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1
Final Discussion

This chapter closes this thesis. Section 1.1 provides evidence on how the developed work validates the thesis

statement. Section 1.2 summarizes the contributions and discusses the major contributions of our work.

1.1 Hypothesis Validation

Based on the extensive theoretical and empirical observations collected throughout this thesis, this section aims to

test the underlying hypothesis: whether or not focusing the learning on relevant regions improves the performance

guarantees of descriptive and associative classification models in high-dimensional data contexts. For this aim,

consider the following views on the contributions of our work:

• principles to satisfy the set of formulated requirements. Furthermore, we provided a solution space with

integrative and easily parameterizable algorithms guaranteeing that, for a given data context, multiple re-

quirements can be simultaneously satisfied. Tables provided throughout the overview chapters provide an

exhaustive list of (non-contradictory) contributions to satisfy the specified requirements to answer the thesis

statement;

• empirical evidence showing the superior performance of the proposed algorithms against peer algorithms. We

showed the superiority of the proposed biclustering and classification algorithms (Books III and VI) against

state-of-the-art peers with regards to a wide-variety of performance views, as well as the superiority of learn-

ing functions for structured data (Book IV) and structured codomains (Chapter VI-7) against peer learning

functions adapted from related streams of research. We also provide empirical evidence for the adequacy and

robustness of the proposed (statistical) assessment methodologies (Books V and II);

• application of the proposed learning algorithms over real data from distinct domains was demonstrated

to be associated with the discovery of new and meaningful regions. We demonstrated the relevance of:

1) learning of plaid, order-preserving and cascade models from expression and biological network data to

retrieve non-trivial yet informative (biologically significant) regulatory modules and responses; 2) discovering

arrangements of events from multi-dimensional healthcare (heritage) and commercial (foodmart) databases;

and 3) modeling discriminative regions with varying coherency strength, quality and statistical significance

across biomedical and social data domains.

In sum, we show that the proposed learning methods satisfy the introduced requirements, outperform state-of-

the-art methods and unravel unique putative relations of interest from real data. In this context, we believe that

these groups of arguments provide strong evidence in favor of the approval of the thesis statement. As a result, we

expect an increasing attention given to this field of research and a broader systemic view on the learning conditions

and data properties where the thesis statement is verified and (possibly) rejected.

1.2 Thesis Contributions and Implications

Throughout Books II to VI, we addressed different challenges associated with the learning in high-dimensional data

contexts. The conducted research gave rise to the following contributions.
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Performance Guarantees of Models Learned from High-Dimensional Data

The first part of the thesis established a solid foundation for the assessment of descriptive and classification models

in high-dimensional data contexts (contributions listed in Tables II-1 to II-3). First, we proposed robust estimators

to bound and compare the performance of classification models, showing how existing estimators can be enhanced

to: adequately measure the generalization error, accommodate smoothing factors in the presence of probabilistic

outputs, and minimize the problems associated with the inference of performance guarantees from unfeasible error

estimates. Second, we extended this assessment towards local descriptive models, showing how error estimates

can be collected to infer robust guarantees of performance and parameterized with adequate loss functions. In this

context, we overviewed the properties of existing loss functions for descriptors of tabular data (biclustering models)

and structured data (triclustering and cascade models), and proposed new loss functions able to provide relevant

performance views from synthetic and real data. Finally, to further guarantee non-biased and complete assessments

of descriptive and classification models, we proposed data generators for (labeled) tabular and structured data

based on the different forms of local and global regularities commonly observed in real-world data.

Implications
These contributions open a new door for robust, unbiased and complete assessments of state-of-the-art descriptive and classification
methods. They are also critical to: 1) gain an in-depth understanding of the behavior of these methods in high-dimensional data
contexts, 2) unravel their strengths and weakness, and 3) (possibly) guide their improvement. The guarantees of performance inferred
under the proposed methodology can be used to weight and validate the high number of implications derived from the analysis of
models learned from real data, and to measure the impact of applying procedures for dimensionality reduction prior to learning.

Learning Local Descriptive Models from Tabular Data

The second part of our thesis has contributions (enumerated in Tables III-1 to III-10) to the learning of robust biclus-

tering models with flexible structures, coherency and quality from (high-dimensional) tabular data. Towards this

end, we first explored the synergies between biclustering and pattern mining by studying the impact of using dis-

tinct patterns (including itemsets, association rules, formal concepts and sequences), dedicated (anti-)monotonic

searches, and multiple preprocessing and postprocessing procedures on the properties of biclustering models.

Second, we extended these contributions to learn biclustering models with different forms of coherency com-

monly observed in biomedical and social data domains, including: additive and multiplicative models (by in-

terpreting shifts and common multiples in data); plaid models (by identifying meaningful interactions between

biclusters); order-preserving models (by discovering noise-tolerant orderings of values); and the previous models

in the presence of symmetries. In particular, we proposed new algorithms to learn such non-constant models and

extended them to deal with non-trivial plaid effects and be able to incorporate meaningful relaxations.

Implications
The learning of flexible biclustering models opens many possibilities for the analysis of biomedical and social data. The discovery of a
flexible structures is essential to guarantee an unbiased exploration of the search space. The discovery of additive and multiplicative
coherencies is critical to analyze biomedical data with structural differences on the responsiveness associated with gene expression,
molecular concentrations or physiological responses. In social applications, these coherencies are useful to model social interactions
with non-trivial yet coherent behavior and to group subjects with identical variation of preferences for browsing, (e-)commercing and
collaborative filtering. The accommodation of symmetries are used to capture distinct regulatory mechanisms in biological domains
and opposed (yet correlated) trading, tweeting and browsing activity.

The possibility to learn plaid models using meaningful relaxations is critical to detect and interpret meaningful interactions between
biological processes, clinical responses and social behavior. Similarly, the proposed composition functions also allow the study of
interactions between biological processes and social groups from the point of view of their regulatory/behavioral activity, enabling the
categorization of the interactions and providing insights to understand complex regulation/behavior.

Furthermore, the possibility to mine (strictly or monotonically increasing) orderings has been shown to be essential to solve
different real-world problems, including the analysis of omic, chemical and mutagenesis data; the discovery of (relative) preferences
from collaborative filtering data; the support to planning, scheduling and recommendation tasks; among others.
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Finally, and for the first time, the proposed contributions also enable the sound application of biclustering over real-world tabular
data characterized by a mixture of numeric, ordinal and categoric features.

Third, we revised the previous algorithms to guarantee their robustness to noise. In this context, we extended

them with: multi-item assignments in order to guarantee that they are not exposed to discretization problems;

principles along the preprocessing, mining and postprocessing steps to guarantee their robustness to varying forms

and amount of noise; and multi-value imputations to handle and arbitrary-high number of missings.

Implications
These contributions provide a mark on how to effectively address the item-boundaries problem of discretization procedures by learn-
ing from data elements with an arbitrary number of items assigned. Results further show that under adequate searches this option
does not visibly hamper the computational complexity of the task. As such, this option seizes the benefits of discretizing data without
apparent downsides, thus opening critical considerations for future research.

Learning from data elements with multiple values is also valuable to deal with noise and provide risk-free imputations. Fur-
thermore, its combination with the remaining principles to guarantee robustness appears to be essential to learn from data with an
arbitrary-high number of missings (such as often found in biomedical domains) and for the analysis of real-world data with varying
forms and amount of noise.

Fourth, we proposed new algorithms to guarantee the efficiency of the biclustering task for dense and high-

dimensional data, including new pattern-growth searches for frequent itemset mining (based on annotated frequent

pattern trees less prone to memory and time bottlenecks) and sequential pattern mining (based on efficient data

projections and item-indexable properties to mine both monotonically and strictly increasing orders). We further

guarantee their scalability in the presence of approximate searches and data partitioning principles from pattern

mining. Finally, we also guarantee the efficiency of merging, extension and reduction procedures for postprocessing

by placing anti-monotonic heuristics and pushing their computation to the mining step.

Implications
By integrating the well-studied principles to guarantee the scalability of pattern mining searches, the computationally complex task
of learning flexible biclustering models from large-scale data becomes tractable. In this context, the proposed contributions remain
prepared to handle the increasing size and dimensionality of real-world data.

Furthermore, the contributions for the efficient postprocessing of biclustering solutions can be transversally applied to manipulate
voluminous outputs in the context of a wide-variety of research streams. As part of these contributions, some of the proposed
mappings to solve postprocessing tasks, such as the possibility to merge an arbitrary-high number regions by relying on multi-support
pattern mining tasks, open new avenues to guarantee the scalability of these procedures.

Fifth, we extended the proposed algorithms to learn from large-scale network data. For this aim, we revised the

underlying data structures and searches, and further investigate the role of pattern-based biclustering to discover

modules with non-dense yet meaningful and coherent interactions, as well as to guarantee their robustness to noisy

and missing interactions. We showed the applicability towards homogeneous and heterogeneous networks with

either quantitative/weighted or qualitative/labeled interactions. Finally, we generalized these principles to learn

from sparse data, characterized by the presence of an arbitrary number of uninformative elements and/or missings.

Implications
These contributions provide the unprecedented opportunity to efficiently discover non-trivial (yet meaningful, coherent and significant)
modules from network data. The discovery of these modules is essential to characterize, discriminate and/or predict biological
functions and social activity. In particular, we expect to entail broader biological analysis to further establish relationships between
modules and biological functions, as non-dense models might give clues about the organization of genes, proteins and metabolites,
and support the characterization of molecular entities with yet unclear roles. The proposed contributions were also shown to be
relevant to identify non-trivial communities from social networks where individual may have different degree of activity/involvement.
Furthermore, they can also be applicable for the analysis of network traffic monitors, neural networks, structured financial transactions
and coautorship/citation networks.
The proposed principles to tolerate missing and noisy interactions within the discovered modules can be further used to predict
unknown interactions and to test the confidence of the existing interactions. Also, the plaid model can be used to explore the network
structure and identify biological/social hubs based on the overlapping interactions between modules.
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Finally, we proposed principles for biclustering tabular data in the presence of background knowledge. For

this end, we revised the proposed pattern-growth searches in order to explore efficiency gains from succinct,

(anti-)monotonic, convertible and prefix-monotone constraints and to accommodate annotations extracted from

knowledge bases and literature, and motivated their relevance across biological and social data domains.

Implications
The incorporation of background knowledge within (pattern-based) biclustering through declarative constraints is essential to orient
the task according to user expectations and other available sources of knowledges. In particular, these contributions provide the
unprecedented possibility to remove uninformative regions and to focus the search on (non-trivial) regions of interest. As such,
we expect to see a systematization of constraints with relevance for the analysis of biomedical and social data. Furthermore, the
possibility to annotate rows and columns with terms from knowledge repositories, semantic sources and literature (such as biological
functions from gene ontologies and well-studied networks) can valuably guide the learning.

We further showed that the described contributions can be soundly integrated and their synergies explored. For

this end, we proposed the BicPAMS software with declarative, graphical and programmatic interfaces.

Learning Local Descriptive Models from Structured Data

The third part of this thesis has contributions (listed in Tables IV-1 to IV-4) to the learning of local descriptive models

from (high-dimensional) structured data. First, we motivated and formalized the relevant task of learning local

descriptive models from three-way time series given by cascades of modules. A new algorithm was proposed to

discover flexible modules and their causal relation, and to handle arbitrary-high temporal misalignments between

their supporting observations. We further extended the algorithm to guarantee its robustness to noise and to

stochastic uncertainties associated with divergent paths, as well as to enhance its scalability based on dissimilarity

guarantees, removal of uninformative elements and approximate searches under strict optimality guarantees.

Implications
The learning of cascade models from multivariate time series opens a new door to study regulatory responses to growth, development,
drugs and disease progression in biomedical domains, as well as behavioral responses (associated with social interaction, web
navigation, commercial activity, financial decisions) to specific events of interest in social domains. In this context, the proposed
contributions provide the unprecedented opportunity to handle the inherent stochasticity and complexity of these responses and to
model their structural and temporal kinetics.

Second, we proposed a new algorithm to learn local descriptive models given by arrangements of informative

events from multi-dimensional databases and collections of records. In this context, we provided a structured view

on the relevance of this task, and an adequate data mapping of complex data structures into multi-sets of events for

a cohesive tackling of the target task. The proposed algorithm is able to discover sets of temporally-related events

derived based on the discovery temporal patterns from multi-sets of events. Multiple principles were proposed to

enhance its efficiency, to deal with the structural sparsity of multi-sets of events, to prevent that some arrangements

jeopardize the learning, and to tolerate temporal misalignments and noise.

Implications
The proposed contributions open new opportunities to learn informative relations from complex data structures. This direction has
been widely termed a hot topic in data mining due to the increasing availability, quality and high-dimensionality of large-scale struc-
tured data. Illustrating, corporative and administrative data from public and private sectors typically follow multi-dimensional or
relational schema. Also, repositories of heterogeneous health-records, user actions or financial transactions are additional data
structures not supported by the majority of existing learning algorithms. In this context, the provided principles to consistently map
these databases as multi-sets of events and to adequately learn informative arrangements of events (combining temporal and cross-
attribute dependencies) can be seen as a relevant mark in the machine learning community.

Finally, we proposed alternative stochastic methods to model cascades and arrangements of events from struc-

tured data. For this aim, we first provided a probabilistic view of itemset sequences by extending hidden Markov

models with: new architectural components to model frequent orderings, principles for their effective initialization,
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revised learning schema to surpass convergence problems, and traversal procedures to efficiently decode sequen-

tial patterns from the learned lattices. As a result, we proposed a stochastic sequential pattern miner tolerant to

noise (yet robust to spurious background matches) and able to model dissimilar, lengthy and non-trivial patterns.

Finally, we shown that this algorithm can be adequately extended to stochastically learn local descriptive models

from three-way time series and multi-sets of events, and confront its benefits and limitations against deterministic

peers. For this end, we customized some of the proposed architectures and enhanced them with the unprecedented

possibility to disclose time frames associated with state emissions.

Implications
The stochastic modeling of temporal patterns from structured data is relevant to provide compact representations of commonly large
outputs; offer a probabilistic and noise-tolerant view of patterns; seize efficiency gains when learning from dense data; support the
query-driven decoding of regions with patterns of interest; and focus the search on dissimilar and arbitrary-large regions. Stochastic
models are of particular relevance for real-world data with complex stochastic phenomena and without well-defined regions. The
proposed contributions enable the stochastic stochastic learning of descriptive models from structured data with non-fixed multivariate
order and high-dimensionality. In this context, we expect to witness the extension of these contributions (such as new architectural
components more conducive to the learning of certain temporal patterns), as well as their generalization for alternative stochastic
learning methods, including neural networks, stochastic grammars and dynamic Bayesian networks.

Significance Guarantees of Local Descriptive Models

The fourth part of the thesis has contributions (enumerated in Tables V-1 to V-4) to assess and guarantee the statis-

tical significance of regions modeled from (high-dimensional) data. For this aim, we first proposed statistical tests

to robustly assess the statistical significance biclusters and enhanced the proposed biclustering algorithms accord-

ingly. In this context, we revised non-conservative corrections (with principles to efficiently guarantee a minimized

risk of accepting non-significant biclusters and rejecting significant biclusters) to guarantee their deviation from

expectations. Complementarily, we shown how either local or global expectations on the size of biclusters can be

inferred to guide the biclustering task.

Second, we extended the proposed statistical assessment towards noisy biclusters with flexible coherency. For

this aim, new statistical views were provided to test additive and multiplicative models (based on allowed shifts

and greatest common divisors), plaid models (based on the removal of plaid effects), and order-preserving models

(based on the allowed permutations). The properties of search space size for these coherency assumptions were

revised, and dynamic programming principles were considered to avoid redundant computations. For the assess-

ment of noisy biclusters, we provided new principles to retrieve the underlying pattern expectations, and further

extended the statistical framework to integrate homogeneity and significance views by combining the probability

of a given bicluster to deviate from expectations with the probability to have unexpectedly low levels of noise.

Third, we extended the proposed statistical assessment towards real-valued biclusters with continuous factors

and (possibly unknown) coherency strength. In this context, we proposed non-biased estimators of their true

significance with lower and upper bounds. Additionally, new statistical tests to assess biclusters with continuous

shifts and scales were provided based on the integral of the product of slided and scaled density functions. We

further guarantee the extensibility of the statistical tests in this book towards tabular data with non-identically

distributed features.

Implications
Assessing the statistical significance of biclustering models is critical to filter, validate or weight the increasing number of implications
in literature derived from the analysis of local regions from biomedical and social data. Furthermore, it is essential to evaluate and
compare state-of-the-art biclustering and pattern mining algorithms with regards to the significance of their solutions, as well as to
guide the biclustering tasks, promoting the significance of their outputs and efficiency of the searches.

The provided systemic analysis on how the properties of a given bicluster (support, length, pattern, coherency, quality) and
the input data (size, dimensionality, regularities) affect statistical significance, can be further used to shape upcoming biclustering
algorithms.
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As largely motivated, guaranteeing the significance of biclusters is further relevant to minimize the propensity of a given learning
function to over/underfit the observed data, ensuring the adequacy of the capacity term and thus its ability to generalize.

Finally, we provided methods to assess the statistical significance of local descriptive models from structured

data. In this context, we provided statistical views to test the deviation of the support of a sequential pattern against

expectations derived from null data, as well as alternative tests on probabilistic models (compliant with hidden

Markov models) based on the weight unexpectedness and coverage of a sequential pattern. These assessments

were extended towards temporal patterns, cascades and arrangements of events, and incorporated within the

previously proposed deterministic and stochastic algorithms to guide the learning.

Implications
The proposed contributions are essential to assess and guarantee that regions in structured data contexts are not informative by
chance, a prominent problem due to the typical high-dimensionality of structured data given by multivariate time series, multi-sets of
events and multi-dimensional data.

Learning Effective Classifiers from Local Descriptive Models

The fifth part of this thesis has contributions (listed in Tables VI-2 to VI-6) to the learning of effective (associative)

classifiers from high-dimensional data. Towards this end, we first proposed new associative classifiers with prin-

ciples to guarantee the adequacy of their discovery, training and testing functions. To guarantee the discovery of

relevant regions we proposed: a new weighted notion of support to adequately assess the discriminative power of

noisy regions, an adequate exploration of the data space, and the inclusion of regions able to discriminate groups

of classes by composing rules with disjunctions of labels. New integrative scores (able to combine the discrimi-

native power, size, coherency and quality of a region) were proposed along with adequate composition criteria to

guarantee the adequacy of training functions. Finally, for an effective testing of new observations, we proposed

new relaxations on the matching criterion to prevent the scarcity of matched regions and a new calculus of class

strength.

Second, to guarantee the adequate inference of decisions in data domains characterized by regions with varying

homogeneity and quality, we extended the previous classifiers to guarantee the recovery of with varying coherency

strength, coherency assumption and noise. A new penalization schema was proposed for non-constant regions

based on their degree of flexibility to prevent that they jeopardize the learning, as well as new matching criteria to

test observations against non-constant regions.

Implications
The proposed associative classifiers are essential to guarantee an adequate learning from high-dimensional data domains carac-
terized by the presence of regions of interest (possibly) well-approximated by discriminative biclusters. In this context, they are
particularly relevant to learn biological and clinical markers, classify user behavior, evaluate (web) contents, and support trading/ad-
ministrative/commercial decisions. They are further proposed as viable alternatives to surpass the largely motivated problems asso-
ciated with feature selection, dimensionality reduction and/or sparse priors.

The proposed contributions provide an unprecedented opportunity to address the major criticisms of existing associative classi-
fiers, including: scarcity of matchings, inability to adequately score noisy regions, inadequate scoring in the presence of imbalanced
data, biases towards small (non-significant) regions, inappropriate space exploration, absence of adequate dissimilarity guarantees
between regions, and inability to model regions discriminating more than a single class. Furthermore, contrasting with the focus on
constant regions given by discriminative patterns of existing associative classifiers, the proposed associative classifiers are able to
retrieve the commonly observed non-constant (yet meaningful and coherent) regions underlying biomedical and social data.

These contributions further enable the systematic analysis on how the varying coherency, quality, size and discriminative power
of the underlying regions of a high-dimensional data space affect the performance of classifiers. This understanding is essential to
revise the behavior of state-of-the-art classifiers and place considerations on the design of new classifiers.

Third, we further extended the previous associative classifiers to guarantee their ability to: learn from sparse

data by soundly removing true missings and uninformative elements and adequately interpreting false missings;

learn from data with global and local regularities by robustly combining the (probabilistic) outputs of alternative
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classifiers; learn from stochastic descriptors of tabular data where membership vectors can be used to promote

an adequate space coverage and shape the scoring criteria; and learn from data in the presence of background

knowledge by effectively incorporating annotations and constraints with nice properties.

Implications
These contributions provide the unprecedented opportunity to classify sparse data, network data and data with missing elements
(associated with monitoring holes, default expectations and errors). Also, they introduce the possibility to remove non-interesting
regions to guide the learning and explore efficiency gains. In biological data domains, uninformative elements are typically associated
with non-differential regulation of genes or concentration of molecular entities. For other domains, uninformative elements may
correspond to: entries with low-counts from text-based data, inconclusive ratings in collaborative filtering data, unprofitable decisions
from trading data, or healthy evaluations from medical data.

Finally, the possibility to incorporate a large variety of constraints and knowledge-driven annotations provides the opportunity to
flexibly guide the learning of (associative) classifiers.

Fourth, we proposed new associative classifiers able to effectively learn from structured data. For this aim, the

previously proposed deterministic algorithms to discover regions from structured data were extended with discrim-

inative criteria. From these regions, rules are inferred, ranked according to a new integrative score and composed

within a navigable tree structure. During the testing phase, we proposed new matching criteria sensitive to both

structural and temporal misalignments, and revised the class strength calculus accordingly. Principles for selec-

tive/decaying memory can be easily incorporated within these classifiers. Complementarily, stochastic classifiers

were proposed by testing the likelihood of new observations to be described by class-conditional probabilistic mod-

els of a data partition. Finally, we show the applicability of these classifiers to learn from varying data structures,

including multivariate time series, itemset sequences, multi-sets of events and multi-dimensional databases.

Implications
The proposed contributions are key for a wide-range of biomedical and social applications, including phenotype discrimination from
gene expression time series; disease prediction from repositories of clinical events; classification of user behavior from collections of
temporal snapshots of a social network; diagnosis from (multivariate) physiological signals; financial decision support from reposito-
ries of trading actions; marketing initiatives from (e-)commerce events, and web content organization from user actions.

Contrasting with existing classifiers, the proposed associative classifiers provide the possibility to learn from multi-sets of events,
handling arbitrary levels of sparsity between events and integrating distinct event types (heterogeneous attributes). Similarly, the
proposed classifiers are also critical to learn from regions of three-way time series given by discriminative cascades.

Finally, the provided comparison between deterministic and stochastic learners offer key principles for an adequate selection and
parameterization of classifiers according to the end goal and the properties of the input data.

Fifth, we proposed a structured view on how to assess and shape the guarantees of statistical significance of

classifiers learned from high-dimensional data. For this purpose, we first discussed the benefits from learning

from statistically significant regions and extended the previously proposed statistical views of regions to also assess

the significance of their discriminative power. This statistical view was used to revise the behavior of associative

classifiers, decision trees and random forests, thus minimizing their propensity to underfit high-dimensional data.

We further extended these statistical views to assess the impact that training and testing functions have on the

risk towards false positive and negative decisions. To turn these views transparent to the user, we proposed the

annotation of rules and classification decisions with an indicative score of their guarantees of statistical significance.

Moreover, in order to avoid the blind optimization of the behavior of classifiers according to this criteria, we revised

their learning according to both accuracy (average error) and significance (variability of error) views.

Implications
Guaranteeing that classification decisions are inferred from statistically significant models is of heightened importance to learn biolog-
ical and clinical markers and to support computer-aided decisions associated with medical/trading/marketing/administrative initiatives
with either high impact on daily lives or high costs.

These contributions are also vital to guarantee the adequacy of learning from high-dimensional data with a (possibly) limited
number of observations. In particular, they are decisive to surpass the: 1) overfitting risk of global classifiers (by guaranteeing that
uninformative regions are discarded); 2) underfitting risk of classifiers reliant on procedures for dimensionality reduction (by preventing
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the loss of relevant regions and the inclusion of new forms of bias); and 3) underfitting risk of local classifiers (by guaranteeing that
decision rules are inferred from significantly informative and discriminative regions).

The provided results stress the importance of embracing sound statistical views to assess the propensity of a given classifier to
make false positive and false negative decisions. As such, new directions for future work become necessary: the extension of the
provided experimental analysis; the exploration of the provided statistical principles to further guide the learning of local classifiers;
and the generalization of the proposed contributions towards alternative classification models, such as support vector machines,
neural networks and Bayesian classifiers.

Sixth and finally, we tackled the multi-period classification task by proposing new algorithms able to: 1) learn

sequences of classes with intricate stochastic dependencies, and 2) embed (single-label) classifiers to adequately

learn from tabular and structured data. In this context, we motivated and formalized the task, studied meaningful

metrics (sensitive to temporal misalignments and error accumulation on the estimated sequences) to robustly assess

multi-period classifiers, and proposed new algorithms reliant on clustering for an adequate reduction and recovery

of the space of sequences. Variants of the clustering-based algorithms were proposed based on the segmentation of

the sequence of classes (based on their local periodicities) and on the use of sliding-windows to minimize the risk

towards false positive and false negative decisions.

Implications
Multi-period classification is essential to answer a wide-set of real-world problems. The prediction of the evolving state of living,
geophysical, economic and societal systems (referred as one of the ten most critical data mining challenges for this decade [693]) is
necessary to: anticipate epidemics or environmental changes; assess key changes in human health (from clinical, psychophysiologi-
cal and biological perspectives) and human behavior (based social data); support personalized decisions (prognostics); characterize
disease progression; and support administrative decisions in both private industries and public sectors and planning tasks.

The proposed contributions to model the stochastic dependencies between the periods under classification and embed existing
learning functions opens up new possibilities for the application of existing classifiers for predictive tasks from varying data structures.

1.3 Future Work

Below, we highlight potentially relevant research for future work according to the five books in this thesis.

Book II Performance Guarantees of Models Learned from High-Dimensional Data

• analyze the pros and cons of surveyed/proposed loss functions for local descriptive models by measuring

their ability to correctly assess changes in the behavior of biclustering, triclustering and cascade learning

algorithms;

• study the variability of performance (over/underfitting components) of state-of-the-art biclustering and tri-

clustering algorithms using the proposed principles to collect error estimates;

• apply the proposed error estimators to better assess the performance of state-of-the-art and new classifiers on

real and synthetic data: 1) interpret differences from using dimensionality reduction procedures with varying

extent, 2) study generalization capacity (error decomposition), and 3) measure the relevance of smoothing

factors on high-dimensional data for a more informed analysis of the error;

• assess the performance of learners using synthetic data with several local and global regularities (heatmaps

on their empirical ability to learn from regions with varying structure and homogeneity);

Book III Learning Local Descriptive Models from Tabular Data

• systematic comparison of stochastic versus deterministic methods for biclustering, as well as exploration of

their synergies for the development of new learning functions (combining benefits) or ensemble models;

• study the relevance and applicability of pattern-based biclustering for heterogenous data analysis (including

the role of biclusters with mixture models (Basics III-3.2) to combine sets of features from different sources);

• extend (pattern-based) biclustering for integrative data analysis (such as combined analysis of biological

networks and expression data [341, 297, 576]) with a focus on guiding the learning and validating outputs;
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• understand to which extent can highly flexible biclustering models (such as the ones proposed in this thesis)

be used to exhaustively decompose and characterize the regularities of an input dataset;

• characterize the properties of regions (structure, coherency and quality) observed across data domains;

• study and quantify the relevance of the proposed biclustering models for sparse data analysis, including: 1)

structurally sparse data, 2) data with an arbitrary-high number of missings (with an heightened focus on

clinical data), and 3) data with a large amount of uninformative elements (e.g. undifferentiated expression,

inconclusive ratings, low word-counts, unprofitable decisions, healthy evaluations);

• analyze the role of the proposed algorithms for biclustering network data to characterize the functions of

molecular entities with less-studied or with yet unclear roles based on constraint-free searches and searches

for coherent modules with succinct constraints (to guarantee their inclusion in solutions);

• apply biclustering to the analysis of non-trivial communities in social networks (where individual may have

different degree of activity and involvement);

• apply the plaid model to biological and social networks in order to: 1) explore network structure, 2) identify

hubs, and 3) assess the type of connectivity between modules;

• apply additive and multiplicative models to analyze clinical data, with a focus on physiological responses and

clinical records (highly affected by individual differences, possibly explained by scales and shifts);

• apply the order-preserving model to group individuals with coherent variation of: 1) preferences during

browsing, (e-)commercing and collaborative rating, and 2) behavior for trading, interaction and tweeting;

• systematically identify and categorize the nature of the interactions between biological processes and social

groups based on the analysis of their overlapping regulatory and behavioral activity (plaid model), including

simplistic relations (such as is-part-of or exchanges-with) and complex interdependencies;

• analyze the relevance of multiple functions and relaxations to describe plaid effects in biological and social

domains. Illustrating, scaling functions can be used to model biological processes with catalyzing regulatory

effect on another process, while ’in-between’ relaxations to model incremental yet non-linear effects;

• develop new pattern mining searches able to discover lengthy and dissimilar approximate patterns using

smaller patterns retrieved from an adequate exploration of the different regions in a data space;

• assess of the relevance of noise-free discretization for the different real-world problems;

• overview the classes of computational methods for symbolic data analysis that can be adapted to support

multi-item assignments, adapt of these methods accordingly, and quantify the changes in performance;

• study the impact of the proposed postprocessing procedures for alternative tasks (such as indexing);

• study the proposed new task of pattern mining methods with variable support (Section III-7.2), and assess its

relevance and applicability to answer real-world problems (e.g. maximum bipartite matching);

• enumerate relevant succinct, (anti-)monotonic, convertible and prefix-monotone constraints for biomedical

and social data domains, and quantification of the impact of their incorporating;

• assess the benefits of incorporating annotations from knowledge repositories (including those listed in Pointer

II-2.2) and literature on the performance of pattern-based algorithms;

• study new imputation methods for missing values by discovering pattern-based biclusters covering these

missings (under succinct constraints) and recovering the expected value from the underlying coherency;

• develop and validate new methods to adjust the confidence of molecular associations and predict unknown

associations based on the analysis of the sparse and noisy (yet coherent) network modules where nodes of

interest appear;

Book IV Learning Local Descriptive Models from Structured Data

• assess the relevance of cascade learning to model regulatory responses from expression time series, including

the analysis of responses (uniquely) elicited for a given drug, condition or induced stimuli;

• study the temporal kinetics of regulatory cascades by further assessing the variability across observations;
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• extend cascade learning to the analysis of temporal biological and social networks given by snapshots of a

weighted graph at different time points;

• apply cascade learning to model unique behavioral responses associated with cascades of social interaction,

web navigation, commercial activity and financial decisions;

• extract annotations and constraints from stable gene regulatory networks and use them to guide the learning

of regulatory cascades from experimental data;

• extend cascade learning to integrative data analysis, and apply it for the combined analysis of expression,

metabolic and proteomic time series;

• study the relevance of the proposed algorithms for multi-sets of events in the unsupervised analysis of busi-

ness databases (from marked facts of interest from multi-dimensional databases or tables of interest from

relational databases), as well as loose collections of user actions and financial transactions;

• study the potential of developing new learning algorithms to find alternative types of temporal patterns from

structured data (such as calendric rules and chords [467]);

• integrate contributions from constraint-based sequential pattern mining to learn cascades and arrangements

of events from structured data in the presence of background knowledge; systematize relevant constraints

across domains; and quantify their benefits;

• generalize the proposed principles for the stochastic modeling of itemset sequences to use temporal neural

networks and dynamic Bayesian networks (as they can embed Markovian assumptions [478, 74]);

• assess the fit and relevance of the proposed probabilistic methods to model web usage logs, commercial

transactions, and financial decisions in the stock market;

• study the potential of the proposed HMMs to dynamically self-learn their architectures from data [603, 233];

Book V Significance Guarantees of Local Descriptive Models

• analyze the guarantees of statistical significance provided by (parameter-free) feature selection and dimen-

sionality reduction procedures;

• infer heuristics from the proposed statistical views to guide alternative biclustering algorithms;

• exhaustively compare state-of-the-art biclustering algorithms regarding their: ability to minimize false pos-

itives (ability to exclude non-significant biclusters), and minimize false negatives (by testing their ability to

recover planted significant biclusters);

• motivate the relevance of the proposed statistical views by collecting a sample of scientific articles (with a

focus on the analysis of local associations) and validating whether the inferred scientific statements have a

proper ground truth or not;

• systematically analyze the impact of the properties of a cascade/arrangement (support, shape, noise) and of

the input data (size, order, time points, sparsity, regularities) on statistical significance;

• extend the proposed statistical views (for symbolic temporal patterns) towards real-valued temporal patterns;

• compare the pros and cons of statistically testing patterns from deterministic vs. probabilistic models;

Book VI Learning Effective Classifiers from Local Descriptive Models

• study the extensibility of the proposed contributions towards regression problems. A possible avenue is to

explore mappings between classifiers and regression methods able to infer decisions from regions (such as

logistic model trees);

• systematize the relevance of learning classifiers from regions with distinct coherency and quality for real-

world problems (e.g. impact of order-preserving models for planning, scheduling and recommendation);

• characterize the properties of discriminative regions from labeled biomedical and social data;

• improve biclustering searches by pushing varying discriminative criteria into the mining step;

• study the applicability of branch-and-bound or iterative-deepening searches for (pattern-based) biclustering;

• apply the proposed classifiers over sparse data and networks with labeled nodes;
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• study the relevance of the proposed associative classifiers to learn biological and clinical markers;

• validate biological and clinical of putative markers learned from experimental data based on the statistical

significance of the learned associations;

• assess the guarantees of statistical significance of existing classifiers by analyzing the properties of the learned

models from biomedical and social data domains.

• motivate the relevance of annotating classification decisions with indicators of their statistical significance by

applying the proposed principles to annotate medical/trading/marketing/administrative decisions from real

data (decisions with high risks and/or costs);

• study the possibility to enhance alternative classification models with the proposed statistical principles,

including support vector machines, neural networks and Bayesian classifiers;

• infer heuristics to promote the selection of statistically significant regions to guide the learning of local clas-

sifiers (and quantification of their impact and ability to narrow the search space);

• quantify the impact of noise on the significance guarantees of classification rules;

• develop a methodology to transparently assess the propensity of a (local) classifier to make false positive and

false negative decisions through the analysis of the learned models;

• study the relevance of modeling regions from heterogeneous data sources in classification;

• apply the proposed classifiers for structured data to a wider-set of problems, including diagnosis from (mul-

tivariate) physiological signals, financial decision support from trading actions, marketing initiatives from

(e-)commerce events, and content suggestions from user logs;

• extend the proposed associative classifiers to learn from temporal snapshots of a biological or social network;

• analyze the impact of customizing the architectural components of the proposed stochastic methods in accor-

dance with the properties of the input structured data;

• specify relevant constraints across tabular/structured data domains (along with principles for their effective

incorporation) to guide the learning of classifiers;

• assess of the impact of annotating observations (extracting an arbitrary number of labels from their values)

on the classifiers’ behavior;

• extend associative classifiers to adequately learn from ordinal labels;

• apply multi-period classifiers to answer a wider-set of real-world problems, including prognosis of disease,

planning of physical resources, and long-term budgeting predictions;

• assess the adequacy of the proposed multi-period classifiers for the prediction of sequences of upcoming

events and for the classification of non-uniform and non-convex periods;

• extend multi-period classifiers to deal with lengthy sequences of labels, including principles for memory

sampling (to selectively forget estimated periods) and assessing their local-stationarity (to guide segmentation);

• develop updatable multi-period classifiers to anticipate critical events based on continuously incoming data;

• quantify the impact of using similarity functions able to adequately measure temporal mismatches to affect

the behavior and assess the true performance of multi-period classifiers;

The listed directions for future research can be essentially divided according to their aim: 1) application, 2)

extension, 3) exploration, or 4) validation. First, the developed algorithms for describing and classifying data can

be applied on alternative real-world data to either perform domain-specific analysis or infer domain-independent

principles. Second, the same algorithms can be extended in order to: 1) guarantee their further improvement, 2)

support new behavior (such as the possibility to interpret new forms of knowledge), and 3) solve new problems

(such as the possibility to describe heterogeneous data or to classify ordinal classes). Third, the synergies between

the proposed contributions and existing work can be explored in order to use the proposed principles to support

other tasks (such as dimensionality reduction) or benefit from other tasks (such as structured pattern mining).

Finally, the provided statistical and performance views can be use to validate available and upcoming learning

algorithms and scientific statements inferred from the input data or the learned models.
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[91] Doruk Bozdağ, Ashwin S. Kumar, and Umit V. Catalyurek. Comparative analysis of biclustering algorithms. In BCB, pages 265–274, New
York, NY, USA, 2010. ACM.

[92] ADRIAN P Bracken and URSULA Bond. Reassembly and protection of small nuclear ribonucleoprotein particles by heat shock proteins
in yeast cells. Rna, 5(12):1586–1596, 1999.

[93] P. S. Bradley, C. A. Reina, and U. M. Fayyad. Clustering Very Large Databases Using EM Mixture Models. Pattern Recognition, International
Conference on, 2:2076+, 2000.

[94] Sofiane Brahim-Belhouari and Amine Bermak. Gaussian process for nonstationary time series prediction. Computational Statistics and
Data Analysis, 47(4):705 – 712, 2004.

[95] Matthew Brand. Structure learning in conditional probability models via an entropic prior and parameter extinction. Neural Comput.,
11(5):1155–1182, July 1999.

[96] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[97] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association rules to correlations. SIGMOD Rec., 26(2):265–

276, June 1997.
[98] Sergey Brin, Rajeev Motwani, Jeffrey D Ullman, and Shalom Tsur. Dynamic itemset counting and implication rules for market basket

data. ACM SIGMOD Record, 26(2):255–264, 1997.
[99] Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. Pattern-based classification: a unifying perspective. arXiv preprint

arXiv:1111.6191, 2011.
[100] Bjorn Bringmann and Albrecht Zimmermann. The chosen few: On identifying valuable patterns. In Proceedings of the 2007 Seventh IEEE

International Conference on Data Mining, ICDM ’07, pages 63–72, Washington, DC, USA, 2007. IEEE Computer Society.
[101] Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer Science & Business Media, 2013.
[102] George W. Brown. On small-sample estimation. The Annals of Mathematical Statistics, 18(4):582–585, 1947.
[103] Michael Brown, Richard Hughey, Anders Krogh, I. Saira Mian, Kimmen Sjölander, and David Haussler. Using dirichlet mixture priors to
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[267] Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent itemsets. In Bart Goethals and Mohammed Javeed Zaki,

editors, FIMI, volume 90 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.
[268] Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent itemsets. In FIMI, volume 90, 2003.
[269] A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Springer, 2012.
[270] Jiajun Gu and Jun Liu. Bayesian biclustering of gene expression data. BMC Genomics, 9(Suppl 1):S4, 2008.
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[320] Rui Henriques, Ana Paiva, and Cláudia Antunes. On the need of new methods to mine electrodermal activity in emotion-centered studies.
In Longbing Cao, Yifeng Zeng, AndreasL. Symeonidis, VladimirI. Gorodetsky, PhilipS. Yu, and MunindarP Singh, editors, Agents and Data
Mining Interaction, volume 7607 of Lecture Notes in Computer Science, pages 203–215. Springer Berlin Heidelberg, 2013.
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[427] Sara Madeira, Miguel Nobre Parreira Cacho Teixeira, Isabel Sá-Correia, and Arlindo Oliveira. Identification of regulatory modules

in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1:153–165, january 2010.

[428] Sara C. Madeira. Neuroclinomics: Understanding neurodegenerative diseases through clinical and omics data integration, 2009.
[429] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Comput. Biol.

Bioinformatics, 1(1):24–45, January 2004.
[430] M. Mahfouz and M. Ismail. Bidens: Iterative density based biclustering algorithm with application to gene expression analysis. In

PWASET, volume 37, pages 342–348, 2009.
[431] MohamedA. Mahfouz and MohamedA. Ismail. Soft flexible overlapping biclustering utilizing hybrid search strategies. In Adv. Mach.

Learning Tech. and App., volume 322 of Commun. Comp. and Inf. Science, pages 315–326. Springer Berlin Heidelberg, 2012.
[432] Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal cliques. In Torben Hagerup and Jyrki Katajainen,

editors, SWAT, volume 3111 of Lecture Notes in Computer Science, pages 260–272. Springer, 2004.
[433] Danilo P. Mandic and Jonathon Chambers. Recurrent Neural Networks for Prediction: Learning Algorithms,Architectures and Stability.

John Wiley & Sons, Inc., New York, NY, USA, 2001.
[434] Shawn Mankad and George Michailidis. Biclustering three-dimensional data arrays with plaid models. Comp. & Graphical Stat., 2013.
[435] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Discovery of frequent episodes in event sequences. Data mining and knowledge

discovery, 1(3):259–289, 1997.
[436] Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. Distance measures for biological sequences: Some recent approaches. Int. J.

Approx. Reasoning, 47(1):109–124, 2008.
[437] Daniel Marbach, Robert J Prill, Thomas Schaffter, Claudio Mattiussi, Dario Floreano, and Gustavo Stolovitzky. Revealing strengths and

weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences, 107(14):6286–6291, 2010.
[438] Daniel Marbach, Thomas Schaffter, Claudio Mattiussi, and Dario Floreano. Generating realistic in silico gene networks for performance

assessment of reverse engineering methods. Journal of computational biology, 16(2):229–239, 2009.
[439] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo D Favera, and Andrea Califano. Aracne:

an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC bioinformatics, 7(Suppl 1):S7,
2006.

[440] David Martin, Christine Brun, Elisabeth Remy, Pierre Mouren, Denis Thieffry, and Bernard Jacq. Gotoolbox: functional analysis of gene
datasets based on gene ontology. Genome Biology, (12):101, 2004.

[441] J. Kent Martin and D. S. Hirschberg. Small sample statistics for classification error rates ii: Confidence intervals and significance tests.
Technical report, DICS, 1996.

[442] Ricardo Martinez, Claude Pasquier, and Nicolas Pasquier. Genminer: Mining informative association rules from genomic data. In BIBM,
pages 15–22. IEEE CS, 2007.

[443] Eleni Matechou, Ivy Liu, Shirley Pledger, and Richard Arnold. Biclustering models for ordinal data. In Presentation at the NZ Statistical
Assn. Annual Conference. University of Auckland, 2011.

[444] U. Maulik, A. Mukhopadhyay, M. Bhattacharyya, L. Kaderali, B. Brors, S. Bandyopadhyay, and R. Eils. Mining quasi-bicliques from
hiv-1-human protein interaction network: A multiobjective biclustering approach. IEEE/ACM TCBB, 10(2):423–435, 2013.

[445] Harley H McAdams and Adam Arkin. Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences,
94(3):814–819, 1997.

[446] Tara McIntosh and Sanjay Chawla. High confidence rule mining for microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
4(4):611–623, October 2007.

[447] Tara McIntosh and Sanjay Chawla. High confidence rule mining for microarray analysis. Computational Biology and Bioinformatics,
IEEE/ACM Transactions on, 4(4):611–623, 2007.

[448] Geoffrey J. McLachlan, RW Bean, and David Peel. A mixture model-based approach to the clustering of microarray expression data.
Bioinformatics, 18(3):413–422, 2002.

[449] Edward Meeds, Zoubin Ghahramani, Radford M Neal, and Sam T Roweis. Modeling dyadic data with binary latent factors. Adv. in
Neural Info. Proc. Systems, 19:977, 2007.



[450] N. Megiddo and R. Srikant. Discovering predictive association rules. In KDD and DM, pages 274–278. AAAI Press, 1998.
[451] G. Melli. Synthetic classification data sets (SCDS). Technical report, School of Computing Science, Simon Fraser University, Burnaby,

British Columbia, Canada, 1997. http://fas.sfu.ca/cs/people/GradStudents/melli/SCDS/.
[452] Pedro Mendes, Wei Sha, and Keying Ye. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics, 19(suppl

2):ii122–ii129, 2003.
[453] Jia Meng, Shou-Jiang Gao, and Yufei Huang. Enrichment constrained time-dependent clustering analysis for finding meaningful temporal

transcription modules. Bioinformatics, 25(12):1521–1527, 2009.
[454] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, and Samir Loudni. A constraint language for declarative

pattern discovery. In Symposium on Applied Computing, pages 119–125, New York, NY, USA, 2012. ACM.
[455] Tom Michoel, Riet De Smet, Anagha Joshi, Yves Van de Peer, and Kathleen Marchal. Comparative analysis of module-based versus direct

methods for reverse-engineering transcriptional regulatory networks. BMC systems biology, 3(1):49, 2009.
[456] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Network motifs: simple building blocks of

complex networks. Science, 298(5594):824–827, 2002.
[457] Guy W. Mineau, Akshay Bissoon, and Robert Godin. Simple pre- and post-pruning techniques for large conceptual clustering structures.

Electron. Trans. Artif. Intell., 4(C):1–20, 2000.
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