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a b s t r a c t

Mining matrices to find relevant biclusters, subsets of rows exhibiting a coherent pattern over a subset of
columns, is a critical task for a wide-set of biomedical and social applications. Since biclustering is a
challenging combinatorial optimization task, existing approaches place restrictions on the allowed
structure, coherence and quality of biclusters. Biclustering approaches relying on pattern mining (PM)
allow an exhaustive yet efficient space exploration together with the possibility to discover flexible
structures of biclusters with parameterizable coherency and noise-tolerance. Still, state-of-the-art
contributions are dispersed and the potential of their integration remains unclear.

This work proposes a structured and integrated view of the contributions of state-of-the-art PM-
based biclustering approaches, makes available a set of principles for a guided definition of new PM-
based biclustering approaches, and discusses their relevance for applications in pattern recognition.
Empirical evidence shows that these principles guarantee the robustness, efficiency and flexibility of
PM-based biclustering.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The clustering of data matrices groups rows according to their
overall values across columns. However, in real-world contexts, the
correlation of a subset of rows is typically only significant and
meaningful for a subset of the overall columns [114]. Biclustering
seeks to find sub-matrices (biclusters), subsets of rows with a coherent
pattern across subsets of columns. Illustrating, given a matrix that
captures the expression of a set of genes (rows) across a set of
conditions (columns), a bicluster defines a group of genes with
coherent expression for a subset of conditions. The biclustering task
in this domain is critical for the discovery of putative transcriptional
modules of genes that participate in a cellular process that is only
active in specific conditions [46,40]. Table 1 provides additional
applications in biomedical and social domains, synthesizing the mean-
ing and relevance of discovering biclusters for pattern recognition.

Recent findings from biomedical domains show that exhaustive and
flexible approaches to biclustering provide an unprecedented opportu-
nity for an unbiased assessment of the native structure and modular
organization of biological networks [14], new insights on the molecular
units involved in cellular functions [60,111], and discriminative high-

order combinations of single-nucleotide polymorphisms (SNPs) [42].
However, due to the complexity of the biclustering task1, most of the
existing algorithms are either based on greedy or stochastic approaches,
potentially producing sub-optimal and constrained biclustering solu-
tions [82,67]. Illustrative constraints that prevent the flexibility of the
biclustering task include the search for a fixed number of biclusters,
non-overlapping structures and biclusters with differential-values only
(binary settings) or sequential constraints [81,82,119]. In this context,
the survey of efficient optimal searches for flexible biclustering scenar-
ios is the target task in this work.

The attempts to perform biclustering based on pattern mining
(PM) techniques [86,111,97], referred in this work as PM-based
biclustering, show solid results for efficient and flexible exhaustive
searches. In fact, since pattern mining research is driven by
scalability requirements [54], its integration with biclustering
defines a new promising direction. Contributions of PM-based
approaches for biclustering include:

� efficient exhaustive searches: PM algorithms as-is allow for the
efficient analysis of large matrices (over 10.000 � 400
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elements). Additional PM principles can be used to foster
scalability, including searches in distributed/partitioned data
settings or targeting approximate patterns [54,52].

� dealing with missing and noisy values [62,63]: PM methods can
mine transactions with varying length, and therefore a specific
element from the input matrix can be associated with zero or
multiple values, allowing the removal or bounded estimations
of a missing or noisy value.

� inherent orientation to learn constant models, yet recently
extended to also learn additive, multiplicative, symmetric,
order-preserving and plaid models [62,60,63];

� capturing biclusters from patterns with multiple levels of
expression [96,101]. This contrasts with the majority of existing
approaches that rely on differential values or fixed coherency
strength [119];

� flexible structures of biclusters (arbitrary positioning of biclus-
ters) and searches (no need to fix the number of biclusters
apriori) [96,111];

� annotating the significance of biclusters with PM principles to
assess the relevance of patterns [72];

� easy extension for multi-class settings using discriminative PM
or classification rules [43,95];

� easy incorporation of PM-based constraints that can be effec-
tively used to guide the search, promoting both efficiency, by
pruning the search space, and a focus on non-trivial biclusters
[116].

These properties of PM-based biclustering approaches are
critical to tackle the problems highlighted in Table 1. Although
the latest biclustering advances for pattern recognition are
increasingly deterministic [89,110,128,137,47,35,131], they fail to
meet several of the enumerated properties of PM-based bicluster-
ing. Table 2 pinpoints the benefits of using PM-based biclustering
for pattern recognition.

Despite these listed potentialities, recent surveys on bicluster-
ing [46,40,28,114] fail to explore the opportunities associated with
PM-based biclustering. Additionally, the existing efforts towards
PM-based biclustering provide critical principles that are not yet
integrated [14,86,111]. As such, there is still space for new
approaches that benefit from the integration of principles pro-
vided by these existing contributions as well as from other fields of

research. In this context, this work provides three major
contributions:

� motivates, formalizes and provides a qualitative and quantita-
tive assessment of the state-of-the-art algorithms for PM-based
biclustering;

� offers a structured view on how to define, parameterize and
extend PM-based biclustering by coherently integrating the
available yet dispersed contributions;

� further surveys PM principles as well as adequate preproces-
sing and postprocessing criteria to guarantee the robustness,
flexibility and scalability of PM-based biclustering across
domains.

The paper is organized as follows. The remainder of this section
provides background on pattern mining and biclustering, and
surveys the contributions from existing PM-based biclustering
approaches. Section 2 introduces a consistent set of principles to
guide the definition of PM-based biclustering approaches. In
particular, Sections 2.1–2.3 cover principles according to three
major decision dimensions (mining, mapping and closing), and
Section 2.4 compares the behavior of state-of-the-art PM-based
biclustering approaches and proposes a set of principles to address
their current challenges. Section 3 provides initial empirical
evidence of the relevance of the proposed principles. Finally, the
implications of this work are synthesized.

1.1. Background on PM-based biclustering

Pattern mining: Frequent patterns are itemsets, rules, subsequences,
or substructures that appear in a dataset with frequency no less than
a user-specified threshold. Let L be a finite set of items, and P be an
itemset PDL. A transaction t is a pair ðtid; PÞ with idAN. An itemset
database D over L is a finite set of transactions ft1;‥; tng. A
transaction ðid; PÞ contains P0, denoted P0D ðtid; PÞ, if P0DP. The
coverage ΦP of an itemset P is the set of all transactions in D in
which the itemset P occurs: ΦP ¼ ftAD∣PDtg. The support of an
itemset P in D, denoted supP, can either be absolute, being its
coverage size ∣ΦP ∣, or a relative threshold given by jΦP j=jDj .

An association rule is defined as an implication of the form
P-P0, where P; P0DL and P \ P0 ¼∅. The left-hand side of the rule

Table 1
Relevance of the biclustering task for pattern recognition applications.

Data Biclustering solutions

Biomedical Physiological [23,39,44] Modules of sliding features and partitions of the signal across a subset of case or stimuli-elicited responses; groups of patients
with shared local patterns; markers for phenotype characterization.

Clinical [59,27] Groups of patients with correlated clinical features or health records (shared treatments, diagnoses, prescriptions and clinical
tests); class-conditional profiles for computer-aided diagnosis.

Genomic structural
variations [42,67]

Correlated groups of mutations and copy number variations, such as genetic similarities and dissimilarities of different
populations.

Biological networks [12] Modules of genes, proteins or metabolites with cohesive local interaction using matrices that capture the pairwise connections
between all molecular units.

Gene expression [62,82] Groups of genes involved in functional processes and pathways (cellular responses to growth, development, drugs and disease
progression) only active under certain conditions.

Genome-wide [127,124] Conserved functional subsequences (alignments), factor binding sites and insertion mutagenesis.
Other [37,78,73] Local regularities in translational, chemical or nutritional data;

Social Social networks [50] Groups of individuals with shared interests, correlated activity and/or coherent intercommunication; aggregation of contents
based on correlated accessors' profile, comments and tags.

Text [82] Groups of content-related documents to support searches, suggestions and tagging (rows in the input matrix denote
documents and columns denote the words), among others.

(e-)commerce [9] Hidden browsing patterns containing relationships between sets of (web) users and (web) pages and acquisitions which are
useful for (web) advertising and marketing.

Financial trading [68] Subsets of indicators producing similar profitability for subsets of trading points (buy and sell signals) in the stock market in
order to support buy-and-hold decisions.

Collaborative filtering [33] Groups of users who share the same rating patterns and behaviorial patterns for a subset of all available actions for
recommendation and quality studies.
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is named antecedent and the right-hand side consequent. Given an
itemset database D, the support of a rule, supP-P0 , is given by
supðP [ P0Þ, and the confidence of a rule, conf P-P0 , is given by
supðP[P0 Þ
supðPÞ . Confidence reveals the strength of the rule (the condi-

tional probability that a transaction that contains the items in the
antecedent also contains the items in consequent).

Definition 1.1. Given an itemset database D and a minimum
support and confidence thresholds, θ and δ:

� frequent itemset mining (FIM) problem consists of computing
the set fP∣PDL; supPZθg;

� association rule mining aims to compute fðP; P0Þ∣PDL; P0D
L; supP-P0 Zθ; conf P-P0 Zδg.

A frequent itemset or a pattern is an itemset with supPZθ. To
illustrate these concepts, consider the following itemset database,
Dex ¼ fðt1; fB; E;GgÞ; ðt2; fA;B;C; E;H; JgÞ; ðt3; fA;B;D;H; JgÞ; ðt4; fD;
H; JgÞ; ðt5; fA;H; JgÞ; ðt6; fA;GgÞgÞ, with ∣L∣¼12. We have ΦfB;Jg¼ft2;
t3g and supfB;Jg¼ ∣ft2; t3g∣=6¼0:ð3Þ. An illustrative rule in Dex is R1 :
fH; Jg-fAg with supR1

¼0.5 and conf R1
¼0.75. For θ¼4, the FIM

tasks returns ffAg; fHg; fJg; fH; Jgg.
Consider two itemsets P and P0, where P0DP, and a predicateM.

M is monotonic when MðPÞ ) MðP0Þ and anti-monotonic when
:MðP0Þ ) :MðPÞ. FIM approaches rely on these properties: the
support of P is bounded by the support of P0 and, if P0 is not
frequent, then P is also not frequent. Table 3 shows three major
search variants that rely on these properties.

Since FIM proposal [2], multiple extensions have been proposed,
including principles to enhance the scalability of pattern miners, and
condensed and approximate pattern representations [24,54].

Pattern mining has been additionally applied over structured
datasets, leading to contributions in different fields, including
sequential pattern mining [79], graph mining [129] and cube
computation [55].

Biclustering: Biclustering allows the discovery of subspaces, each
defining a subset of rows that show a coherent pattern that is
observed for a subset of the overall columns.

Definition 1.2. Given a matrix, A¼(X,Y), with a set of rows
X¼fx1;‥; xng, a set of columns Y¼fy1;‥; ymg, and elements aijAR

relating row i and column j:

� A bicluster B¼ ðI; JÞ is a r � s submatrix of A, where
I¼ ði1;‥; irÞ � X is a subset of rows and J ¼ ðj1;‥; jsÞ � Y is a
subset of columns;

� The biclustering task is to identify a structure of biclusters
B¼ fB1;‥;Bpg such that each bicluster Bk ¼ ðIk; JkÞ satisfies
specific criteria of homogeneity and significance.

The homogeneity criteria is commonly guaranteed through the
use of a merit function to guide the search [98]. An illustrative
merit function is the variance of values in the rows or columns in
the bicluster. Merit functions can either define the homogeneity of
each bicluster (intra-bicluster homogeneity) or the homogeneity
of a set of biclusters (inter-bicluster homogeneity), allowing some
biclusters to deviate from the expected homogeneity as long as the
overall criterion is preserved. The merit function is the simplest
way to affect the coherency, quality and structure. The coherency of
a bicluster is defined by the observed correlation of values
(Definition 1.3). Biclusters can follow dense, constant, additive,
multiplicative, plaid or order-preserving coherencies, either across
rows or columns [82]. The quality of a bicluster is defined by the
type and amount of accommodated noise. The structure is defined
by the number,2 size and positioning of biclusters. Flexible
structures are characterized by an arbitrary-high set of (possibly
overlapping) biclusters. The statistical significance of a bicluster
determines how its probability of occurrence deviates from
expectations. Following the taxonomy proposed by Madeira and
Oliveira [82], Table 4 synthesizes the main biclustering approaches
acccording to their search paradigm.

Definition 1.3. Let the elements in a bicluster aijAðI; JÞ have
coherency across rows given by aij ¼ kjþγiþηij, where kj is the
expected value for column j, γi is the adjustment for row i, and ηij is
the noise factor. Given a dataset A and a specific coherency
strength δA ½0;maxA�minA�, aij ¼ kjþγiþηij where ηijA ½kj�
δ=2; kjþδ=2�. The γ factors define the coherency assumption:
constant when γ¼0, multiplicative if aij is better described by
kjγiþηij, and additive otherwise. A plaid assumption considers the
cumulative contributions from multiple biclusters on areas where
their rows and columns overlap.

Table 2
Benefits of PM-based biclustering for pattern recognition.

Property Benefit

Exhaustive scalable searches Delivery of optimality guarantees for large data such as data from clinical, molecular and social web domains.
Noise robustness Handling of uncertainty relations observed in social networks [50] and stock markets [68]; artefacts in multivariate physiological data

(such as electroencephalograms [41]), experimental errors in molecular arrays [56].
Handling of missing values Adequate mining of incomplete and/or sparse matrices derived from biological networks, web social contexts, and healthcare data.
Flexible coherency Constant models for non-differential (yet coherent) functional associations; additive and multiplicative factors to model the distinct

responsiveness and experimental bias of biological molecules and physiological signals; symmetries to simultaneously capture activation
and repression mechanisms and opposed (yet correlated) regularities associated with trading, tweeting, browsing and (e-)commerce
activity; plaid models for overlapping regulatory influence in biological contexts and cumulative effects in social/biological networks
[60,62,61].

Parameterizable level of
coherency

Dynamic definition of the desirable coherency strength for an adequate multi-level analysis of matrices derived from expression data
(optimum number of expression levels [86]), scored networks, collaborative filtering data (grading scale), and physiological signals
(adequate resolution [39]).

Flexible structures Overlapping groups of molecular units, physiological features, patients, web users and transactions with varying size and configurations.
Annotated significance Testing the statistical significance of biclustering solutions (guaranteeing that their coherence does not occur by chance) to further validate

their use to support critical decisions, such as medical and financial decisions.
Constraint-driven searches Discovery of non-trivial biclusters and ability to focus the search on specific biclusters of interest (e.g. specific regulatory behavior, high-

order SNPs from genome-wide data, web users with a specific behavior, health records related with particular medical conditions, domain-
guidance from background knowledge [42,66]).

Biclustering-based
classification

Support for classification tasks from matrices with a large number of uninformative elements (benefiting from local views), including
computer-aided diagnosis, phenotype discrimination and user recommendations [27,43].

2 The number of outputted biclusters can either be fixed (restrictive setting),
parameterized by the user [29,67], dynamically parameterized based on the size
and stochastic properties of the input matrix [63], or variable [119].
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PM-based biclustering: While traditional biclustering approaches rely
on flexible merit functions to guide the space exploration, PM-based
approaches require these functions to be defined in terms of support
and, eventually, confidence or other interestingness metrics. This
restriction enables a scalable exhaustive space search that produces
an arbitrarily high number of biclusters within a flexible structure.

Definition 1.4. Let A be a matrix whose values in R are assigned to
a set of items L. A bicluster under a constant model can either
follow: an overall orientation where aijAL; a column-based
orientation where aij¼kj and kjAL; or a row-based orientation
where aij ¼ ki and kiAL. A bicluster following an additive (or
multiplicative) model has aij ¼ kjþγi (or aij ¼ ki � γj), where kiAR

and γjAR define the column and row contributions. A bicluster
under a symmetric model either considers symmetries on rows ci �
aij or columns cj � aij, where ciAf�1;1g.

Definition 1.5. Given a matrix A whose elements are the con-
catenation of the observed values aijAL with their column (or
row) indexes. Let ΨP of an itemset P in A be its set of indexes. set of
biclusters [kðIk; JkÞ can be derived from a set of frequent itemsets
[kPk by mapping ðIk; JkÞ¼Bk, where Bk¼ðΦPk

;Ψ Pk
Þ, to compose

biclusters with coherency across rows, or ðIk; JkÞ¼ðΨ Pk
;ΦPk

Þ for
column-coherency.

Two classes of PM-based biclustering approaches can be consid-
ered: (1) a first class targeting discrete matrices by using as-is pattern
miners, and (2) a second class targeting numeric matrices by

extending methods based on the introduced monotonic (or Apriori)
property [2]. The first class of methods rely on an itemization step
followed by the application of FIM under a low support threshold.
The itemization step maps a real-value or discrete matrix into an
itemset database. For real-value matrices, normalization and discre-
tization procedures are applied. Then, the discrete value of each
element is concatenated with its column index. Each transaction of
the target itemset database corresponds to a row with these new
values. FIM is then applied over this database to mine frequent
patterns for composing biclusters with coherency across rows. The
second class of methods relies on variants of the FIM task to learn
frequent patterns directly from the real-valued matrix. In both
classes, the coherency strength δ is implicitly defined by the number
of items or the maximum allowed distance. Biclusters with coher-
ency across columns can be mined using the transpose matrix.
Finally, biclusters with coherent values overall can be discovered by
mining one item (or range of values) at a time. Fig. 1 illustrates how
to deliver these different types of biclusters using frequent patterns
when considering the constant model.

1.2. Related work

To our knowledge, BicPAM [62], BiModule [96], DeBi [111], Bellay's
et al. [14], GenMiner [86] and BiP [60] are the state-of-the-art
methods for the first class of PM-based biclustering. BiModule
[96,97] allows a parameterized multi-value itemization of the input
matrix to discover constant biclusters derived from (closed) frequent

Table 3
Three major search strategies to perform frequent itemset mining.

Strategy Principles Optimizations [54,22,76] Criticism

Apriori-based
[2]

Monotonicity principle (an itemset is candidate if
all its subsets are frequent): ðk�1Þ-itemsets are
combined to create new candidate k-itemsets in k
scans until no new candidate group can be
generated.

Incremental mining; Hashing; Use of bit-sets;
Reduced scans; Partitioning and sampling;
Dynamic itemset counting;

Inefficient for dense data (density above
� 20%).

Pattern growth
[1]

Divide-and-conquer without candidate generation
and multiple scans. A frequent-pattern tree is built
(from an ordered list of frequent items) and mined
(based on prefix paths co-occurring with growing
suffix patterns). By using the least frequent items as
a suffix, a good selectivity is achieved.

Depth-first tree generation; Alternative trees;
Combined bottom-up and top-down traversals;
Array-based structures.

Not able to deliver the supporting
transactions of a pattern (required for
biclustering). Adequate for dense
matrices and low supports.

Vertical
projection
[135]

Eclat, a representative vertical method, builds the
transaction-set for each item and grows the
itemsets under a depth-first strategy (similar to FP-
growth) by intersecting transaction-sets to avoid
multiple scans.

Specialized structures; Bit-set operations; Optimized for flattened matrices (n4m).

Table 4
Classes of biclustering approaches according to merit-guided searches and optima guarantees.

Paradigm Optimality guarantees

Divide-and-conquer approaches to exploit the matrix recursively with the branching following a
global merit function [57,128,137]. Although efficient, the structure of biclusters is restrictive
and the initial assumptions can easily lead to the missing of relevant biclusters.

Local optima (local searches dependent on initial assumptions and
convergence behavior)

Greedy iterative approaches with the selection, addition and removal of rows and columns being
performed until a local merit function is maximized [35,89,131,94,15].

Two-way clustering approaches under merit functions to produce the clusters on both dimensions of
the data matrix and to derive biclusters from their combinations [49,120,47]; Stochastic
approaches that model data with a multivariate distribution [105,112,17,113] and learn a
parametric model that maximizes a merit function. This model is used to derive biclusters.

Distance-based guarantees as learners rely on approximative views
(clustering abstractions or generative models)

Ensemble methods [56] that use a merit function to aggregate a large set of biclustering solutions
from the iterative application of multiple biclustering approaches.

Dependent on selected approaches

Exhaustive approaches under constrains (e.g. fix number of biclusters, differential expression)
[119,126,110], which rely on heuristics based on merit functions to guide the space exploration.

Global optima
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patterns using the LCM miner [125]. DeBi [111] derives biclusters
from (maximal) frequent patterns mined over binarized matrices
using the MAFIA miner [22], and places key post-processing princi-
ples to adjust them in order to guarantee their statistical significance.
The recently proposed BicPAM [62], parameterized with the F2G
miner [65] by default, extends the constant assumption of previous
approaches to find biclusters with symmetric, additive and multi-
plicative factors by performing iterative corrections on the input
matrix. BicPAM also surpasses discretization problems by introducing
the possibility to assign multiple discrete values to a single element,
and offers new strategies to robustly handle noise and missing
values. Bellay's et al. method [14] uses the Apriori miner [2] with
additional principles to evaluate the functional coherency of the
discovered biclusters against the background noise. This is one of
diverse PM-based attempts to exhaustively discover dense biclusters
in either unweighted networks [13,90,133,80] or, more interestingly,
in scored networks [32,30]. GenMiner [86] includes external knowl-
edge within the input matrix to derive biclusters from association
rules that relate annotations (external grouping of rows or columns)
with clusters derived from (closed) frequent patterns using CLOSE
[102]. BiP [60] is prepared to discover plaid models by relying on
noise-tolerant association rules for the recovery of apparent noisy
areas due to the presence of cumulative effects on the overlapping
areas between biclusters.

The itemization step is optional for the second class of methods
[8]. To our knowledge, RAP [101], RCB discovery [8] and ET-
bicluster [52] are state-of-the-art methods here. RAP [101] plugs
an adapted range-based metric to mine constant biclusters on
rows (or columns), while RCB discovery targets biclusters with
constant values overall [8]. ET-bicluster extends the previous
approaches to discover noisy biclusters, although an exhaustive
enumeration of biclusters is not guaranteed [52]. Alternative
support metrics with dedicated Apriori-based searches have been
additionally proposed [69,115,53].

2. PM-based biclustering

We propose a structured view of PM-based biclustering accord-
ing to a set of dimensions of decision. We rely on state-of-the-art
literature to characterize each dimension. These dimensions
gather principles on different steps with impact on the biclusters’
type, structure and quality, as illustrated in Figs. 2 and 3.
Throughout this paper we define a set of principles for each step.

Different options for PM-based biclustering can be grouped
according to its three major steps: mapping (preprocessing), mining
(pattern discovery), and closing (postprocessing). The core step is
the mining step, corresponding to the application of the target
pattern miners. This step is driven by the chosen paradigm, target
patterns and search properties. The mapping step (optional for
methods able to deal with non-discrete data) is responsible for the
itemization of a (real-value) matrix and for other preprocessing
options to handle outlier, noisy and missing elements. Finally, the
closing step includes the postprocessing of the mined patterns to
affect the structure and quality of the target biclustering solutions.

These options impact the homogeneity of the biclustering
solutions. The homogeneity criteria can be intentionally controlled
to search for biclusters with a specific coherency (underlying
pattern correlation), structure (number, size and positioning of
biclusters) and quality (amount and type noise within a particular
bicluster or set of biclusters).

Section 2.1 covers the core PM-based biclustering paradigms.
Sections 2.2 – 2.3 detail the remaining mapping and closing
dimensions and discuss their implications in the behavior of PM-
based approaches.

2.1. Mining options: discovery of biclusters using pattern mining

Flexible scenarios where the number and position of biclusters
is not constrained require efficient algorithms [111,81]. The ade-
quate use of PM approaches is critical to guarantee the flexibility
and scalability of the biclustering algorithm, and depends essen-
tially on four variables discussed below: (1) the chosen PM-based
approach to biclustering, (2) the application schema, (3) the target
pattern representations, and (4) the search strategies.

2.1.1. Mining approaches to compose biclusters
In what follows, we overview the state-of-the-art options using:

(1) frequent patternmining, (2) association rule mining, (3) structured
pattern mining, and (4) hybrid approaches to compose biclusters.

2.1.1.1. Frequent pattern mining. Two main strategies can be
considered: (1) relying on frequent itemset mining (FIM) support
metric as-is; and (2) defining new (anti-)monotonic support
metrics for a dedicated yet efficient search.

Fig. 1 illustrates how PM can be applied to find biclusters with
constant items overall, on rows and on columns. When ignoring the
closing step, the discovered biclusters are the frequent itemsets. The
support threshold defines the minimum number of rows in a

Fig. 1. Mining biclusters with constant assumptions over itemset matrices. To discover biclusters with constant values on the rows, the input matrix needs to be itemized.
Column identifiers are combined with the observed values, and FIM applied under a parameterizable support threshold ðθ¼ 24 ∣P∣Z2Þ. Constant values on columns can be
mined using the transpose matrix. To find biclusters with constant values overall, each item needs to be separately mined. In each iteration, only the elements containing the
selected item are included in the transactions.
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bicluster. By decreasing this threshold we are degrading the efficiency
of the task, but searching for a broader set of biclusters with smaller
sizes. In the context of gene expression, this is critical since small
groups of genes can be functionally related. Additionally, the search
can allow the pruning of itemsets below a minimum number of
columns and above a maximum number of rows and columns.

From the point of view of an itemized database, the FIM-based
biclusters are perfect biclusters, that is, they do not allow value-variations
in any of its elements. Contrasting, from the point of view of the input
real-value matrix, these biclusters can handle noise as different values
may be assigned with the same item. The number of items can be
flexibly parameterized to control the level of noise-tolerance, which
contrasts with traditional biclustering approaches over discrete matrices3

[94,119]. Although BiModule [97,96] allows a parameterizable number of
items and support threshold, the structural data noise and the applied
itemization procedure often leads to the partitioning of large biclusters
into smaller ones (withmany of them filtered out as no longer satisfy the
support criterion). Contrasting, although DeBi [111] and Bellay's et al.
method [14] alleviate this problem by providing postprocessing strategies
to improve the functional coherence of the discovered biclusters, they
require the input data to be binarized.

FIM-based approaches suffer from the risk of assigning ele-
ments with similar real-values to different items. We refer to this
drawback as the items-boundary problem. In order to address this
problem, the notion of support of an itemset can be redefined. As

long as the new support metric is (anti-)monotonic, its inclusion
within Apriori-based frameworks [101] can be easily handled with
efficiency. Patterns are thus generated using breadth-first level-
wise pattern tree.

Han et al. proposed Min-Apriori [53], an algorithm to deal with
ordinal items. Steinbach et al. [115] introduced a framework to
generalize the notion of support to extend association analysis to
continuous-based patterns. An alternative support function [69] has
been proposed to mine hyperclique patterns (groups of columns or
rows strongly related) over numeric matrices. Calders et al. [25]
proposed the use of rank-based measures to score the similarity of
sets of numeric attributes within new support metrics by extending
τ, Spearman's ρ, and Spearman's Footrule F correlation metrics [71].
Here, efficient algorithms are designed to deal with the ranks of
attribute values, but not with the original numeric values. However,
these approaches do not capture key properties of real-valued
matrices, such as the need to ensure that the values of items in a
transaction are within a range to guarantee coherence and distin-
guish positive from negative values.

More recent approaches propose range-based support metrics
to either discover coherency on rows, such as RAP [101]. RAP is
defined under a sign-coherence constraint, enforcing that a
transaction can only contribute to the support of a pattern if the
values of all the items in it have the same sign.4 An alternative, RCB

Fig. 3. Structured view of PM-based biclustering: illustrative options across the major dimensions. It groups critical decision dimensions (corresponding to either a row, a
column or a cell of the framework) to support the design of PM-based biclustering approaches. A set of principles for each dimension is illustrated and detailed throughout
this work for each biclustering step (mining, mapping and closing) and biclustering goal (defined according to a specific type, structure and quality of biclustering solutions).

Fig. 2. Process-view dimensions and their impact on biclustering solutions.

3 Illustrating, xMotif [94] relies on greedy search and uses a size merit function
and a noise threshold to guarantee the discovery of large and interesting biclusters,
and SAMBA-based approaches [119] map binarized matrices into a weighted
bipartite graph to find subgraphs that maximize a weight merit function.

4 For a matrix A¼ ðX;YÞ and IDX; JDY , the support metric is defined as
supðJÞ ¼ ΣiAXSði; JÞ, with:

Sði; JÞ ¼ minjA J ∣aij∣ if ðmaxjaij�minjaijÞrσminj jaij j4 ð8 jaij403 8 jaijo0Þ
0 otherwise:

�
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discovery method [8], verifies range constraints on both dimen-
sions (rows and columns) using a monotonic range measure. The
Apriori-based method is slightly modify in order to grow
homogeneous-squares that are then used to compose rectangles
(biclusters). Finally, ET-bicluster model [52] revises the previous
support metrics for the discovery of noisy biclusters by guarantee-
ing that each supporting transaction of a pattern does not exceed a
specific error-threshold. Although this support metric is not anti-
monotonic and thus does not guarantee the exhaustive search of
all possible patterns, optimality distances can be given.

Despite the relevance of this type of hyperclique-based
approaches to avoid the items-boundary problem, they require
the definition and parameterization of (anti-)monotonic metrics.
Additionally, PM principles to enhance scalability and to discover
condensed representations for these range-based patterns cannot
be directly applied. Fig. 4 provides an illustrative application of
this type of enhanced FIM-based approaches against traditional
FIM-based approaches.

In labeled datasets, FIM-based approaches have been extended
for the discovery of class-discriminative biclusters (biclusters with
significantly higher support for a particular class) [43,116,95].
2.1.1.2. Association rule mining. Association rule mining can
alternatively be used to compose biclusters [60]. Its core task is
the support-guided discovery and confidence-guided combination
of frequent itemsets [54]. Given a matrix A, a simple association
rule relates columns (J-J0) or, when transposed, relates rows
(I-I0). An illustrative rule from a transposed gene expression
matrix is fgeneA↓g-fgeneB↑; geneC↑g, meaning that when geneA is
under-expressed, it is very likely that genes B and C are over-
expressed. An arbitrary high number of states/items can be
considered. When using association rules to compose biclusters,
the items on the antecedent and consequent of a rule, as well as
the supporting transactions from both sides, are considered to
derive each bicluster. Thus, association rules can be used to
capture accommodate noise when confidence levels are below
100%, as illustrated in Fig. 5. Consider the illustrative rule R1 :

fg2; g3g-fg4; g5g with confidence below 90%. Instead of using the
conditions that support fg2; g3; g4; g5g to build the bicluster, one
can extend it by considering the conditions that support uniquely

R1 antecedent, fg2; g3g. Confidence is thus seen as a homogeneity
indicator.

To mine specific rules of interest, other interestingness metrics
have been used to augment the support-confidence framework,
including lift, conviction, chi-square, cosine and all-confidence
[117]. BiP explores the thresholds of these metrics can be explored

to discover biclusters with varying quality [60]. In matrices with
numerous correlations, the support should be set low, the confidence
set high, and constraints incorporated to deal with the explosion of
rules from frequent itemsets. For instance, the rule-based GenMiner
approach [86] imposes rules to be non-redundant with minimal
antecedent and maximal consequent (minimal non-redundant rule
for short) in order to avoid the explosion of rules. Alternatively,
association rules can be pruned based on their statistical/biological
significance [5] according to hypotheses verified by correlation
coefficients (such as Pearson's Product Moment Correlation, Spear-
man's Rank-order Correlation Coefficient and Kendall's Tau).

Carmona-Saez et al. [26] and GenMiner [86] extended simple
rules by integrating annotations from semantic sources and
(biomedical) knowledge bases. Illustrative rules include:
annotation1 ) fc1↓; c2↑g, meaning that a group of genes (with
the same annotation) is likely to be under-expressed in condition
c1 and over-expressed in condition c2, or fc1↓; c2↑g ) annotation1,
meaning that a group of genes with the expression profile given by
c1 and c2 is likely to have specific annotations.

Finally, and similarly to support customization, confidence and
other interestingness metrics can be customized and plugged within
an Apriori-based framework. However, to our knowledge, there are
not yet implementations of this type of rule-based approaches.
2.1.1.3. Structured pattern mining. Approaches that target different
types of patterns provide alternative search paradigms for
biclustering and hold the potential to discover biclusters with
specific properties. This set of approaches includes:

� Constraint-based pattern mining or actionable pattern discovery
approaches. Biclusters are declaratively defined through the use
of flexible pattern constraints that specify the target homoge-
neity criteria. In this context, a bicluster is a specific formal
concept called bi-set. A bi-set satisfies, at least, a local constraint:
the column set (or intent) is the maximal set of columns that are
true for the supporting set of rows (or extent) [19,4];

� Sequential pattern mining (SPM) approaches: SPM can be used to
mine order-preserving biclusters [61,63,78]. A bicluster is
order-preserving if there is a permutation of its columns under
which the sequence of values in every row is (either mono-
tonically or strictly) increasing. For this aim, the indexes of the
elements in the matrix are reordered per row; the ordered set
of indexes are mapped into a sequential database; SPM is
applied; and the biclusters are mapped from the frequent
sequences and their supporting transactions (Fig. 6). OP-
Clustering [78] was the first attempt to SPM-based biclustering.
More recently, BicSPAM [63] was proposed to address the
efficiency bottlenecks and noise-intolerance of previous algo-
rithms, and allow a parameterizable variation of the degree of
co-occurrences versus precedences to affect the order-
preserving coherency;

� Two-way PM-based clustering approaches: This is a promising
direction since the patterns underlying the clusters on each
dimension can be used to affect the structure, quality and type
of biclusters [49];

� Graph mining approaches: Real-value matrices can be mapped
into weighted bipartite graphs, and thus biclustering can be
mapped into the task of finding maximal cliques [84] or other
substructures from graphs derived from binarized matrices
[119]. Despite its computational complexity, structured pattern
mining over weighted bipartite graphs is a direction with
growing attention [28];

� Cube computation approaches: Cube computation shares simi-
larities with frequent pattern analysis, being well-suited to deal
with matrices in Rn when n42 [55,132]. The additional
dimensions can be used to capture additional informative
views (such as time points or replicates) [3], to model

Fig. 4. Biclustering using FIM over discrete matrices versus range-based searches
over numeric matrices. Biclusters discovered with range-based support metrics are
less prone to the items-boundary problem.

Fig. 5. Discovering biclusters from association rules: comparing noise-intolerant
biclusters from frequent itemsets vs. noise-tolerant biclusters from association rules.
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contributions from overlapping areas of biclusters under a plaid
model assumption [60], or to find biclusters' consensus over
cubes with different pre-processing and closing criteria.

2.1.1.4. Hybrid approaches. Biclustering can rely on multiple types of
patterns discovered by different PM approaches. Valid options include
the definition of ensemble methods combining plain and structured
patterns or the output of multiple PM methods (parameterized with
different support-confidence thresholds). Frequent itemsets can be
also used to produce an initial solution, while rules can be posteriorly
mined to shape the discovered biclusters by accommodating noise.
An alternative ensemble model can rely on the multiple results from
the iterative parameterization of a PM method with different PM-
based constraints of interest. To our knowledge, these hybrid
possibilities have not been systemically studied in literature.

2.1.2. Application schema
The previous pattern mining approaches can be iteratively

applied with a decreasing support threshold until a stopping criteria
is achieved [62]. BicPAM makes available distinct stopping criteria,
including a minimum coverage of the elements in the input matrix
by the discovered biclusters or, alternatively, an approximate
number of biclusters (after or prior to postprocessing) [62]. Such
criteria can either be driven from user expectations or dynamically
derived from the properties of the input matrix [63].

Furthermore, iterative corrections can be applied on the matrix to
enable the discovery of more flexible coherencies. BicPAMmakes use
of the observed differences and of the least common divisor between
the observed values for a given column (or row) in the matrix in
order to perform iterative corrections across rows (or columns) and
thus identify shifting and scaling factors. The removal of these factors
in the matrix allows the discovery of additive models and multi-
plicative models [62]. Similarly, BicPAM can also rely on combinatorial
sign-adjustments across rows (or columns) to model symmetries, and
integrate them with shifting and scaling factors [62]. Pruning
strategies are considered to avoid redundant calculus and reduce
the computational complexity of these iterative corrections.

BiP relies on the converging application of PM for learning plaid
models [60], based on the observation that, by incrementally
removing overlapping contributions, the residual values become
closer to the underlying unstructured noise. For this aim, BiP
performs checks between iterative applications of PM searches in
order to recover areas explained by cumulative effects (contribu-
tions on overlapping areas between biclusters) and to remove
noisy areas that are not described by a plaid assumption. Without
degradation of efficiency levels, it also provides relaxations to
model overlapping contributions characterized by noisy and non-
linear cumulative effects [60].

2.1.3. Pattern representation
Depending on the chosen PM approach, different patterns, such

as frequent itemsets, association rules, sequential patterns or struc-
tured patterns, can be considered. Each of these patterns can have
different representations, being the most common: simple, maximal,
closed, pseudo-closed, approximated, rare, top-K, multilevel and
erasable [24]. In particular, when targeting association rules,

additional representations can be considered as indirect, minimal,
non-redundant, approximative, quantitative and sporadic rules [117].
Although an analysis of the impact of using each representation on
the biclustering solutions is possible, we consider simple, maximal
and closed representations for simplicity sake.

Definition 2.1. Given an itemset matrix, a support threshold θ,
and the coverage function Φ : 2L-2D that maps an itemset P to its
set of supporting transactions. A closed frequent itemset is a
frequent itemset that has no superset with the same support
(8P0*P ∣P

0∣o ∣P∣). A maximal frequent itemset is a frequent itemset
with all supersets being infrequent, 8 P0*P ∣ΦðP0Þ∣oθ.

Given an itemset database Dex¼ffA;B;H; Jg; fD;H; Jg; fC;D;H; Jgg,
and thresholds θ¼2 (jΦP jZ2) and jP jZ2, there is one maximal
frequent itemset (fD;H; Jg) and there are two closed frequent
itemsets (fD;H; Jg and fH; Jg). The selection of the pattern repre-
sentation essentially depends on the type and structure of the
target biclusters, and on the post-processing needs.

Maximal itemsets for biclustering, such as those used in DeBi
[111], are associated with biclusters with the columns' size max-
imized. Such flattened biclusters are only of interest when there is
an extension step to be performed to include new rows. However,
since both vertical and smaller biclusters are lost, this representation
leads to incomplete solutions. The opposite alternative is the use of
all frequent itemsets for biclustering. This solution leads to a high
number of potentially redundant biclusters (if contained by another
bicluster), which can degrade the performance of the mining and
closing steps. Finally, the search for closed itemsets, such as FIM-
based BiModule [96] and rule-based GenMiner [86], allows the
discovery of overlapping biclusters if a reduction on the number of
columns results in a higher number of rows. Closed pattern solutions
are thus enabling the return of all maximal biclusters (set of
biclusters that are not included in other biclusters). The properties
of these three alternative representations are illustrated in Fig. 7.

2.1.4. Search strategies
The choice of the search strategy depends essentially on the

target biclustering task and on the properties of the considered
implementation. Generally, PM searches are centered on comput-
ing the set of frequent patterns, which is the core task of all
pattern miners.

The choice of whether to use a vertical or an horizontal data
format depends essentially on the type of biclusters we are
targeting. To find constant items on the rows or on both dimen-
sions, we usually benefit from using searches over horizontal data.
This is particularly true for matrices where the total number of
rows largely exceeds the total number of columns. To find constant
items on the columns (when n4m), a vertical data format should
be the choice, as the performance of searches using the horizontal
format degrades exponentially with the increase in the number
of items.

Fig. 7. Comparison of biclustering solutions using simple, maximal and closed
patterns.

Fig. 6. Mining order-preserving biclusters in real-valued matrices with sequential
pattern mining.
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The choice of whether to use an Apriori-based, pattern-growth
or combined approach, depends on three variables: (1) the type of
PM-based approaches (range-based approaches cannot rely on
pattern-growth methods), (2) the density of the resulting itemset
matrix, and (3) the ability to retrieve the supporting transaction set
for each frequent itemset without degrading the overall efficiency.
This analysis is detailed in supplementary material. When biclusters
with constant values overall are targeted, the resulting matrices are
sparser (Fig. 1) and, therefore, an Apriori strategy is preferred. For
denser matrices, pattern-growth strategies are preferable.

In particular, the discovery of patterns together with their
supporting transactions has been tackled using extensions over
Apriori and vertical-based algorithms by relying on bitset vectors to
capture the supporting transactions per pattern [86,111,96]. How-
ever, bitset vectors offer efficiency problems in terms of memory
and time for large and dense datasets. Henriques et al. [65] study
efficient alternatives and propose a pattern-growth algorithm to
discover full-patterns with heightened time and memory efficiency.

An additional key aspect is the chosen implementation. The use of
bit-set operations and either reduced number of scans or efficient
tree-traversals are usually key for a top performance. Efficient
implementations include algorithms to mine closed itemsets under
an Apriori search (LCM [125], Charm [136]), vertical search (TD-Close
[77]) or pattern-growth search (FPClose [51]); and to mine maximal
itemsets under an Apriori search (MaxMiner [11]), vertical search
(Mafia [22]) or pattern-growth search (AFOPT [76]). Similarly, multi-
ple implementation variants can be found to compose association
rules [138,87] and to mine structured patterns. For instance,
sequence miners can either use Apriori, pattern-growth and vertical
searches, and find closed and maximal sequential patterns [79]. In
DeBi [111], BiModule [97] and GenMiner [86] use Mafia [22], LCM
[125] and CLOSE [102] implementations, respectively. Range-based
variants use Apriori [2]. Additional principles proposed in literature
[138,99,100] can be seized to guarantee the scalability of the search
when mining large biclusters from dense or large data settings.

2.2. Mapping options: preprocessing input data

Previous section covered essential mining options with impact on
the coherency, structure and quality of PM-based biclustering solu-
tions. However, their optimum application requires the input
matrices to be correctly normalized5 and (depending on the PM-
based approach) discretized. The problem of defining an adequate
coherency strength is identical for range-based approaches (distance
thresholds as a function of data domain values) and discrete PM-
based approaches (number of items). Although discretization may
imply loss of information, it alleviates the noise dilemma [26,31].

Since discretization is a key step for the class of PM-based methods
that relies on itemset databases, having key implications on the target
solution, we study two variables: (1) the number of items (also referred
to as symbols or expression levels) and (2) themethod used tomap the
normalized real-value matrix into a itemset database. A sensitivity
analysis on the impact of the number of items on the quality and size of
biclusters was, first, performed in Bidens [83] and BiModule [96]. Fig. 8
illustrates how simple discretization options can lead to different
solutions. The itemization (concatenation of the item with the
column-index) implies that the resulting number of items is at most
m� l, being l the number of items specified by the user. The use of
fixed ranges (potentially equal sized intervals between the observed

maximum and minimum) is the simplest discretization option, but it
usually leads to an accentuated weak distribution of items and it is
prone to the items-boundary problem. The first problem can be
corrected using a percentage-based method for the depth partitioning
of items that leads to intervals containing approximately the same
number of elements. Alternatively, distributions combine the proper-
ties of the previous solutions. In the example, a Gaussian distribution is
able to minimize the loss of potentially relevant biclusters. By finding
multiple suitable curves (for each row or column) or one suitable
overall curve to approximate the matrix, one can either use threshold
methods [26,31] or compute the statistical cutoff points to create
equally-distributed areas. Nordi [86] is a Gaussian-based method used
in GenMiner [86] that statistically detects outliers (using the Grubbs
method), applies normality tests (using QQ-plot and Lilliefors) to
transform the initial row distributions into a “more” Normal distribu-
tion, and computes cutoff thresholds using the z-score methodology. In
the presence of matrices with multimodal distributions, more expedite
methods based on a mixture of distributions must be considered.

A unique advantage of PM-based approaches is the fact that they
can easily address the items-boundary problem of discretization
procedures by assigning two or more items to an element in the
original matrix with a real value that is near a discretization boundary
(or cut-off point). This is possible since PM is able to learn from
transactions (mapped from the rows of an itemized matrix) with an
arbitrary number of items. Despite the critical relevance of this
strategy, its impact was not yet systemically assessed.

Alternative discretization options that aim to deal with this problem
include: (1) adaptive discretization based on dynamic threshold selec-
tion policy [107]; (2) statistical methods to detect differential activity of
elements as the basis to create partitions [31] (commonly adopted as a
binarization method); (3) distance-based subspace clustering models
[75] to flexibly partition the values while preserving meaningful and
significant clusters; (4) fuzzification approaches where a continuous
domain is partition into fuzzy sets, provided to be more robust to noise
when compared with other simple binning techniques [47]; and (5)
supervised discretization methods [45] (when descriptive labels per
row or column are present or computed using clustering methods),
where a row or column is partitioned into a number of disjoint
intervals in such a way that the entropy of the partition is minimal.

An additional preprocessing concern appears for matrices with
arbitrary-high number of missing elements. Although multiple
imputation methods have been proposed [122,38,58] to alleviate
this problem, they can introduce additional noise and undesirably
affect the homogeneity of the output biclusters. BicPAM [62] and
BicSPAM [63] consider varying relaxations to surpass this problem,
including a relaxed setting where the missing element is replaced
by all the available items (leading to transactions with varying
size), and a medium-constrained setting to consider a parameter-
izable number of items around its value-estimation.

2.3. Closing options: postprocessing biclustering solutions

PM-based biclustering approaches produce exhaustive solu-
tions with flexible structures (arbitrary number and positioning of
biclusters). These non-exhaustive, non-exclusive structures, where
overlapping is allowed, are the most suitable option to tackle the
applications listed in Table 1.

Two key challenges of exhaustive solutions are: handling noise
and dealing with the potential explosion of valid biclusters. Part of
these questions can be answered in the mapping step by selecting
the number of items and discretization setting able to handle the
items-boundary problem. However, postprocessing may be
required to avoid the following two challenges of the noise
dilemma. The first results from a too restrictive noise tolerance,
commonly associated with a high number of items, which leads to
many small sized biclusters. The second is related to heightened

5 Normalization options are often applied before biclustering to enhance
differences across rows and/or columns and, consequently, to improve the ability
to discover biclusters. de Souto et al. [34] compare three normalization procedures
(z-score, scaling and rank-based procedures) over gene expression datasets using
alternative clustering algorithms. Additional methods for preprocessing the input
matrix have been reported [118,83,25].
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levels of noise allowance, commonly occurring in binarized parti-
tions or through the use of rule-based approaches under a relaxed
level of confidence. To handle these challenges we propose the use
of a set of criteria structured according to three major postproces-
sing steps (merging, filtering and extension) described below.

Merging options: Merging biclusters may serve two goals: noise
allowance (to avoid solutions composed uniquely of small biclus-
ters) and overall biclustering structure manipulation. The first goal
is driven by the observation that when two biclusters share a
significant area it is probable that their merging composes a larger
bicluster still respecting some homogeneity criteria. Commonly,
such decomposition is related to the items-boundary problem or
with a missing value. The simplest criterion to allow the merging
is either to rely on the overlapping area (as a percentage of the
smaller bicluster), to compute the overall noisy percentage after
the merging, or both. Additional homogeneity criteria relying on
the real-values provided by the input matrix can be formulated.
Henriques et al. [61] performed a comparison between three
distinct efficient merging techniques. Bellay et al. [14] proposed
a Markov Clustering (MCL) algorithm to both summarize biclus-
tering solutions and allow for the creation of larger biclusters.

Filtering options: Filtering is needed at two levels: (1) at the row/
column level and (2) at the bicluster level. The first type of filtering
is needed to exclude rows or columns from a particular bicluster in
order to improve its homogeneity. This is usually the case when a
low number of items is considered, leading to highly noise-
tolerant biclusters. For this purpose, we can rely on statistical
tests on each row and column of a particular bicluster to identify
removals [111]; use existing greedy-iterative approaches to max-
imize a merit function until a parameterizable reduction in size is

verified [29]; or discover patterns under more restrictive condi-
tions (as higher support and confidence thresholds) and use them
guide the removal of rows and columns [62,63].

The second type of filtering is required to guarantee the dissim-
ilarity of biclusters, removing biclusters partially contained in larger
biclusters. BiModule [96] filters small biclusters by sorting biclusters
following the score aIJ � log 2 j I j � log 2 j J and biclusters whose cells
overlap by more than 25% with a higher scored bicluster. The work
by Bellay et al. [14] separates biclusters that represent biological
phenomena from false discoveries (emerging from the background
data distributions) using randomized data scores.

Extension options: Three optional and non-exclusive strategies can be
used to extend the discovered biclusters so that the resulting solution
still satisfies some pre-defined homogeneity significance criteria. First
strategy consists on the use of statistical tests to include rows or
columns from each bicluster. DeBi [111] uses statistical tests to extend
biclusters obtained over binary matrices by evaluating the association
strength between key columns of a bicluster and a new row using
Fisher's exact test for independence on a contingency table. This
guarantees that each row in the bicluster shows a statistical difference
between the columns in the bicluster and the columns not in the
bicluster, leading to more functionally coherent biclusters. Second
strategy is to rely on traditional merit functions for further (greedy)
extensions over PM-based biclusters. Third strategy is to discover
patterns under more relaxed criteria (such as lower support-
confidence thresholds) and use them to guide the extension step
[62]. When considering lower supports, new columns and rows can be
added to the original frequent patterns. Similarly, more relaxed
association rules, with less restrictive ways to group the antecedent-
consequent, can be used to guide extensions.

Alternatives to merging, filtering and extension options: Alternatives to
previously introduced closing options to deal with large sets of small
biclusters include: (1) summarization techniques based on simple and
hierarchical clustering methods or on the definition of similarity
measures to compare biclusters [18]; (2) user-driven formal con-
straints and querying expressions [19,20]; (3) co-clustering for exclu-
sively partition both dimensions to select representative biclusters
[36]; (4) pre- and post-pruning techniques (including item-based
constraints and discrimination metrics) [88]; (5) patterns based on
half-spaces (as quantitative rules) in which external sources of
information are used as a filtering basis [48]; and (6) verification
techniques based on metrics computed using external data sources as,

Fig. 8. Comparison of alternative discretization options by addressing their impact
on the itemization and biclustering solutions with constant values on columns.

Table 5
Systemic comparison of the two major classes of PM-based biclustering approaches.

Approach Major benefits Challenges Proposed principles to tackle challenges

PM-based biclustering - Exhaustive searches; 1. Deterioration of efficiency levels for large
data (in the absence of PM scalability
principles);

1. Data partitioning methods; PM in distributed
settings; approximated patterns (discovered
under specific performance guarantees) [54,134];

- Handle missings and noise;

2. Not natively prepared to capture additive,
multiplicative, symmetric and plaid
coherencies (their discovery can be
computationally expensive);

2. Iterative data mappings on rows/ columns
(with pruning heuristics) to mine non-constant
biclusters [62]; merging procedures sensitive to
overlapping plaid effects [60];

- Biclusters with multi-levels of
coherency strength;

3. High number of mined biclusters (memory
usage);

3. Adequate data structures; filtering options
pushed into mining step;

- Extensions to discover flexible
coherencies;

4. Need to fix thresholds for the standard
(customized) support metric;

4. Use of multi-thresholds (iterative method);
data-driven estimation;

- Flexible structures;
- Flexible searches;
- Constraint-based guidance;

Range-based support
biclustering

- Range-based support addresses
the items-boundary problem;
- Easy extension of Apriori methods
to seize efficiency gains when
dealing with multiple distances
(support thresholds);

1. Separation of positive and negative values to
guarantee monotonicity, resulting in biclusters
without simultaneous under- and over-
expressed values;

1. Merging of biclusters with shared columns (or
rows) but different signs to avoid the violation of
the (anti-)monotonic property;

2. Dedicated Apriori-based methods do not
allow the direct use of PM scalability
principles;

2. Dedicated extensions to mine patterns with
tree structures (required for dense datasets), and
to make use of (scalable) data partitions;
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for instance, term enrichment (in gene expression data) to affect the
addition-removal of columns-rows per bicluster.

2.4. A systematic comparison of PM-based biclustering approaches

In what follows, we provide a synthesis of the benefits and
challenges of using PM-based biclustering approaches together
with principles on how to tackle existing challenges. Table 5
focuses on PM-based biclustering classes in general, while
Table 6 focuses on each surveyed approach in particular.

Understandably, different applications may be better tackled by
different PM-based biclustering approaches. BicPAM, BiModule and
RAP are default options for settings where meaningful biclusters can
only be found using multiple coherency levels, which is often the
case with scored biological/social networks, expression data and
physiological data [62,96,101]. DeBi and BicPAM are critical for the
analysis of large Boolean datasets, such as the ones derived from
(web) text data or genomic structural variations [111,62]. GenMiner's
ability to incorporate external knowledge is relevant for biological
and clinical contexts [86]. The constant overall assumption of RCB is
critical to efficiently mine biclusters with a specific behavior or rating
in web social data and collaborative filtering data [8]. The noise-
tolerance of ET-biclusters and BicPAM is relevant to deal with
experimental errors and instance-based variations of physiological,
molecular and clinical data [52,62]. Finally, BiP and BicPAM are the
choice for the analysis of non-trivial (yet coherent) behavior across
biomedical and social domains as they allow the discovery of flexible
(yet meaningful and significant) coherencies [60,62].

3. Performance evaluation of PM-based biclustering
approaches

This section evaluates the performance of PM-based biclustering
approaches. We first describe the quality evaluation methodology
and then present preliminary results on synthetic and real data.

3.1. Methodology

Effective evaluation of PM-based biclustering solutions is
challenged by three major issues. First, a large variety of metrics
and synthetic datasets have been proposed (with many being
biased to the specificities of a particular approach) [98]. This is the
case either when a variant of the optimized merit function is used
to evaluate the approach, or when a developed approach is
optimized towards specific data settings. Second, there is no
ground truth to evaluate biclusters observed in real data. Finally,
existing efforts to develop a standard evaluation [92,108] only
cover a subset of all aspects, often leading to wrong assumptions
regarding the performance of the assessed approaches.

Evaluating biclustering solutions on both synthetic and real
data is essential. In synthetic data, a set of biclusters H¼ fH1;‥Hgg
(referred as hidden or true biclusters) is typically planted. Objec-
tive metrics can be formulated since an approximate solution is
known a priori, including the relative non-intersecting area (RNAI)
[21] and its extension (CE subspace6) [103], match scores [108,67],
and clustering metrics7(such as entropy, recall and precision) [6,7].

In particular, we rely on Jaccard-based match scores (MS) to assess
the similarity of B and H [108]. MSðB;HÞ defines the extent to
which found biclusters cover the hidden biclusters (complete-
ness), while MSðH;BÞ reflects how well hidden biclusters are
recovered (precision).

MSðB;HÞ ¼ 1
∣B∣

X
ðI1 ;J1ÞAB

max
ðI2 ;J2ÞAH

∣I1 \ I2∣
∣I1 [ I2∣

:

Since MS scores are not sensitive to the number of biclusters in
both sets, Hochreiter et al. [67] introduced a consensus (FC) by
computing similarities between the pairs of closest biclusters
between B and H. Let S1 and S2 be, respectively, the larger and
smaller set of biclusters from fB;Hg, and MP be the assigned pairs
using the Munkres method based on overlapping areas [93].

FCðB;HÞ ¼ 1
∣S1∣

X
ððI1 ;J1ÞAS1 ;ðI2 ;J2ÞAS2ÞAMP

∣I1 \ I2∣� ∣J1 \ J2∣
∣I1∣� ∣J1∣þ ∣I2∣� ∣J2∣� ∣I1 \ I2∣� ∣J1 \ J2∣

In the absence of hidden biclusters, only subjective metrics can be
formulated. Merit functions can be applied as long as they are not biased
towards the merit functions used within the approaches under compar-
ison. A detailed comparison of merit functions is provided by Orze-
chowski [98]. Complementarily, domain-driven scores can be computed
using the groups of rows and columns in biclustering solutions retrieved
from real datasets against annotations extracted from (biomedical)
knowledge bases, such as Gene Ontology and Yeastract [85,121],
semantic sources or bibliographic databases. Biclusters can be ranked
using a p-value p from testing the hypergeometric hypothesis against
these annotations [16,130]. In biological domains, this score can be used
to investigate whether the discovered biclusters show significant
enrichment with respect to terms in gene ontologies, transcription
factors, protein-interaction networks and metabolic pathways using
varying levels of significance and correction procedures [96,111].

We propose a methodology for evaluating PM-based biclustering
approaches according to three major decision axes. The first axis
concerns the target set of synthetic and real datasets. Synthetic
datasets must have varying sizes and configurations and be able to
exploit different biclustering solutions with respect to their coher-
ency, size, noise and overlapping degree. The second axis includes
the set of biclustering approaches and parameterizations to estab-
lish comparisons. Finally, the third axis defines the set of metrics to
be used. It should assess: (1) time and memory efficiency;
(2) accuracy from synthetic data using match scores, CE subspace
or FC consensus; and (3) domain relevance scores from real data.

3.2. Results

Below we collect initial empirical evidence that shows the
relevance of PM-based biclustering approaches. The following
experiments were computed using an Intel Core i3 1.80 GHz with
6GB of RAM.

Synthetic datasets were generated8 by varying the size of the
matrices, the number and shape of the planted biclusters and the
number of items (∣L∣Af5;10;20g). The properties are described in
Table 7. The number of rows and columns for each bicluster
followed a Uniform distribution over the ranges presented in
Table 7. We allow for overlapping biclusters and a random noise
factor (up to 7 15% of the range of values), which can difficult the
recovery of planted biclusters. For each of these settings we
instantiated 20 matrices: 10 matrices with background values

6 RNIA cannot distinguish if several or a single found biclusters cover a hidden
bicluster, thus CE maps each found bicluster to at most one hidden bicluster and
each hidden bicluster to at most one found bicluster.

7 Clustering metrics are applied to one dimension at a time (rows or columns).
Typical objective functions aim high intra-cluster similarity (overall pattern for rows
within a bicluster is similar across all columns) and low inter-cluster similarity
(patterns differ for rows from different biclusters). Entropy combines these views
by measuring the homogeneity of the found clusters B against the hidden clusters
H. Alternatively, F-measure (and its precision and recall components) evaluate how

(footnote continued)
well the hidden clusters are represented [7,91]. The underlying principle is that
biclusters should cover many rows of a particular hidden cluster but few rows from
other hidden clusters.

8 Available in http://web.ist.utl.pt/rmch/software/bicpam.
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following a Uniform distribution, U(1, ∣L∣), and 10 matrices
according to a Gaussian distribution, N(∣L∣2 ,

∣L∣
6 ).

Comparison: We selected 15 state-of-the-art approaches9: FABIA
method with sparse prior option [67], ISA [70], OPSM [15], CC [29],
Samba [119], xMotifs [94], OP-Clustering [78], BicSPAM [63], Bexpa
[106], BCPlaid [123] and the PM-based BiModule [96], DeBi [111],
RAP [101], BicPAM [62] and BiP [60] biclustering approaches. We
used the following software: R packages fabia10 and biclust11,
BicAT [10], Expander12, (Evo-)Bexpa [106], RAP13 and BicPAMS14.
In particular, we adjust BicPAM behavior according to the

proposed principles in this work by considering closed patterns,
multiple levels of coherency strength (∣Σ∣Af3;5;7g), an assign-
ment of two items for elements with values near item-boundaries,
and merging (4 70% overlap) and filtering options. The support
threshold was incrementally decreased 10% until the area of the
discovered biclusters covered at least 5% of the input matrix.
Fig. 9 compares the ability of these state-of-the-art approaches
to discover planted biclusters with constant coherency on rows.
Results confirm the superior performance of PM-based bicluster-
ing approaches both in terms of the MS ðB;HÞ (correctness)
and MS ðH;BÞ (completeness) as they provide exhaustive and
flexible searches. Superiority is also verified for non-constant
models. Fig. 10 compares the performance of biclustering
methods prepared to discover shifting-scaling factors when the
planted biclusters follow additive and multiplicative models.
A closer look to the performance of PM-based biclustering, when
multiple levels of coherency strength are considered, is provided
in Fig. 11.

Efficiency: Fig. 12 shows the boundaries on efficiency of PM-based
biclustering approaches when considering 20.000 rows (magni-
tude of the human genome). We varied the number of columns,

Table 6
Benefits, challenges and possible improvements of state-of-the-art PM-based biclustering approaches. PM-based biclustering benefits and challenges in Table 5 apply to
DeBi, BiModule, GenMiner and BicPAM/BiP, while both PM-based and range-based biclustering benefits and challenges in Table Table 5 apply to RAP, RCB and ET-Biclusters.

Approach Major benefits Challenges Principles to tackle challenges

DeBi Complete and statistical rigorous options for
post-processing biclustering solutions; discovery
adapted to the target significance level; (see PM-
based benefits)

Efficiency deterioration from post-processing
extension procedures; discovery of maximal
patterns (loss of a large number of potentially
significant biclusters); binarization of data; (see
PM-based challenges)

Discovery of closed patterns (removes the need
for an exhaustive extension of biclusters);
multi-level discretization (standardly as
remaining PM-based approaches); (see PM-
based principles)

BiModule Multi-level discretization with removal of
outliers; (see PM-based benefits)

No merging-extension options for handling noise
and growing biclusters; (see PM-based challenges)

Inclusion of the surveyed closing options; (see
PM-based principles)

GenMiner More complete frame to derive noisy biclusters
from rules (non-perfect confidence levels);
allows extracting relations between genes and
real-world annotations; (see PM-based benefits)

Require annotations from knowledge bases; non-
parameterized levels of expression (only 3); (see
PM-based challenges)

Retrieval of annotations from the dataset under
analysis when knowledge bases are not
available; delivery of rules without the need
annotations for annotation on the antecedent
or consequent; inclusion of the surveyed
mapping options; (see PM-based principles)

BicPAM/ BiP Discovery of additive/multiplicative/symmetric/
plaid models; robustness to discretization, noise
and missings; dedicated PM searches to explore
further efficiency gains; (see PM-based benefits)

Efficiency levels of the search for non-constant
models rapidly deteriorates for very large
matrices; (see PM-based challenges)

New heuristics, scalability principles,
approximative searches (replacing the
exhaustive criteria), or constraint-based
guidance to learn non-constant models; (see
PM-based principles)

RAP (see PM & range-based benefits) Not able to deal with noisy biclusters; (see PM-
and range-based principles)

Inclusion of closing framework (merging and
extension strategies); (see PM- and range-based
challenges)

RCB Discovery (see PM and range-based benefits) Constant coherency overall excludes biclusters
with meaningful differences across columns
(rows); joining squares (discovered patterns) to
compose rectangles (biclusters) is a
combinatorial problem that impacts efficiency 8;
(see PM- and range-based challenges)

Combined results with other approach
biclustering solutions (e.g. RAP); alternative
computational methods; (see PM- and range-
based principles)

ET-Bicluster Parameterizable discovery of biclusters based on
the allowed amount of noise; (see PM and range-
based benefits)

Inclusion of error-based thresholds on the
Apriori-method violates the (anti-)monotonic
property, thus not guaranteeing exhaustive
solutions; (see PM- and range-based challenges)

Adoption of more relaxed thresholds to avoid
loosing biclusters of interest with a post-
filtering of biclusters non-satisfying criteria;
inference of bounds on the performance
guarantees; (see PM- and range-based
principles)

Table 7
Properties of the generated set of synthetic datasets.

Matrix size (#rows� # cols) 100 � 30 500�60 1000�100 2000�200 4000�400

Nr. of hidden biclusters 3 5 10 15 20
Nr. columns in biclusters [5,7] [6,8] [6,10] [6,14] [6,20]
Nr. rows in biclusters [10,20] [15,30] [20,40] [40,70] [60,100]

9 The specified number of biclusters for FABIA, Bexpa, CC, xMotifs and ISA
(number of starting points) was the number of hidden biclusters plus 10%:
∣H∣� 1:1. Note that this specification guides the search, optimistically biasing Fabia
Consensus (FC) levels. The default number of iterations for the OPSM method was
varied from 10 to 200 iterations. Remaining parameterizations were set by default.

10 http://www.bioinf.jku.at/software/fabia/fabia.html.
11 http://cran.r-project.org/web/packages/biclust
12 http://acgt.cs.tau.ac.il/expander.
13 http://www.mybiosoftware.com/rap-association-analysis-approach-biclus

tering.html.
14 https://web.ist.utl.pt/rmch/software/bicpams.
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items (jLj Af5;7g) and considered a simple merging option
(470% overlap). We planted 15 biclusters to occupy 2% of the
area. Charm [136], an efficient pattern miner to deliver closed
patterns (maximal biclusters), was used. Generally, we observe
that PM-based biclustering approaches are scalable for these
dense and large matrices. Understandably, the number of items
has strong impact in efficiency as it defines the density of the
itemset database. The scalability of pattern mining methods can be
guaranteed for even harder settings by adopting some of the
largely researched parallelization, distribution, streaming and
error-bounding PM principles [54]. Additionally, hyperclique pat-
terns [52], which require item-pairwise support-similarity, can be
also considered to promote the efficiency of the mining procedure.

Impact of mining options: Fig. 13 illustrates the impact of the
chosen search and pattern representations (simple, closed, max-
imal) in the efficiency and MS levels of PM-based biclustering
approaches when using a discretization step with 10 items and the

1000�100 data setting. The FIM methods were tested using
SPMF15 and F2G [65]. FPGrowth [65] and Eclat [135] are the most
competitive choices for small support thresholds, while Apriori [2]
is the best option for medium-to-large support levels. Additionally,
the use of simple patterns (using FPGrowth [1]) degradesMSðB;HÞ,
while the use of maximal patterns (using CharmMFI [136])
penalizes MSðH;BÞ as it discards biclusters with a non-large
number of columns (even if they have larger number of rows).

Impact of closing options: We planted additional levels of noise, by
varying the amount of noisy elements from 0 to 10%, for the
1000�100 setting. Fig. 14 describes the impact of alternative strategies
to extend,merge and filter biclusters using Charm. When increasing the
planted noise, extension options are critical to maintain attractive levels
of accuracy (20pp higher than the baseline option). Fig. 13(b) illustrates

Fig. 9. Comparison of the performance of state-of-the-art biclustering approaches on data settings with varying properties and constant coherencies.

Fig. 11. Performance of PM-based biclustering for data settings with varying coherency strength.

Fig. 10. Comparison of biclustering approaches to recover biclusters with non-constant coherency.

15 http://www.philippe-fournier-viger.com/spmf.
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the impact ofmerging biclusters with large overlapping areas assuming
a level of planted noise of 5%. When decreasing the overlapping
threshold, MS levels increase up to a certain threshold (near 70% for
this experimental setting). A correct identification of this threshold can
lead to significant gains (near 15pp in this setting). Finally, the use of
filtering strategies to remove rows and columns can also enhance the
recovery of the planted biclusters, as it is illustrated in Fig. 14(c).
Similarly to the merging option, MS increases up to a 75% homogeneity
(given by 1 �MSR [29]) and decreases above this threshold since the
homogeneity criteria becomes too restrictive.

Domain relevance: To assess the relevance of PM-based bicluster-
ing in biological settings we used two gene expression datasets : (1)
dlblc dataset (660 genes, 180 conditions, human genome) [109], and
(2) hughes dataset (6300 genes, 300 conditions, yeast genome) [74].

For each dataset standard PM-based biclustering (closed FIM) was
applied using multiple levels of expression ∣L∣Af4‥7g and different
closing options: (1) merging (70% overlap), (2) relaxed merging (55%
overlap) with filtering of rows, and (3) tight merging (90% overlap)
with extensions on rows that appear in another bicluster sharing a
minimum 50% of conditions. The biological relevance of each
bicluster was obtained using the Gene Ontology (GO) annotations
using the GoToolBox [85]. Table 8 shows an illustrative set of PM-
based biclusters with significantly enriched GO terms (after Bonfer-
roni correction). These biclusters could hardly be discovered by peer
biclustering methods, since many of them include conditions with
multiple degrees of expression (such as B1, B2 and B4). All of them
have heightened biological significance as observed by the number of
highly enriched terms. Interestingly, we also observe that different

Fig. 12. Efficiency bounds of PM-based biclustering in the absence of scalability principles for datasets with 20,000 rows.

Fig. 13. Comparison of mining searches and pattern representations for the 1000�100 setting.

Fig. 14. Impact of extending, merging and filtering options. (a) Extending biclusters for varying levels of noise. (b) Merging for varying overlapping degrees (5% of planted
noise). (c) Filtering for varying homogeneity degrees (2% of planted noise).

Table 8
Illustrative set of PM-based biclusters with unique properties and heightened biological relevance.

ID Dataset Pattern Items Closing options # Genes # Conds #p�valueso0:01 #p-values [0.01,0.05] Best p-value

B1 dlblc FAABFFF A-F Merging with tight overlapping 83 7 41 21 1.97E�10
B2 dlblc AAABCA A-C Extensions allowed (with tight merging) 153 8 9 1 2.27E�12
B3 hughes EEECEE A-E Merging allowed 581 6 12 7 1.31E�25
B4 hughes CCDCBCBCC A-E Merging with relaxed overlapping 654 10 16 4 1.31E�17
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closing options lead to distinct biclusters. Complementary analyzes
supporting the biological relevance of PM-based biclustering are
provided in [62,60,111].

4. Conclusions

This work provides a structure view on pattern mining-based
approaches to biclustering as they are increasingly positioned as
the means to perform exhaustive searches under relaxed condi-
tions (flexible structures of biclusters with parameterizable coher-
ency and quality) with heightened efficiency. In this context, this
work surveys and integrates the contributions of existing PM-
based biclustering approaches, evaluates their performance, and
discusses their relevance for pattern recognition applications.

A set of principles were synthesized, covering alternative
design options to guide the definition of PM-based biclustering
approaches: (1) mining paradigms (including frequent itemset
mining, association rule mining, sequential PM, constraint-based
PM and structured PM), principles to define support-confidence-
correlation metrics, pattern representations (as simple, condensed
and approximate), searches, and extensions to consider flexible
coherencies; (2) pre-processing options, including strategies to
deal with the items-boundary problem when discretization pro-
cedures are considered and with noisy and missing elements; and
(3) strategies to compose adequate structures of biclusters through
extension-merging-filtering steps without the need to adapt the
core task. As such, this work introduces a highly-parameterizable
environment to design PM-based biclustering approaches, where
the behavior can be dynamically defined according to the input
dataset and the target biclustering type, structure and quality. In
particular, the quality of a target solution can be easily affected
through the mining options, such as the confidence of association
rules to define the level of tolerated noise; mapping options, such
as the number of items (coherency strength) and multi-item
assignments; and merging, filtering and extension options based,
respectively, on the allowed noise (overlapping degree), dissim-
ilarity and homogeneity of biclusters.

A qualitative comparison of the state-of-the-art PM-based
biclustering approaches was provided, as well as initial empirical
evidence supporting the accuracy, efficiency and biological rele-
vance of this class of algorithms.

Following this comprehensive work, new research can embrace
several promising directions, including: (1) development of new
integrative PM-based biclustering approaches; (2) proposal of sta-
tistical tests to effectively assess the significance of biclusters with
varying coherency and quality; (3) integration of principles from
domain-driven PM to incorporate constraints in PM-based biclus-
tering when background knowledge is available; and (4) design of
robust classifiers based on discriminative PM-based biclusters.
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