relevant regions and exclusion of

non-relevant regions (see Section I-1.2). As the majority of existing procedures reduce dimensionality by factors

[682, 316], the learned global classifiers show a contrasting high propensity to underfit the original data space.
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Local classifiers typically underfit the input data due to two major reasons. First, decisions are inferred from a

single or few regions, such as decisions inferred from decision trees [383, 542] and random forests [96]. In this

context, decisions are made in the absence of complete information due to a high propensity to exclude regions of

interest [316]. Second, decisions are commonly inferred from either non-significantly informative or discriminative

regions. Illustrating, consider a decision tree built over a real-valued (n=100,m=10000)-space with two balanced

classes and a branch with tests on p=3 features. There is a high probability that a decision rule based on this

region is discriminative by chance and thus non-significant. This problem is aggravated in high-dimensional data

where the number of observations does not largely exceed the number of features (Figure I-1.18 illustrates this

undesirable effect).

This chapter targets local classifiers. Yet, the proposed principles can be easily extend for the assessment of

global classifiers by seeing the input data as a single (discriminative) region and by studying how their performance

changes when this region shows varying guarantees of statistical significance.

Requirements. The contributions proposed in the context of Book V to assess the statistical significance of regions

are required towards this end. However, their sole application does not guarantee the satisfaction of the introduced

problems. First, not only the size of a region (given its homogeneity criterion) needs to be significant, but also its

discriminative power. In other words, the significance of both the support and confidence of a region (Def.VI-

1.6) must be simultaneously satisfied whenever possible to guarantee that a region is significantly informative and

discriminative.

Second, not only these statistical assessments are required, but the learning functions for tabular and structured

data contexts adequately revised to guarantee that decisions are inferred from a complete set of significant regions.

Finally, bounding the confidence of decisions is additionally required for labeled data contexts without signifi-

cantly informative and discriminative regions for one or more classes. Note that this indicator of confidence differs

from the previously introduced concept of class strength. Illustrating, a classifier with probabilistic outputs may

suggest that one class has over 90% of probability to be associated with an observation, yet this decision may have

low confidence if its inferred from non-significant regions.

5.2 Related Work

Despite the large extent of research on how to learn classifiers from high-dimensional data [345, 329, 105, 112,

552], they are not able to address the target problem due to four major limitations. First, the learning of classifiers is

(mistakenly) seen as independent from the applied forms of dimensionality reduction [589, 343]. Understandably,

dimensionality reduction can exclude relevant regions and include non-relevant regions, introducing new sources

of biases to the learning task.

Second, although a high number of classifiers proposed in literature accommodate principles to guarantee a

reduced propensity towards over/underfitting [173, 330, 405], these principles are in general insufficient when

learning from high-dimensional data with a limited number of observations [316, 345]. Illustrating, decision

trees make available pruning principles to guarantee that the learned trees do not overfit data [173]. However,

their application over high-dimensional data is typically associated with a heightened underfitting propensity since

the search for discriminative regions is finished for a given class as soon as a combination of features’ values is

able to discriminate it. To minimize this problem, random forests can be considered [405]. However, a random

forest simply adds a voting stage from a larger number of (uncertain) decisions, thus not being able to adequately

minimize the underfitting risk1.

Third, the previous limitations are aggravated for classifiers learned from structured data. In particular, guaran-

teeing the significance of the underlying regions is a challenging problem for these data contexts (see the surveyed

1The use of out-of-bag error as an estimate of the generalization error is primarily used to control its propensity to overfit data.
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work from Section VI-4.2). Furthermore, the use of classifiers based on stochastic models of data have no objective

criteria to guarantee an adequate generalization [309].

Fourth, although some classifiers place statistical tests to guarantee the inference decisions rules from regions

with high discriminative power, these tests are insufficient to guarantee the significance of these rules. Statistical

tests of the discriminative power of a region include: χ2 tests [401], Fisher tests [99], low inter-class overlap-

ping tests [497], among others [99, 130]. As such, to our knowledge, there is not yet an integrated view that

simultaneously tests the informative and discriminative significance of classification rules.

5.3 Solution

The target problem is answered in four major steps. Section 5.3.1 extends the statistical tests from Book V to statisti-

cally assess the discriminative power of regions from labeled tabular data. Section 5.3.2 shows how these statistical

views can be used to guarantee the discovery of significant regions. Section 5.3.3 relies on these contributions to

revise the behavior of both associative classifiers and random forests, as well as to annotate decision rules with

new indicators of confidence. Finally, Section 5.3.4 extends these contributions towards structured data.

5.3.1 Significance of Discriminative Biclusters: Local Assessments

This section proposes an integrated statistical assessment of the informative and discriminative power of biclusters.

Informative Regions. For the purpose of guaranteeing the statistical significance the selected regions, we rely

on the statistical tests proposed throughout Book V. Based on these tests, two major strategies were proposed

to guarantee the significance of regions (biclusters) from local descriptive models (biclustering models). First,

local statistical tests can be applied to prune the solution space or post-filter non-significant biclusters. These

tests rely on the computation of tails of binomial distributions (affected to the observed coherency assumption,

coherency strength and quality) to calculate a (corrected) p-value indicating the probability that the support of a

bicluster pattern deviates from the expectations2. Second, global tests can be used to infer constraints of minimum

size that guarantee the significance of a bicluster. These global tests rely on the assumption that significance is

verified when the number of found biclusters satisfying a minimum support (number of rows) and pattern length

(number of columns) deviates from the expected number of biclusters satisfying same thresholds. Assuming that

the expected number of biclusters follows a Poisson distribution (approximated from statistics on permuted data),

this can be easily done by studying the thresholds where this hypothesis is rejected. Similarly to the first strategy,

these global constraints can be used to filter non-significant biclusters or, more interestingly, be inputted to pattern-

based biclustering to guarantee the retrieval of a reasonable number of dissimilar biclusters able to satisfy them.

Section V-1.3.3 revised pattern-based biclustering towards this end. Both of these two strategies have pros and

cons for the goal of guaranteeing that the statistical significance of descriptive regions. Local statistical tests can

be computationally expensive in the presence of a high number of biclusters. Global statistical tests tackle this

problem and can be used to seize additional efficiency gains when the associated constraints are inputted as an

heuristic to guide biclustering. Nevertheless, global tests are less precise and have a higher propensity towards

false positives and false negatives for datasets with a non-uniform distribution of numeric/symbolic values.

By using one of the two previous strategies, we guarantee that a bicluster is informative, meaning that the

satisfied criteria of homogeneity (coherency strength, assumption and quality) is statistically significant for the

observed number of rows and columns given the global regularities underlying the input data. In the context of

labeled data, this assessment can be made for a given class-conditional partition or for a set of partitions whenever

there are labels in the consequent. We can thus say that a bicluster is informative with regards to a set of labels,

C ⊂ C, if its occurrence deviates from expectations on observations with a label in C.

2Statistical tests in: http://web.ist.utl.pt/rmch/software/bsig/
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Discriminative Regions. A bicluster can be informative yet non-discriminative, and therefore of few relevance for

an associative model. To address this problem, we also need to statistically test its relevance from a second angle:

whether it is able to significantly discriminate a subset of classes.

The simplest way to guarantee that a bicluster is both informative and discriminative is to verify if its occurrence

is significant for a particular subset of classes C and non-significant for the remaining classes C \C (where C , C).

Basics 5.1 provides an illustrative assessment of the discriminative significance of an observed bicluster. In FleBiC,

this assessment is applied by verifying that a rule B ⇒ C has a p-value lower than 0.01 for observations with

labels in C, and a p-value higher than 0.05 for the remaining observations. Illustrating, given a dataset with two

balanced classes, a rule B ⇒ C from a bicluster with ϕB pattern may have to be supported by more than 1/3 of C

observations and less than 1/5 of C \C observations in order to be considered a true positive discovery.

Basics 5.1 Illustrative assessment of discriminative regions from tabular data
Consider a tabular dataset with m=200 features, 3 classes {c1,c2,c3} with n1=n2=n3 s=40 observations, and a class-conditional dis-
cretization of features using 3 items uniformly distributed. Assume that we observed a trio of features with constant items across
10 rows for c1, 8 rows for c2, and 2 rows for c3. Is this region B statistically significant? A simple binomial calculation shows that
the probability of its support to include at least 18 {c1, c2}-observations is p′B|{c1 ,c2}

=8.4E-11 and at most 2 c3-observations is p′B|c3
≈1.

Although this probability is non-significant for c3 and it appears to be considerably low for {c1, c2}, we need to consider the effect
of: 1) the dimensionality (worst-case pB|{c1 ,c2}=

(
500
3

)
p′B|{c1 ,c2}

=1.1E-4), and 2) its deviation from expectations. Assuming the Bonferroni
correction with α=0.05 significance, then pB|{c1 ,c2} needs to be assessed against 8.3E-3. Thus, under these assumptions, the rule
B⇒{c1, c2} would be considered a true positive discovery (informative and discriminative).

Although this is a fundamental criterion to guarantee the significance of a region, additional criteria can be

defined to test meaningful ratios that accommodate its discriminative significance, including:

• χ2 and Fisher tests [401, 578];

• (normal setting) weighted product of pB|C with the probability of the ϕB to be verified at most n j times for the

remaining classes c j ∈ C\C:

pB|C

∏
c j∈C\C

q∑
x=0

(
n j

x

)
pϕB |c j

x(1 − pϕB |c j )
n j−x < α (5.1)

• (relaxed setting) ratio of the weighted conditional probabilities of occurrence:

pB|c

∏
c j∈C\C

1
pB|c j

< α (5.2)

Basics 5.2 provides an instantiation of these metrics for an illustrative dataset.

Basics 5.2 Statistical views on the discriminative power of an illustrative bicluster
y1 y2 y3 y4 y5 y6 ... y20 class

x1 1 2 4 4 6 2 ... 4 c1
x2 5 1 2 5 2 3 ... 3 c1
x3 3 2 3 2 4 5 ... 3 c1
x4 2 4 1 5 1 4 ... 2 c1

x5 2 3 1 4 6 7 ... 3 c2
x6 4 3 3 3 4 5 ... 5 c2
x7 5 2 3 3 3 5 ... 4 c2

x8 1 4 3 3 4 5 ... 3 c3
x9 3 5 4 3 4 5 ... 2 c3
x10 2 1 1 2 1 2 ... 3 c3

Figure 5.2: Discriminative region from a labeled dataset.

Consider the discrete tabular dataset provided in Figure 5.2 with
|L|=5, |C|=3 and the colored non-perfect constant bicluster B.
According to the principles proposed in this section, pB|c1 =2.0E-
5, pB|c2 =2.0E-5 and pB|c3 =7.4E-2. Assuming a Bonferroni cor-
rection, these levels need to be assessed against 4.2E-4 at
α=0.01 (significance max-threshold) and 2.1E-3 at α=0.05 (non-
significance min-threshold). As such, B⇒{c2, c3} is significant.
To compute a single ratio incorporating the discriminative cri-
teria pB⇒{c2 ,c3}≈4.8E-7 according to (5.1) and pB⇒{c2 ,c3}≈6.4E-6
according to (5.2).

5.3.2 Using Significance to Shape Associative Models

Under the enlarged notion of statistical significance, new principles are required to guarantee an adequate discovery

of significant regions from labeled (tabular) data. In line with the contributions discussed in Section VI-5.3.1, two

major strategies are proposed for this end. First, biclusters can be discovered for each class-conditional under a
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minimum support that is able to guarantee a low number of false negatives, i.e., if a bicluster is not discovered

there is a high probability of being not significant. Based on the recovered biclusters, the principles proposed in

Section VI-1.3.1.3 for the efficient composition of rules with disjunctions of labels in the consequent are extended

with local statistical tests to verify whether a bicluster is significantly informative and discriminative (by statistically

testing its support for each class).

Second, minimum pattern support and length constraints can be inferred from global statistically testing each

class-conditional data partition, resulting in a total of |C| × 2 constraints. These constraints are then used to pruned

the solution search space size, and the search is iterated until a minimum number of biclusters (or data space

coverage) is found while guaranteeing the satisfaction of these constraints.

Scarcity of Simultaneously Informative and Discriminative Regions. A given dataset may only show a compact

set of statistically significant biclusters due to the scarcity of regions with homogeneity, size and discriminative

power deviating from expectations. To minimize this problem, we propose the use of the learning functions in-

troduced in Chapter III-9 (and extended in Section VI-1.3.1) due to their ability to assume a flexible positioning,

varying coherency and quality (tolerance to noise), and thus be able to detect less trivial yet significant biclusters.

Nevertheless, when the input data space does not contain regions with flexible homogeneity satisfying the

significance criterion, one of the two following principles can be used. First, the local and global tests should rely

on more relaxed statistical thresholds (never less than α=0.1 though).

Second, and whenever the relaxation of the statistical power is not sufficient to retrieve a considerable number

of informative and discriminative regions per class according to the input stopping criteria, we suggest the output

of the top K biclusters according to their statistical p-values. By default, we consider the output of the top K=5

decision rules per class c, including decision rules with multiple classes in the consequent C (where c ∈ C). For the

few datasets where the application of this principle may be necessary, the non-significant rules should be clearly

annotated with the tested significance, and a disclaimer should be considered on classification decisions from

observations matching some of the regions of these rules.

5.3.3 Enhancing Local Classifiers for Tabular Data

Let us now discuss the implications that the proposed principles have in the behavior of local classifiers. For this

aim, Section 5.3.3.1 extends the previously proposed associative classifiers in this book, while Section 5.3.3.2 revises

decision trees and random forests. Nevertheless, the proposed principles can be alternatively used to enhance other

classifiers, including logistic model trees3 [383], PART rules4 [229], decision tables5 [373], among others.

5.3.3.1 Associative Classification

The learning schema for associative classification proposed in Chapter VI-2 is here enhanced with the principles

from previous section. In this way, the discovery of regions with flexible coherency and quality further provides

guarantees of statistical significance. The lines 11, 13 and 20 of Algorithm VI-10 are revised to guarantee the

accommodation of the previous tests, which may impact the total number of iterations in order to guarantee that a

reasonable number of rules per class is discovered.

We further propose a variant of the integrative scoring of regions defined by Eq.(VI-2.1) to accommodate the sta-

tistical significance criteria. In this context, a new component is included with weight 0.3×sigR+0.7×ωR where sigR

measures the discriminative significance of rule R and according to the score table {1:p≤0.002, 0.7:0.002>p≥0.01,

0.4:0.01>p≥0.1, 0:p>0.1}, where p is the statiscal p-value according to Eq.(5.1). Finally, the testing function is

preserved. This enhanced classifier is referred as FleSBiC (Flexible and Significant Bicluster-based Classification).

3Classification trees with logistic regression functions at the leaves.
4Classifier that builds a partial C4.5 decision tree in each iteration and makes the best leaf into a rule.
5Tests on subsets of features better discriminating each class: one region per class spanning the space of all observations.
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5.3.3.2 Decision Trees and Random Forests

Enhanced Decision Trees. A decision tree defines a tree structure where the nodes correspond to tests on the

features from a region of interest, the branches represent the outcome of a decision, and leafs define the outcome

(class). Each path from root to leaf represents a decision rule and thus defines a discriminative region (bicluster).

Figure 5.3 illustrates how a labeled tabular data is partitioned into smaller regions to compose the target tree.

Decision trees are chosen since they rely on regions with a low number of features. The search for additional

features stops whenever the combination of values for a given set of features is already able to separate two or

more classes, independently of whether they are discriminative by chance or not. In these contexts, decision trees

largely underfit the input data (decisions commonly made from less than 5% of features for m>200) and therefore

they show a high variability of error between cross-validation folds.

Figure 5.3: Decision trees are inferred from regions of interest and thus emulate the behavior of associative classifiers.

In order to assess the significance of each decision rule, Bk ⇒ C, the associated regions need to be recovered

from the learned tree and either individually tested or verified against constraints inferred from global tests (using

the principles introduced in Section 5.3.1). Leafs can be annotated with a measure of significance to offer a barom-

eter of the confidence of the decision. In this fashion, the revised decision trees output a pair (class,confidence).

The proposed assessment triggers new implications for the extension of local classifiers: non-significant ci-

conditional regions should be either removed or replaced by new significant rules as long as there is proof for their

existence. When considering decision trees this can be implemented using the two following principles.

First, non-significant classification rules (that is, tree paths with false-annotations on leafs) should be extended

to include more attributes as long as they preserve discriminative significance. This can be done by iteratively

adding attributes with the highest information gains until the grown region becomes significant.

Second, when an original or grown decision rule is not significantly discriminative (often when a region becomes

significantly informative for more than one class), the decision rule should be removed in an attempt to identify

a new one. To implement this principle, the path must be signaled, the root-feature on that path removed from

the set of candidate features, and a new path must be built using the standard behavior of the classifier with the

reduced set of candidate features. A link between the non-significant leaf node and a new root node becomes

active. In the worst-case, attributes are iteratively removed until no significantly discriminative path can be found.

In this case, the original path can be maintained and its leaf is properly annotated as non-significant, meaning that

there are no significant regions for the the class associated with this rule. The behavior of this extended decision

tree is illustrated in Figure 5.4.

Enhanced Random Forests. Despite the benefits of the proposed behavioral changes to minimize the underfitting

propensity of decision trees, they still suffer from an additional problem: decisions are inferred from a single region.

In order to address this problem, thus avoiding missing additional relevant subsets of features with discriminative

power, we propose suggest the generation of multiple (randomly seeded) decision trees according to the learning

principles of random forests.

A random forest [96] is an ensemble learning method for classification that constructs a multitude of decision

trees at training time and outputs the class that is the mode of the classes of the individual trees. Similarly
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Figure 5.4: Extended decision trees where nodes are iteratively added to promote the significance of decisions.

to decision trees, a random forest can accommodate the proposed principles to provide guarantees of statistical

significance on the underlying regions associated with the decision trees in the forest. Furthermore, and contrasting

to decision trees, it infers decisions from multiple regions (one per decision tree in the forest), thus reducing the

risk of underfitting. In this context, random forests do not only reduce the propensity of decision trees to overfit

the training data (their original purpose [96]) but also the underfitting risk.

Despite the efficiency and inherent simplicity of local classifiers based on decision trees, they suffer from a lack

of flexibility with regards to the composition of regions from discriminative features. First, discriminative power

is assessed for all the observations or observations conditioned to a specific set of values (see entropy criteria in

Basics I-1.11). Second, the use of information gain ratios based on entropy leads to constant regions. As such,

many non-trivial yet meaningful and relevant regions (varying coherency assumption and strength) are excluded.

This problem is further aggravated when the number of constant regions with statistical significance is scarce.

5.3.3.3 Annotating Classification Models

Regions from associative models and leafs from decision trees can be annotated with a measure of significance to

offer a barometer of the confidence of the inferred decisions. This measure can be either given by: 1) the observed

significance for C-conditional data partition pB|C, 2) by the ratios given by Eq.(5.1) or Eq.(5.2), 3) by a vector of

values {pB|ci | ci ∈ C}, or 4) with a Boolean flag indicating whether it is significant for C and non-significant for

C\C. In this context, in the presence of a testing observation, decisions made by associative classifiers or random

forests are framed by the significance of the underlying matched regions. This creates an informative environment

to better support medical, financial, administrative and commercial decisions.

5.3.4 Enhancing Local Classifiers for Structured Data

The classifiers proposed in Chapter VI-4 can be similarly revised to guarantee that the decisions are inferred from

significantly informative and discriminative regions. In this chapter, deterministic and stochastic classifiers were

proposed to learn from three-way time series and multi-sets of events. When considering the deterministic classi-

fiers, three major principles should be considered to foster the significance of their decisions.

First, the principles to extend the statistical assessment proposed in Section 5.3.1 can be similarly applied to

assess the significance of the target regions, yet parameterized with the dedicated statistical tests proposed in

Chapter V-4. In this context, the discriminative significance of a given cascade or arrangement of events can be

easily assessed by verifying if its occurrence is significant for a subset of classes and not significant for the remaining

classes or by applying the listed scores. Only the pB|C calculus differs.

Second, the class-conditional searches for temporal patterns (from which regions given by cascades or arrange-

ments are derived) can be preserved. However, the composed decision rules from these patterns need to be tested

according to the extended statistical assessment synthesized in the previous paragraph. Similarly to the principles

introduced in Section 5.3.2, in the absence of regions with distinctive informative and discriminative power, the
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cut-off thresholds of the proposed statistical tests can be relaxed or a parameterized number of temporal patterns

per class with the highest significance outputted (and their impact on the confidence of decision rules quantified).

Finally, and similarly to the revised scoring schema proposed for associative classifiers from tabular data, the

integrative scoring schema for the discovered regions (given by the weighted support, length and lift of temporal

patterns) proposed in Section VI-5.3.3.1 can be weighted by the significance of the composed rules from these

regions. This change is relevant since statistical significance can be loosely correlated with the weighted support

and lift of a rule (Def.VI-4.2).

When considering the proposed stochastic learning variants for classification (Section VI-4.3.3), an important

question is whether or not can we enhance them to promote significant decisions. When the proposed Markov-

based models are simply used to model and decode regions from the learned models (being associative classifiers

learned from them), the three previous principles are applicable. Alternatively, when decisions are directly inferred

from class-conditional Markov-based models to test the likelihood of a new observation, new considerations need to

be made. On one hand, the proposed Markov-based classifiers have lower propensity to underfit data in comparison

with the peer associative classifiers as they explore less-probable paths in the learned lattices (associated with less

relevant regions in data) to support the final decisions. As such, their decisions are inferred from a broader set

of data elements from the input data space. However, on the other hand, there is no way of objectively assessing

the significance of their decisions. Furthermore, although the number of iterations and convergence criteria can be

modify in order to balance the propensity of Markov-based classifiers to either overfit or underfit the input data,

there is no clear of adapting their behavior to provide guarantees of statistical significance.

5.4 Results and Discussion

Results are organized as follows. First, we study the fundamental properties of significant regions from labeled

data. Second, we explore the limitations of local classifiers by exposing decision rules learned from real-world

data. Third, we compare the performance of the extended associative classifiers, decision trees and random forests

against non-enhanced classifiers. The proposed statistical tests, FleSBiC and enhanced tree-based classifiers6 were

implemented in Java (JVM v1.6.0-24) and run with an Intel Core i5 2.80GHz with 6GB of RAM.

Evaluation Settings. We selected 4 gene expression high-dimensional datasets7 with case-control observations for

the classification of leukemia (m=7129 features and n=72 observations), distinct types of lymphoma (m=4026,

n=96), embryonal tumours outcome (m=7219, n=60), and colon cancer (m=2000, n=62). The assessment of the

classification models over these datasets followed the principles proposed in Chapter II-1.

Significance of Discriminative Regions. In order to understand the properties that turns a region simultaneously

informative and discriminative for a given tabular dataset, we conducted a theoretical analysis from the application

of the statistical tests proposed in this chapter. This analysis, illustrated in Table 5.1 shows how the discriminative

significance of a bicluster is assured based on: its properties support across classes, length, pattern, coherency

assumption and strength; and the properties of the input matrix (size, dimensionality and regularities). For this

end, we assumed the presence of two balanced classes, and selected the (5.1) statistical ratio in order to understand

the minimum number of c1-conditional observations (n1) that a bicluster needs to have to be informative for a class

c1 and, complementarily, the maximum number of c2-conditional observations n2 that need be verified on the

remaining class c2 in order to guarantee that it is discriminative. We further assumed pϕB to have items with

average, above-average and below-average probability of occurrence. Illustrating, a constant bicluster with pattern

length |J|=5 and coherency strength given by |L|=5, observed in a dataset with | X|c1 |=| X|c2 |=20000 observations

and |Y|=100 features, should satisfy the following inequality n1 > 20 ∧ n2 < 10 for below-average probability and

6Software available in http://web.ist.utl.pt/rmch/research/software
7http://eps.upo.es/bigs/datasets.html
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inequality n1 > 20 ∧ n2 < 10 for an above-average probability of occurrence. The analysis of the table suggests the

n1 and n2 observations are considerably affected by all the studied parameters.

An implication from this analysis, is that the selected (5.1) ratio provides a relaxed setting to assess discrimi-

native significance. The bounds given by the minimum and (specially) the maximum number of rows are loose, as

it can be easily verified based on the differences between n1 and n2. The application of the alternative (5.2) ratio

is associated with a decrease on the thresholds for the maximum number of observations n2. Note, however, that

both options have pros and cons when learning associative classifiers. On one hand, when requiring very large

differences on the number of supporting observations (n1 − n2), the learning algorithm may not be able to identify

a large number of regions satisfying this setting. This may lead to a scarcity of matches during the testing stage.

On the other hand, by allowing less delineated differences, regions are susceptible to have a looser discriminative

power, thus introducing unnecessary biases for the learning task.

|L| 5 5 5 5 5 5 10 5 5
|X| 100 1000 20000 200 200 200 200 200 200
|Y| 100 100 100 100 1000 20000 100 100 100
|J| 5 5 5 5 5 5 5 3 8

Constant pϕB = 1
|L|

m n1>7
n2<3

n1>12
n2<7

n1>35
n2<23

n1>8
n2<4

n1>11
n2<8

n1>14
n2<10

n1>5
n2<2

n1>17
n2<9

n1>5
n2<3

Constant pϕB = 1.2
|L|

m n1>9
n2<4

n1>16
n2<9

n1>63
n2<40

n1>11
n2<5

n1>14
n2<9

n1>18
n2<11

n1>6
n2<3

n1>22
n2<12

n1>6
n2<3

Constant pϕB = 0.8
|L|

m n1>6
n2<3

n1>10
n2<5

n1>23
n2<15

n1>7
n2<4

n1>9
n2<6

n1>12
n2<8

n1>4
n2<2

n1>14
n2<7

n1>4
n2<2

Additive (γ ∈ [0, 0.4]) n1>9
n2<5

n1>16
n2<10

n1>62
n2<46

n1>10
n2<6

n1>14
n2<9

n1>18
n2<12

n1>5
n2<3

n1>40
n2<26

n1>5
n2<3

Order-Preserving n1>15
n2<9

n1>38
n2<27

n1>267
n2<237

n1>18
n2<12

n1>22
n2<17

n1>30
n2<22

n1>18
n2<12

n1>71
n2<55

n1>6
n2<4

Table 5.1: Impact of coherency strength and assumption (and data size and dimensionality) on the minimum and maximum number of
rows per class that guarantees that a region is significantly informative and discriminative (according to Eq.(1.1)). Data is balanced and the

pattern of the assessed regions has average, below average and above average probability to occur (similarly to Table V-2.2).

Addressing the Underfitting Problem. Figure VI-5.5 illustrates the decision trees learned by C4.5 [542] for

each one of the four gene expression datasets (on some of randomly selected cross-validation folds). Two major

observations can be retrieve. First, C4.5 shows a high underfitting propensity since it only selects between 1

and 3 genes/features from datasets with thousands of genes/features. In this context, it is clearly visible that

(potentially) relevant genes are excluded from the decision process. Whenever a testing observation shows values

near the binarization boundary of a given testing feature, there is a high uncertainty associated with the chosen

path (or outputted decision). In this context, it is clear that testing the expression-levels/values of complementary

genes/features could help to guide the learning.

Second, we can see that different genes/features are selected for different folds from a single dataset. This is

indicative that the phenotypes/classes are not only discriminated by a few genes, but possibly explained by com-

plex regulatory behavior involving multiple genes. This provides further evidence for the undesirable underfitting

propensity of decisions and, subsequently, of random forests.

Figure 5.5: Decision trees learned for (some of the cross-validation folds) of colon, lymphoma and leukemia datasets using C4.5.

The application of the proposed principles to guarantee the statistical significance of the subset of the paths

in the tree led to lengthier trees. Illustrating, for the colon dataset, the revised classifier generated decision trees

with a depth ranging from 6 to 8 features (depending on the cross-validation fold). For this dataset, there were

no leaves found below a depth of 4 features (|J| ≥ 4). This contrasts with the original behavior of decision trees
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where some decisions are commonly inferred based on 1 or 2 features. It is clear that revised decision trees are less

propense to the risk of underfitting. Note, however, that the comparison of their accuracy levels (Figure 5.7) only

showed significant differences for Leukemia and Lymphoma datasets (at α=0.5). This seems to be explained by the

structural noise present in the dataset. An in-depth analysis of the variables explaining these results is considered

to be a priority for future work.

Impact of Statistical Significance in the Performance. To understand the impact of selecting regions with varying

statistical significance on the performance of local classifiers, we adapted the behavior of FleSBiC to be able to learn

biclusters with parameterizable informative significance (within an inputted range). For this analysis, we impose

FleSBiC to find a minimum number of 5 discriminative biclusters per class. This guarantees that we are able

to compare the performance of associative models that discover a similar number of regions, yet with varying

statistical significance with regards to the regions’ support. Figure 5.6 gathers the results of this analysis for the

colon dataset. Figure 5.6 further shows the impact of implementing the same conditioning on the enhanced tree-

based classifiers by including/removing nodes per path until the underlying regions satisfy the inputted criteria of

statistical significance. Three major observations can be retrieved. First, the proposed changes in the behavior of

tree-based classifiers resulted in performance improvements (reasons already explored in the previous analysis),

although their average accuracy is slightly lower than the proposed associative classifier.

Second, the performance of FleSBiC’s variant clearly deteriorates in the presence of biclusters without guaran-

tees of statistical significance (>1%). This is explained by two major factors: 1) biclusters tend to have a lower

number of supporting observations and thus the observed discriminative pattern is not verified on a high number

of observations (including some testing observations), and 2) since the probability of a bicluster occur by chance is

high, so it is the probability of being discriminative by chance.

Third, the performance slightly deteriorates when imposing regions to have high levels of statistical significance

(p-values below 1E-10%). In order to satisfy these thresholds, the biclusters need to assume the presence of a large

amount of noise, thus being associated with low quality regions (loose homogeneity). In this context, there is a

higher probability of such biclusters being discriminative by chance. In fact, a closer analysis of the lift from the

learned rules, reveals that their discriminative power is not as heightened as the rules discovered for regions with

a p-value >1E-10%.

Figure 5.6: Comparison of the accuracy of three local classifiers able to learn from regions that satisfy an pre-specified range of
statistical significance. The associative classifier (revised FleBiC) is prepared to learn from >5 discriminative biclusters per class.

These observations stress the importance of guaranteeing the statistical significance of regions (minimizing

underfitting propensity), yet simultaneously avoiding its blind optimization (minimizing overfitting propensity).

Significance of Discriminative Regions. Figure 5.7 compares the accuracy of different local classifiers with and

without guarantees of statistical significance for the colon, lymphoma, leukemia and embryo datasets. For this aim,

we selected FleBiC, C4.5 and random forests in the absence and presence of the principles proposed throughout this

chapter. Although it is clearly visible that the results improve consistently across classifiers learned from significant

regions, not all improvements were significant (at α=0.1). In this context, there is the need to analyze the causes

for the high variability of the observed error estimates across folds. The variability is slightly reduced for the

enhanced classifiers, yet considerably high. For this end, the experimental analysis conducted in the next chapter
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(Section VI-6.2) decomposes this error and relies on smoothing factors on the error in order to reveal the true

performance of the classifiers before and after enhancements.

Figure 5.7: Accuracy of FleBiC, C4.5 and random forests (with and without guarantees of statistical significance on the modeled
regions) for the colon, leukemia and lymphoma datasets.

5.5 Summary of Contributions and Implications

This chapter addressed the task of promoting statistically significant decisions by learning associative classification

models from significantly informative and discriminative regions. The relevance of this task for high-dimensional

data contexts was motivated and the major limitations of existing research discussed. To answer this task, we

revised the previously proposed statistical tests to assess the significance of regions from (single-label) tabular and

structured data towards multi-label data contexts. Second, we guarantee their effective incorporation to guide

the discovery, composition and scoring of regions. In this context, we extended existing associative classifiers

from tabular and structured data in order to guarantee that decisions are adequately inferred from significant

regions. Furthermore, we generalize these principles towards alternative local classifiers. In particular, we revise

the behavior of decision trees to minimize its underfitting propensity and motivate its use to adequately learn

random forests and logistic model trees.

We gather initial empirical evidence that shows that the inferred classification rules across distinct data do-

mains are commonly non-significant. Also, we further explore the properties that turn a given region statistically

significant. Finally, results from real data with limited number of observations show that the enhanced classifiers

are able to preserve and sometimes increase the original levels of accuracy, and have a less-variable performance.

As such, the experiments support the relevance of the proposed principles to minimize the underfitting risk of local

classifiers.

On a concluding note, the proposed statistical views and their use within local classifiers can be used to improve

the performance of classifiers, as well as to provide a simple yet robust frame to evaluate the increasing number of

implications available in literature from their application in real data, validate biological and clinical markers, and

support medical, trading, administrative and commercial decisions.

Future Work. This work opens new directions for future work. First, we expect to extend the proposed exper-

imental assessment towards different real-world data domains in order to exhaustively quantify the changes in

performance from inferring decisions from statistically significant regions. In line with this direction, we expect to

derive statistics from a large sample of research articles in the bioinformatics field to further support the relevance

of the proposed and upcoming contributions on this matter.

Second, we aim to extend this analysis towards alternative classification models, such as support vector ma-

chines, neural networks and Bayesian classifiers.

Third, the proposed principles can also be used as a pruning heuristic to narrow the search space and leverage

the efficiency of existing classifiers.

Finally, we expect to complement the proposed significance tests with additional quality criteria in order to

correctly assess the relevance of classification rules derived from regions with varying tolerance to noise.
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Learning Significant

and Accurate Decisions
Learning from significantly informative and discriminative regions from high-dimensional data is essential to reduce

the underfitting propensity of local classifiers, as well as of global classifiers reliant on dimensionality reduction

procedures. However, learning from such regions is insufficient to guarantee statistically significant decisions since

training and testing functions may introduce additional forms of bias. For instance, the use of pruning procedures

during the training stage and matching relaxations during the testing stage often interfere with the guarantees of

significance. As such, it is critical to measure and minimize the negative impact of the selected learning schema on

the significance of classification decisions.

By addressing this requirement, the learning of classifiers becomes centered on outputting statistically signif-

icant decisions. Nevertheless, the blind optimization of significance guarantees can degrade accuracy levels. For

instance, large discriminative regions with loose homogeneity can promote significance yet may be of residual

value to the classification task. In this context, this chapter tackles an additional requirement: integrating accuracy

(average error) and significance (variability of error) views.

This chapter tackles the two previous requirements, thus offering an integrative view of the contributions pro-

vided throughout this book. As a result, it provides three major contributions:

• structured view on the impact of training and testing functions on the guarantees of significance;

• principles to promote significant decisions;

• enhanced classifiers with behavior oriented to jointly optimize significance and accuracy;

Experimental results support the aforementioned contributions, providing an overall assessment on the distinc-

tive properties of the proposed classifiers (against state-of-the-art classifiers) in high-dimensional data contexts.

These results are essential to determine the validation of the thesis hypothesis.

significant
decisions

assessing impact on significance

combining accuracy view

training functions (e.g. composition)

testing functions (e.g. matching)

integrative indicators of significance

false positives

false negatives

scarcity of significant regions

imbalanced #regions per class

non-distinct class preference

Figure 6.1: Contributions to promote significant decisions without compromising accuracy.

Figure 6.1 synthesizes the proposed contributions. According to this figure, Section 6.1 describes the solution

space. Section 6.2 assesses the gains in performance of the enhanced classifiers against peer classifiers. Finally, we

provide a summary of the contributions and implications of this work.
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6.1 Solution

Below, we provide principles on how to assess and optimize local classifiers based on their learning scheme. Sections

6.1.1 and 6.1.2 quantify the impact of training and testing functions on the guarantees of significance. Section

6.1.3 provides meaningful scores of the significance of classification decisions. Finally, Section 6.1.4 enhances local

classifiers with principles to combine significance and accuracy views to guarantee a robust learning for non-trivial

data contexts.

6.1.1 Significance of Training Functions

The training step of local classifiers can degrade the guarantees of significance of the underlying regions (thus

impacting the significance of the outputted decisions) in two different ways: by either incurring in false positives

or false negatives.

On one hand, the application of pruning procedures with impact on the properties of the underlying regions is

often an inherent part of the training step that can increase the false positive rate (inferring decisions from non-

significant regions). Illustrating, the branches of decision trees are commonly pruned to minimize their propensity

to overfit data, yet this increases their underfitting risk and decreases the number of features per region thus

decreasing their statistical significance (increasing risk of occurring/discriminating by chance). In this context,

to measure the impact of similar procedures, the statistical significance of the new pruned regions needs to be

reassessed and overwrite the previously computed p-values.

On the other hand, the application of pruning procedures with impact on the composed structure and/or num-

ber of regions can increase the false negative rate (neglecting significant regions when making decisions). Illus-

trating, pruning procedures applied in associative classifers, such as CMAR [401] and the proposed FleBiC, remove

of certain regions in order guarantee a balanced number of discriminative regions per class. Understandably, the

removed regions can be statistically significant and therefore of added value to infer more informed (and conse-

quently less biased) decisions (see Figure VI-1.2). In this context, in order to measure the impact of removing

low scored (yet significantly informative and discriminative) regions, there is the need to account for the extent

(in terms of number and relevance) of lost significant regions. For this aim, there is the need to compare the

selected regions for classification with regions discovered under a search that is able to provide four guarantees:

1) flexibility (flexible structures and homogeneity), 2) adequate space exploration (ideally under strict optimal-

ity guarantees), 3) dissimilarity guarantees between regions, and 4) significance of the output regions under a

controlled false negative rate (non-conservative corrections). As BicPAMS satisfies these criteria, it can be use to

measure the incurred loss of relevant regions. Under this knowledge, the significance guarantees of the classifiers

can be linearly or squarely penalized by the degree of undesirably lost regions.

6.1.2 Significance of Testing Functions

Similarly to training functions, testing functions can also impact the significance guarantees of the outputted deci-

sions by either increasing the false positive rate or false negative rate.

On one hand, when the matching criteria is too restricted (intolerant to noise), it can cause the loss of significant

regions, thus increasing the underfitting risk by increasing the number of false negatives (missed significant regions

for a testing observation). Illustrating, associative classifiers that require the exact matching between a region and

a given observation often miss relevant information in the presence of noise.

On other hand, when the matching criteria is excessively relaxed (high tolerance to noise), it can be associated

with spuriously matched regions, thus increasing the overfitting risk by increasing the number of false positives

(considering non-relevant regions for a testing observation).

In order to guarantee an adequate measure of the previous two factors on the significance guarantees of a given

classifier, there is the need to fix an adequate matching threshold, γ, to minimize both risks. According to Def.VI-1.8,
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FleBiC fixes the threshold at γ=80%. Regions with matching above 80% are included for decision making (yet their

score is squarely penalized according to the amount of tolerated noise), while regions with matching below 80%

are discarded. In this context, the impact of either loosing significant regions or accommodating non-significant

regions can be assessed against a parameterizable γ threshold for a given domain.

6.1.3 Indicative Significance of Classification Decisions

Under the introduced criteria, an indicator of the significance of classification decisions, φ ∈ [0, 1], can be computed.

If a decision is inferred from a complete set of statistically significant regions/rules, the decision is considered to be

statistically significant. If it is inferred from both significant and non-significant regions, the fraction of statistically

significant regions can be used as an indicator of the decision’s significance. Finally, if it is inferred from an

incomplete set of significant regions, the fraction of lost regions can be either used as an alternative indicator or

multiplied with the previous indicator (fraction of significant regions) for a fair assessment.

The previous indicators can be weighted by the relevance of the matched rules for a placed decision, where

their relevance is given by the integrative score ωR (according to Eq.(VI-2.1)). Basics 6.1 provides an illustrative

context for the calculus of such indicator of a decision’s significance.

Basics 6.1 Computing an indicator of the significance of a decision
Consider a labeled tabular dataset with three c1-conditional decisions rules: R1 : B1→c1, R2 : B2→{c1, c2} and R3 : B3→c2, with
significance levels (according to (5.1)) pR1 =0.1, pR2 =0.002 and pR3 =0.007, and with integrative scores ωR1 =0.6, ωR2 =0.4 and ωR3 =0.3.
Given an unlabeled observation whose values match with the pattern of these three regions, and a classifier that infers a decision
based uniquely on {R1,R3} rules. Since the significant R2 rule is neglected and the non-significant R1 rule is considered, the decision
has an indicative significance score of 1

3 . For a more fair computation of the significance, we can weight by the region’s relevance. In
this context the significance score is 0.3

0.6+0.4+0.3≈0.23.

6.1.4 Combining Significance and Accuracy Views

Despite the relevance of promoting significant decisions, orienting the learning uniquely towards significance crite-

ria may have undesirable effects on the accuracy of classifiers. Illustrating, a classifier that neglects non-significant

regions may end up with a small set of significantly discriminative regions per class, which may lead to a scarce

number of matches during the testing step. In this context, we provide three principles to guarantee a joint opti-

mization of significance and accuracy views.

First, in the presence of a low number of significantly discriminative and informative regions per class, the

classifier should be able to accommodate additional regions (even if their significance is only satisfied under a

lower α-threshold). By default, when a local classifier is not able to discover more than 5 significant regions/rules

(including regions with disjoint consequents) per class, non-significant regions can be accommodate. This behavior

minimizes the uncertainty associated with the lack of matched regions to infer decisions, thus increasing accuracy.

Second, in the presence of an uneven number of rules per class, instead of pruning regions (possibly degrading

significance) or maintaining the imbalanced structure (possibly degrading accuracy), the candidate regions for

pruning are simply flagged but not removed. As such, the flagged regions are only discarded during the testing

stage whenever there are matches for two or more classes, and those classes are associated with distinct number

of flagged regions (by default, when the difference between the class with the least and most number of rules with

flagged regions is over 2
3 ).

Finally, when under the previous conditions there is either a lack of satisfied matches for a given testing obser-

vation or an unclear preference towards a single class (two or more classes with similar strength), the significance

is irrelevant since the final decision is unclear. In this context, accuracy should be optimized (in detriment of sig-

nificance) by: 1) decreasing the matching threshold (VI-1.8) and/or 2) combining this output with the output of

other classifiers (according to Section VI-3.2).
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6.2 Results and Discussion

Results are organized as follows. First, we measure how training and testing functions can affect the performance

of the proposed methods. Second, we extend the results from previous chapter by effectively measuring the effects

of the proposed principles on their performance (mean and variability components). Third, we further analyze the

over- and underfitting propensity of classifiers by studying their bias and variance. The proposed principles were

accommodated in FleSBiC and the algorithms were run with an Intel Core i5 2.80GHz with 6GB of RAM.

Introductory Note. Although the provided results in this section are self-explainable, we suggest the analysis of the

experimental analyzes undertaken in the previous chapter (Section VI-5.4) since they provide a basis to understand

how significance criteria shapes the behavior (and impacts the performance) of classifiers.

Impact of Training and Testing Assumptions. Figure 6.2 illustrates how training and testing decisions can impact

performance by promoting susceptibility to false discoveries. For this analysis, we applied the enhanced FleSBiC

on the colon dataset (high-dimensional gene expression samples to study cancer). For the analysis of training

options, we applied FleSBiC with a pruning function that selects a parameterizable number of regions per class

(varying from 1 to 20 in the provided analysis). Two major observations can be observed. First, a decrease in

the number of regions highly degrades performance since there is an inappropriate coverage of the search space.

This problem is particularly critical for FleSBiC since we allow the learned regions to be supported by a subset of

overall observations. Second, the increase on the number of regions is associated with an increase in accuracy due

to a lower risk of underfitting. When considering more than 10 regions, the discriminative power of the additional

regions becomes considerably weak. However, this does not degrade the accuracy of FleSBic the applied integrative

score adequately measures this issue. As such, FleSBiC does not incur in the risk of overfitting the input data.

For the analysis of testing decisions, we applied FleSBiC with a noise-tolerant threshold for matching new

observations against the learned regions (the threshold was varied from 20% to 100%). We can observe that

very relaxed matchings do not allow to understand whether an observation is described by a region, while very

tight matchings (including perfect matchings when the threshold is 100%) can lead to the missing of important

matchings due to intolerance to noise. These two observations are respectively associated with the risks of making

false positive and false negative decisions.

Figure 6.2: Accuracy of FleSBiC for the colon dataset when parameterized with a fixed number of regions per class and varying
relaxations for matching observations.

True Performance. An inherent challenge associated with some of the conducted analyzes in the previous chapter

is the inherent high variability of performance due to the high-dimensionality and low size of the input data (see

Figure VI-5.7). As such, it is hard to understand which classifiers perform better. Nevertheless, for classifiers

with probabilistic outputs, such as FleSBiC (able to provide the strength per class, as well as indicators of statistical

significance), the analysis of their performance can be made directly from the probabilistic outputs instead of simply

accounting for right-or-wrong decisions. This analysis is provided in Figure 6.3 for three associative classifiers –

an early variant of FleBiC (only able to focus on few regions of the data space), FleBiC and FleSBic – applied over

colon and lymphoma datasets. Interestingly, this analysis appears to better reveal their true error since it enhances

differences on their performance. Illustrating, given the output {c1=0.4,c2=0.6} for a testing observation. Under a

smooth metric, the classifier contributes with a 0.6 error estimate (instead of 1) when c2 is the true label (penalizing
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accuracy), while is able to contribute with 0.4 when c1 is the true label (benefiting accuracy).

Three major implications are derived from this analysis. First, the relevance of the proposed principles through-

out this and previous chapters (superiority of FleBiC and FleSBiC can be tested with high confidence). Second,

their role to improve accuracy (average error) and also reduce error variability. Finally, the importance of using

smoothing factors whenever possible to gain a more precise measure of the true error.

Figure 6.3: New accuracy view of FleBiC and FleSBiC based on smoothing factors to better assess their behavior over high-dimensional
data (colon and lymphoma datasets).

Generalization Error (Hypothesis Testing). We conducted an analysis of the bias and variance components of the

error associated with the previous results in this chapter. This was done by performing a 10-fold cross-validation

and generating for each fold 100 samples using bootstrap replacement. We observed that the bias component is

slightly higher than variance across settings. Understandably, a higher bias is expectable since local classifiers are

focused on specific regions of the data space, and thus can miss relevant relations (underfitting propensity). The

observed variance, a result from modeling the random noise in the training data (rather the intended regularities),

is an inevitable result of the low number of observations of the target labeled expression data.

Learning decisions that lead to a better coverage of the data space (such as illustrated in Figure 6.2 when FleS-

BiC is parameterized with a large number of regions) is associated with a decrease in the bias component without

affecting the variance component, thus creating an optimum balance. This balance is implicitly associated with a

minimized propensity towards overfitting and underfitting. This observation validates the underlying premise of

our work. In this context, we consider the study of the capacity of classifiers according to the principles proposed

throughout this book to be the top priority for future work.

6.3 Conclusion

This chapter extends the contributions of the previous chapter in order to promote an adequate learning of clas-

sification models from high-dimensional data based on their guarantees of statistical significance. This is done

by interpreting the overfitting and underfitting propensity of classifiers as a direct consequence of the impact that

their learning functions may have on the number of false positives (included yet non-significant regions) and false

negatives (neglected yet significant regions), respectively.

In this context, we explored how certain learning criteria (such as composition and matching criteria) can

contribute to either an increase of false positives or false negatives, and how this impact can be measured. We

further extended the assessment of the significance of a decision rule (from previous chapter) towards classification

decisions, proposing new scores to support real-world decisions. Finally, we enhanced classifiers with principles to

guarantee an adequate optimization of accuracy whenever significance guarantees cannot be provided.

The collected empirical evidence from real data supports the relevance of the proposed statistical view to look at

classifiers. We also identify improvements in performance from the enhanced classifiers. This observation appears

to be associated with their inherent ability to generalize with a minimized risk of underfitting the input data,

creating an optimum balance between bias and variance components of error. As such, these contributions provide

an unprecedented way to learn local classifiers with transparently assessed risks of making a false positive and/or

false negative decision.
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Multi-period Classification

for Predictive Tasks
As the majority of real-world decisions change over time, classifying an attribute of interest across different time

periods becomes increasingly important. Tackling this problem, referred to as multi-period classification, is critical

to answer real-world tasks, such as the biomedical prognostics, risk anticipation, administrative planning tasks or

the prediction of the evolving state of economic and geophysical systems. This chapter aims to propose adequate

learners (able to accommodate the proposed principles throughout Book VI) for this end. Given a database with

training observations derived (possibly structured) multi-attribute data and an attribute of interest, the target task

of multi-period classification can be informally defined as the learning of a model to label the attribute of interest

for a new observation across h>1 time periods (horizon). In other words, instead of outputting a single label, multi-

period classifiers aim to learn a sequence of h>1 labels for new observations. An illustrative task is the planning of

hospital resources by predicting if a patient will need a specific treatment within upcoming years.

Classic classification principles are not able to effectively solve this task since their separated application on

each time period implies conditional independence among the periods under classification. Nevertheless, important

contributions can be seized from related research streams. In particular, long-term prediction provides principles

for capturing the temporal dependencies among the periods for the attribute under prediction [60]. However, these

principles have not yet been extended towards classification. In multi-period classification tasks, unlike sequence

prediction and forecasting, the multiple labels under classification are not the next occurrences of an observed

sequence in the data domain. Instead, multi-period classification assumes independence between the attributes in

the domain and the attribute under classification (codomain).

Two major requirements can thus be defined for the multi-period classification task. First, multi-period classi-

fiers should model the stochastic dependencies underlying the periods under classification. Second, multi-period

classifiers should be able to embed existing learning behavior (including the classifiers proposed throughout Chap-

ters VI-1-VI-6) in order to be able to effectively deal with distinct data structures and the specificities of real-world

domains. The core contribution from this paper is, thus, to study the performance of multi-period classifiers able

to answer these two requirements.

This work motivates the need for multi-period classifiers, and proposes a method, Cluster-based Multi-Period

Classification (CMPC), that preserves local dependencies across the periods under classification, while make use of

the learning behavior of traditional classifiers. Six major contributions are provided:

• structural view on the multi-period classification task, applicability, requirements, and relation with other

streams of research;

• evaluation framework for multi-period classification, including: 1) adequate loss functions for nominal and

ordinal labels, 2) extended confusion matrices and derived performance views, and 3) advanced loss func-

tions to smooth temporal misalignments and assess error propagation along the horizon;

• hybrid single-output method able to minimize error propagation yet model dependencies between periods;

• new class of multiple-output methods based on clustering (CMPC) able to: adequately reduce and recover

the space of sequences, be applied on top of any single-label classifier, and address the limitations of (single-
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ouptut/combinatorial/circuitry) alternatives adapted from long-term prediction;

• two variants of the multiple-output method: 1) variant based on the segmentation of the horizon of prediction

to minimize the flexibility issues of the previous multiple-output method; and 2) variant based on moving

sliding windows to guarantee a more accurate modeling of the true stochastic dependencies between the

periods under prediction;

• dynamically parameterizable behavior of the proposed methods (including the number and properties of

clusters and segments) to minimize the number of false positive and false negatives.

Evaluation against real-world datasets provides evidence of the relevance of multi-period classifiers, and shows

the superior performance of the CMPC method against peer methods adapted from long-term prediction for multi-

period tasks with a high number of periods. We also show additional properties of interest associated with the

cluster-centric behavior of the CMPC method, including its propensity to deal with non-trivial combinations of

labels and an increased sensitivity towards less frequent labels without overfitting risks.

learning
sequences
of labels

requirements

applicability

evaluation

related work

solution

model dependencies between periods

embed existing (single-label) learners

prognostic, forecast, planning

extended confusion matrices

adequate loss functions

variance of error along the horizon

treating misalignments

contributions

challenges

long-term prediction

multi-label classification

single-output

multiple-output

prediction differs from classification

independence between periods (multi-label)

learning from structured data
hybrid single-output method

multiple-output methods combinatorial and circuitry functions

cluster-based functions (CMPC)
segmented periods

sliding windows

Figure 7.1: Requirements, challenges and proposed contributions for multi-period classification.

Figure 7.1 provides an overview of the challenges and proposed contributions. Accordingly, this chapter is

structured as follows. Section 7.1 formalizes the multi-period classification task and lists its major applications.

Section 7.2 surveys the contributions and limitations from related research. Section 7.3 describes the solution

space, including the CMPC approach to answer the target task. Section 7.4 describes new evaluation metrics to

adequately assess the contributions in this field. Finally, the performance of CMPC is evaluated and discussed in

Section 7.5, and the resulting implications and possible directions for future work covered in Section 7.6.

7.1 Background

In what follows, Section 7.1.1 provides a formal view of the task and its requirements, and Section 7.1.2 motivates

its increasing need to answer a wide-range of prominent real-world problems.

7.1.1 Formalization

Multi-period classification, the task of learning a mapping model to estimate a sequence of labels for an unlabeled

observation from a training set of labeled observations (Def.7.1, should not be mingled with:

• prediction tasks, the supervised estimation of the next occurrences of a (univariate) sequence based on a set

of observed sequences;
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• forecasting tasks, the unsupervised estimation of upcoming events for a time sequence;

• regression tasks, the supervised learning of parametric models to estimate a numeric attribute (C=R).

Def. 7.1 Let an univariate sequence be c = {ci | i = 1, .., h} ∈ Th, where Th is the set of all sequences with
h ∈ N length and elements ci ∈ C. Consider a dataset A with n labeled observations (xi, ci), where xi ∈ X is an
observation from a (possibly structured) domain, and ci ∈ T

h is a sequence with h > 1 labels (referred as the
horizon of prediction) from an ordinal or nominal alphabet C.

Given A, the multi-period classification task aims to learn the mapping model M : X → Th for labeling new
tuples (xnew, cnew), where cnew is unknown, that is, ĉnew=M(xnew), where ĉnew is the sequence of estimated labels,
xnew ∈ X, ĉnew ∈ T

h and h ∈ N ∧ h > 1.

Multi-period classification can be consistently formulated independently of the properties of the data domain

A, which can be tabular (where an observation is associated with a set of features) or structured (where an

observation is possibly associated with a multivariate time series or with a multi-set of events). Illustrating, consider

(xi,ci=<good,risk,hospitalization>) to be an observation associated with a patient from a healthcare data domain

where the attributes are either event-sets or simple features (such as age) and ci describes the categoric health

states across sequent periods to study the need for upcoming interventions.

Note that we do not impose an uniform temporal range for the periods under classification since c labels are

simply described by a time series. These periods may: 1) have different durations (non-uniform condition) and 2)

allow for temporal gaps (non-convex condition). Multi-period classification can be additionally applied to learn

the order of the upcoming h events.

In this context, two major requirements can thus be defined for the multi-period classification task:

• R1: Modeling stochastic dependencies underlying the sequence under classification;

• R2: Embedding existing learning functions to adequately learn from domains with varying properties.

7.1.2 Applications

The prediction of the evolving state of living, geophysical, economic and societal systems is referred as one of the

ten most critical data mining challenges for this decade [693]. The core applications of multi-period classification

can be synthesized according to three key areas.

First, the prediction of both local and global emerging trends for: i) catastrophe anticipation of epidemics or

environmental changes that may lead to hurricanes or seismic activity; and ii) the assessment of key changes

in human health (both from a clinical, psychophysiological and biological perspective) and behavior (based on

temporal data derived from social networks and web usage logs).

Second, the support to personalized decisions, such as the prognosis of a patient’s health condition over time

based on its health-records or the estimation of upcoming user behavior based on its monitored actions and profile.

Complementarily, the identification of the regularities discriminating a specific sequence of labels (such as biomed-

ical markers determining disease progression or social markers anticipating key behavior of interest) is increasingly

relevant.

Finally, the support of planning tasks for almost every system that records relevant events. An application is

the planning of physical resources (increasingly necessary for healthcare and commerce value-systems). Another

option is the estimation of critical variables to uphold transparent budgets and decisions in both private industries

and public sectors as education and social security.

7.2 Contributions and Limitations from Related Work

Despite the large research on learning classifies from a wide-variety of data structures (see previous chapters), less

attention has been given to the problem of learning sequences of classes (symbolic time series). In fact, despite
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the relevance of multi-period classification, the first dedicated attempts to formalize the problem and systematize

its requirements were only recently proposed by the authors [317, 306]. Below, we overview the contributions of

two related research streams – multi-label classification and long-term prediction – and synthesize why they are

insufficient to answer the multi-period classification task.

Multi-label Classification. A task that allows the classification of multiple classes is multi-label learning. Given a

training set of observations with h disjoint nominal labels, the task of multi-label classification is to learn a mapping

model to predict h labels for a new observation, where h > 1.

The common option to deal with multiple classes is to map this task into a set of single-label classification

tasks by performing data transformations [636]. The simplest mapping is to learn h classifiers (one for each ci

period), with the output being the union of the learned labels. Alternative transformations consider the definition

of coverage-based classifiers or the combinatorial view of multiple classes as a new class. Classifiers, such as

decision trees with modified entropies or lazy learners with label-ranking probabilities [707], have been proposed

for an improved performance in multi-label settings.

However, since multi-label learning was developed for categorization and multi-parameter diagnosis, it does

not consider conditional dependencies among the target labels (7.1). It satisfies R2 but it does not satisfy R1.

P(c | x) = P({c1, ..., ch} | x) = Πh
i=1P(ci | x) (7.1)

Long-term Prediction. A related research stream with key principles for learning series of values is long-term

prediction. Given a training dataset with sequences with m + h elements, the long-term prediction task aims to

learn a model, M : Tm → Th, to predict the h > 1 next elements of a m-length sequence.

Long-term prediction commonly follows single-output mappings. Single-output methods rely on the multiple

application of one-step-ahead predictors by learning models that either use or discard estimations across the peri-

ods under prediction. One-step-ahead predictors have been intensively researched for both numeric sequences and,

more interestingly for the target multi-period task, categoric sequences [467]. In the latter case, one-step-ahead

predictors either rely on generative models, such as dynamic Bayesian networks, Markov chains, time-delay neural

networks (NNs) and recurrent NNs, or on supervised predictive rules for constraining future events [398]. There

are two major types of single-output methods: iterative and direct. In iterative single-output methods [85], a h-

step-ahead predictor is defined by iterating, h times, the one-step-ahead predictor. In each iteration the estimated

values are used as inputs for the next iteration. This has an evident negative impact in terms of error propagation

[594]. Direct single-output methods perform the h-step-ahead prediction by learning h models, each returning a

estimate that does not depend on previous estimations. Although not prone to error accumulation, direct methods

are associated with higher functional complexity (as defined in [86]) to model the stochastic dependencies between

the observed sequences and arbitrary distant elements as they are not able to consider the underlying dependencies

among the predicted variables [86]. DirRec [595] is a hybrid method that offers a compromise between the behav-

ior of direct and iterative methods. Extensions have been proposed to deal with non-stationary sequences using

Gaussian process models with a modified covariance function [94], to learn multi-modal distributions underlying

the sequence for predictions with more delineated changes in values [419] and to deal with cyclic behavior using

modular NN architectures [62].

Contrasting with single-output methods, Multiple-Input Multiple-Output (MIMO) methods learn one model to

classify all periods at a time. The goal is to preserve the stochastic dependencies for a reduced bias. However,

these methods reduce the flexibility of single-output approaches [61]. To avoid this, Taieb et al. [613] proposes

intermediate configurations by decomposing the original task into k=h/s tasks, where s is the number of time

periods per task predicted at a time. This approach, called Multiple-Input Several Multiple-Outputs (MISMO), trades

off the property of preserving the stochastic dependency among periods with a greater flexibility of the predictor.
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Experiments show that the choice of s strongly varies according to the input data, with s=1 (direct method) and

s=h (MIMO method) being good performers in less than 20% of the cases [60]. Multiple-output predictors are

less frequent than single-output predictors since they require changes on the learning kernels. Lazy learners have

been proposed with discrepancy assessments and averaging strategies to cope with medium-to-large horizons of

prediction [86]. In order to avoid local minima problems, Ji et al. [355] extended least-squares support vector

machines as a MIMO method.

Basics 7.1 Illustrating the behavior of long-term predictors
An illustrative prediction of the 4th period for a testing observation xi would be: {xi}→c4 (direct single-output), {xi, ĉ1, ĉ2, ĉ3}→c4

(iterative single-output), {xi}→{c1, c2, c3, c4} (multiple-output with s=4) and {xi, ĉ1, ĉ2} → {c3, c4} (multiple-output with s=2).

Despite the relevance of these contributions, long-term predictors cannot be straightforwardly used for multi-

period classification. First, in multi-period classification tasks, the sequence of labels c is not necessarily a follow-up

of a sequence in the data domain. Therefore, the common parametric functions used in long-term prediction are

not well suited for this task. Second, the existing MIMO/MISMO models for capturing local dependencies across

the periods under classification require a case-by-case adaptation of the learning methods, thus not satisfying R1.

7.3 Solution: Methods for Multi-period Classification

Despite the previously proposed contributions throughout this book to learn classifiers from (possibly structured)

temporal data, there are not yet solid principles on how to effectively extend them to label an attribute of interest

across sequent periods. For this aim, the methods proposed below are designed to satisfy the R2 requirement, thus

preserving the original core learning behavior by by relying on one or more instantiations of a single-label classifier.

Figure 7.2 provides a taxonomy of the covered multi-period methods in this section. As illustrated, the proposed

multi-period solutions are independent from the learning specificities of the chosen classifier. In this way, they can

be applied over distinct data structures.

Figure 7.2: Multi-period classifiers seen as an extension of single-label learners. Three single-output strategies (iterative,
direct and hybrid) and two multiple-output strategies (combinatorial and cluster-based) are provided for the task of

multi-period classification and independent from the core learning behavior.

Def. 7.2 Consider a dataset A with n labeled observations (x, c1, .., ch).
Single-output approaches to multi-period classification label ci: 1) directly, Mi∈{1,..,h}(x), where h is the horizon of
prediction and M is classification model; or 2) iteratively, {Mi=1(x),Mi∈{2,..,h}(ĉi, .., ĉ1, x)}.
Multiple-output approaches to multi-period classification label h=ks periods (within k steps of s periods each),
{ĉps, .., ĉ(p−1)s+1} = Mp(x), with p ∈ {1, .., k}, where s is the model variance. The model variance, s, constrains the
perseveration of stochastic dependencies of the sequence: null if s=1 and maximal if s=h.

Def.7.2 maps the single-output and multiple-output methods from long-term prediction into the context of

multi-period classification. These strategies simply rely on the multiple instantiation-and-learning of single-label

classifiers to deliver the target multi-period behavior. However, single-output solutions either suffer from error

propagation or from heightened functional complexity. To address this problem, Section 7.3.1 proposes an hybrid
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single-output method to balance and minimize the errors of peer single-output methods.

Nevertheless, a shared problem by all single-output methods is that, since each period is classified indepen-

dently, they fail to capture emerging local dependencies among the periods under classification. Additionally,

existing multiple-output methods proposed in long-term prediction require a case-by-case adaptation of existing

learning settings. This forbids the use of the previously proposed single-label classifiers. In this context, Section

7.3.2 proposes a new multi-output approach able to surpass these challenges, and Section 7.3.3 extends this ap-

proach towards a MISMO variant.

7.3.1 Hybrid Single-Output Classifiers

To trade-off the behavior of iterative and direct strategies, simple hybrid methods that learn both direct and iterative

classifiers for each period and select the classifier with best performance can be adopted. Direct and iterative models

are learned using a training dataset and evaluated either over the same training observations or over a dedicated

set of observations for this purpose. Although this hybrid setting can improve the multi-period performance, it

obligates to either use all past predictions or none of them for a specific period under classification, depending on

whether an iterative or direct strategy is selected for that period. Understandably, this is only useful when there are

alternate groups of sequent periods with strong dependencies (preference towards iterative approaches) or with

very low structural dependencies (preference towards direct approaches). However, in real-world data there is no

such clear boundary on whether to use all or none of the past period predictions.

Therefore, a new hybrid strategy is proposed. This strategy removes the periods associated with the selection

of a direct model from upcoming period estimations. Algorithm 11 describes this strategy.

Algorithm 11: Hybrid single-output method to multi-period classification with removal of direct estimations (single-output decisions
tested on a validation set).

Notation: ci
j denotes the ith period of sequence c j labeled with observation x j

Method: BuildHybridClassifier
Input: {a1=(x1, c1), .., an=(xn, cn)} (observations), M′ : X → C (single-label learner)
Output: M = {M′1, ..,M

′
h} (hybrid multi-period classifier M : X → Nh)

{cpast
1 , .., cpast

n } ← {∅, .., ∅};
foreach i← 1 to h do

Part I: learning and assessment of direct and iterative models for the i period
foreach j← 1 to n do a′j ← (x j · c

past
j , ci

j); (add past predictions on X)

Mdirect
i ← buildDirectClassifier(M′, trainPortion({(x1, ci

1), .., (xn, ci
n)}));

Miterative
i ← buildIterativeClassifier(M′, trainPortion({a′1, .., a

′
n}));

correctDirect← 0; correctIterative← 0;
foreach j ∈ testIndexes({a1, .., an}) do

if Mdirect
i (x j)=ci

j then correctDirect← correctDirect + 1;

if Miterative
i (x j · c

past
j )=ci

j then correctIterative← correctIterative + 1;

Part II: remove periods associated when a direct-method is preferred
if correctIterative > correctDirect then foreach j← 1 to n do cpast

j ← cpast
j · ci

j; (concatenate i-period label);

M′i ← buildClassifier(Miterative
i ,{a′1, .., a

′
n});

Method: ClassifyObservation
Input: anew=(xnew,∅) (observation with unobserved sequence), M={M′1, ..,M

′
h} (multi-period classifier)

Output: ĉnew (sequence of classified periods, initialized with ĉnew ← ∅)
ĉpast ← ∅; (time series with past iterative predictions)
foreach i← 1 to h do

ĉi
new ← M′i (xnew · ĉpast);

if isIterative(M′i ) then ĉpast ← ĉpast · ĉi
new; (concatenate iterative prediction);

ĉnew ← ĉnew · ĉi
new (add most probable label)

7.3.2 Cluster-based Multi-Period Classification

Multi-output models return a estimation of the Th | X distribution by taking into account the dependencies between

all periods of Th within a single step. The few algorithms that learn these models suffer from a critical drawback –
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they are not independent from the core learning. This results from the need to adapt the behavior of the single-label

classifier to perform multi-period tasks. Some illustrative single-label classifiers with modified kernel functions are

local learners [86], SVMs [355] and NNs [62].

7.3.2.1 Combinatorial Behavior

The simplest way to deal with the classification of multiple values at a time is to view them as a single value. A

näıve strategy is to rely on the enumeration of all possible sequences of labels, which results in
(

h
|A|

)
classes.

Understandably, the great limitation is that this number is usually very high either for large horizons or for

lengthy alphabets, which easily leads to a training dataset with a small number of observations per class.

Basics 7.2 Circuitry to reduce exponential combinations of labels
A strategy to reduce the possible number of classes is to learn coding-and-decoding functions able to describe combinatorions of
labels among the periods of the horizon of prediction. For simplicity sake, let us assume a binary circuit for binary classes. Figure
7.3 illustrates a circuit where an horizon of prediction is characterized by contiguous local dependencies. This approach suffers from
the problem of requiring a pre-settled designed circuit. To solve this problem, two techniques can be employed. First, the definition
and use of template circuits, as customizable versions of the illustrated one, sensitive to different parameters as the horizon length
and the window of dependencies. Second, the unsupervised learning of these circuits using the training dataset, which can rely on
techniques available from research on circuits and architecture self-learning [199, 603]. Binary circuits can be extended to support
categoric classes [491].

Figure 7.3: Illustrative circuit to reduce the combinatorial space for multi-period classification

In particular, we can generalize the notion of circuits towards complex coding-and-decoding functions. In fact, these functions can
be as complex as a classification model since they similarly relate a set of domain values with a particular class. The key difference
is that their architecture must be provided apriori or learned in an unsupervised fashion. The drawback of circuits and peer functions
resides on the need to provide customizable templates to guide their learning.

7.3.2.2 Cluster-based Behavior

To overcome the problem of combinatorial and circuit-based strategies, we propose a robust alternative: Cluster-

based Multi-Period Classification (CMPC). CMPC methods identify and abstract relevant sequential behaviors across

the horizon of prediction to perform multi-period classification.

CMPC can be described according to five simple steps. First, the labels across the horizon for each one of the

training observations is used as the input for a clustering method. Second, the learned clusters are used to replace

the h labels from each training observation by the respective cluster (now seen as the class). Third, a target single-

label classifier is learned from this new set of training observations. Fourth, testing observations are classified with

a particular cluster. Finally, the centroid of the clusters is recovered and adopted as the target prediction ĉ. These

steps are described in Algorithm 12, which receives a dataset and a single-label classifier as input and outputs the

multi-period model M.

Figure 7.4 illustrates the steps of CMPC for a setting where labels correspond to a set of ordinal values. In this

illustrative setting, we can observe that clustering is able to reduce the search space by mapping similar c sequences
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(such as the third and fourth sequences) or sub-sequences (such as the two first partitions of the first sequence)

as a single cluster characterized by the centroid values. Furthermore, and unlike existing multi-output approaches,

independence from the learning setting is guaranteed since any single-label classifier can be consider within CMPC

without the need of being adapted.

Algorithm 12: Cluster-based Multi-Period Classification: MIMO variant.

Method: BuildMIMOClusterClassifier
Input: {a1=(x1, c1), .., an=(xn, cn)} (observations), M′ : X → C (single-label learner)
Variables: Σ (cluster’s identifiers),
a Cod : Th → Σ (parameterized clustering method),
a Dec : Σ→ Th (cluster decoder)
Output: M=(M′,Dec) (multi-period classifier, M : X → Th, is a pair (M′,Dec))
Σ← setClusters(Cod,{c1, .., cn},min(|C| ×

√
h, n

5 ),0.2); (Elbow local optimization)
Cod← learnClusteringModel(Cod,{c1, .., cn},Σ);
Dec← buildDecoder(Cod); (centroids of discrete model or the means of multi-Normal distribution model)
foreach j← 1 to n do

a′j ← (x j, Cod(c j)); (replaces the sequence by the learned cluster)
M′ ← learnClassificationModel({a′1,..,a′m});
M ← (M′,Dec);

Method: ClassifyObservation
Input: anew=(xnew,∅), M=(M′,Dec)
Output: ĉnew (sequence of estimated labels)
σ← M′(xnew); (estimate cluster σ ∈ Σ)
ĉnew ← Dec(σ); (derive sequence of labels)

Figure 7.4: Illustrative application of cluster-based multiple-output methods. The two variants, CMPC-MIMO and
CMPC-MISMO (with s=4), are applied to classify an ordinal attribute with |C|=5 labels for h=16 periods.

7.3.2.3 Advanced Aspects

Beyond the classifier choice, the clustering method can be either input or dynamically parameterized based on

the number of periods, labels and observations, and on the diversity and representativity of observed sequential

behavior. Three variables are considered to define adequate clustering methods:

• Algorithmic choice. Sequence clustering is the default option in CMPC to guarantee its correct ability to model

contiguity of labels and to efficiently deal with a high number of periods in the presence of large horizons of

prediction (high-dimensional symbolic time series) [546].

The clustering paradigm – either greedy (sequential k-Means [299]) or stochastic (expectation-maximization

[93]) – is dynamically selected depending on whether the distribution of observations closely follows a Gaus-

sian distribution.

Finally, a set of wrappers can be optionally allowed, including density-based wrappers to obtain a new cen-

troid criterion for the alleviation of the problems related to greedy methods [377], and hierarchical-based

wrappers [667] to consider alternative combinatorial space reductions;

• Number of clusters. The number of clusters is dynamically defined as a function of the context, based on

|C|, h, n, and the dispersion of the observed sequences of labels {c1, .., cn}. The number of clusters should
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not be too low in order to capture the specificities of different sequential behavior and to avoid time series’

centroids without delineated differences. Additionally, an excessive number of clusters result in models

with low number of observations per class. Although the number of clusters can be fixed using well-known

techniques as the k-means++ method, silhouettes or iterative validation of the clustering error [561, 605];

these techniques are not prepared to guarantee that the fixed number of clusters provides an adequate basis

for classification.

For this aim, CMPC sets the initial number of clusters to min(|C|×
√

h, n
5 ) and then dynamically optimizes this

number using the Elbow approach [625] under the guarantee that the number of clusters does not deviates

more than 20% from the initial number. |C|×
√

h guarantees that distinct sequential behavior of interest

is selected, while n
5 guarantees that, at least, approximately 5 observations are considered for each class

(cluster) in order to minimize the risk of overfitting associated with the learning task;

• Distance Metrics. Alternative sequence similarity functions, ranging from simple distance metrics as Euclidean

(default option) to more advanced ones [176] can be adopted.

Complementary, the centroid metric can be computed using the median labels (default option), the ward,

and other metrics based on operators as neighbor joining.

7.3.3 Extension of CPMC to Capture Local Temporal Dependencies

The drawback of the CMPC under a MIMO variant is its weak flexibility when compared with single-output meth-

ods. In particular, for a high number of periods, increasing the number of clusters does not necessarily improve

accuracy since the number of training observations per class decreases. To tackle this problem, we propose the

CMPC extension towards a MISMO variant.

By segmenting the periods under prediction, the problem of losing flexibility under lengthy horizons is allevi-

ated. This extension can be implemented using a direct or iterative (multiple-output) strategy, where the cluster-

based model is applied for each segment along the horizon of prediction. This strategy trades off the preservation

of stochastic dependencies among future values with a greater flexibility of the classifier.

The increased MISMO adaptivity comes at the cost of an additional parameter to define the number of periods

per segment, the model variance s. Model variance can be fixed using a sensitivity analysis, s=argmax({acch,

acch/2, acch/3, .., acch/h}), or as function of both the dimensionality h and the stochastic properties of {c1, .., cm} training

sequences. If these sequences show periodicities or local stationarity, the length of these local segments can be used

to estimate s. However, this option is not applicable to non-stationary sequences.

To address this challenge, CMPC relies on a different methodology for the estimation of s. For a given s′,

consider the clustering solution learned from the observed h/s′ segments for each observation of the training dataset

using |C|×
√

s′ clusters. By starting with s′=h and iteratively incrementing the number of segments, new clustering

solutions are computed and evaluated until the normalized clustering error (within-cluster sum of squares) no

longer decreases. The resulting number of segments defines the model variance, s=s′.

The MISMO variant of CMPC differs from the original CMPC in three aspects. First, the periods under prediction

are segmented for each observation using the s-variance. The clusters are learned using the observed behavior for

all the segments and every segment is labeled with the respective cluster. Second, instead of learning a single

classifier, one classifier is learned for each one of the segments following either an iterative or direct setting. Third,

the predicted clusters for each segment are replaced by prototype sequences given by a centroid criteria and,

finally, these sequences are concatenated for each observation to compose the estimated sequence of labels. The

CMPC-MISMO variant with iterative behavior is described in Algorithm 13 and illustrated in Figure 7.4.

An apparent concern related to CMPC-MISMO approaches is the loss of relevant sequential behavior that ap-

pears when considering the whole horizon but not within each segment. Empirical analyzes show, however, that

the iterative inclusion of already classified segments for the classification of next segments alleviates this problem.
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Algorithm 13: Cluster-based Multi-period Classification: MISMO variant.

Method: BuildMISMOClusterClassifier
Input: {a1=(x1, y1), .., an=(xn, yn)} (observations), s (model variance), M′ (single-label learner)
Variables: Σ (cluster’s identifiers), B (training sequence segments), q (number of segments),

a Dec : Σ→ Ts (cluster decoder), Cod : Ts → Σ (parameterized clustering method)
Output: M=({M′1, ..,M

′
q},Dec) (multi-period classifier, M : X → Th)

B← ∅;
If s ≤ 0 ∨ s > h then s← estimateVariance(Cod,{c1, .., cn}) (dynamic s selection)
q← h/s;
foreach j← 1 to n do

B← B ∪ {c1
j , .., c

q
j }; (segmentation of each sequence c j in q subsequences)

Σ← setClusters(Cod,B,min(|C| ×
√

s, n
5 ),0.2); (Elbow local optimization)

Cod← learnClusteringModel(Cod,B,Σ);
Dec← buildDecoder(Cod); (centroids of discrete models or means from multi-Normal distributions)
foreach i← 1 to q do

if iterativeFlag then
foreach j← 1 to n do

(adds previous clusters in the domain and new cluster in the codomain)
a′j ← (x j · {Cod(c1

j ),..,Cod(ci−1
j )}, Cod(ci

j));
else

foreach j← 1 to n do
a′j ← (x j, Cod(ci

j)); (direct: creates observation with the learned cluster)
M′i ← learnClassificationModel(M′,{a′1,..,a′n});

M ← ({M′1, ..,M
′
q},Dec);

Method: ClassifyObservation
Input: anew=(xnew,∅), M=({M′1, ..,M

′
q},Dec)

Output: ĉnew (sequence of estimated labels)
ĉnew ← ∅;
foreach i← 1 to q do

σi ← M′i (xnew); (estimate cluster σi ∈ Σ)
ĉnew ← ĉnew · Dec(σi); (concatenate labels of segement i)

7.3.4 CMPC with Sliding Windows

A variant of the CMPC-MISMO based on sliding-windows can be considered when the set of training observations

is small or not sufficiently diverse to identify discriminative sequences of labels. The sliding-window approach can

be implemented by shifting the initial s-size segment one period at a time.

However, this solution penalizes efficiency and requires the inclusion of a voting stage for periods with more

than one estimated label.

Concluding Note. Cluster-based approaches for multi-period classification provide five core potentialities. First,

cluster-based approaches provide an inherent simple and robust method for space reduction and recovery. Second,

they address the limitations of single-output methods and provide principles to minimize the pinpointed flexibility

issues of MIMO (by segmenting the horizon of prediction) and MISMO (by moving sliding windows). Third, the

application of clustering guarantees an adequate number of class-conditional observations (surpassing overfitting

problems) and provides an elegant way to allow the output of less-trivial combinations of labels. Fourth, the

easily parameterizable behavior can be used to adjust the propensity to over- and underfitting of the CMPC learner

by controlling the number of clusters and the model variance. Finally, they can be applied without the need to

adapt the selected single-label classifier. Understandably, these potentialities come with the necessary cost of losing

information by grouping similar sequences as single-values defined by the learned clusters.

7.4 Evaluation Metrics

Multi-period classification requires different evaluation metrics than those used in traditional (single-label) clas-

sification. As such, Section 7.4.1 provides an extension of accuracy and confusion matrices towards multi-period

contexts with nominal codomains. Section 7.4.2 parameterizes these performance views with more adequate loss

functions to deal with ordinal codomains. Finally, Sections 7.4.3 and 7.4.4 provide complementary metrics to
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correctly assess misaligned outputs, error propagation and overfitting propensity.

We propose the use of a 10-fold cross-validation scheme to compute these metrics. Additionally, the significance

of the observed differences per metric should be statistically tested using a paired two-sample two-tailed t-test

following a t-Student distribution with 9 degrees of freedom and testing folds preserved across settings.

7.4.1 Baseline Evaluation

Accuracy. The accuracy of a multi-period learning model is the probability that the classifier correctly labels

multiple periods for the set of testing observations (7.2).

Accuracy =
1
n

n∑
i=1

Acci(ci, ĉi) (7.2)

where ci={c1
i , .., c

h
i } is the correct sequence of labels for ith observation and ĉi={ĉ1

i , .., ĉ
h
i }) its multi-period estimation.

Multi-period accuracy Acc j can be derived from loss functions applied along the horizon per observation. If the

attribute under classification is nominal, the accuracy can simply be computed from the fraction of correct labels.

Acci(ci, ĉi) =
1
h

h∑
j=1

(c j
i = ĉ j

i ) (7.3)

When the periods under classification are ordinal, labels can be replaced by their corresponding real-values

for the computation of loss functions (see Section 7.4.2). In multi-label learning, additional functions have been

proposed to weight costs for false positives and true negatives and to detect xor differences [636]. Complementarily,

other similarity functions that treat label misalignments [176] can be applied to further study the performance of

multi-period classifiers performance (see Section 7.4.4).

Metrics from Extended Confusion Matrices. In datasets where classes are non-balanced or hold properties that

turn the classification task more complex for a subset of observations, accuracy views do not suffice. Considering

the healthcare case where only few patients are candidates for hospital intervention. A classifier can achieve a high

accuracy by simply labeling all the periods from all patients as ’no-intervention’. Complementary views include

sensitivity, fraction of observations with c ∈ C label correctly identified, specificity, fraction of observations without

c label correctly identify. F-measure can be used to trades-off sensitivity and specificity in a single metric (balanced

F-Measure by default).

For the multi-period classification task, a traditional confusion matrix can be computed for each label and for

each one of the target h periods. This solution, illustrated in Figure 7.5, has the undesirable property of not offering

compact views to study performance. For instance, a sensitivity/specificity metric needs to be computed for each

label and period in order to have a global view of the multi-period classifier sensitivity. Understandably, this can

result in impracticable high number of metrics (|C| × h).

Figure 7.5: Confusion matrices in multi-period classification settings. A confusion matrix in multi-period settings is the
composition of classic confusion matrices per label and period, which results in a total of |C| × h views.

To turn this assessment practicable, there is the need to collapse the high number of metrics from this setting.

One option is to compute a mean across the periods to eliminate the time dimension (equations (7.4) and (7.5)).

Sensitivityc =
1
h

h∑
j=1

Σn
i=1(c = c j

i ) ∧ (c j
i = ĉ j

i )

Σn
i=1(c = ĉ j

i )
(7.4)
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Specificityc =
1
h

h∑
j=1

Σn
i=1(c , c j

i ) ∧ (c j
i = ĉ j

i )

Σn
i=1(c , ĉ j

i )
(7.5)

where c is the class under assessment, and c j
i and ĉ j

i , respectively, the observed and predicted value for the j-period

and i-observation.

To assess if two classifiers, M1 and M2, differ with regards to a specific function f , such as sensitivity, we

propose the simple average of the absolute differences across the C labels. Given a specific function of labels f , this

difference is represented as 4 f = 1
|C|

Σc∈C| fc|M1 − fc|M2 |.

7.4.2 Multi-period Classification with Ordinal Labels

Multi-period accuracy Acci in the presence of ordinal labels can be derived from numeric loss functions applied

along the horizon. Representative loss functions include the simple, average normalized or relative root mean

squared error. To draw comparisons with literature results, we suggest the use of Normalized Root Mean Squared

Error, NRMSE (7.6) and of Symmetric Mean Absolute Percentage of Error, SMAPE (7.7) [61]. Other less frequent

metrics, such as the average minus log predictive density (mLPD), have been shown to hold interesting properties

for very specific data contexts.

Acci(ci, ĉi) = 1 − NRMS E(ci, ĉi) = 1 −

√
1
h Σh

j=1(c j
i − ĉ j

i )2

cmax − cmin
∈ [0, 1] (7.6)

Acci(c j, ĉi) = 1 − S MAPE(ci, ĉi) = 1 −
1
h

Σh
j=1

| c j
i − ĉ j

i |

(c j
i + ĉ j

i )/2
∈ [0, 1] (7.7)

7.4.3 Compact Performance Views

An extended confusion matrix to assess multi-period classifiers was proposed in Figure 7.5. The need to collapse

some of its axes to facilitate the analysis of results was motivated. In particular, equations (7.4) and (7.5) collapse

the temporal axis by computing the average values per metric and label across the horizon of prediction h. However,

with this option, we loose the ability to understand which periods are affecting the score. Illustrating, a multi-

period learner stable along the horizon of prediction is often preferable over multi-period learner with propensity

to classify the first periods without error but whose performance rapidly degrades along the horizon of prediction.

With the previous scores, this behavior cannot be assessed. As such, an alternative option is to collapse the labels’

axis by defining a predicate with a mapping function T . An illustrative function is one that decides whether an

observation is of interest (positive) or not based on the observed values. For example, in healthcare relevant

patients can be defined as having at least one hospitalization across the horizon of prediction. In order to avoid

the multiplicity of metrics associated with the h periods, the results can be presented under a simple test (based

on a fix β-threshold) to evaluate the adequacy of the h predictions for a particular observation, Acc(c, ĉ) ≥ β.

Understandably, this option comes at a cost of defining a new labeling function T and of optionally working with

β-threshold levels. Table 7.1 presents the revised confusion matrix for multi-period classification when two classes

are considered. Resulting round accuracy (7.8), sensitivity (7.9) and specificity (7.10) metrics from this setting are

also provided.

Condition Positive (c) Condition Negative (¬c)

Outcome Positive tp=Σn
i=1(c=T (ci))∧Acci(yi, ŷi)≥β fp=Σn

i=1(c,T (ci))∧Acci(ci, ĉi)<β

Outcome Negative fn=Σn
i=1(c=T (ci))∧Acci(ci, ĉi)<β tn=Σn

i=1(c,T (ci))∧Acci(ci, ĉi)≥β

Table 7.1: Multi-period confusion matrix

RoundAccuracyc =
tp + tn

tp + f p + tn + f n
=

1
n

n∑
i=1

(Acci(ci, ĉi) ≥ β) (7.8)

Sensitivityc =
tp

tp + f n
=

Σn
i=1(c = T (ci)) ∧ Acci(ci, ĉi) ≥ β

Σn
i=1c = T (ci)

(7.9)
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Specificityc =
tn

tn + f p
=

Σn
i=1(c , T (ci)) ∧ Acci(ci, ĉi) ≥ β

Σn
i=1c , T (ci)

(7.10)

7.4.4 Complementary Evaluation Metrics

Understandably, the proposed loss functions, Acci(ci, ĉi), to evaluate the performance of multi-period classifiers

are conservative for the cases where mismatches are caused by temporal lags. Illustrating, although the observed

ci=<0,0,1,1,2,3> and estimated ĉi=<0,1,1,2,3,4> sequences of labels can be considered dissimilar with regards to

the previous scores, in fact, their dissimilarity is simply explained by a soft misalignment associated with a temporal

shift. To avoid a significant penalization of the performance of multi-period classifiers when such misalignments

occur on the time or value axes, their evaluation can rely on more expressive similarity functions between se-

quences. Ding et al. [176] and Batista et al. [46] compare the properties of alternative similarity functions when

the attribute under classification is ordinal. Dynamic Time Warping (DTW) treats misalignments, which becomes

critical when dealing with long horizons. Longest Common Subsequence deals with gap constraints. Pattern-based

functions consider shifting and scaling in both the temporal and the amplitude axes.

When the output attribute is nominal, similarity functions proposed to compare biomolecular sequences (based

either on their functional or structural similarity) can be applied [436]. These functions are also able to identify

temporal shifts as they rely on sequence alignment operators and are, additionally, able to deal with variations on

the amplitude axis by detecting character level differences.

On one hand, these similarity functions have the advantage of smoothing error accumulation by allowing tem-

poral misalignments. On the other hand, their use can mask the structural accuracy of multi-period classifiers and

lead to more optimistic results.

Additional relevant metrics for multi-period classification include: 1) error accumulation, the propagation of

past prediction errors, which can be expressed by a bias-variance for squared loss functions; and 2) smoothness, the

ability of the learner to avoid over-fitting when noise fluctuations are present [129].

7.5 Results and Discussion

The experimental assessment of the proposed contributions is presented in five steps. First, we describe specificities

associated with the implementation of the proposed methods and the gathered datasets for the assessment. Second,

the performance of multi-period classifiers is evaluated according to the introduced accuracy views and efficiency.

Third, the impact from choosing alternative single-label learning settings is briefly assessed. Fourth, we show the

relevance of the selected performance view to accurately assess multi-period classifiers. Finally, major implications

are synthesized. The experiments were run in an Intel Core i5-2410M 2.30GHz with 6GB of RAM.

Methods. The proposed multi-period methods were codified in Java (JVM v1.6.0-24)1. CMPC was tested using two

different clustering methods, k-Means [299] and distribution-based Expectation Maximization (EM) [93], in the

presence and absence of hierarchical and density-based wrappers provided in Weka [286]. These methods were

adopted from Weka extensions BioWeka and TimeSeries [286] in order to rely on distance metrics able to compare

the similarity of symbolic time series.

Single-label classifiers prepared to learn from different data structures were selected: 1) a classic classifier,

Bayesian networks2 [517], able to learn either from tabular data or denormalized structured data (by mapping

the last m events as features); 2) a sequence classifier, HMMs3 [478], able to learn either from three-way time

series or from structured data when mapped through the use of feature vectors; 3) two advanced classifiers, P2MID

1Available in http://web.ist.utl.pt/rmch/software/evoc/
2For the used data contexts, this classifier outperformed the performance of kNN lazy learners [11] and C4.5 decision trees [542]. We hypothesize that

this is because Bayesian networks are able to implicitly model temporal dependencies from data denormalized from the target structured datasets.
3HMMs were chosen due to their maturity, expressive power and inherent simplicity.
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pattern-based models and M2ID generative models (see Chapter VI-4), able to learn from structured data contexts.

Table 7.2 describes the selected parameterizations for the considered classifiers.

Multi-period
Classifiers

Parameterized with the same single-label classifiers;
Single-output methods: iterative, direct and hybrid (Alg.11) methods with the option to remove labels;
CMPC methods with default parameters (Section 3), k-Means with nominal sequence distance and the
variances s ∈ {1, 2, 4} and s dynamically parameterized;

Single-label
Classifiers

Bayesian networks (optimized parameters through sensitivity analysis) to learn from tabular data;
Hidden Markov models (fully-interconnected architecture with 15 states and the Viterbi algorithm) to learn
from multivariate time series;
Pattern-based classifier P2MID (with default parameters) and generative classifier M2ID (with default
extended-left-to-right architecture and the Viterbi algorithm) to learn from structured data;

Data
Contexts

Three datasets, each with two-to-three distinct domain mappings (detailed in Table 7.3): tabular, single
multivariate time series, and multiple temporal attributes;

Results 10 cross-fold validation; multi-period accuracy (7.2), specificity (7.4) and sensitivity (7.5);
Paired two-sample two-tailed t-Student tests with 9 degrees of freedom;

Table 7.2: Selected experimental parameters: algorithmic settings and data settings.

Data Contexts. Three datasets were used to evaluate the proposed multi-period methods: two datasets, msnbc.com4

and diabetes5 datasets, from UCI repository [33], and the healthcare heritage database6 described in Chapter IV-2.

The msnbc.com dataset [111] traces sequences of nominal events, where each event corresponds to a user’s

page request. Events are not recorded at the finest URL level, but using |C|=17 categories, such as news, tech-

nology, opinion, and health. The goal is to rely on the n=2804 users with more than 50 events and predict the

sequence of labels corresponding to the last h ∈ {1..25} page requests from the remaining events. For this pur-

pose, after removing the last h events from data, two single-label learning settings were chosen: HMMs applied

over sequences with an average number of 107−h events, and classic classifiers applied over a fixed number of

features corresponding to the 25 events prior to the horizon of classification. This setting is of interest to study the

performance of multi-period methods in the presence of a high number of labels.

The diabetes dataset is a collection of events over a month period for a population of n=64 patients. The events

capture the taken insulin doses (regular, isophane or ultra-lente), the glucose measurements and other events of

interest, such as hypoglycemic symptoms and exercise activity levels. The selected task is to classify the expected

levels for the required daily dose of isophane insuline (NPH) for the last h={1..15} days based on the past events,

where the dose levels are Σ={Low(0-9),Normal(10-17),High(18-25),VeryHigh(25+)}. Since several insulin doses

are daily taken per patient, we performed the daily sum of insulin doses per type (regular, NPH and ultra-lente)

and the daily average of glucose measurements, which results in 4 daily events. After removing the last h days from

data, two single-label learning settings were chosen: HMMs applied over the multivariate sequences of daily events

(average number of 397−4h events per sequence), and classic classifiers applied over 65 features corresponding

to daily events (4×15 features) and additional events of interest (5 features) from the 15 days prior to the time

horizon of classification.

Finally, healthcare heritage prize database is a large-scale database that integrates healthcare claims across

hospitals, pharmacies and laboratories for n>150000 patients. The original relational scheme was mapped in a

dimensional scheme, where each patient has a registry of the claims and of the monthly number of laboratory tests

and taken drugs. We selected the planning task of classifying the level of prescription needs (|C|=5) for sequent

periods, considered to be critical for healthcare prevention and drug management. For this task we selected month

and quarter temporal granularities, and varied h ∈ {1..12}, removing the events that occurred in this time horizon.

We rely on three distinct data mappings to study the impact of alternative learning settings in the multi-period

classification task. Their details are provided in Table 7.3.

4http://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
5http://archive.ics.uci.edu/ml/datasets/Diabetes
6http://www.heritagehealthprize.com/c/hhp/data (under a granted permission)
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Setting Statistics

Denormalized data
(tabular representation)

Single-value attributes were maintained. The last five (multivariate) claims and all monthly occurrences
were denormalized as single-value attributes. Missing labels were used to fill absent claims (patients with
low clinical activity). A has 128 attributes for the month granularity (108 events and 20 static) and 88
attributes for the quarter granularity.

Multivariate time
sequence representation

Monthly mode and counting aggregations were applied for ’procedure’ and ’diagnosis’ fields from claims
to compose a time series with p=4 order, and combined with monthly lab tests. Resulting time series per
patient has 24-to-30 time points and p=5 order.

Time-enriched
itemset sequence

Details described in [302]. For the month granularity, each patient has an average number of 4 items per
itemset (σ=2) and 36 itemsets per sequence. For the quarter granularity, patients have an average number
of 12 items per itemset (σ=3) and 12 itemsets.

Table 7.3: Statistics for the healthcare heritage dataset after pre-processing.

7.5.1 Comparing Multi-period Classifiers

Structural Performance. Table 7.4 provides an overview of the performance of the proposed CMPC method over

the introduced data settings against two baseline alternatives: iterative and direct single-output strategies adapted

from long-term prediction. We selected an horizon with h=12 periods and the CMPC-MISMO method with variance

s=4 for this analysis. The p-values computed from testing the superiority of CMPC over the baseline single-output

methods (in terms of accuracy) are provided for the different data settings. This analysis is complemented by the

results provided in Table 7.5 that gather the observed accuracy levels of single-output methods and multiple-output

methods for varying parameters. Additionally, we also disclose the observed differences in sensitivity, 4sensitivity,

against direct single-output methods.

Data (h=12)
Data domain
(single-label learner)

CMPC
accuracy

Nr. of
clusters

direct
accuracy

p-value
(CMPC
vs direct)

iterative
accuracy

p-value
(CMPC
vs iterative)

msnbc.com
tabular (Naive Bayes) 0.64±0.02

38
0.61±0.02 0.01 0.61±0.02 8E-3

m=1 time series (HMMs) 0.63±0.02 0.59±0.02 7E-3 0.60±0.02 0.02

diabetes
tabular (Naive Bayes) 0.55±0.06

14
0.50±0.04 0.08 0.49±0.04 0.07

m=4 time series (HMMs) 0.59±0.05 0.52±0.03 0.01 0.52±0.04 0.02

healthcare
tabular (Naive Bayes) 0.88±0.01

11
0.85±0.01 3E-3 0.85±0.01 1E-3

m=5 time series (HMMs) 0.86±0.02 0.83±0.02 0.05 0.83±0.02 0.04
multi-attribute (M2ID) 0.92±0.02 0.87±0.02 2E-3 0.87±0.02 5E-3

Table 7.4: Performance of CMPC-MISMO (s=4, iterative behavior and default parameters) against direct and iterative
single-output methods for different datasets and single-label learners using t-tests.

msnbc.com diabetes healthcare
(times series) (times series) (multi-attribute)

method
sVariance
(h=12)

accuracy
4sensitivity
(vs direct)

accuracy
4sensitivity
(vs direct)

accuracy
4sensitivity
(vs direct)

random 1 0.06 − 0.25 − 0.25 −

combinatorial 12 (MIMO) 0.32±0.12 0.33 0.31±0.13 0.20 0.47±0.10 0.24
combinatorial 4 (MISMO) 0.49±0.08 0.27 0.44±0.07 0.13 0.79±0.06 0.17

direct 1 0.59±0.02 − 0.52±0.03 − 0.87±0.02 −

iterative 1 0.60±0.02 0.17 0.52±0.04 0.04 0.87±0.02 0.05
hybrid 1 0.61±0.02 0.13 0.53±0.04 0.03 0.87±0.01 0.05

CMPC 12 (MIMO) 0.62±0.02 0.27 0.64±0.02 0.07 0.91±0.02 0.16
CMPC 4 (MISMO) 0.63±0.02 0.24 0.59±0.05 0.07 0.92±0.02 0.14
CMPC dynamic 0.63±0.02 0.25 0.59±0.05 0.64 0.92±0.02 0.14

Table 7.5: Accuracy and differences on sensitivity (averaging absolute differences per label against direct methods) for
single-output and multiple-output methods (combinatorial and CMPC with varying variances) for data settings with h=12.

Before entering the discussion, two notes may support the analysis of these results. First, by comparing the

performance of multi-period methods with the converging performance of a random classifier (|C|−1), we observe

that the complexity of the learning tasks varies for each dataset. For instance, classifying insulin dose levels is

complex as it largely depends on unrecorded contextual factors, while anticipating the sequence of visited page’s

categories from the msnbc.com dataset is more adequately described by previous events. Second, although the
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values of accuracy are similar for some pairs of multi-periods methods (such as direct and iterative methods or

CMPC’s MIMO and MISMO methods), their behavior can significantly differ. This observation is shown by the

observed differences in the computed sensitivity among classes.

In this context, four major observations can be retrieved from these tables. First, CMPC methods have signifi-

cant accuracy improvements for the majority of the considered datasets and mappings. CMPC methods support the

learning of non-trivial sequences of labels as it is demonstrated by the number of parameterized clusters against the

number of labels (� |C|). We hypothesize from the empirical results that CMPC methods can minimize the error

accumulation of iterative single-output methods while avoid the restrictive independence among periods of direct

single-output methods. Although the absolute gains in accuracy are moderate for the msnbc.com and healthcare

datasets, the observed differences are statistically significant as the performance across folds is considerably stable.

The significance of the differences between CMPC and its peer methods increases for larger horizons h7. Second,

we observed that CMPC-MISMO variants slightly improve accuracy. Let us consider the diabetes dataset. The pro-

totype combinations of labels (sequential behavior) associated with these h/s periods (given by cluster’s centroids)

promote a more focused learning task, while are able to capture periodicities on the levels of taken insulin doses.

Now consider the msnbc.com dataset. The previous observation is no longer true due to the non-ordinal nature of

labels and high cardinality |C|. In this data context, the number of estimated clusters tends to be large, >30, and

each one of these clusters are learned from a similar number of observed observations (near 100). An interesting

property is that multiple page requests under the same category lead to sequence of events with the same label

prior to a page request on a different category, e.g. c={3,3,3,3,4,4,5,5,5,5} for h=10. In this setting, single-output

methods tend to output the same label across all the periods under classification. Contrasting, since CMPC is

learned in a setting where some clusters contain variations on the visited pages (as the number of clusters is higher

than |C|), it is more able to learn sequences with multiple labels. Third, the differences in sensitivity against direct

methods underline the different behavior of these strategies. In particular, CMPC methods are able to deal with the

imbalance (associated with the low representativity of some labels in these datasets) and thus minimize the risks

of overfitting since the learned clusters can group infrequent sequences with closer sequential behavior. Finally, the

performance of multi-period classifiers significantly varies with the chosen single-label learners since they rely on

distinct data mappings that lead to different learning complexities.

Comparing Accuracy. Figure 7.6 provides a closer look on how the accuracy of multi-period classifiers varies

with the horizon of prediction for a classic single-label classification setting (Bayesian networks over denormalized

data). Combinatorial multiple-output strategies adapted from multi-label classification are not visually represented

since their accuracy rapidly degrades with h for the diabetes dataset (due to the low number of observations)

and msnbc.com dataset (due to the high number of labels). Still, their accuracy has significant improvements

against the converging accuracy of a random classifier. When comparing the alternative methods, three major

observations can be retrieved. First, for short horizons of prediction (h≤5), the performance of CMPC is better than

combinatorial methods, while competitive with single-output peers (direct and iterative methods). A closer analysis

of the behavior of CMPC for a small number of periods reveals that the number of dynamically selected clusters

tends to be equal or slightly greater than the number of classes (|C|), thus, mimicking the behavior of single-output

methods. Second, the CMPC methods perform better than single-output methods for larger horizons. In particular,

the accuracy of the MISMO variant is statistically superior over single-output methods for the diabetes dataset

when h≥15 (assuming s=5), for the msnbc.com dataset when h≥12 (assuming s=4) and for the healthcare dataset

when h≥8 (assuming s=4). Although the absolute differences in accuracy appear to be subtler for the two latter

datasets, they stand on lower levels of variance across folds. Third, the constrained inclusion of past predictions

through the proposed hybrid approach is as competitive as the best single-output strategy and, therefore, is the

preferable single-output option.

7Complete list of results available in http://web.ist.utl.pt/rmch/software/evoc/
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Figure 7.6: Comparing the accuracy ((VI-7.2) parameterized with (VI-7.3)) of direct, iterative, hybrid and CMPC
approaches for the diabetes, msnbc.com and healthcare datasets using Bayesian networks after data denormalization.

Combinatorial strategies were excluded as the low levels of performance impact interpretability of the chart.

Comparing Sensitivity. An analysis of the levels of sensitivity (7.4) across multi-period methods maintaining the

same experimental setting is provided in Figure 7.7. The levels of sensitivity per label vary substantially due to

the differences on label-conditional learning complexity. Illustrating, the labels related to medium-to-high levels

of drug prescription (healthcare dataset) and of insulin doses (diabetes dataset) are related with patients with

less stable behavior. A major observation from this analysis is that multiple-output and single-output methods

have distinct sensitivities per label, which underlies the impact of this choice since outputs can significantly differ.

A relevant fact is that the CMPC method slightly balances the sensitivity levels across labels. This is because

frequent sequences of labels are separated in nearly equiprobable spaces through the use of clusters. Consequently,

CMPC classification models are more able to classify new observations with less probable labels (e.g. medium

levels of drug prescription) than single-output peers. This an important achievement since less probable labels are

commonly labels of interest (positive labels).

Figure 7.7: Comparing the sensitivity (according to (VI-7.4)) of CMPC MISMO and iterative single-output methods (with
Bayesian networks) for the three datasets with h=10.

Impact of Algorithmic Choices. A non-exhaustive view on how CMPC varies with algorithmic and distance choices

for the healthcare dataset is provided in Table 7.6. For a simplified analysis of the confusion matrix, we grouped

labels according two major levels of prescriptions: low level and moderate-to-high levels. The k-Means approach

holds slightly better levels of accuracy than its peers. Density-based wrappers or the EM algorithm [93] are able

to increase the number of true positives and decrease the number of false positives. However, these options are

easier prone to a slight increase in the number of false negatives. The use of similarity metrics between time series

slightly increases performance against traditional distance metrics that cannot properly score misaligned labels.
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Parameter (tabular healthcare dataset;
h=12; Σpositive={2,3,4} Σnegative={0,1})

accuracy sensitivity specificity

CMPC with default parameters 0.88±0.01 0.53±0.03 0.94±0.01
CMPC with density wrapper 0.87±0.02 0.54±0.03 0.92±0.02
CMPC with hierarchical wrapper 0.85±0.02 0.51±0.03 0.91±0.02
CMPC with classic Euclidean distance
(instead of sequences’ similarity)

0.86±0.01 0.51±0.03 0.92±0.01

Table 7.6: Impact of the different algorithmic and distance choices on the behavior of the multi-period CMPC-MISMO
method with s=4 over the denormalized healthcare dataset.

Comparing Efficiency. Figure 7.8 compares the time efficiency (clock units) of the different multi-period classifiers

for the healthcare dataset. The proposed CMPC methods have a distinctive better performance. Understandably,

the efficiency increases with s variance (∝ s) for the MISMO models due to a decrease in the number of iterations.

Contrasting, hybrid approaches are the less efficient alternatives since they have to compute both direct- and

iterative-based classifiers for each period. Single-output methods have a degrading complexity performance with

an increased horizon as the number of algorithmic iterations linearly increases. For very large horizons (h�12),

the use of multiple-output methods with lengthy temporal partitions become critical and decisive to guarantee the

scalability of multi-period classifiers.

Figure 7.8: Comparing the time efficiency of multi-period methods (with Bayesian networks) over the healthcare data.

Impact of Single-label Learning. Figure 7.9 presents the accuracy of the CMPC method (s=2) under alternative

learning settings for the diabetes and healthcare datasets. Single-label classifiers that model temporal and cross-

attribute dependencies from the data domainX promote significant improvements on the multi-period classification

task. Understandably, these improvements are associated with the ability of single-label classifiers to relate events

in the data domain and weight their relevance according to their time of occurrence. A complementary and more

detailed discussion on the performance of alternative single-label learners in data domains with multiple temporal

attributes can be found in [302].

Figure 7.9: Comparing the impact of distinct single-label classifiers for the heritage dataset with h=10 using CMPC MISMO
with s=5. Selected settings: classic classifier (Bayesian networks) from denormalized data, discriminative pattern-based

classifier (P2MID) and generative classifier (M2ID) from time-enriched itemset sequences.

Understanding Alternative Evaluation Metrics. Figure 7.10 compares alternative performance views – the round

accuracy (7.8), sensitivity (7.9) and specificity (7.10) – parameterized with different loss functions and β-thresholds

for an average multi-period classifier8. Since the attribute under prediction, number of prescriptions, is ordinal, we

considered an average mean accuracy (7.2) using the normalized root mean squared error (NRMSE) (7.6) and the

symmetric mean absolute percentage of error (SMAPE) (7.7) loss functions. We varied the accuracy threshold β

8Results are the average of direct, iterative, hybrid and CMPC (with sampling variances s={2, 4})
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from 50% to 90%. Additionally, we considered a relevance criterion based on the number of drugs prescribed per

patient, T (c) = (Σh
i=1ci) > h. Exemplifying, given an observation with the following observed and predicted values

{c=(2, 4, 6), ĉ=(3, 4, 1)} with |C|={0, 1, .., 6, 7+}, this observation is relevant since T (c)=12 > 3 and the prediction is

non-accurate since AccNRMS E(y)=57<85%.

(a) Alternative accuracy views: round (7.8) and average (7.2). (b) Compact sensitivity (7.9) and specificity (7.10) views.

Figure 7.10: Comparing alternative performance views of an average multi-period classifier for classifying the levels of drug
prescription using the heritage dataset.

Three major observations are retrieved. First, when comparing loss functions, NRMSE alleviates small differ-

ences between the predicted and observed values and penalizes larger differences. SMAPE curve has higher scores

since large differences are easily masked when the distances are normalized. Second, round accuracy (7.8) values

are worse than simple accuracy (7.2) for thresholds above 75% due to a considerable number of observations with

an accuracy slightly below the fixed β-thresholds. An analysis of round accuracy curves for a fixed horizon length

with varying β-thresholds can be used to disclose the ranges where a significant number of true decisions becomes

false. Such analysis is critical for real-life planning tasks where decisions, as the need for a specific treatment, need

to be made with certain confidence. Finally, sensitivity is substantially low for accuracy thresholds above 90%,

although it increases to more acceptable levels under more relaxed accuracy thresholds. This seems to be partially

explained by the natural variability of predicting drug prescriptions based on clinical claims and patient profile.

7.5.2 Discussion

A set of implications can be synthesized from the presented set of observations. First, CMPC methods are the natural

option for medium-to-large horizons of prediction, with the s-variance being dependent on the extent of local

sequential dependencies and approximately determined by the number of periods and labels. Illustrating, given

the healthcare dataset with |C|=5, s=h is the best option for h ∈ {2, 3, 4, 5}, while s=h/2 is the best option for h ∈

{6, 8, 10} and s=h/4 for h ∈ {12}. On one hand, CMPC can suffer from smoothing for datasets with a low number of

observations since the dynamically selected number of clusters that guarantees an adequate number of observations

per cluster (≈m
5 ) is not sufficient to capture the diversity of sequential behavior. An analysis of the clusters learned

over the diabetes dataset for a large number of periods revealed that many sequences of labels of potential interest

were neglected. Still, the focus on a specific subset of sequences of interest for classification can benefit the

learning (see Figure 7.6) since it alleviates the problem of having a prohibitive number of sequences associated

with combinatorial methods. On the other hand, for datasets with a medium-to-high number of observations, CMPC

provides an adequate learning of non-trivial sequential behavior without the risk of overfitting. This behavior is

supported by the analysis of the output sequences (with frequent combinations of different labels) and by the

improvements for the sensitivity levels for less frequent labels.

The proposed CMPC methods have the additional advantage of being able to extend the behavior of any single-

label classifier without the need to adapt the core learning task. The observed levels of accuracy from Tables 7.4 and

Figure 7.9 support the hypothesis that defining new single-label classifiers able to learn from temporal domains,

such as the domains characterized by multiple time sequences and static attributes, is critical to obtain distinctive

levels of performance for the multi-period classification task.

The use of complementary performance views is important to further tune these methods or assess the impact

of novel methods. For some data settings, the classification can be prone to temporal misalignments (e.g. need for
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hospital intervention depends on the individual pace of disease progression), which (7.2) does not account for. In

this context, the use of advanced similarity metrics for both nominal and ordinal labels (see Section 7.4.4) should

be considered for more fair and less conservative assessments.

7.6 Summary of Contributions and Implications

This work introduces the emerging task of multi-period classification and proposes new methods able to surpass

the inherent limitations associated with methods adapted from long-term prediction and multi-label classification.

Related research streams were surveyed according to the two major requirements of the multi-period classifica-

tion task: 1) independence of the single-label learning setting (enabling the use of previous proposed principles

to guarantee the accuracy and significance of classification decisions), and 2) ability to model the conditional

dependencies between the periods under classification.

A novel multiple-output approach relying on clustering methods to capture prototype sequences of labels,

CMPC, was proposed. This approach is able to preserve local stochastic dependencies without the need to adapt

the underlying single-label classifier. Additionally, the use of cluster’s centroid for space reduction and recovery is

an effective strategy to avoid the problems of combinatorial strategies and to guarantee an optimal learning that is

dynamically parameterized based on the number of periods, number of labels, number of observations and combi-

nations of labels. This parameterizable behavior is critical to jointly minimize the over/underfitting propensity of

the learning function towards data with a limited number of observations.

The conducted experiments show the superior performance of the proposed CMPC variants for distinct real data

in terms of efficiency and accuracy. We also show that cluster-centric behavior of the CMPC method is able to guide

the learning towards non-trivial sequences of labels without overfitting risks. This leads to improvements in the

sensitivity of less frequent labels.

Future work. We identify five major directions for future research. First, we expect to see the proposed (and

upcoming) multi-period classifiers applied to answer a wide-set of increasingly prominent real-world problems

(listed in Section 7.1.2). Furthermore, since the proposed formulation of the multi-period task was shown to

comply with the prediction of upcoming h events and the classification of non-uniform and non-convex periods, we

also aim to demonstrate its adequacy towards these alternative ends.

A second possible direction is to further explore principles to adequately classify high-dimensional sequences of

labels (e.g. memory sampling by selectively forgetting some of the estimated periods). In this context, we identify

two important topics of research. First, being able to frame confidence of the classified periods based on the

longevity of the period under prediction. Second, understanding when and how local-stationarity can be assumed

to guide the selection of the s-variance parameter required by multiple-output methods.

A third direction of interest is to rely on updatable multi-period classifiers to anticipate critical events based

on continuously incoming data. To guarantee that single-output classifiers given by direct and iterative methods

are updatable, we need to simply guarantee that the underlying single-label classification model is updatable. To

guarantee that CMPC is updatable, we need to guarantee that both the clustering method and the underlying

single-label classification model are updatable.

Fourth, we expect to extend the studied multi-period principles for learning settings where the attribute under

prediction is numeric. Although CMPC can be easily adapted for clustering numeric time series, CMPC is not able

to rely on classic regression models since clusters have not ordinal relations.

Finally, we expect to study the impact of using more expedite similarity functions to: 1) gain further insights

of the true performance of multi-period classifiers by considering metrics able to smooth (possibly) ordinal and

temporal misalignments; and 2) affect the behavior of multi-period classifiers by revising the underlying metrics

considered by the clustering methods.


	VI Learning Effective Classifiers from Local Descriptive Models
	Effective Associative Classification from Discriminative Biclusters
	Background
	Problems of Classification from High-Dimensional Data
	Motivating Associative Classification
	Limitations of Existing Associative Classifiers

	Related Work
	Discovery of Discriminative Regions
	Associative Training Functions
	Associative Testing Functions

	Solution
	Discovery of Discriminative Biclusters
	Training
	Testing

	Results and Discussion
	Results on Synthetic Data
	Results on Real Data

	Conclusion and Implications

	Classification from Regions with Non-Constant Coherency
	Background
	Solution
	Discriminative Regions with Flexible Homogeneity
	Training: Scoring Noisy and Non-Constant Regions
	Testing: Matching Observations against Non-Constant Regions
	Algorithm

	Results and Discussion
	Summary of Contributions and Implications

	Advanced Aspects of Associative Classification
	Learning from Sparse Data
	Integrating Associative with Global Functions
	Stochastic Learning from Generative Biclustering Models
	Learning from Complex Tabular Data
	Effective Incorporation of Constraints
	Summary of Contributions

	Learning Associative Classifiers from Structured Data
	Background
	Related Work
	Deterministic and Stochastic Learning of Classifiers from Temporal Data
	Learning Integrative Models from Structured Data

	Solution
	Data Mappings to Learn from Structured Data
	Pattern-based Classifiers for Labeled Structured Data
	Stochastic Classifiers for Structured Data

	Results and Discussion
	Discussion

	Summary of Contributions and Implications

	Classification from Significant Regions
	Background
	Related Work
	Solution
	Significance of Discriminative Biclusters: Local Assessments
	Using Significance to Shape Associative Models
	Enhancing Local Classifiers for Tabular Data
	Enhancing Local Classifiers for Structured Data

	Results and Discussion
	Summary of Contributions and Implications

	Learning Significant and Accurate Decisions
	Solution
	Significance of Training Functions
	Significance of Testing Functions
	Indicative Significance of Classification Decisions
	Combining Significance and Accuracy Views

	Results and Discussion
	Conclusion

	Multi-period Classification for Predictive Tasks
	Background
	Formalization
	Applications

	Contributions and Limitations from Related Work
	Solution: Methods for Multi-period Classification
	Hybrid Single-Output Classifiers
	Cluster-based Multi-Period Classification
	Extension of CPMC to Capture Local Temporal Dependencies
	CMPC with Sliding Windows

	Evaluation Metrics
	Baseline Evaluation
	Multi-period Classification with Ordinal Labels
	Compact Performance Views
	Complementary Evaluation Metrics

	Results and Discussion
	Comparing Multi-period Classifiers
	Discussion

	Summary of Contributions and Implications



