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Worldwide public transport systems are exposed to disruptions caused by 
malfunctions, accidents, maintenance, reduced fleet, and disasters, compromising 
mobility. In this context, the multimodal planning and management of transport 
networks can be explored to increase its robustness against these events. In this 
context, this research paper proposes and empirically compares methods to assess 
the robustness of a multimodal transport network, looking at aspects regarding the 
single-mode and multimodal network topology. We hypothesise that the appropriate 
multilayered and traffic-sensitive modelling of a multimodal transport network can help 
characterise robustness and further unravel vulnerabilities related with the integration 
of different transport modes.  To accomplish this, we evaluate how the network 
decreases performance when simulating failures on stations and pathways using 
metric based targeting. Comparing different failure scenarios, we concluded that 
methods that rely on recalculating network metrics have a higher impact on the 
network robustness assessment. The impact of different events is quantified, showing 
that failures in stations are generally more dangerous than in pathways and offering 
views on the consequences of deactivating particular network modules. We illustrate 
the proposed principles in the Lisbon’s public transport, modelled as a multiplex 
network integrating eight different modes of transport, and explore its characteristics 
and robustness performance. Proposing a novel normalised version of assessing the 
impact of failures, we were able to compare side by side the robustness of each 
modality layer, regardless of their size. Using different ways to induce failures in the 
network, we also observed that to leave all the nodes completely disconnected we 
needed to remove about half the network nodes. This finding highlights the robustness 
of the Lisbon public transport network. Lastly, we simulate cascading events such as 
the breakdown of an entire transportation line. The results of this study allow decision-
makers to further understand the topological vulnerabilities of a transportation network.  
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1. Introduction 
 
Around 55% of the world population lives in urban areas (UN 2018). However, such 
areas represent only a minor percentage of the total surface area. Therefore, daily 
commuting patterns and mobility services’ consumption impact factors such as the 
usage of natural resources and impact time in transportation, pollution, and quality of 
life, among others, yield extreme importance in sustainable development goals 
(Aparicio et al. 2021a; Bernardo et al. 2019; Aparicio et al. 2021b). In this context, 
numerous studies attempt to optimise transportation systems planning and usage in 
urban scenarios (Campbell and Woensel 2019; Lu et al. 2004; Migliore and Catalano 
2007). 
  
Among the studied solutions, the importance of a multimodal transportation system 
arises due to the high demand for some traffic corridors. According to Heinen and 
Mattioli (2019), an improved articulation of multimodality aspects within a transport 
system is significantly associated with lower carbon emissions. This assertion leads 
us to believe that successfully coordinating the interfaces in this kind of network is a 
viable solution for promoting carbon neutrality in the long run. However, according to 
Clifton and Muhs (2012), the study of multimodal transportation systems “has 
historically been underrepresented in travel surveying efforts. This lack of 
consideration has implications for widely accepted statistics for nonmotorised travel 
behaviour (walking, bicycling, among others). It affects researchers and professionals 
in travel modelling, urban planning, public health, and urban design”. An integrated 
view of how specific failures affect the overall multimodal system is also relevant since 
it is fairly common to have planned or unplanned disruptions (i.e. construction works, 
technical failures, attacks and natural disasters),causing delays and possibly inhibiting 
the usage of a pathway or station (Cats et al. 2018).  This observation raises the need 
to assess how robust these transportation systems are. Therefore, our main research 
objective is to assess robustness in multimodal transportation systems in an urban 
scenario. In the context of this study, this assessment is applied at a topological level.  
 
Making stops along our path from origin to our destination is often required, and the 
more stops we make, the more time we spend on transportation. So naturally, how 
nodes and edges failures affect the Average Path Length (APL) is an important 
research question that we are interested in answering. Since the effectiveness of a 
path between two stations can be assessed by the number of stops in a trip (the APL). 
Besides the effects on the APL, understanding how many nodes (or stations) that have 
to fail to fragment the network into isolated components is a requirement to further 
understand the impact of a disaster on a station or stop (in creating isolated 
components). In addition, we also aim to infer the effect of removing edges (pathways) 
versus nodes (stations) since this helps us to infer if incidents have a higher impact on 
pathways or stations.  To empirically test the simulation-based robustness testing, we 
aim to understand if metrics should be recalculated after each extraction, as well as 
the measurement of the impact of cascading failures such as what happens if a station 
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failure causes chain reactions on other stations located along the same line or in the 
nearby stations or stops from other modes. 
 
The current study contributes to increase the knowledge on robustness assessment 
of multimodal transportation systems. Hence, we do a comprehensive review on how 
to model multimodal transportation systems and quantitatively assess their 
robustness. Another contribution of this study is the possibility to support public 
transportation policies focusing on actionable priorities for a more resilient system 
design. For instance, where should the focus of actionability should be in case of an 
accident on different stations or pathways. By understanding which elements are more 
important for network integration. 
 
For this research, the city of Lisbon is used as an example to improve the integration 
of the current multimodal transport network. This analysis is fundamental in the context 
of the Lisbon Metropolitan Area (LMA), where the average occupancy rate for 
individual private transport (cars) is 1.60 passengers per vehicle, and the daily traffic 
inflow in the county of Lisbon is also the cumulative result of commuting traffic inflows 
between Lisbon and the eighteen municipalities that integrate the LMA (INE 2018). 
Several road traffic corridors are flooded daily with single occupancy vehicles that 
could possibly use other public transport alternative. Despite the stable establishments 
and the integration of the operators’ systems with a single card, challenges to the 
integrated operation and multimodal planning of the public transport network still 
persist within LMA.  
 
Additionally, as noted previously in a general sense, it is essential to note the impact 
of natural hazards to disrupt a working transportation system as well. Previous 
literature (Ramos, Zêzere, and Reis 2010) denotes the natural hazard risk in different 
zones of the LMA (see Figure 1). This map shows us the spatial distribution of risk for 
earthquakes, flooding and landslides for the county of Lisbon. This stresses the 
importance to understand various risk impacts on the structure of the network. Along 
with the general risk from natural incidents, other incidents through the city have a 
higher rate of incidence, these usually have a more localised effect (Elvas et al. 2021). 
Such incidents may be caused by faults in energy and water suppliers, traffic accidents 
and fires that disable stations and pathways. Elvas et al. (2021) rendered a map of 
incidents from such a diverse standpoint (see Figure 2). This shows us that a study on 
the impact of network robustness at a local level is relevant. 
 



 
 

 

 
 
 

 
 
 

 

 
 
 

EUROPEAN TRANSPORT CONFERENCE 
2021 

 
 

 
 

4                                                                                                    © AET 2021 and contributors 
 
 

 
Figure 1 Lisbon Metropolitan Area natural hazard map, extracted and translated from Ramos et al. 2010 

 

 
Figure 2. Distribution of incidents in the city of Lisbon from Elvas et al. 2021. On the right the occurrence of 

incidents and on the left their impact on pathways, i.e. number of roads affected. 

 
Since the Lisbon public transportation network is susceptible to these failures that can 
affect the daily commute of its users, a way to guarantee and improve the robustness 
of this critical component of our public services is crucial. To tackle this problem, we 
aim to understand how robust the Lisbon public transport network is. This assessment 
starts by quantitatively measuring robustness (Zhang et al. 2015). Since the Lisbon 
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public transportation network is also complex, it is essential to look at how different 
stations and stops may have similar properties, bridging different lines (routes as linear 
road/rail/other mode infrastructures) and transportation modes. Topological attributes 
and concepts of network resilience, besides simulation, will play a role in this research 
study. We ask ourselves, which nodes (e.g. stations) are central and what the role of 
degree-degree correlations is. This is, if central stations actually connect to other 
central stations in this particular topology, since this may be a cause for a higher 
fragility (Zhou et al. 2012). Also, looking at how different extraction strategies (or 
simulations) for quantifying robustness affect the connectedness of the network will 
shed some light on which method has the highest impact on breaking the key 
pathways that keep the transportation system usable throughout the city.  
 
The above concepts will be applied to the Lisbon’s multimodal transport network in the 
context of the ILU (Integrative Learning from Urban data and the situational context 
for city mobility optimisation) project. This project joins research institutes, the Lisbon 
municipality and public transportation operators to promote a more efficient and 
sustainable mobility. 
 
 
2. Literature Review 
 
Robustness can be understood as the quality pertaining the capability of a system to 
work under disruptions (Immers et al. 2002). Robustness has been alternatively 
defined as an optimization problem (Kouvelis and Yu 2013). A robust solution can be 
seen as the one that has the best performance under high stress conditions. To further 
understand this property of the system perturbation, the literature review shows that 
experiments are a dominant approach, which can be done in silico (using computer 
simulations) (Masel and Siegal 2009). In the context of a multimodal transportation 
system, we can inherently see the redundancy since the transportation modes usually 
provide alternative routes for the same places.   
 
Previous studies indicate that the first step to measure the robustness of a 
transportation system, is to model the transportation network. Accordingly, the 
modelling of multimodal transportation systems recurring to multilayer networks has 
been previously proposed to analyse urban transportation systems (Aleta, Meloni, and 
Moreno 2017). This allowed the analysis of superlayer interdependence. Multilayer 
networks are also used to model air transportation networks. This can, for instance, 
be used to study how the degree–degree correlations of a network affect the spreading 
of an epidemic (de Arruda et al. 2016). The modelling of different types of multimodal 
transport networks have been done in the context of different empirical studies as 
shown in table 1 (Zhang et al. 2020). Note that air travel can be modelled as a 
heterogeneous mode of transport, as different air travel companies constitute different 
layers of a network (Fernandes et al. 2020). 
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Table 1 Empirical studies of multilayer transportation networks, by Zhan et al. 

Authors Networks Area Basis 
(Bogart 2009) Road, canal, port  England  Transport mode 
(Tavasszy et al. 2011) Maritime, road  World  Transport mode 
(Derudder et al. 2014) Rail, road, air South Asian  Transport mode 
(Varga 2016) Air Europe  Country  
(Du et al. 2016) Air China  City  
(Arruda et al. 2016) Air Europe  Company  
(Aleta et al. 2017) Tram, metro, buses  Spain  Transport mode 
(Ding et al. 2018) Rail, road Malaysia  Transport mode 
(Liu et al. 2018) Bus, metro  China  Transport mode 

 
Different authors have modelled and assessed diverse types of networks. Bogart 
(2009) addressed the evolution along time using historical data. Tavasszy et al. (2011) 
developed a method for choosing different routes in shipment according to demand. 
Derudder et al. (2014) studied connectedness in India using community membership 
and betweenness centrality. Varga (2016) applied a weighted multiplex to air traffic to 
then make a network analysis with metrics such as average degree and assortativity.  
Du et al. (2016) modelled an air traffic network in layers based on flight frequency and 
concluded that is less redundant in the Chinese network than the worldwide network. 
De Arruda et al. (2016) modelled an air traffic network and assessed assortativity and 
rich club effect (nodes with high degree connect to nodes with high degree) in 
international flights. Aleta et al. (2017) modelled the Madrid urban transport network, 
measured overlap between different modes and transfers and time from one station 
to another. Ding et al. (2018) studied how the topology of the network affected the 
formation of communities and how betweenness centrality and closeness 
centrality affect growth. Liu et al. (2018) create a methodology to assess the spatial 
accessibility of public transportation network using a case study in Shanghai, China. 
 
To answer the need for measuring resilience of networks, Klau and Weiskircher (2005) 
noted in their robustness and resilience review that a network should be considered 
resilient if it sustains a high number of node failures before it becomes disconnected. 
In that sense, performing node percolation tests is suggested as a way to measure 
resilience. Measuring this property in transport networks has been the focus of several 
studies. Sulivan et al. (2010)  has evaluated system-wide robustness by finding critical 
isolating links in road networks. They reduced the link capacity and measured the 
travel time as a means to measure robustness, this allowed for a dynamic perspective 
as well. Later on Zhou et al. (2017)  have conducted a similar study, but induced the 
vulnerabilities by blocking lanes instead, same as deleting an edge, which ranked the 
links by how critical they were building upon the much earlier work who did just that 
(Scott et al. 2006). 
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These studies are related with the earlier studies on reliability by Chen et al. (2002) , 
where they measured the reliability of networks given the demand change based on 
models of route choice. This study extended capacity reliability to network equilibrium 
models as well as accounts for route-choice actions of drivers. Later Al-Deek and 
Eman (2006) measured  the reliability using network capacity and travel time by 
changing demand and inducing link degradation and non-persistent congestion. 
These studies show how different demand levels affect the capacity and reliability in 
an analytical way. It is important to note that reliability is fundamentally different to 
resilience. Reliability is usually a measure of susceptibility to the interruption of service. 
Resilience, on the other hand measures the ability to recover from such interruption in 
service (Clark-Ginsberg 2016). Robustness on the other hand can be seen as a 
dimension of resilience and as a cause for reliability. 
 
Studies of network resilience have also been done in the context of multimodal 
transport. Montes-Orozco (2020) recently showed that the same idea of percolation 
could be used in multiplex networks. This notion opens this test as a way to accurately 
measure robustness of multimodal transport network.  
 
Another view on resilience measurement on multimodal transport networks is given by 
Bocewicz (2014) who postulates that a whirlpool network structure on a multimodal 
transport network leads to a cyclic steady state unlike a tree structure, under the flow 
simulations proposed. A whirlpool state is one that points towards another, and the 
following states recursively point to the following until it completes a circle. Then the 
measurement of robustness is given by the ration of states in a whirlpool structure and 
the total number of states in the multimodal transport network.  
 
Besides a topological resilience test, a dynamic measurement of such property has 
also been studied in multimodal urban transport. Stamos et al. (2015) studied 
resilience to extreme weather events (EWE) in several European cities by measuring 
the percentage of change of working segments during the EWE. Then claimed this 
could be used for prediction tasks by using past rail, air and road usage data. However, 
this method lacked actionable information, because prevention is only attainable if we 
know where to act. Later on, Cats et al. (2017) defined a framework to assess 
robustness. This helped the description of robustness assessment as an economic 
problem. This kind of assessment is very relevant for this study because it provides a 
baseline for understanding the impact of different disruption scenarios in specific links, 
quantifying their criticality. This is a type of assessment that provides specific enough 
data to be actionable in the real world, showing that number of critical links distribution 
follows a left skewed behaviour (Figure 3). This is relevant since we can see that most 
links are not that critical, and others are very important to keep the network connected. 
By identifying such links and providing redundancy, priority policies and other 
measures, the robustness of the network can actually increase. 
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Figure 3. Cats et al (2017) link criticality study results 

 
3. Methods and Modelling 
 
3.1. Methods  
 
To answer the questions stated in the introduction regarding the topological 
robustness we use different strategies. As we have seen there are several approaches 
to assess robustness, being one of them removing nodes or edges from a network to 
measure that the impact as a simulated station failure (Montes-Orozco et al. 2020). 
The simplest way to do this is by injecting random failures in the network, i.e., randomly 
removing nodes from the network. It is expected that this simple strategy may not 
maximise the damage on the network, but it can be a reasonably realistic approach 
since the Lisbon public transport network may have station failures due to 
unpredictable and unexpected events.  
 
Other more precise strategies were defined by Holme et al. (2002), and we followed 
their strategy. We also simulated failure of nodes and edges to be able to compare, 
which yields the highest impact, as the optimization stress handling can be part of the 
definition of robustness as seen previously. These more precise node extractions 
(simulated station failures) utilise attributes from the network, such as degree and 
centrality. To test a network with more precision, an effective strategy should be to 
extract the most important node. This notion of importance can vary depending on the 
attribute to which we give attention.  
 
We could select nodes from descending order of degree. This extraction is called Initial 
Degree removal - ID removal - because we base the extraction on only the initial 
calculation of the degrees, and we do not update it after removing nodes.  
Another critical attribute is the centrality of a node. There are a few types of centralities, 
but the betweenness centrality is crucial since it represents the nodes that have edges 
that unify communities/groups inside the network. These nodes are the ones with 
highest criticality for network connectivity since they connect the communities of the 



 
 

 

 
 
 

 
 
 

 

 
 
 

EUROPEAN TRANSPORT CONFERENCE 
2021 

 
 

 
 

9                                                                                                    © AET 2021 and contributors 
 
 

network. This extraction is called Initial Betweenness removal - IB removal - like ID 
removal, it only calculates the initial betweenness centrality of each node at the 
beginning and does not update it.  
 
Both extractions only calculate the attributes, degree distribution and betweenness 
centrality, at the beginning of the algorithm. When we remove nodes from the network, 
it changes the degree of the neighbours of the removed node, and it modifies the 
betweenness centrality of all the nodes. Two new strategies appear called Recalculate 
Degree removal - RD removal - and Recalculate Betweenness removal - RB removal. 
These strategies are identical to the ID and IB ones except they update/recalculate 
the degree and the betweenness centrality after each node/edge removal. The RD 
and RB algorithms are considerably more time and computation expensive for each 
interaction, but we wanted to study if they are more efficient at disconnecting the 
network. As efficiency in this case is a way to simulate the highest stress levels. 
 
ID and RD removal are local strategies because when a node is removed, it only 
changes the degree of the neighbours of that node. Thus, only these local nodes need 
to be updated. On the other hand, IB and RB removal are global strategies since by 
removing a node, we need to recalculate the betweenness centrality globally, i.e., of 
all nodes.  
 
Every calculation of the betweenness centrality of the network costs around 5 minutes, 
and since we must apply thousands of recalculations (one per node removal) this 
would be very time consuming and less sustainable. Because of that, we decided only 
to recalculate the betweenness centrality when batches of 5% of the nodes were 
removed. Being N the number of Nodes and E the number of Edges, the ID algorithm 
is O(N + E), the RD is O(N(N + E)), the IB is O(NE)	(using a faster algorithm for 
betweenness centrality created by Brandes (2001)) and the RB is O(𝑁!E). 
  
3.2. Modelling 
 
Most worldwide public transportation networks are multimodal. Therefore, these are 
modelled as a multilayer. Moreover, we also wanted to test if removing nodes that 
connect layers of the graph is critical, i.e., if it disconnects the network faster. We call 
these nodes multimodal hubs and this extraction strategy is Multimodal Hubs removal. 
For example, two multimodal hubs are Alameda, that connects Metro and Carris, and 
Gare do Oriente, that connects Carris, Metro, and CP. It is worth noting that the 
Multimodal Hubs removal strategy only makes sense when evaluating the multilayer 
network. When evaluating each modality, this strategy is invalid because there are no 
multimodal hubs.  
 
Removing nodes from this network may correspond to a stop being deactivated or 
being in constructions, while removing edges may correspond to cutting roads or 
accidents preventing any vehicle from passing through. Edges can also fail. All our 
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node extraction strategies can be applied to edges with a few modifications. For 
example, how can we get the degree of an edge? The edge degree depends on the 
nodes that are connected by it. We used the following four different methods to 
calculate edge degrees:   
 

A. 𝑘" =	𝑘# 	 ∙ 	𝑘$  
B. 𝑘" =	𝑘# +	𝑘$ 
C. 𝑘" =	min	(𝑘#	, 𝑘$) 
D. 𝑘" =	max	(𝑘#	, 𝑘$) 

where ke is the edge degree and kv and kw are the degree of the nodes that are 
connect by the edge e. Since our network is directed, we also assume that v is the 
source and w is the destination node of the edge. However, there are other ways to 
calculate the degree of and edge such as ke = kv or ke = kw.  

In accordance with the study of Holme et al. (2002), where they concluded that method 
A. ke = kv ∗ kw was the best fit to the majority of the network types that they studied. 
Method A showed the best correlation of the four methods between the edge degree 
and the edge betweenness centrality. It is expected that the node with a higher degree 
should also have a higher betweenness centrality. To calculate the betweenness 
centrality of an edge, we also used the Brandes (2001) O(NE) algorithm.  

We can expect that the extractions based on centrality measures may be more harmful 
than the random failures. Concerning the nodes vs edges, we believe that there could 
be a small difference between these extractions, but this is hard to predict. Degree 
based strategies probably will split the network into many subgraphs of vertices with 
low degrees. Betweenness centrality strategies can create clusters that are highly 
connected since they tend to destroy the bridges that connect communities first.  

We understand that not only single nodes fail but also more catastrophic events can 
happen in the network, bringing the notion of cascading effect. For the cascading 
effects, we described and implemented two extraction strategies.  

The cascading effect simulating a Line Failure removes an entire transportation line in 
the network. This could happen with an underground implosion that made the whole 
line stop. We simulate this by removing all the nodes that have the attribute of that 
line. Some nodes may belong to more than one line, even from different modalities. 
For example, Gare do Oriente stop is a multimodal hub that belongs to Metro, Carris 
and CP (railway company).  

The cascading effect simulating a Neighbours Failure removes neighbours from 
several layers of a failed node. One example of this in the Lisbon public transportation 
network could be a recursive failing of transports in the same spot. When a station 
fails, the neighbour stations could experience overflows because of relocated traffic 
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and this could potentially cause them to fail as well. To simulate this type of cascading 
effects, we collect several layers of the node’s neighbours, and then, remove all these 
nodes at the same time. An example of this could be a flood that affected all transport 
modes in a particular spot of the city to a point of not being usable. In conclusion, we 
used the six following extraction strategies for nodes and edges:  

1) Random removal 
2) Initial Degree removal (ID) 
3) Initial Betweenness removal (IB) 
4) Recalculate Degree removal (RD) 
5) Recalculate Betweenness removal (RB)  
6) Multimodal Hubs removal  

We also used the 2 following extraction strategies for cascading effects:  

1) Line Failure 
2) Neighbours Failure  
 

4. Results 
 

4.1. Validation  
 
To assess the impact of each strategy, we explore the impact of each removal based 
on different metrics thought the simulations. To understand how connectedness is 
affected, we measure the average path length (also known as average geodesic 
distance), average degree, number of isolated components, and the size of the 
strongly connected component (de Arruda et al. 2016; Derudder et al. 2014; Varga 
2016). To understand how the average path length is impacted by each removal, we 
only average out the shortest paths that still exist in the network. This approach allows 
us not to need to calculate the inverse path length, 𝑙%&. As the study of this network is 
applied to a multimodal transportation network, we also measure the impact of the 
described extractions on the use of multimodality.  
 
4.2. Data extraction and pre-processing  
 
Firstly, we identified criteria used for the inference of the multiplex network, followed 
by an analysis of the robustness of the topology. To transform route planning from 
GTFS data files of each mode into a network, we joined the routes and the stops of 
each one of the transportation modalities: Carris, CP, Fertagus, Metro, Rodlisboa, 
Sulfertagus, Transtejo and TST (bus, railway, riverway, subway, tram companies’). 
This merge contains the information regarding the id, geographical position, sequence 
within the line, and name of the station. This allows us to verify which stops are 
connected to one another. An extract of this file can be found bellow: 
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shapeWithStop.txt 
shape_id | x  | y | shape_sequence | stop_id   | stop_name 
164|38.72011|-9.15486|1|RATO|POÇO DO BISPO 
149554|38.744609|-9.102136|2|1_12523|FÁBRICA BRAÇO DE PRATA 
... 

 
Given the structure of the data, we created a directed graph (digraph) for each 
transportation modality (bus, railway, riverway, subway, tram), forming a layer for 
each. We resorted to digraphs for each layer because transport does not always flow 
in both directions within the same path. This allows us to create each layer of our 
multilayer network. We apply a multilayer representation hence the edges of different 
layers have different types that represented different realities. Modelling such 
characteristics is not possible with a single layer (or monolayer) network. 
 

  
Figure 4. Multilayer Lisbon transport network topology on a 3D representation with all the layers 

After the representation of each layer, we must account for possible multimodal 
interactions, i.e., the possibility to shift to different transportation modes within a trip. 
These links are of extreme importance because they allow us to assess the 
connectivity of the transportation system as a whole. To accurately understand where 
these edges could be located, we created a script that extracted the Lisbon city map 
and calculated the walking distance between every two stations and combined it with 
a standard coordinate distance calculation to get faster calculations. After getting this 
result, we selected the pairs of stations from different modes and linked them based 
on distance. The intermodal interfaces are about 0,0040% of the distances calculated. 
We connected the eight modes of transportation in the city of Lisbon using the 
described method.  
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Figure 5. The distribution of distances from associated with the 1878 intermodal connections have a very high 

cardinality of distances close to 0 meters. This represents the stations/stops that simultaneously link layers 

By programming a 3-dimensional method, for visualising such network, using the 
geographical information available, we were able to see its structure (Figure 4). This 
network is composed of 8 layers, 7972 nodes and 11892 edges. The full network 
required the computation of 46 399 492 distances to join all the layers with the 
multimodal connections. 
 
4.3. Network Analysis 
 
The number of nodes and edges per layer is disclosed in Table 2. It is clear that the 
distribution of stations is not equitable across layers. Additionally to the edges in each 
layer, 1502 edges represent multimodal changes. The average in and out-degree are 
approximately the same at 1.4917, which means that the majority of the edges are 
reciprocally directed. 
 
Table 2. Number of edges and nodes for each transport operator. Here we can clearly see that the distribution of 
the station is not equitable in terms of layers, as carriers have a very high variance in the number of stations. 

Carrier Nodes Edges 
CARRIS 2144 2894 
CP 58 125 
FERTAGUS 13 25 
METRO 49 105 
RODLISBOA 2210 2752 
SULFERTAGUS 110 187 
TRANSTEJO 8 12 
TST 3372 4281 

 
 
As we are studying a directed network, its essential to assess the strongly connected 
components (SCC’s) since it measures the numbers that connect with each other 
regarding the direction of each pathway. These are graph partitions, where the nodes 
are connected through a path. It is quite normal to have many single-node SCC’s in 
unidirectional lines. This is precisely the case in this network. We observe 417 SCC’s 
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in the whole network. As some layers such as METRO and CP have only bidirectional 
relationships between nodes. An example that would cause a higher number of SCC’s 
would be for instance an set of isolating line from the rest of the network by eliminating 
a critical station. Lines that are naturaly isolated within the present topology happen in 
the TST Sesimbra line and the RODLISBOA Vila nova line. The remaining small 
SCC’s in the multilayer network are single stations where the flow is unidirectional. 
The biggest strongly connected component has 7512 nodes which are about 94% of 
the total nodes of the network. The number of SCC’s per each layer are: CARRIS : 67, 
CP : 3, FERTAGUS : 1, METRO : 1, RODLISBOA : 263, SOFLUSA : 1, 
SULFERTAGUS : 6, TRANSTEJO : 3, TST : 177. The fact that the number of SCC’s 
of the individual layers summed is higher than the SCC’s in the multilayer network 
means that the multimodal edges are significantly well placed on improving network 
connectivity.  
 
 
4.4. How many stations are connected with each station? 

 
In this multilayered network, we can examine the kind of degree distribution we have, 
shown in Figure 6. We can see a high tendency of having both the in-degree and out-
degree equal to one (part of a line) and two to four (stations that have intersections of 
lines of one or more modes). We can also see some nodes with an out-degree of 0. 
These are start and end stations respectively that have no reciprocal edges on the 
opposite direction. Stations with in-degree and out-degree equal to one can be caused 
by a significant amount of stations that flow only in one direction, or career end stops 
have different identifiers depending on orientation. This fact is also explaining the high 
number of low distances in the figure above. The in-degree is always very close to the 
out-degree. Since we are looking at a transportation network, this tells us that the 
majority of the connections between stations flow both ways, forming what is known 
as a chain (or a line), even though there are apparent exceptions (stations that connect 
with many stations) as we can see on the tail of the plot with a log scale.  
 

 
Figure 6. Degree distribution of the multimodal transport network 
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4.5. How many stops do we have on average between each station? 

To answer this question we look at the average path length in number of stops 
between two stations (not the length of the path itself). For the largest mutually 
connected component, the average path length (APL) is about 34.6878. This means 
that on average to get from a station/stop to any other on the network, we have to go 
through about 35 stations/stops before reaching the destination (this number includes 
multimodal travels as well). Per layer, this value is usually smaller (METRO : 7.7176, 
CP : 10.2072, FERTAGUS : 5.0, CAR- RIS : 25.8734, RODLISBOA : 36.9525, 
SULFERTAGUS : 34.7543, TRANSTEJO : 1.5, TST : 43.3558). However, each layer 
covers a smaller area than the composition of all the layers. In the case of TST , the 
APL is higher than in the composition of all the layers. This means that multimodality 
can be useful to avoid many stops.  

 
4.6. Which stations connect travellers from different parts of the city? 

In the case of transportation networks, it is interesting to measure the betweenness 
centrality to understand which nodes connect different communities of stations, i.e. 
sets of interconnected stations within a region. In the multilayer network, we identify 
some stations that have a very high centrality (See Fig. 7), these are mostly from TST. 
This may be a sign that TST is kind of bridging layer in some zones. Some examples 
of such bridging stations are Lisboa Gare do Oriente (0,2529), Setúbal Ciprestes 
(0,1639), Lisboa Alcântra (0,1592) at TST. METRO also has three stations with 
exceptionally high betweenness centrality, including Campo Grande (0,1813), Oriente 
(0,1504) and Cidade Unversitária (0,1480). Rod Lisboa also has a station with a very 
high betweenness centrality, Lisboa Campo Grande (0,1879). With this simple 
analysis, we can see that both Lisboa Campo Grande and Lisboa Oriente are 
multimodality hubs that bridge across different layers.  

The left skew on the betweenness centrality may indicate the same type of distribution 
on node criticality since the betweenness centrality on the node measures the number 
of shortest paths that include that node. So these results are similar to the ones found 
in the literature (Cats et al. 2017).  
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Figure 7. Betweenness centrality distribution: In the graph we can clearly see a few nodes with very high 
centrality, these are the nodes that represent the stations mentioned above. 

 
4.7. Are the central stations directly connected with one another? 

To understand the role of degree-degree correlations, we look at degree assortativity 
to understand if central stations are connected to one another. This measures the 
similarity of connected nodes concerning their degree. Arruda et al. (2016) noted that 
in multilayer networks, degree-degree correlations should be measured system-wide. 
In that same study, they generalise this concept for these types of networks and 
applies it to an airport transportation multilayer network. There they also note that the 
rich-club effect is, in fact, present in such networks, masked due to the high number 
of peripheral nodes that connect the hubs. However, intralayer, the networks tend to 
be disassortative as they focus on one specific region.  

We observed a similar behaviour from Arruda et al. regarding the assortativity, even 
with with the differences of reality being represented (air travel versus urban 
transportation). We calculated the assortativity for the multilayer network and for each 
layer, observing the same results. In Figure 8, we see the same pattern described by 
Arruda et al. (2016). We can observe a much higher assortativity in the multilayer 
network than in any of the single layers. This is reasonably simple to understand since 
the assortativity is influenced by the high number of multimodal hubs that connect to 
one another. Analogous to the properties found in past case studies, we may find a 
kind of a rich-club effect, that may not be there because the many peripheral nodes. 
This means that between the central stations within the layer there are less central 
stations connected to more central stations. Since this is not the focus of this work, it 
will be left for future studies.  
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Figure 8. Assortativity distribution of each layer and the multilayer network.  

 
4.8. Impact of different extraction strategies on network connectedness 

In this section, we attempt to answer this question by analysing the behaviour of the 
size of the largest strongly connected component - SCC - over time for the duration of 
the simulation. By implementing the different extraction strategies discussed 
previously. For each iteration, we compute the largest SCC and its size. This size 
decreases with the removal and if a critical station is removed the size decreases even 
faster. Ergo the strategy which has a faster decrease has a more significant impact on 
the network. This means that networks that exhibit a steeper decrease sooner, as the 
percentage of iteration steps, are less robust. In the same fashion, a high-performance 
extraction strategy is one which the SCC descends faster.  

To compare different strategies, we use the discrete Area Under Curve (AUC) and a 
normalised AUC to compare the resilience of the different layers and the multilayer 
network. The normalised AUC ⊂ [0,100] allows us to compare the values of networks 
with different sizes, and calculated using the following formula:  

 

where χ is the number of steps of the simulation, τ' is the size of the largest strongly 
connected component at timestep 𝑖, and 𝑉 is the number of nodes of the network. This 
measurement allows us to compare the different resilience side by side. It is important 
to note that this metric might have a higher variability (for both inflation and deflation) 
in smaller networks given the granularity. Observing table 3, the most resilient layer is 
FERTAGUS, and the least resilient layer is RODLISBOA.  
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Table 3. Normalised AUC across all networks: RB is the most effective node removal strategy in all the networks, 
with the exception of TRANSTEJO and the multilayer network. 

Strategy 
Network Random ID IB RD RB 

CARRIS 9.8306 4.9715 8.1610 4.4104 1.2501 
CP 10.7915 17.3442 14.5977 9.4074 6.0337 
FERTAGUS  27.5555 30.2222 27.9999 24.8888 22.2222 
METRO  17.9930 18.3006 16.9550 11.8800 10.2652 
RODLISBOA  7.0540 2.7484 6.7469 1.7580 0.6569 
SULFERTAGUS  2.4251 1.6707 12.4929 2.9098 0.8832 
TRANSTEJO  19.0 20.0 20.0 15.0 20.0 
TST  5.7429 2.5852 7.3845 2.1839 0.6288 
Multilayer  11.4000 6.6333 10.7513  5.9189 8.7007 

Table 3 shows that the RD and RB strategies usually yield the best results across all 
layers. In other words, this is more often than not the best strategy to measure 
robustness. Nevertheless, the RB strategy tends to have a faster descent among the 
different layers as we can see in Figure 9. Hence, the failure on intermodal hubs that 
have a high degree has devastating effects in the multimodal topology. Moreover, the 
IB and Random strategies seem to have the least impact on the size of the largest 
SCC. This is expected and it is a good baseline to understand that the targeting 
techniques work to measure robustness. There seems to be no strong reason why ID 
strategy has a better result than the RD. However, this is the case in SULFERTAGUS, 
and it should be investigated further. However, the degree is clearly not the targeting 
metric that yields the most effective stress strategy so this may be due to random 
removal of stations with same degree and lower betweenness. We postulate that this 
happens because there may be fairly large components that have nodes with a high 
degree; however, removing nodes from these components does not affect the size of 
the largest component. So, this phenomenon probably has more to do with the metric 
we are using than the strategy itself. So, this is means that single mode networks are 
more robust to targeting in high degree stations. In Figure 9 we observe the RD 
strategy yields a faster decrease, this checks out with the Normalised AUC with a 
lowest value. In the 3rd graph we observe that we still need many more edge removals 
to get the same result of size of largest SCC, as in node strategies.  
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Figure 9. Evolution of SCC size along node extraction strategies for a single layer, CARRIS (left) all layers 

(middle) and edge removal in multilayer network (right). 

 
 
4.9. Impact of node and edge targeting on average path length  

To understand the evolution of path length when targeting stations and pathways, we 
calculated the APL only for existing paths along with the network. So, if there was no 
path using the transportation system between two points, this was not accounted for. 
It is important to note that this strategy may not be the best to measure robustness on 
road transportation since alternative paths may be available on roads that are not on 
the normal route. So, we expect the APL to reduce along each time step quickly. We 
ran the result for each layer and the whole network as well.  

Regarding the results for station and pathway targeting of the CARRIS network on 
Figure 11, the RD is the best strategy. This means that removing the stops with the 
highest degree has the highest impact on the length of stations one can reach. Note 
that may change with alternative routes and redundancy techniques. The remaining 
strategies have about the same efficiency, with RB being slightly ahead towards the 
end of the simulation.  This result is not unanimous, as we can see in Figure 10. As 
we see, RB can either be the best or the worst strategy, depending on the network. 
This can be due to nodes with high betweenness centrality being part of paths that do 
not have alternatives. RB providing an efficient strategy indicates a lower network 
robustness. This is the case because it is a topological fragility to have most of the 
shortest paths within a network going through a single station. In the multimodal 
network with all the layers (Figure 11) we see that RB is a strategy that promotes a 
fast decrease the APL. This indicates a lower network robustness. In the multimodal 
network we see that many shortest paths go through the intermodal hubs, allowing 
parts of the city that have a single mode to be connected with the rest of the city. We 
can see that the APL decreases much faster in the RB than in the RD for the multilayer, 
unlike in the CARRIS network. We can also see a slight increase at the beginning of 
the simulation (only for other extraction strategies), this is due to the removal of less 
critical stations. The number of removals needed to get the same APL is much higher 
for edge strategies, meaning node removal is more effective for decreasing APL.  
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Figure 10. Evolution of APL along node extraction strategies for METRO (left) and SULFERTAGUS (right). 

 

Figure 11. Evolution of APL along node (above) and edge (bellow) extraction strategies for the CARRIS and the 
Multilayer network. 

 
4.10. How many nodes or edges do we have to delete to fragment the network 

into isolated components?  

An isolated component is when a node loses all its edges. Since our graph is directed, 
when we talk about all the edges, we are mentioning both the in and out edges. To be 
able to answer this question, we used the extraction strategies proposed on the 
methods and evaluate the evolution of the network by showing the distribution of the 
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isolated components. To accurately understand the extraction strategies, we ran them 
across every layer in isolation and then in the complete network, except for multimodal 
hub removal on isolated layers because there are no multimodal hubs in isolated 
layers. Figure 12 shows the evolution of isolated components for each strategy in the 
CARRIS layer. In these graphs we clearly see that RD had the best results, this is the 
only one that stopped before the end of the simulation, because there are only isolated 
components when it stops. We obtained about the same results in every layer and for 
multilayer network is also very similar.  

We also find that all extraction strategies, except RD, increase and then decrease the 
number of isolated components (Figure 12). This means that after we reach the 
maximum number of IC’s, we are only removing isolated nodes. This means that the 
lower the maximum and the later its reached, the less effective at measuring the 
robustness to isolation of different parts of the city the strategy is. Halfway through RB, 
we start to see rapid growth. This is because after removing the main bridges from 
communities, there still are redundancy paths. Once these paths start to be removed, 
it is simpler to disconnect each community individually. It should be noted that it is 
likely that a node with a high degree also has a high betweenness centrality since 
multimodal hubs are often points that connect communities. However, this is not the 
case the other way around since less connected stations may be very important at 
connecting different parts of the city. The IB extraction is the worst because we are 
dividing the problem infinitely. This is virtually dividing the path from A to B into 2 
recursively. In summation, the only effective strategy to measure the vulnerability of 
disconnecting the network from different parts of the city is RD.  

So, to answer the highlighted question in this section, we look at the number of 
iterations when RD ends the simulation. This is the number of nodes that have been 
removed when all the remaining nodes are isolated. The higher the percentage of 
nodes that need to be removed from the total of nodes in this network, the more robust 
the network is, see Figure 13. We can see that the robustness across all networks 
using this metric is about the same.  

 

Figure 12. Evolution of the Isolated components (IC) in the CARRIS layer (left) and multimodality network (right) 
for node removal. 
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Figure 13. Minimum percentage of nodes that need to be removed to separate the network into only isolated 
components, using targeted extractions. The lower this value the less resilient is this network. 

To understand the multimodal hub removal, we recurred to another graph due to scale 
and purpose. As the graph reaches a pique and then decreases, we can see that we 
do not need to remove all the multimodal nodes to get isolated layers. As we can see, 
there is a slight variation when some nodes are removed. This means that removing 
specific nodes has more impact on the interlayer connections (Figure 14). We can see 
that node removal is much better than edge removal, that makes sense since in edges 
we only separate in at most 8 IC’s (single layers). This is not directly comparable with 
other strategies, as it only encompasses the removal of about 10% of the nodes. 
However, from what we can assess, in the beginning, the growth in the number of 
isolated components follows approximately a linear function, which is slower than RD. 
However, we can safely conclude that redundancy of intermodal hubs is the best way 
to ensure connectedness in this multimodal network, since not all layers are redundant 
in all areas of the city. Redundancy on all areas of the city would be much more costly 
and may even cause other issues like consuming space of the already established 
routes. 

On the other hand, there are edge extractions. In this case, it is expected that we have 
to remove all the edges to have all nodes isolated, Figure 15 shows exactly that. The 
behaviour of extraction per layer and in the multilayer network is identical as can be 
seen in both graphs of Figure 16. Contrary to node targeting, the worst strategy is RD, 
and the best strategy is IB. The RD is always the worst strategy, this is the case 
because we are removing edges from nodes with high degree. We can conclude that 
the betweenness centrality is a more adequate metric for edge targeting and degree 
is better for node targeting. This means that removing single pathways that are in 
many shortest paths has a higher impact than removing single pathways that lead to 
high degree stations. However, deactivation or failure of high degree stations have the 
highest impact. High degree stations are the ones that are usually more central 
geographically and have a more critical role in connecting different modes of transport. 
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Figure 14. Evolution of the Isolated components using the Multimodal Hubs removal strategy 

 

 
Figure 15. Evolution of Isolated components along edge extraction strategies for CARRIS (left) and for the 

multilayer network (right) 

 
4.11. Impact of removing nodes vs edges  

We found that nodes extractions are more efficient than extracting the edges, as we 
need more removals to get the same increase of IC’s and decrease of APL and 
decrease of SCC. This means that removing the high degree stations has a much 
higher impact than removing every single pathway that leads to each important station 
individually. As previous Figures indicate, it takes much more iterations to disconnect 
a network by extracting the edges. This happens for various reasons. Expectedly, 
there are more edges than nodes, so more iterations are needed to create the same 
impact. Another important reason is that when we remove a node, we also are 
removing all the edges of that specific node, and the contrary is not the case. This 
happens because an incident in a pathway to a station does may not impact the station 
and an incident on a station may more probably impact the pathways through it.  This 
makes the node removal more damaging to the network.  
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On the SCC and the APL evaluation, we also see that edges’ extractions are very 
similar to each other and also less efficient at disconnecting the network than nodes 
removal. We can conclude that the network has various redundant paths. Hence, 
removing edges, we can go to the same destination by going through more stations.  

It is also important to note that in the IC evaluation, the ID and RD removal extractions 
on the edges are not as efficient as in the nodes and have a slow impact. With a slow 
impact, we mean that we need to remove more edges to create the same damage as 
the node removal. This happens because, when we base the extraction on the edge 
degree, we are extracting edges of hub nodes (nodes with high degree). This means 
that we are removing edges from nodes with lots of edges and so it does not show the 
effect at first.  

4.12. Should we recalculate the degree and betweenness after each extraction?  

Often, the random strategy is better than the strategies which do not recalculate the 
new metrics of the new graph (IB and ID). On the other hand, RB and RD removal 
strategies can be very effective (Table 3), yet not so computationally efficient. They 
take much more computational power to compute metrics, especially the RB. As can 
be seen in previous sections, recalculating degree after each node removal has 
proven to be beneficial, but recalculating betweenness centrality has yielded relatively 
stable result for IC’s and wildly variable results in APL evolution. Intuitively this could 
probably be explained by the lack of redundant paths in some networks, which is a fair 
way to assess its robustness. Both RB and RD strategies have the same similar results 
across layers and being the best ones to reduce the SSC.  

For the edge removing strategies, in the case of the goal being generating more 
isolated components, recalculating the betweenness centrality yields worst results. 
These results are curious as they are quite different from the ones proposed by Holme 
et al. (2002:1) , “suggesting that the network structure changes as important vertices 
or edges are removed”.  

Despite the RD and RB strategy overall having better results for nodes extractions, in 
massive graphs seems unfeasible to calculate the betweenness centrality per each 
iteration. Another possible strategy is, instead of calculating per each iteration, i.e., 
each node removal, to calculate this metric per each percentage of removals. In this 
way, we are avoiding the complexity, with the trade-off of slightly disrupting the result. 
This is a suboptimal solution however it is shown to be viable in the extent of the 
empirical results.   
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4.13. What is the impact of cascading failures? 
 

The cascading failures are a complex topic, and we have only scratched the surface. 
On cascading failures, we used two removal strategies: entirely deleting a 
transportation line (e.g. route) and removing the neighbours of a given node (e.g. 
station). For the first removal, we simulated the crash of each line separately, that is, 
one line at a time, and measured the number of ICs, then repeat the process for each 
line after resetting the network to its initial condition. We were able to get the maximum 
number of 6 separated components from a single line by doing this assessment. This 
line/route connects Pontinha and Campo Grande, operated by RodLisboa (bus road 
operator). It’s mainly a commuting route that connects passengers living in Pontinha 
(county within LMA) with the Lisbon city, mainly for home-work purposes. 
 
In our second simulation, we applied the failure removal approach of a neighbour. Line 
Failure was used as a model for the simulation. We estimated the neighbours of each 
node, eliminated them, and gathered the metric of the isolated component. We chose 
three layers of a node’s neighbours since the average number was closer to the 
average number of each line when comparing the two. Odivelas was discovered to be 
the key point in this method, with a maximum number of isolated components of ten. 
We can see that the nodes that connect the Lisbon city with other counties within LMA  
are critical to the organisation of the city’s public transportation system. Nonetheless, 
this Neighbour Failure technique has much more devastating effects than the Line 
Failure strategy, with nearly double the network damage (6 vs. 10), but this is based 
on a small sample. These results tell us that the impact of a localised failure that 
deactivates that spot in several layers has a higher impact than a line failure in this 
topology. However, this result may vary depending on the region, since localized 
failures in remote areas have a lower relative impact.  
 
 
5. Conclusions and future works 
 
In this work, we modelled and analysed the structure of the Lisbon’s public transport 
network to measure its robustness according to a multimodal stance. Results allow us 
to understand the geographic information inherent to the multiplex network by 
programming a 3D plotting method. After calculating and interpreting some of the 
network metrics, results indicate that multimodal coordination can help diminish the 
number of stops in a pathway. After identifying stations that work as bridges between 
different layers and communities, we then analysed different extraction strategies 
based on previous work. This is an important step to guide the assessment of classic 
robustness metrics in the context of multimodal transport networks. The target metrics 
include the size of the largest SCC (strongly connected components), APL (average 
path length) and IC’s (isolated components), as well as a proposed normalised AUC 
(area under curve). Hence, we observed that the selection of metrics should be 
constrained to the goal and type of removal (edge vs node).  
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Results show that the strategies that depend on recalculating metrics are generally 
more effective, with the exception of a particular case of edge removal using 
betweenness centrality to maximise IC’s, which counter-intuitively had better results 
for the IB (initial betweenness) strategy. Even though we were able to postulate on 
this phenomena, further research needs to be done to understand it. We also showed 
that the resilience tests needed to remove about half the nodes of the network to leave 
all the remaining nodes wholly disconnected. This is a phenomenon that happens in 
all layers and the multilayer network as well, suggesting that betweenness targeting is 
he best way to measure robustness across the different strategies. We also verified 
higher assortativity phenomena in multilayered networks, in contrast to single layers, 
highlighting the importance of intermodal hub redundancy. 
 
Based on the robustness tests we were able to conclude that the most effective 
method for targeting nodes is RD (recalculate degree). However, in some cases, RB 
(recalculate betweenness) yielded better results for multilayer APL decadence (both 
for nodes and edges strategies), although it showed higher variability. This means that 
the number of pathways to a station is less important than how many shortest paths 
go through that station in a multimodal scenario when completely disconnecting the 
network. For decreasing the size of the largest SCC, RD yielded better results for the 
multilayer network, however, for most of its individual layers, the best strategy was 
actually RB. This means that to divide a multimodal network into disconnected regions, 
high degree station failures have a higher impact than high betweenness station 
failures. However, to yield the same result in a single mode network, betweenness is 
a more relevant metric, highlighting the impact of the network topology as the 
vulnerabilities linked to a multimodal network considerably differ from a single layer 
network.  
 
With the normalised AUC, we were able to compare, side by side, the robustness of 
each transport operator-specific network, regardless their size. Carris, RodLisboa, 
SulFertagus and TST show inferior robustness than the remaining networks. The two 
most robust networks were Fertagus and Transtejo. Nevertheless, this result may be 
due to inflation on smaller sizes, pinpointing the need for non-uniform scaling factors 
for the AUC normalization. The multilayer network was more resilient than one-half of 
the layers but less than the other. We also performed cascading failures in the network 
to understand some of the expected impacts. Still, since it is a vast and exciting topic, 
we focused on two major strategies. We showed that neighbour failure is more 
effective than line failure in this particular network, even though they are moderately 
similar in the structure of the present network. The impact yield from different 
cascading events can be the subject of a future study. For example, instead of 
simulating random line crashes, using simulated failures on more than one line at a 
time and using a specific measure would be more effective to determine which lines 
are more critical, like what we’ve done with degree and betweenness centrality 
targeting. The second elimination could be investigated further by experimenting with 
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a greater number of layers of neighbours. The archetype of these might be a 
combination of these two strategies, attempting to fail lines that are close to other lines 
utilising information from each node’s neighbours. Last but not least, we identified that 
further research is needed in the effect of rich club on peripheral nodes on robustness 
and cascading effects in the context of this network. 
 
The gathered results in this study suggest that robustness can be objectively 
measured using network metrics and percolation simulations. The impact of such 
simulations can be compared regardless of the network size or structure in any 
multimodal transportation scenario. Moreover, research findings seem to point out that 
we can use the targeting techniques to understand network recoverability (resilience 
stance) by focusing on stations with hub characteristics (higher centrality) or high 
betweenness. Results of this study allow practitioners and urban transportation policy 
makers to tackle the impact of negative disruption in multimodal transportation 
networks. 
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