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Abstract
Models learned from high-dimensional data, where the high number of features usually exceeds the number of

observations, have higher propensity to either overfit or underfit data. In this context, it is thus important to

focus the learning on regions of interest, such as subsets of features, guaranteeing that these regions are both

informative and statistically significant. Although a composition of relevant regions can be learned under specific

assumptions to offer these guarantees, the state-of-the-art learning methods place restrictive constraints on the

allowed structure, coherency and quality of regions. This has prevented the understanding of how the properties of

the selected regions affect the performance of descriptive and classification methods in both tabular and structured

data contexts.

In this work, we propose robust, flexible and statistically significant local descriptive models and study their

relevance to improve (associative) classification in high-dimensional data contexts. This task is tackled in three

major steps. First, we propose new local descriptive models from tabular and structured data with robustness and

flexibility guarantees. In the presence of matrices and network data, the focus is placed on learning biclustering

models able to tackle existing challenges: learn from regions with flexible coherency (additive, symmetric, plaid

and order-preserving models); guarantee scalable searches; robustness to varying forms and degree of noise; model

regions from sparse data; and effectively incorporate background knowledge. In the presence of structured data,

possibly given by multivariate time series or multi-sets of events, the focus is placed on new deterministic and

generative methods to learn local descriptive models given by cascades of modules or arrangements of informative

events. Second, we propose principles to both assess and guarantee the statistical significance of these descriptive

models. Third, the previous contributions are extended towards labeled data contexts, and new training and testing

functions are proposed to learn associative classification models. In this context, we assess the impact of varying

structures, coherencies and quality of local descriptive models on the performance of classifiers, and combine

statistical significance and accuracy views to study and revise their behavior. Finally, we extend these contributions

for data with structured classes to adequately answer predictive tasks.

The proposed contributions were applied to tackle a wide-set of real-world tasks in biomedical and social

domains, including the learning of descriptive and predictive models from gene expression data, repositories of

health records, clinical data, collaborative filtering data, and (biological and social) networks.
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Resumo
A aprendizagem de modelos a partir de dados com elevada dimensionalidade, onde o número de atributos pode

exceder o número de observações, é propensa aos riscos de sobre- e sub-ajustamento. Neste contexto, é impor-

tante focar a aprendizagem em regiões de interesse, como subconjuntos de atributos, garantindo que estas regiões

são informativas e estatisticamente significativas. No entanto, o estado-da-arte em aprendizagem coloca estritas

restrições na estrutura, coerência e qualidade destas regiões. Isto previne a compreensão de como as propriedades

das regiões seleccionadas afectam a performance de métodos para a descrição e classificação de dados tabulares e

estruturados.

Para responder a este problema, este trabalho propõe modelos descritivos locais com garantias de robustez,

flexibilidade e significância estat́ıstica, e estuda a sua relevância para melhorar a classificação em dados de ele-

vada dimensionalidade. Este objectivo é enderaçado em três passos. Primeiro, novos modelos descritivos locais

– flex́ıveis e robustos – são propostos. Na presença de dados tabulares e redes, o foco é colocado na aprendiza-

gem de modelos de biclustering capazes de endereçar os desafios existentes: aprender regiões com coerências

não-triviais (modelos aditivos, simétricos, sobrepostos e baseados em ordenações); promover a escalabilidade das

procuras; garantir a robustez a differentes formas e graus de rúıdo; modelar regiões a partir de dados esparsos; e

incorporar conhecimento dispońıvel. Na presença de dados esruturados, possivelmente caracterizados por séries

temporais multivariadas ou multi-conjuntos de eventos, o foco é colocado na definição de métodos determińısticos

e estocásticos para a aprendizagem de modelos descritivos locais associados a cascatas de módulos ou arranjos de

eventos. Segundo, novos prinćıpios são propostos para avaliar e garantir a significância estat́ıstica destes modelos

descritivos. Terceiro, as contribuições anteriores são alargadas a dados anotados, e novas funções de treino e teste

são propostas para a aprendizagem de modelos de classificação. Neste contexto, este trabalho mede o impacto

do uso de modelos descritivos locais (com variável estrutura, coerência e qualidade) na performance dos classifi-

cadores, e estuda e revê o seu comportamento de acordo com critérios de significância estat́ıstica. Por fim, estas

contribuições são estendidas a dados com classes estruturadas para responder a problemas de previsão.

As contribuições propostas foram aplicadas num conjunto alargado de problemas reais em domı́nios biomédicos

e sociais, incluindo a aprendizagem de modelos descritivos e classificadores em dados de expressão genética,

repositórios de eventos cĺınicos, dados colaborativos, e redes sociais e biológicas.
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Notation
Some structures apart from the usual text, figures and tables are used in this work. Their inclusion aims to better

organize the conveyed ideas so its content can be easily assimilated by the reader.

Definitions. The introduction of critical concepts are framed by a light blue box. Exemplifying:

Def. 1 A definition is a passage describing, and possibly formalizing, the meaning of a concept.

Requirements and Contributions. Key premises for the thesis validation are framed by a green box:

R1 This is an illustrative requirement.

Conceptual Maps. Taxonomies are introduced in the beginning of each section to guide the reading. Their coloring

aims to better separate concepts, not having other meaning than that.

thesis scope

problem space

solution space

thesis validation

requirements

related work
contributions

limitations
contributions

requirements satisfaction

performance and applicability

Figure 1: Illustrative conceptual map to structure the covered contents of one section, thus promoting clarity.

Framed text. Colored frames are either used to illustrate basic concepts (Basics label) or to expose contextual

contents and complementary readings (Pointers label) in order to guarantee that the main text remains concise.

Basics: Suggestion
Experts may choose to skip these frames.

Pointers: Further information
Examples of pointers include alternative lines of research and applications not directly related with the task under analysis.

Source Code. Algorithms are presented using pseudo-code. Illustrating:

Algorithm 1: The Min-Error algorithm with an earliest first heuristic

Input: Set of tasks and processors
Output: Mapping of tasks to processors
while Unscheduled tasks remaining do

foreach Processor j do
if FT(a, j) ≤ FT(a,c) then c = j;

Schedule(Task a on Processor c) ;

Cross-Referencing. The document is organized in seven books (I-VII), each grouping a set of chapters. References

to sections, figures, tables and the previous structures inside the referee chapter are presented standardly (e.g.

Section 1.1), while references to contents outside of the chapter are preceded by the book index (e.g. Section I-1.1).
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1
Introduction

Learning from high-dimensional data, where the high number of features can exceed the number of observations,

is challenged by an inherent complexity and generalization difficulty. In these data contexts, these challenges

can be minimized by focus the learning on specific regions of interest (such as subsets of features) [316, 302].

However, the lack of flexibility on how the existing learning methods select such regions is associated with three

major problems: 1) the inclusion of non-relevant regions (promoting overfitting), 2) the exclusion of relevant

regions (promoting underfitting), and 3) the modeling of apparently relevant regions, yet not statistically significant

[105, 316, 22]. As illustrated in Figure 1.1, learning from high-dimensional data is a challenging task since

not all regions are equally informative and, even when informative, regions may not be statistically significant.

Furthermore, they can be significantly informative yet non-significantly discriminative.

Figure 1.1: Learning from high-dimensional data: relevance of selecting coherent, discriminative, significant regions.

This work aims to tackle these challenges by learning flexible, robust and statistically significant descriptive

models and associative classification models from relevant regions of a high-dimensional data space. This learning

task is addressed for tabular and structured data. In this context, our goal is to systematically study how does the

performance of descriptive and classification models vary with the homogeneity, discriminative power and statisti-

cal significance of the selected regions. The underlying hypothesis is that the adequate selection and composition

of regions improves the performance guarantees of local descriptive models and (associative) classifiers learned

from high-dimensional data. As a result, this understanding opens a window of opportunity: new principles can be

inferred to revise the behavior of existing learning methods.

The importance of this thesis is driven by two major observations. First, the need to validate the increasing

number of scientific statements from the analysis of high-dimensional data without proper statistical assessments

[316]. This is particularly critical across biomedical domains, due to the severity of implications that some state-

ments might have on human health and upcoming research. Second, the need to face the increasing dimensionality

of the available data, without being susceptible to the problems of feature selection and peer procedures for dimen-

sionality reduction. The focus on a small subset of features is commonly associated with the exclusion of relevant

regions and inclusion of non-relevant elements, contributing to the over/underfitting risk.

The in-depth study of how to optimize the performance of the target learning methods, while guaranteeing

their statistical significance, is thus critical to answer a wide-set of real-world learning problems. In this work, we

address the tasks of learning from: 1) tabular data from biomedical domains with a high number of molecular units

or clinical features per sample or patient, and social domains with a high number of rated items, traits or behavioral
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features per subject; 2) weighted graphs given by large-scale biological and social networks; 3) sequential data

associated with (multivariate) time series with a high number of time points and/or (sliding) features; and 4)

structured data mapped from high-dimensional multi-sets of events, such as repositories of health records, trading

decisions, (e-)commerce operations and browsing events.

This chapter is organized as follows. Section 1.1 formalizes the universe of discourse of this thesis. Section 1.2

explores the current limitations and opportunities of learning from high-dimensional data. Section 1.3 structures

the problem space according to its requirements. Section 1.4 provides a high-level view on the contributions of this

thesis. Finally, a roadmap for an easy exploration of the contents in this dissertation is provided in Section 1.5.

1.1 Universe of Discourse

This section formalizes the target learning task. Acording to Figure 1.2, follows a characterization of the possible

inputs (high-dimensional data) in Section 1.1.1, the desirable outputs (learned models) in Section 1.1.2, and the

learning functions in Section 1.1.3.

learning task

data

input

learning methodfunction

learned model

 

output

domain

codomain
(annotations)

properties

tabular

structured

absent (single-label)

unstructured

structured (sequence)

size and dimensionality

regularities

matrix

weighted graph
(adjancy matrix)

three-way time series

multi-sets of events

nominal and ordinal

real-valued

goal

function

orientation

structure

probabilistic

deterministic

generative

discriminative

descriptive

prescriptive
(decision model)

local model

global model

biclustering
(simple data)

cascades/event-sets
(structured data)

classification model

regression model

local

global

associative

others

Figure 1.2: Learning task according to its input, function and output.

1.1.1 Input Data

Learning from high-dimensional data has both challenges dependent and independent of the input data format.

In this work, we first tackle the task of learning from (high-dimensional) data given by real-valued matrices and

weighted graphs. Second, we move towards learning from structured data given by multivariate time series, itemset

sequences, multi-sets of events and multi-dimensional data.

Basics 1.1 Notation
A random variable (or random vector/matrix in bold) is a function denoted by a capital letter (X, Y, A, C) from an event space into a
sample space (denoted by caligraphic style: X, Y, A, C), with outcomes denoted by the corresponding lower case (x, y, a, c).

A dataset is defined by a set of observations, a sample of a (possibly) random vector X taking values on a

sample space X with probability function PX(x), or simply PX. In labeled datasets, the X observations are (possibly)

conditionally dependent on the assigned labels c ∈ C, also referred as classes, and thus described by a class-

conditional probability function PX(x|c), or simply PX|C. As we move from tabular to structured datasets, the

observations take values on a structured sample space X.
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Data Structures

Below we introduce tabular data structures. Real-valued matrices and weighted graphs can be seen as specializa-

tions of tabular data where features are numeric and thus X = Rm (where m is the number of features). Missing

interactions from graphs are seen as interactions with a zero weight. Tables 1.3-1.6 illustrate these data structures.

Def. 1.1 A real-valued matrix A with n observations (rows) xi ∈ R
m, m features (columns) y j ∈ R

n, and n×m
elements ai j ∈ R is a (n,m)-space. Let Σ be a set of categoric values (classes), a labeled real-value matrix given by
a (n,m)-space is described by n labeled observations (xi, ci), where xi ∈ R

m and ci ∈ Σ.

Def. 1.2 A tabular dataset A has n observations xi ∈ X (possibly labeled), m features y j ∈ Y j, and n×m elements
ai j ∈ Y j, where Y j defines the domain of the y j feature: either nominal, ordinal or numeric.

Basics 1.2 Tabular data structures
Figures 1.3 and 1.4 provide a real-valued matrix (A1) and an alternative tabular dataset (A2). A1 is a labeled (n=6,m=7)-space with
2 classes (4 c1-conditional observations and 2 c2-conditional observations). A2 has 5 observations and 6 features, each feature yi

taking values on a specific sample space Yi with either numeric values (Y1 and Y5), nominal values with varying cardinality (Y3, Y4

and Y6), or ordinal values (Y2). Illustrating the concept of data elements: a2,3=3.9 in A1 and a2,3=b in A2.

Figure 1.3: Illustrative real-valued matrix (A1)

y1 y2 y3 y4 y5 y6 y7 class

x1 2.7 -0.9 2.2 2.7 -0.9 1.1 0.9 c1
x2 0.8 -2.1 3.9 0.1 -2.1 -0.1 1.9 c1
x3 1.3 -3.8 2 -2.8 -3.8 0 0.1 c1
x4 -2.7 -1.8 3.7 1.9 -2.2 -0.9 2.1 c1
x5 0.7 2.9 0.2 -2 -0.8 1.9 -1.1 c2
x6 -2.6 -3.1 -0.1 3.9 0.9 -2 1.2 c2

Figure 1.4: Illustrative tabular dataset (A2)

y1 y2 y3 y4 y5 y6 class
(Y1=R) (Y2=N) (|Y3 |=3) (|Y4 |=7) (Y2=N) (Y6={Y,N})

x1 0.3 3 A3 A4 63 Y c1
x2 1 5 B3 A4 22 Y c1
x3 -2.1 3 A3 F4 31 N c1
x4 -0.1 1 C3 E4 28 Y c2
x5 3.2 4 B3 A4 42 N c2

Def. 1.3 A weighted bipartite graph is defined by two disjoint sets of nodes X={x1, .., xn} (observations) and
Y={y1, .., ym} (features) where xi ∈ R

m and y j ∈ R
n, and weighted interactions ai j ∈ R between nodes xi and

y j. A weighted graph is defined by a set nodes X={x1, .., xn} (observations and features) where xi ∈ R
n and ai j ∈ R

interactions between nodes xi and x j. Given a set of labels Σ, nodes can be labeled (xi, ci ∈ Σ).

Basics 1.3 Network data: (weighted) graphs
Figure 1.5 depicts a weighted graph with labeled nodes. Figure 1.6 provides the result of mapping this graph into a real-valued matrix
(A3), with 5 observations and 5 features. The weight of interaction between nodes with identifiers i and j corresponds to the ai j

element in the mapped matrix.

Figure 1.5: Illustrative weighted graph (A3). Figure 1.6: Real-valued matrix (A3) mapped from Figure I-1.5.

y1 (x1) y2 (x2) y3 (x3) y4 (x4) y5 (x5) class

x1 0 0.8 0.9 0 0 c1
x2 0.8 0 0.6 0 0 c1
x3 0.9 0.6 0 0.4 0 c1
x4 0 0 0.4 0 0.9 c2
x5 0 0.2 0 0.9 0 c2

The introduced data structures are consider to be the default input along Books II and III of this document. Since

new data structures are becoming increasingly prominent, bringing new challenges towards traditional learning

tasks, we also consider multivariate time series, sequential databases and multi-sets of events. Figures 1.7-1.9

illustrate these data structures. We also provide mappings of multi-dimensional and relational databases into

multi-sets of events in order to guarantee a wide-coverage of real-world (high-dimensional) data structures. An

analysis of their application domains is provided in the next chapter.
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Def. 1.4 A three-way time series (or cube) is a set of observations {x1, .., xn}, where each observation xi defines a
matrix with m features y j ∈ R

p, p time points tk ∈ R
m, and elements ai jk ∈ R relating observation xi, feature y j and

time point tk. A cube is also referred as a multivariate time series database, where each time series has a m order
and p time points. Given a set of labels Σ, observations (time series) can be labeled (xi, ci ∈ Σ).

Basics 1.4 Multivariate time series
Figure 1.7 instantiates a labeled time series database A4, with 4 multivariate time series labeled with a class (time series ⇒ class),
each time series (matrix) has a 5 multivariate order with measurements along 4 time points. Alternatively, Figure 1.7 can be seen as
an integer cube with 4 matrices (or observations), each with 5 rows and 4 columns.

Figure 1.7: Illustrative set of multivariate time series (A4)

x1 ⇒ c1

t1 t2 t3 t4

y1 1 0 -2 -2
y2 1 1 -2 -2
y3 1 2 2 2
y4 0 2 2 2
y5 -2 1 0 1

x2 ⇒ c1

t1 t2 t3 t4

y1 1 -1 -2 -2
y2 0 0 -2 -2
y3 -1 2 2 2
y4 0 2 2 2
y5 1 0 1 0

x3 ⇒ c2

t1 t2 t3 t4

y1 1 -1 0 1
y2 2 2 0 -1
y3 2 2 -2 -2
y4 0 1 2 2
y5 -1 -1 2 2

x4 ⇒ c2

t1 t2 t3 t4

y1 0 -2 -1 0
y2 2 2 0 0
y3 2 2 -2 -2
y4 -1 0 2 2
y5 -2 -1 2 2

Def. 1.5 Given a set of items L, let an (itemset) sequence be an ordered set of itemsets <I1, .., Im>, where Ii ⊆ L.
A sequential database is a set of n sequences (observations). Sequences can be labeled.

Def. 1.6 Let an event µ from a source (observation) xi be a tuple (y j, ai jk, ti jk), where y j ∈ Y j is the type of event
(feature), ai jk is its value and ti jk the timestamp. A repository of multi-sets of events is a set of n observations xi ∈ X,
where each observation is a set of timestamped events. Observations can be labeled.

Basics 1.5 Sequential databases and multi-sets of events
Figures 1.8 and 1.9 show respectively an instance of a sequential database (A5) and of a multi-set of events (A6).

In Figure 1.8, itemset sequences were represented with a compact format: co-occurring items are delimited by curve parentheses
and itemsets are concatenated. Illustrating, x1=<{a, h}, {d}, {a, b}, {b, e, g}, {a, c, f }>=(ah)d(ab)(beg)(ac f ). A5 is a set of 5 labeled
itemset sequences (3 c1-conditional and 2 c2-conditional observations) with items in L (|L|=8). Illustrating further properties, x4 is an
ordered set of 6 itemsets with a total of 12 items and an average number of 2 items per itemset.

The labeled multi-sets of events provided in Figure 1.9 (A5) has 4 observations (4 distinct sources of events) and 3 features (3
distinct types of events) with different feature domains (Y1=N, Y2={y} and Y3={a,b,c}). Each observation has an arbitrary number of
timestamped events per feature. For instance, x1 has a total of 4 event occurrences, 2 associated with y1 feature ((3,t2) and (5,t4)),
no event associated with y2 feature and two events associated with y3 that co-occur in time point t1.

Figure 1.8: Illustrative sequential database (A5)

sequence (L={a,b,c,d,e,f,g,h}) class

x1 (ah)d(ab)(beg)(ac f ) c1

x2 (bd)(ab)(be)(b f )a c1

x3 (de)h(ab)g(be f )( f g) c1

x4 b(ab)(abce)(de)b(d f ) c2

x5 (ad)(ac) f (ad)(cd f )(ab)g c2

Figure 1.9: Illustrative multi-sets of events (A6)

y1 y2 y3 class
(Y1=N) (|Y2 |=1) (|Y3 |=3)

x1 {(3,t2),(5,t4)} ∅ {(a,t2),(c,t2)} c1

x2 {(2,t2),(3,t3),(4,t4)} {(y,t3)} {(c,t1)} c1

x3 ∅ {(y,t2),(y,t4)} {(b,t3),(c,t4)} c2

x4 {(2,t1),(1,t4)} {(y,t1)} {(b,t1),(a,t3),(c,t3)} c2

Labels: Data Codomain

As introduced, a labeled dataset is a sample from a class-conditional probability function PX|C, where X is a random

vector taking values on a (possibly structured) sample space X (the domain), and C is a random variable with

classes from a sample space C (often referred as codomain). Let Σ be a set of labels, the classes can be nominal,

C=Σ (default case), ordinal when Σ is an ordered set, or numeric when C=R. Like domains, codomains can be

structured. In particular, we tackle the case where labels are associated with categoric vectors, C=Σh.

Data Properties

A dataset is primarily characterized by the number of observations (size), dimensionality, and data regularities.
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The dimensionality of a dataset is given by the number of columns/features in tabular data (m); number of

nodes in weighted graphs; product of the number of features (multivariate order) and time points in multivariate

time series (m × p); average number of items per itemset sequence in sequential databases; and average number

of events per observation in multi-sets of events. In this context, the criteria to decide whether a dataset is high-

dimensional deserves some attention. High dimensionality has been seen not only as a product of dimensionality,

but also dependent on the complexity of the learning task [553, 316]. There is a considerably agreement that a

dimensionality superior to 100 can be considered already high for common learning tasks (based on the suggested

cut-off thresholds to apply feature selection) [589, 215, 343]. Complementarily, the higher the learning complexity,

the lower the dimensionality threshold to consider a dataset to be high-dimensional. As such, high-dimensionality

can be seen as a result of three major aspects:

• number of observations and classes. The lower the ratio n/|C| (where |C|=1 for non-labeled data), the higher

is the learning complexity due to an increased difficulty to generalize;

• type of input data. In structured data contexts, the learning complexity increases more rapidly with an

increasing number of features (or types of events) than with an increasing number of time points/partitions.

Illustrating, for a multivariate time series database, the ratio m
√

p > 100 can be considered to be a more fair

verification of high-dimensionality;

• the regularities of the input data. Illustrating, the higher the number of correlated features, the higher

the learning complexity. A high number of studies aim to theoretically or empirically predict the minimum

number of observations for an adequate learning based on the regularities of a given dataset with fixed

dimensionality [218, 110, 178, 54]. High-dimensionality is here assumed when the number of available

observations is lower than the expected minimum number of observations.

Basics 1.6 Data dimensionality
Consider the data from Figures 1.3-1.7. Their dimensionality is: dim(A1)=m=7, dim(A2)=m=6, dim(A3)=n=5 and dim(A4)=m×p=20.

Let the number of itemsets of an itemset sequence x be |x|, the ith itemset of x be xi, and the number of items of an itemset I be
|I|, then dim= 1

n Σn
i=1Σ

|xi |
j=1|x

j
i |.

Given a multi-set of events, let the set of events of type j ∈ J from source x be x j, then dim= 1
n Σn

i=1Σ j∈J |x j
i |.

Accordingly, the dimensionality of datasets in Figures 1.8 and 1.9 is respectively dim(A5) = 11.2 and dim(A6) = 4.75

1.1.2 Output Models

Given a dataset A characterized by a set of underlying stochastic regularities, PA (given by PX or PX|C), a learning

task aims to infer a model M from this (n,m)-space such that the error over PA is minimized.

In this thesis, we tackle different learning tasks according to three major qualities: flexibility (the ability

to affect the properties of the output model), robustness (the ability to deal with noisy and missing data) and

statistical significance (the ability to exclude spurious regularities).

Two major types of models are considered: descriptive and classification models. These models can be further

categorized according to the extent of the space coverage (global or local) and properties.

Descriptive Models

Def. 1.7 A descriptive model abstracts either locally or globally the regularities of a (possibly labeled) dataset,
M(A). A regularity is a trend in data. While unsupervised descriptors (|C|=1) model observations, PX, supervised
descriptors (|C|>1) model class-conditional observations, PX|C.

A descriptive model (Def.1.9), also referred as an observation model, is either unsupervised or supervised de-

pending on whether there is knowledge regarding the assignment of probability functions (labels per observation).

Supervised descriptors are also referred as class-conditional observation models. Understandably, supervised de-

scriptive models differ from decision models, such as classification models, since their goal is description and not



1.1. Universe of Discourse 7

the labeling of new observations.

Two distinct criteria of locality can be considered to identify whether a model is global or local. First criterion:

the model is able to separate groups of observations with distinct regularities. Under this criterion, a descriptive

model that approximates a distribution for each feature of a tabular dataset is not local. As such, descriptive

models that define a multivariate distribution per class are global and thus not able to accurately describe datasets

where groups of observations with a shared class show distinct regularities. Contrasting, clustering models are able

to accommodate this locality criteria (Def.1.8). In particular, there are dedicated research streams on clustering

to describe not only tabular data, but also multivariate time series, sequential databases and multi-sets of events

[74, 36]. In tabular datasets, clustering can be alternatively applied to group subsets of features with correlated

values across observations. This possibility can be seen as an alternative form of locality.

Def. 1.8 Given a dataset with X observations, a clustering model is a set of subsets of observations (clusters),
{X1, ..,Xl} where Xi ⊆ X, with intra-cluster and inter-cluster guarantees of (dis)similarity between observations.

Basics 1.7 Global mixtures versus clustering models
Considering the illustrative dataset A1 (Figure 1.3) with 2 classes and 7 real-valued features. Assuming independence between
features, let us consider the simplistic task of learning a global mixture given by class-conditional multivariate Gaussian distributions.
Given A1, then y1|c1 ∼ N(µ= 1

4 Σ4
i=1ai1=0.5, σ2= 1

4−1 Σ4
i=1(ai1-0.5)2=5.3), y1|c2 ∼ N(-1.0, 5.4), y2|c1 ∼ N(-2.2, 1.5), y2|c2 ∼ N(-0.1, 18.0), and

so forth. Understandably, this model suffers from a major drawback. The inability to distinguish between subsets of observations
with a shared class yet with different regularities leads to: biases in the Gaussian’s mean and an increased variance that blurs the
discriminative power of a feature. On top of this observation, there is a high overfitting propensity for data with a limited number of
observations, such as A1. The high variance associated with the observed values for the illustrated features y1 and y2 shows that
they are insufficient to effectively characterize and distinguish c1 and c2-conditional regularities.

Contrasting with this global mixture, let us consider a mixture given by a clustering model with 2 clusters of observations per
class based on their Euclidean distance, where a cluster is characterized by the average value per feature (mean centroid). Given
A1, the similarity between 2 observations is given by d(xa, xb) =

√
Σ7

j=1(aa j − ab j)2, leading to the following groups of cluster for class
c1: cluster1={x2, x4} and cluster2={x1, x3}. The mean centroids of these clusters are [-0.95,-1.95,3.8,1,-2.15,-0.5,2] and [2,-2.35,2.1,-
0.05,-2.35,0.55,0.5], respectively. For the given distance, this clustering model is able to achieve a reasonable intra-cluster similarity,
low inter-cluster similarity and some notable differences between clusters from c1 and c2 classes.

Second criterion of locality: the model is able to identify regions given by subsets of observations and subsets of

features in tabular data (or subsets of time points, items and events in structured data). Illustrating, in the presence

of real-valued matrices, a local descriptive model is a composition of learned regions from the original space, where

each region Bi is a (ri, si)-space where ri≤n ∧ si≤m. We consider this criterion to be the default locality criterion in

this work due to its higher flexibility to discard non-informative and non-discriminative regions, a critical condition

when learning from high-dimensional data (Figure 1.1). Under this criterion, clustering models, are considered to

be global. Contrasting, more flexible descriptive models, such as biclustering models, are local.

Local Descriptive Models

Def. 1.9 A local descriptive model is a composition of regions from a (possibly structured) dataset. A region is a
subset of overall data elements that satisfies certain homogeneity and (possibly) discriminative criteria.

Local descriptors aim to learn relevant regions, subspaces from a (possibly structured) sample data space. Given

a tabular dataset, an element ai j relates the xi observation and y j feature or nodes xi and x j. Given a three-way

time series, an element ai jk relates the xi observation (time series), y j feature and tk time point. Given a sequential

database and multi-set of events, an element corresponds respectively to an occurring item and event.

As introduced, the properties of a local descriptive model depend on the structure of the input data. Below,

we define flexible descriptive models for real-valued matrices, multivariate time series and itemset sequences. For

these data structures, regions of interest are respectively given by biclusters, triclusters and sequential patterns.

The formalized concepts associated with these descriptive models are instantiated in Basics 1.8, 1.9 and 1.10. To
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preserve conciseness, an in-depth analysis of these models, as well as of additional variants, is provided throughout

Books III and IV of this document.

Def. 1.10 Given a real-valued matrix A with n observations (rows) X in Rm and m features (columns) Y in Rn,
a bicluster B = (I, J) is a region/subspace of the original (n,m)-space, where I ⊆ X is a subset of rows and J ⊆ Y
a subset of columns. The biclustering task aims to find a set of biclusters {B1, ..,Bl} such that each bicluster Bi

satisfies specific criteria of homogeneity, discriminative power in the presence of labels, and statistical significance.

Basics 1.8 Biclustering real-valued matrices

Figure 1.10: Illustrative bicluster in A1 matrix
(rounded values and reordered rows/columns)

y1 y2 y3 y5 y7 y4 y6 C

x1 3 -1 2 -1 1 3 1 c1
x2 1 -2 4 -2 2 0 0 c1
x4 -3 -2 4 -2 2 2 -1 c1
x3 1 -4 2 -4 0 -3 0 c1
x5 1 3 0 -1 -1 -2 2 c2
x6 -3 -3 0 1 1 4 -2 c2

Considering the introduced A1 matrix in Figure 1.3, the (2,4)-space given by
B1=(I={x2, x4}, J={y2, y3, y5, y7}) is coherent, discriminative and significant, and can
thus be seen as one bicluster from a biclustering model learned from A1. To facilitate
the analysis of the properties of B1, Figure 1.10 provides a variant matrix of A1 where
the values were rounded and both rows and columns were reordered. First, B1 has
approximately constant values across observations, a common form of homogeneity.
Second, the combination of values per bicluster’s row, {-2,4,-2,2}, is supported by 2
observations with class c1 and 0 observations with class c2, indicating a potentially
high discriminative power. Finally, half of the total elements from c1-conditional data
are covered by the bicluster, possibly indicating its statistical significance.

Def. 1.11 Given a real-valued cube (multivariate time series database) A with n observations (matrices) X, m
features (rows) Y and p time points (columns) T: a tricluster B = (I, J,K) is a subspace of the original space,
where I ⊆ X and J ⊆ Y are subsets of observations and features, and K ⊆ T is a subset of contiguous time points.
Given A, the triclustering task aims to find a set of triclusters {B1, ..,Bl} such that each tricluster Bi satisfies specific
criteria of homogeneity, discriminative power in the presence of labels, and statistical significance.

Def. 1.12 Given a real-valued cube A with n observations and a set of triclusters (modules) supported by the same
subset of observations, there is a high chance that these modules are correlated. A cascade (or frequent response)
R is a set of l modules {B1, ..,Bl} related through r temporal dependencies D = {d1, .., dr}, where di is a sequential
constraint defining either a parallel occurrence {Bi,B j} or precedence Bi ⇒ B j between two modules. Given A,
the task of modeling cascades aims to learn a set of cascades {R1, ..,Rs} satisfying specific criteria of homogeneity,
discriminative power in the presence of labels, and statistical significance.

Basics 1.9 Modeling triclusters and cascades from real-valued cubes
Considering the integer cube A4 provided in Figure 1.7, some of its regularities PA4 can be given by diverse coherent modules. Figure
1.11 illustrates some of these modules given by triclusters (subsets of observations, features and time points). We highlight 4 triclus-
ters: 2 triclusters for c1-conditional observations (B1=(I1={x1, x2}, J1={y3, y4},K1={t2, t3, t4}) and B2=(I2={x1, x2}, J2={y1, y2},K2={t3, t4}))
and 2 triclusters for c2-conditional observations (B3=(I3={x3, x4}, J3={y2, y3},K3={t1, t2}) and B4=(I4={x3, x4}, J4={y3, y4, y5},K4={t3, t4})).
All of these triclusters: 1) show constant values per feature, a commonly accepted form of homogeneity; 2) are supported by ob-
servations of a single class, and thus discriminative; and 3) appear to be statistically significant as they are supported by all of the
observations of a particular class and include at least 20% of the total elements from these observations.

Figure 1.11: Triclusters (and implicit cascades of triclusters) from the A4 cube

x1 ⇒ c1

t1 t2 t3 t4

y1 1 0 -2 -2
y2 1 1 -2 -2
y3 1 2 2 2
y4 0 2 2 2
y5 -2 1 0 1

x2 ⇒ c1

t1 t2 t3 t4

y1 1 -1 -2 -2
y2 0 0 -2 -2
y3 -1 2 2 2
y4 0 2 2 2
y5 1 0 1 0

x3 ⇒ c2

t1 t2 t3 t4

y1 1 -1 0 1
y2 2 2 0 -1
y3 2 2 -2 -2
y4 0 1 2 2
y5 -1 -1 2 2

x4 ⇒ c2

t1 t2 t3 t4

y1 0 -2 -1 0
y2 2 2 0 0
y3 2 2 -2 -2
y4 -1 0 2 2
y5 -2 -1 2 2

Understandably, due to the temporal nature inherent to A4, relations between the discovered triclusters can be hypothesized,
leading to meaningful cascades of coherent behavior. Considering triclusters B1 and B2, they seem to occur in parallel, being the
coherency of B2 possibly triggered by the starting of B1. Alternatively, B3 and B4 triclusters appear to related through a causal relation.
From this observation, we can infer two cascades: R1 with co-occurring modules {B1,B2}, and R2 with precedent modules B3 ⇒ B4.
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Def. 1.13 Let a sequence of itemsets <I11...I1n> be contained in another sequence of itemsets <I21...I2m> if
∃1≤i1<..<in≤m: I11 ⊆ I2i1 , .., I1n ⊆ I2in . Given a sequential database A with n itemset sequences (observations), a
sequential pattern s is an itemset sequence contained in a significant subset of the observations. Given A, the se-
quential pattern mining task aims to discover a set of sequential patterns satisfying specific criteria of statistical
significance, discriminative power in the presence of labels, and dissimilarity between patterns.

Basics 1.10 Modeling sequential databases
Most of existing local descriptive models for sequential databases are a composition of temporal patterns. Some of these temporal
patterns assume temporal contiguity (such as motifs and strings), while others exclude the possibility to model co-occurrences. Con-
trasting, local descriptive models given by sequential patterns flexibly capture frequent co-occurrences and precedences (Def.1.13).
Given A4 database provided in Figure 1.7 and a strict criteria of significance by requiring patterns to be supported by all observations
of a given class and to have a minimum number of 6 items, 2 sequential patterns can be retrieved: s1=d(ab)(be) f and s2=a(ac)d(d f ).
s1 is supported by all c1-conditional observations and s2 by all c2-conditional observations. Both have 4 frequent precedences and an
average number of 1.5 co-occurring items per itemset. Besides the significance criteria, these sequential patterns are dissimilar and
appear to be discriminative as they are supported by observations of a single class only.

Classification Models

We now move from descriptive to prescriptive settings to be able to answer a wider range of learning tasks.

Def. 1.14 Given a set of labeled observations, a decision model is a mapping function between observations and
classes, M : X → C. A decision model is a classification model in the presence of categoric labels, C=Σ, and a
regression model in the presence of numeric labels, C=R.

Decision models are inferred from the conditional regularities of the input space, PX|C.

Given a set of labeled observations (xi, c), classifiers learn a mapping from X to C given by decision rules for

labeling (unlabeled) observations. When observations are labeled with real values, we are in the presence of

parameter estimation problems (also called point estimation problems), in which an unknown scalar quantity can

be estimated using regression models.

Similarly to descriptive models, decision models can either be conceptually divided as global or local, depending

on whether relations are inferred from the overall data space or from informative and discriminative regions.

Local Classification Models

Def. 1.15 Given a set of labeled observations, a local classification model is a meaningful composition of decision
rules inferred from regions of interest (supervised local descriptive models) to label new observations.

Similarly to the introduced descriptive models, the properties of the regions used within a local classifier highly

depend on the input data. Illustrating, given an labeled real-valued matrix in a (n,m)-space, a decision rule Mi(x)

is inferred from a discriminative subspace Bi, where Bi is a (ri, qi)-space where ri<n ∧ qi<m. A widely known local

classifier is a decision tree, where each path from the root to the leaf defines a decision rule associated with a

region with specific interestingness criteria such as high information gain.

Basics 1.11 Learning decision trees
Figure 1.12: Decision tree learned

from A2 data.
Given a set of labeled observations, a decision tree is a local classifier that gathers class
decisions from conjunctions of tests on the values of discriminative features (see Figure
1.12). Decisions trees are commonly learned by iteratively selecting a feature with the
highest information gain (or lowest entropy) and splitting data accordingly for subsequent
branched decisions. Given a X set of n observations with labels in C that are divided
{X1, ..,X|Y j |} according to their values on feature y j, information gain is given by H(X)-
Σ
|Y j |

i=1
|Xi |
n H(Xi) where H(X)=-Σci∈C

ni
n log2( ni

n ) is its entropy. Accordingly, Figure 1.12 shows
the learned decision tree for the tabular dataset A2 in Figure 1.4. Understandably, paths
from root to leaf form a region in the original dataset given by a subset of observations
respecting the accepted values and the set of tested features.
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Associative classification models are a specialization of local classification models. They define a set of weighted

decision rules from informative and discriminative regions, thus combining simplicity and flexibility.

Def. 1.16 Given a labeled dataset A, an associative model is a composition of p weighted association rules, where
each rule B ⇒s C has s-weight and maps a region of interest B (rule’s antecedent) with a subset of classes C ⊂ C
(rule’s consequent). Given A, an associative classification model defines a matching criteria M to label a new
observation xnew against a (possibly pre-computed) associative model learned from A.

Basics 1.12 Learning a simplistic associative classifier

Figure 1.13: New observation
xnew for A4 cube.

t1 t2 t3 t4

y1 -1 0 -2 -2
y2 2 2 -1 -2
y3 1 2 2 0
y4 1 2 2 2
y5 2 1 0 -1

Considering the A4 dataset provided in Figure 1.7, 4 regions of interest that can be retrieved and
mapped as the following set of rules: B1 ⇒

s1 {c1}, B2 ⇒
s2 {c1}, B3 ⇒

s3 {c2}, B4 ⇒
s4 {c2} (see Basics

I-1.9). From these rules, scores can be inferred si based for instance on the discriminative power
and significance of each region (s1 > s2 ∧ s4 > s3). Given a new observation, the simplest way to
compute the strength of each class is to sum the score of rules with matched regions. Assuming
s1=2.4, s2=1.6, s3=1.4, s4=3.2, and that the decision model M considers a valid match between
the newly observed region and a scored region if over 70% of the elements of these regions are
approximately equal. Given the observation in Figure 1.13, we can see that 3 regions satisfy this
criterion: B1, B2, and B3, and thus the strength of each class is c1= s1+s2

s1+s2+s3
=74% (the decision) and

c2= s3
s1+s2+s3

=26%.

Since the underlying goal of this work is to explore the impact of selecting relevant regions when learning from

high-dimensional data, the focus is placed on local (descriptive and classification) models. In this context, we use

the term local model – a composition of regions of interest – not only as the foundation for learning descriptors but

also for learning decision rules.

1.1.3 Learning Function

The chosen learning method determines the properties of the learned models and thus their adequacy to answer

a given problem. The quantification of the performance of descriptive and decision models is formally expressed

via a loss function, L. For descriptive models, the loss function is typically given by: 1) match scores between the

learned regularities against new observations or expectations (when assuming background knowledge regarding

PA) or, alternatively, by 2) merit functions that measure the coherency of the learned abstractions (in the absence

of testing observations and background knowledge of PA). For classification models, a loss function measures the

incurred cost of erroneous decisions, L(y, ŷ). Although this quantification can be also seen optimistically as an utility

function to measure the gain of correct decisions, its symmetric function defines a loss function and therefore we

use the term loss function interchangeably. Illustrative loss functions for classification include functions based on

accuracy or sensitivity metrics in the presence of nominal classes, and the normalized or root mean squared errors

in the presence of ordinal classes.

Def. 1.17 Given a (labeled) dataset A, a descriptive or classification learning task aims to learn a model M that
achieves a specific optimality criterion with regards to a specific loss function L or set of loss functions.

The properties of the target learning models are mainly driven by the learning function. The learning function

can either be probabilistic or deterministic, as well as generative or discriminative.

Probabilistic functions place assumptions on the stochasticity of observations to model their regularities PA. This

is done by either fitting observations against mixtures or more structured models (Basics 1.13). The learning task

thus consists of estimating the parameters of these models, and it is thus often seen as an optimization problem.

Contrasting, deterministic functions typically rely on greedy or exhaustive searches to extract relevant data aspects,

which can be seen as an implicit model of the true data regularities PA. Probabilistic and deterministic functions

should not be confused with probabilistic and deterministic outputs of classification models. Given a set of labels C,

the output or decision of a classifier is probabilistic when discloses the probability of labeling a given observation
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for each class in C, and deterministic when simply returns the class with higher probability.

In labeled data contexts, these probabilistic and deterministic functions can either be used to learn generative

or discriminative models. In generative contexts, each class-conditional probability function PX|c is learned sep-

arately. Generative learning needs to be sufficiently powerful to model regularities specific to a single class for

data contexts with subtle differences between class-conditional functions. Discriminative learning aims to discover

meaningful boundaries that separate observations from different classes. Discriminative functions can either be de-

rived directly from data, such as decision trees, or from generative functions by focusing on their class-conditional

differences (Basics 1.14). Illustrating, the target associative classifiers typically rely on the generative learning of

class-conditional regions of interest. Yet, the desirable focus on dissimilar regions between classes also requires

discriminative learning. Alternatively, some learning approaches combine generative and discriminative functions

via generative embeddings [344, 386]. In the context of unlabeled data, generative and discriminative learning is

respectively associated with the description and differentiation of specific regions of interest. However, to preserve

simplicity, this work only applies these terms in labeled data contexts.

Basics 1.13 Probabilistic models: unstructured vs. structured, generative vs. discriminative
Given A1 dataset, the learned multivariate Gaussian mixture: µ|c1=[0.5,-2.2,3,0.5,-2.3,0,1.3] and µ|c2=[-1,-0.1,0.2,1,0.1,-0.1,0] (see
Basics 1.7) is an unstructured and generative probabilistic model. Given an observation xnew, the probability of xnew being generated
by each class-conditional mixture (also referred as fit) determines the strength of each class. Nevertheless, as illustrated in Figure
1.14, these class-conditional mixtures can be use as input for a discriminative function to place decisions. Considering the same A1

dataset, the learning function can consider more complex stochastic assumptions, possibly given by structured probabilistic models
such as the model illustrated in Figure 1.15.

Figure 1.14: Discriminative decisions from multivariate Gaussian distributions learned from A1 data.

Figure 1.15: Structured generative model learned from A1. Figure 1.16: Structured generative model learned from A4.

Considering the A4 three-way time series. Similarly, both unstructured and structured probabilistic functions can be learned from
A4. In this data context, a multivariate Gaussian mixture can be learned with parameters dependent on time (e.g. µ(t)|c1=[µy1 (t)|c1,
.., µy5 (t)|c1]=[0.38t2-2.93t+3.63, -t+1.75, .., -0.25t2+1.55t-1.75] when assuming a polynomial regression) or by matrices where the
Normal assumption is considered for each time point (e.g. µ(t1)|c1=[1.0,0.5,0,0,-0.5]). For testing new observations, a generative fitting
schema can be considered or discriminative decisions inferred from the underlying mixtures. Contrasting, an illustrative structured
model learned from A4 where temporal dependencies are explicitly modeled is depicted in Figure 1.16.

Basics 1.14 Deterministic models: unstructured vs. structured, generative vs. discriminative
Given A2 dataset, the illustrated decision tree in Fig.1.12 is a structured and discriminative deterministic model. Given A4 dataset,
the illustrated associative classifier in Basics 1.12 given by a set of weighted rules is an unstructured and discriminative deterministic
model. Given A5 dataset, the c1-conditional d(ab)(be) f and c2-conditional a(ac)d(d f ) sequential patterns (see Basics 1.13) can be
either seen as a generative model to test the fit of new observations or as a discriminative model when dissimilarity guarantees are
provided. In fact, the associative models learned from A4 and A5 data require both generative and discriminative learning functions
to, respectively, model class-conditional regularities and guarantee their discriminative power.
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1.2 Problem Motivation

Figure 1.17 lists the major challenges and commonly applied principles to learn from high-dimensional data.

learning from
high-dimensional

spaces

challenges

solution space

applicability
(locality relevance)

over/underfitting risk

uninformative regions

learning complexity

generalization error

observed error

feature selection

global models
with sparse priors

local models

wrappers

filters

significant

coherent and
discriminativebiomedical domains

social domains

Figure 1.17: Motivating the learning in high-dimensional spaces: open challenges, contributions and applications.

A well-known challenge of learning from high-dimensional data is associated with the propensity of the resulting

models to either overfit or underfit the observed data [646, 316, 173]. Minimizing this risk requires essentially an

optimal trade-off between the observed error – error estimated from assessing the learned model on the observed

data –, and the generalization error, often given by the mean and variability of the error estimates collected from

assessing the model on new sets of observations [182]. In this context, adjusting the complexity (also referred

capacity) of the learning function is necessary to achieve good generalization [26]. Complex functions guarantee a

low observed error but often perform poorly on unseen data (overfitting propensity), while overly simple functions

may not be able to model relevant data regularities (underfitting propensity).

However, in data contexts where the number of features exceeds the number of observations, the complexity

term cannot be explored since models may not be able to generalize. This property is often referred as perfect

overfitting towards the observed data [646]. To illustrate this problem, let us consider the following simplistic

global model: a linear hyperplane M(x) in Rm defined by a vector w ∈ Rm and point b to either separate two classes,

sign(w ·x+b), predict a real-valued outcome, w ·x+b, or describe the input observations, X ∼ w ·x+b. As illustrated

in Figure 1.18, a linear hyperplane in Rm can perfectly model up to m + 1 observations, either as a global classifier

X→{±1}, as a regression model X→R or as a global descriptive model of X. Although the assessment of these

models using the same observations is associated with a zero observed error, in the presence of new observations,

the generalization error can be significantly high due to the risk of perfect overfitting towards the training data.

Figure 1.18: Linear hyperplanes cannot generalize when the number of features (data dimensionality) is larger than the
number of observations (data size), m ≥ n + 1.

As a result of these observations, learning from specific regions of interest from high-dimensional data has been

presented as an option to avoid perfect overfitting. However, assessing the statistical impact of selecting regions is

critical since small regions are highly prone to be relevant by chance [343].

In tabular data contexts, regions given by a small number of features and/or observations can be highly coherent

(descriptive tasks) or highly discriminative (classification tasks), yet their probability of occurrence might not be

statistical significant (see Basics 1.15). This observation is also valid in structured data contexts, where a region is

additionally associated with a subset of time points, item occurrences or events.
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Basics 1.15 Statistical significance of regions
In tabular data contexts, a region is a subset of observations and features with a specific form of homogeneity. Given a tabular
dataset A, the statistical significance of a region defines the probability of its occurrence against a null data model to deviate from
expectations. In this context, we use the term region to either describe an observed region in the data space, as well as an unobserved
region (whose statistical significance can be also assessed). Given these considerations, the probability of occurrence of an observed
region is non-necessarily 100% since this probability is computed against data expectations. According to Figure 1.1, we identify
three red regions as not statistically significant. This is a likely condition since their low number of observations and features increases
their probability to occur. Book V is dedicated to adequately assessing the statistical significance of regions with varying properties.

Illustrating, consider a real-valued matrix defining a (n=50,m=10000)-space with an Uniform distribution of

values per feature y j∼U(-1,1) and two balanced classes. Consider a region given by a subset of the original features,

B=(I=X, J⊆Y), defining a (50,5)-space. The combination of values for the selected subset of 5 features (assuming

an entropy ratio above 90% according to Basics 1.11) is highly likely to occur by chance and therefore this region

is not statistically significant. Alternatively, let us neglect the labels and consider a (n=20,m=10)-space. The

probability that this region B=(I, J) has constant values ∀i∈I∀ j∈Jai j ∈ [0.2, 1] across observations is 44% assuming a

simplistic binomial calculus,
(

m
|J|

)∑n
x=|I|

(
n
x

)
px
ϕB

(1 − pϕB )n−x. Again, this region is not statistically significant.

Although the selection of small regions is highly prone to be either informative or discriminative by chance,

many classifiers: 1) rely on feature selection to deal with high-dimensionality, or 2) infer decisions from regions

given by (possibly small) subsets of features. Illustrative classifiers with propensity towards this behavior are

decision trees. Decision trees (see Fig.1.12) typically select a minimum subset of features, whose combination of

values is able to discriminate a specific class. As a result, decision trees and peer classifiers show a high variable

performance (when assessed from a collection of error estimates) and generalization error.

Understandably, the selection of non-significant regions is associated with the risk of underfitting the observed

data. This is the tackled problem in this work since this risk is not structural, meaning that it can be minimized.

For this aim, the impact of mapping an original data space into a set of regions needs to be addressed.

In addition to this problem, the selection of uninformative regions increases the learning complexity and can

introduce unnecessary biases on the learned models.

1.2.1 Problems of Dimensionality Reduction

Let us further explore the facets of this problem. Three major learning options have been considered for the

learning of descriptive and classification models from high-dimensional data.

First, feature selection methods have been applied as a filter or a wrapper. Filters select subsets of features

as an independent preprocessing stage according to some measure of feature relevance, which often neglects the

statistical significance of the selected spaces [682]. Wrappers can be alternatively applied to minimize this problem

since they can estimate the generalization error of the model by evaluating the learned model against multiple

subsets of features [216, 558]. However, minimizing the generalization error does not guarantee that the selected

subsets of features are statistically significant. Additionally, wrappers degrade the learning efficiency and are

dependent on the chosen model, that is, there are no guarantees that a subset of features chosen for one model is

adequate for other models.

Pointers 1.16 The problem of feature extraction
A rather less-studied problem is associated with the learning from tabular data spaces with features extracted from structured data
spaces (e.g. physiological signals, repositories of health-records). In order to guarantee that a reasonable set of informative fea-
tures is extracted, existing studies tend to generate a wide-range of statistical, temporal and geometric featuresa [285, 397, 354].
Understandably, in the presence of a limited number of observations, an informative feature can easily be discriminative by chance.
Furthermore, this problem is aggravated for feature extraction due to biases towards the extraction of purely discriminative features.

aIllustrative methods for feature extraction from temporal structured data include rectangular tonic-phasic windows; moving and sliding features (as mov-
ing and sliding mean and median); transformations (Fourier, wavelet, empirical, Hilbert, singular-spectrum); principal, independent and linear component
analysis; projection pursuit; nonlinear auto-associative networks; multidimensional scaling; and self-organizing maps.
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In real-valued data contexts, an alternative simplistic way of reducing the dimensionality of a given dataset is

to use a mapping function, also referred as a projection or hyper-dimensional transformation, from the observed

data space into a new data space with lower dimensionality φ : Rm → Rd where d<m. An illustrative projection of

A1 data space (Table 1.3) is φ(xi)=φ(ai1, .., aim)=(ai3, ai5, 2ai7, ai1×ai6). Contrasting with feature selection, projections

can affect the value distributions of features, thus often facilitating the subsequent learning task. However, even in

the presence of complex mapping functions, these procedures are not able to flexibly select an arbitrary number of

regions from the input data space.

Second, and complementarily to feature selection, global models can be learned using sparse kernels. A sparse

kernel is a parametric learning function that it is able to guarantee a focus on relevant regions by placing as-

sumptions to collapse or disregard parameters associated with uninformative regions, thus minimizing the learning

complexity and fostering the model’s generalization [153, 647]. Sparse kernels are often associated with (but not

limited to) the learning of probabilistic models [215]. In these contexts, irrelevant and redundant parameters

rapidly converge to zero [378, 214]. For this end, specific a priori knowledge regarding the probability function

PA, referred as prior, have been used to promote sparsity of both unstructured and structured models for both

descriptive and classification tasks (see Basics 1.17). Although the covered sparse kernels offer the possibility to

discard non-informative data and to balance the over/underfitting by controlling the number of iterations associ-

ated with the learning of a parametric model, they show some inherent challenges. Since sparsity is determined

by the model’s parameters, it is not expressive enough to guarantee a flexible selection of regions of interest due to

two major challenges. First, although recent contributions can be used to avoid the need to specify or estimate the

degree of sparseness of the models [217], there is still a high complexity associated with the definition of sparse

priors. Second, sparsity is primarily used to either discard non-relevant features and/or specific ranges of values

per feature, thus preventing the flexible selection of subsets of both observations and features/events/time points.

Basics 1.17 Illustrative discriminative and generative sparse kernels
Let a support vector machine be a parametric learning function aiming to learn a hyperplane from a given feature space: M(x)=∑n

i=1 wi xi+b=wT x+b where m is the dimensionality and w is the vector of parameters. The hyperplane can be learned to approximate
observations (description and regression) or, alternatively, to separate observations with distinct labels (classification). The learning
function can be applied over the original or projected feature spaces. Since not all features are equally informative, sparsity is used
to guarantee that less informative features are discarded by placing a loss assumption that forces some of w elements to converge
to zero [624]. This assumption guarantees the learning of observation models with lower generalization error and the learning of
classification models with less propensity towards overfitting (hyperplane with larger margins separating observations). Given the
c1-conditional observations from A1 (Table 1.3), w=[0.2,-1.3,1.7,0.2,-1.4,-0.01,0.7] defines a descriptive hyperplane where {w1,w4,w6}

converge to zero with sparsity enforcement. Given the same set of c1-conditional observations, now consider the learning of a mixture
given by a vector of parameters w applied over the original space (w=[w1,..,wm]) or projected feature space (w=[w1,..,wp] where
p∈N+). The mixture illustrated in Basics 1.7 placed a Gaussian assumption, where w=[µ|c1, σ|c1]. Assuming a Laplacian (rather than
a Gaussian) prior, w can be optimized to yield a maximum posterior estimate with certain sparseness degree by removing irrelevant
and redundant parameters. The Laplacian prior sets estimates as 0 when they are non-discriminative (Fig.1.19). For the given
c1-conditional observations, y4 is non-discriminative and y2 is redundant with y5, thus w4=w2=0.

Figure 1.19: Laplacian priors to discard non-informative features from A1 dataset (charts adapted from Figueiredo [213]).

Contrasting with the previous models, now consider a structured model given by an automaton with fully-interconnected transitions
and certain emissions per states. In this context, a parametric learning function can be given to learn the probabilities associated with
the transitions and emissions of the underlying automaton. By placing assumptions that enforce the delineate convergence of the
probability of transitions and emissions, sparse models (low number of high probable paths) can be learned. Given the y3 feature of
c2-conditional times series from A4 (including s1=<0,1,2,2> and s2=<-1,0,2,2>), Fig.1.20 illustrates structured models in the absence
and presence of sparse priors (assuming a mixture of Dirichlets [95]).
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Figure 1.20: Impact of sparse kernels to enforce path convergence of structured models learned from A4 time series.

Pointers 1.18 Complementary readings on sparse kernels
Sparse kernels can be considered when learning both descriptive and decision models [216, 78]. Sparsity can be accommodated for
unstructured generative models given by mixtures with varying properties [254, 217] or more structured generative models such as
hidden Markov model, dynamic Bayesian networks or neural networks by placing assumption on the underlying lattice connectivity
[143, 95]. Well-known ways of obtaining sparse global models include parametric functions with a Laplacian prior [232, 504, 384] or
support vector machines [254, 153]. Other illustrative sparse kernels include multinomial sparse logistic regressions [78], variants of
the expectation-maximization algorithm with sparse priors [505, 215], mixtures of Dirichlets [95], among others [378, 214]. In order to
avoid the need to specify or estimate the degree of sparseness of the resulting models, a hierarchical interpretation of the Laplacian
prior has been applied with the Jeffreys’ hyper-prior [217].

Third, some learning functions infer descriptions and decisions from sets of regions of the original data space.

These functions are associated with local descriptive models, such as biclustering models, and local decision models,

such as associative classification models. The problem of how to guide the learning of these models to adequately

select and compose regions of interest is the central task of this work. Naturally, the implications of this study can

be further used to assess and extend methods for dimensionality reduction (including but not limited to feature

selection) as well as to affect the learning of global models.

1.2.2 Relevance of Local Models: Applications

To further motivate the relevance of learning local descriptive models, Table 1.1 provides a set of biomedical and

social data domains characterized by the presence of meaningful local regions. These data domains are charac-

terized by a high-dimensionality associated with a high number of genes per sample, health-records per patient,

molecules per biological network, time points per physiological signal, browsing actions per user, trading decisions

per business, or interactions per user in social contexts.

Data Illustrative subspaces with relevance for learning tasks

B
io

m
ed

ic
al

physiological [108, 201, 211] Sets of (sliding) features and signal partitions with coherent values across case or stimuli-elicited responses.
clinical [302, 122] Groups of patients with correlated clinical features or health records (shared treatments, diagnoses, prescriptions).
structural variations [207, 324] Correlated groups of mutations and copy number variations.
biological networks [53] Modules of genes, proteins or metabolites with meaningful interaction (from matrices with pairwise connections).
gene expression [429, 312] Groups of genes involved in functional processes and pathways only active under certain conditions.
genome-wide [662, 640] Conserved functional subsequences (sequence alignments), factor binding sites and insertion mutagenesis.
other Local regularities in translational [175], chemical [415] and nutritional data [393].

So
ci

al

social networks [257] Groups of individuals with correlated activity and intercommunication; groups of contents based on accessors.
text mining [38, 171] Content-related documents and web pages (from matrices weighting categories/words across text segments).
(e-)commerce [35] Hidden browsing patterns containing relationships between sets of (web) users, (web) pages and operations.
financial trading [334] Indicators producing similar profitability for specific trading points (buy, hold and sell signals) in the stock market.
collaborative filtering [159] Groups of users who share preferences and behaviorial patterns for a subset of available actions.

Table 1.1: Disclosing the meaning of regions across (high-dimensional) biomedical and social data contexts.

1.3 Thesis Requirements

The underlying hypothesis is that learning from relevant regions of high-dimensional data improves the performance

guarantees of local descriptive models and (associative) classification models. Naturally, testing this hypothesis leads

us into the how. First, how does performance vary with the properties of the selected regions? Second, how can
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this understanding be used to improve the learning of descriptive and classification models? Figure 1.21 lists the

key requirements and premises to validate the target hypothesis.

thesis in
a nutshell

problem space
(requirements)

solution space
(contributions)

thesis validation

robust assessment [R1]
(performance guarantees)

flexible local descriptive models

significant local descriptive models [R4]

robust (associative) classifiers [R5]

bound and compare performance

assessing descriptive models

learning from tabular data [R2]

learning from structured data [R3]

robustness, optimality, efficiency

flexible coherency, structure, quality

three-way time series

multi-sets of eventslearning from tabular/structured data

significant decsions

extension for predictive tasks
principles and algorithms

addressing the requirements

roadmap for other applications

satisfaction of requirements

superiority against peer models

new and relevant implications
from varying real data contexts

Figure 1.21: Structured view of the thesis scope: requirements and premises to validate the underlying hypothesis.

First, in order to validate the proposed hypothesis, we decompose its assertion according to an incremental set

of five major requirements. These requirements define the problem space.

R1 Robust assessment of descriptive and classification models learned from high-dimensional data.

By satisfying the first requirement, we have a systematic way to validate our hypothesis, that is, to measure and

compare the impact of modeling regions with varying properties of interest on the target learning tasks.

R2 Learning of flexible and robust local descriptive models from tabular data.

The satisfaction of this requirement allows the systematic exploration of the impact that distinct biclustering

models have in the ability to learn from high-dimensional data. This requires the scalable discovery of flexible

structures of biclusters with parameterizable homogeneity criteria, yet offering optimality guarantees to properly

assess their impact on descriptive and prescriptive tasks.

R3 Learning of flexible and robust local descriptive models from structured data.

Although the satisfaction of R2 already covers different high-dimensional data contexts, such as matrices and

network data, it excludes other data structures that are becoming increasingly relevant, such as multivariate time

series, sequential databases and multi-sets of events. These learning challenges are thus specifically addressed

under this requirement.

R4 Guarantee the statistical significance of local descriptive models.

To answer the introduced need to assess the impact of reducing dimensionality or selecting regions of interest

(Section 1.2), we require the target local descriptive models to be statistically significant. Addressing this require-

ment implies the presence of a robust statistical assessment to guarantee that regions with varying coherence and

quality (either from tabular or structured data) are not prone to occur by chance. This allows the inference of

constraints based on the properties of these regions and the original data, that can be used to guide the learning.

R5 Learning effective classifiers from flexible, robust and statistically significant local descriptive models.

This requirement combines the previous focus on local descriptive models with the need to guarantee their dis-

criminative power in labeled data contexts. Its satisfaction allows the assessment of the impact that the coherency,

quality, significance and discriminative power of the selected regions have in the performance of classification mod-

els. The significance assessment of descriptive models is also extended for (associative) classification models and
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used to affect the learning. All the previous contributions are thus used at this point to guarantee both the accu-

racy and statistical significance of classification decisions. As a result, an integrative view of the pros and cons of

learning local descriptive models to perform classification from distinct high-dimensional data domains is required.

Finally, this requirement is further extended in this work to guarantee the ability to learn from structured

codomains given by sequences of classes for the adequate answering of predictive tasks.

Table 1.2 provides a non-exhaustive decomposition of these five structural requirements.

Table 1.2: Decomposition of the five requirements: list of the tackled requirements.

Requirement

R1: Robust assessment of models learned from high-dimensional data;
R1.1: Performance guarantees of classification models;
R1.2: Performance guarantees of local descriptive models;
R1.3: Adequate generation of synthetic data for non-biased and complete assessments;

R2: Learning biclustering models from tabular data;
R2.1: Flexible structures of biclusters with optimality guarantees;
R2.2: Biclustering models with varying coherency: additive, multiplicative, plaid and order-preserving models;
R2.3: Robustness of biclustering models to: 1) different forms of noise, 2) discretization and 3) missings;
R2.4: Scalability of biclustering searches (with optimality guarantees);
R2.5: Extension of contributions towards network data;
R2.6: Effective and efficient learning in the presence of background knowledge;
R2.7: Sound integration of previous contributions;

R3: Learning local descriptive models from structured data;
R3.1: Learning cascade models from three-way time series;
R3.2: Learning arrangements of events from multi-sets of events;
R3.3: Stochastic modeling of structured data;

R4: Guarantee the significance of flexible local descriptive models;
R4.1/4: Robust assessment of the statistical significance of discrete and real-valued biclusters;
R4.2: Robust assessment of additive, multiplicative, symmetric, order-preserving and plaid models;
R4.3/7: Robust assessment of regions with arbitrary-high levels of noisy and missings;
R4.5: Robust assessment of cascades and arrangements of events from structured data;
R4.6: Learning of local descriptive models from previous statistical views;

R5: Learning accurate and significant classification models from high-dimensional data;
R5.1: Learning effective associative classifiers from tabular data;
R5.2: Learning effective associative classifiers from structured data contexts;
R5.3: Learning classifiers with guarantees of statistical significance;
R5.4: Multi-period classification: extending previous contributions for the learning of sequences of classes;

Given the formulation of these requirements, our work becomes a matter of testing whether they can be si-

multaneously satisfied (solution space), and whether their satisfaction is associated with an improved learning in

high-dimensional spaces. The thesis statement is thus asserted upon the verification of the three following sub-

hypotheses: 1) the proposed learning models satisfy the introduced requirements, 2) these learning models offer

distinctive behavior of interest against state-of-the-art learners, and 3) their application across real-world data

domains can be used to unravel new, meaningful and significant relations from data.

1.4 Solution Space

Multiple contributions resulted from addressing the introduced requirement. Contributions take two major forms:

1) principles, and 2) algorithms and (assessment) methodologies that rely on one or more principles. Many of

these contributions are not only relevant to tackle the target problem, but can also be applied to answer other

problems. In order to not compromise the line of focus of this work, the applicability of our contributions to other

problems are properly identified along the text using dedicated frames (see Notation). As we address and answer

each requirement, we expect that the proposed research produces the following scientific contributions:

C1. Methods to bound and compare the performance of local descriptors and classifiers in high-dimensional data

contexts, including adequate loss functions (able to measure the impact of selecting regions with varying

properties), robust error estimators and generators of data for non-biased and complete assessments;

C2. New descriptors of tabular data able to efficiently discover flexible structures of biclusters with optimality

guarantees and robustness to varying forms of noise. Algorithms to retrieve non-constant coherencies, such

as plaid and order-preserving models; to guarantee an adequate analysis of varying forms of tabular data

(including network data); and to effectively incorporate background knowledge;
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C3. Structured view on the increasingly relevant problems of learning cascades models from three-way time series

and arrangements of events from multi-sets of events. Principles to handle the inherent complexity and vari-

ability of local responses in these data contexts, combining temporal and cross-attribute views with (possible)

misalignments across observations. Deterministic and stochastic algorithms integrating these principles;

C4. Statistical views to robustly assess the significance of regions from tabular and structured data with regards

to their coherency, quality and size (with upper limits on the risk of false discoveries). Revised algorithms to

combine homogeneity (C2-C3) and significance (C4) views for guiding the learning;

C5. Principles for an adequate discovery (C2-C4), composition, scoring and testing of (informative and discrim-

inative) regions from tabular and structured data. New associative classifiers able to incorporate previous

principles. Principles to assess and promote the statistical significance of classification decisions. Systematic

analysis of the performance impact of varying the properties of the underlying regions and learning functions

across data domains. Extension of the proposed classifiers, preserving the accuracy and significance of the

proposed learning functions (C5), to learn sequences of classes for predictive tasks.

Transversally to these set of major contributions, we additionally: 1) survey the contributions and limitations of

state-of-the-art methods, and experimentally compare them against the proposed methods; and 2) show the rele-

vance of the learned models to unravel significant and non-trivial relations across data domains, with a particular

incidence on biomedical domains.

An integrative view of the proposed contributions of this thesis is provided in Chapter VII-1.

1.4.1 Scientific Dissemination

According to the introduced groups of requirements, we list below the current status of the dissemination of the

contributions from our thesis near the scientific community. This list contains only peer-reviewed publications,

excluding other forms of dissemination, such as invited speeches, tutoring and teaching activities, collaborations

in international projects, and scientific meetings and symposiums. From the listed articles, we highlight two publi-

cations in the Data Mining and Knowledge Discovery journal (one dedicated to a subset of C3 and C5 contributions,

and the remaining to a subset of C5 contributions) and additional publications in Pattern Recognition, BMC Bioinfor-

matics, IEEE Transactions in Computational Biology and Bioinformatics, and Algorithms for Molecular Biology journals

dedicated to disseminate C2 contributions. Table 1.22 lists some of the publications proposed in the context of this

thesis (see Appendix for additional published work).

1.5 Contents

The dissertation document is organized as a set of books. Books II to VI expose the core contributions of our thesis,

each book tackling one of the introduced requirements. The contents within each book are carefully discussed at

their start. A book is organize in chapters. Each chapter addresses a finer requirement and delivers a compact set of

contributions that become available for the following chapters and books. In this way, contents are incrementally

built upon previous contents, until we are able to test the cogency of the target hypothesis.

Figure 1.23 provides an illustrative view on the dependencies between books. This view supports a sound

navigation through the contents provided in this dissertation.

Book II defines an assessment methodology to validate subsequent contributions. The new methods for learning

flexible local descriptive models from tabular data contexts proposed in Book III are extended in Book IV towards

structured data contexts, and combined in Book V with guarantees of statistical significance.

Book VI proposes classifiers based on the previous models and tackles the problem of guaranteeing the statistical

significance of their decisions.

Finally, Book VII discusses the conditions on which the thesis statement is satisfied, provides an integrative view

of the proposed contributions, and summarizes their major implications.
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Accepted and under revision publications per book
State
(July 2015)

Tackled
requirements

Book II Performance Guarantees of Models Learned from High-Dimensional Data
P1.1: R Henriques and SC Madeira, Towards Robust Performance Guarantees for Models Learned from High Di-
mensional Data, 2015, Chap.3, Big Data in Complex Systems, Vol.9, Studies in Big Data Series, 71-104, Springer;

Accepted R1.1,R1.2

P1.2: BiGen: Synthetic Data Generation for Biclustering; Under revision R1.3

Book III Learning Local Descriptive Models from Tabular Data
P2.1: R Henriques, C Antunes and SC Madeira, A Structured View on Pattern Mining-based Biclustering, 2015,
Pattern Recognition, Elsevier;

Accepted R2.1,R1.2

P2.2: R Henriques and SC Madeira, BicPAM: Pattern-based biclustering for biomedical data analysis, 2014, 9(1):27-
, Algorithms for Molecular Biology, BioMed Central Ltd;

Accepted R2.2,R2.3

P2.3: R Henriques and SC Madeira, Biclustering with Flexible Plaid Models to Unravel Interactions between Bio-
logical Processes, 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics;

Accepted R2.2

P2.4: R Henriques and SC Madeira, BicSPAM: Flexible Biclustering using Sequential Patterns, 2014, BMC Bioin-
formatics, 15:130, BioMed Central Ltd;

Accepted R2.2,R2.3

P2.5: R Henriques, SC Madeira and Cláudia Antunes, 2013, F2G: Efficient Discovery of Full-Patterns, In ECML/P-
KDD IW on New Frontiers to Mine Complex Patterns, Springer-Verlag, Prague, Czech Republic;

Accepted R2.4

P2.6: R Henriques, C Antunes and SC Madeira, Methods for the Efficient Discovery of Large Item-Indexable
Sequential Patterns, 2014, Lecture Notes in Computer Science, 100-116, Springer I.P.;

Accepted R2.4

P2.7: R Henriques and SC Madeira, BicNET: Efficient Biclustering of Biological Networks to Unravel Non-Trivial
Modules, 2015, In Algorithms in Bioinformatics (WABI), LNCS Series, Springer-Verlag, Atlanta, GA, US;

Accepted R2.5

P2.8: BicPAMS: Software for Biomedical Data Analysis using Integrative Pattern-based Biclustering; Under revision R2.7
P2.9: R Henriques and SC Madeira, Pattern-based Biclustering with Constraints for Gene Expression Data Analysis,
2015, In Computational Methods in Bioinformatics and Systems Biology (EPIA-CMBSB), LNAI Series, Springer;

Accepted R2.6

Book IV Learning Local Descriptive Models from Structured Data
P3.1: Modeling Regulatory Cascades from Gene Expression Multivariate Time Series; Under revision R3.1
P3.2: R Henriques, C Antunes and SC Madeira, Generative Modeling of Repositories of Health Records for Predic-
tive Tasks, 2015, 29(4):999-1032, Data Mining and Knowledge Discovery, Springer US;

Accepted R3.2,R3.3

Book V Significance Guarantees of Local Descriptive Models
P4.1: Assessing the Statistical Significance of Flexible Biclustering Solutions; Under revision R4

Book VI Learning Effective Classifiers from Local Descriptive Models
P5.1: Learning classifiers from high-dimensional data using discriminative biclusters with non-constant coherencies; Under revision R5.1
P5.2: Impact of modeling statistically significant regions in the performance of classifiers; Under revision R5.3
P5.3: R Henriques, C Antunes and SC Madeira, Generative Modeling of Repositories of Health Records for Predic-
tive Tasks, 2015, 29(4):999-1032, Data Mining and Knowledge Discovery, Springer US;

Accepted R5.2

P5.4: R Henriques, SC Madeira and C Antunes, Multi-period Classification: Learning Sequent Classes from Tem-
poral Domains, 2015, 29(3):792-819, Data Mining and Knowledge Discovery, Springer US;

Accepted R5.4

Figure 1.22: State of scientific publications made in the context of this dissertation on July 2015.

Figure 1.23: Thesis storyline: cohesive books of contents and their dependencies.
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