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Abstract. An increasingly relevant set of tasks, such as the discovery
of biclusters with order-preserving properties, can be mapped as a se-
quential pattern mining problem on data with item-indexable properties.
An item-indexable database, typically observed in biomedical domains,
does not allow item repetitions per sequence and is commonly dense.
Although multiple methods have been proposed for the efficient dis-
covery of sequential patterns, their performance rapidly degrades over
item-indexable databases. The target tasks for these databases bene-
fit from lengthy patterns and tolerate local mismatches. However, ex-
isting methods that consider noise relaxations to increase the average
short length of sequential patterns scale poorly, aggravating the yet
critical efficiency. In this work, we first propose a new sequential pat-
tern mining method, IndexSpan, which is able to mine sequential pat-
terns over item-indexable databases with heightened efficiency. Second,
we propose a pattern-merging procedure, MergeIndexBic, to efficiently
discover lengthy noise-tolerant sequential patterns. The superior perfor-
mance of IndexSpan and MergeIndexBic against competitive alternatives
is demonstrated on both synthetic and real datasets.

1 Introduction

Sequential pattern mining (SPM) has been proposed to deal efficiently with the
discovery of frequent precedences and co-occurrences in itemset sequences. SPM
methods can be applied to solve tasks centered on extracting order-preserving
regularities, such as the discovery of flexible (bi)clusters [14]. These tasks com-
monly rely on a more restricted form of sequences, item-indexable sequences,
which do not allow item repetitions per sequence. Illustrative examples of item-
indexable databases include sequences derived from microarrays, molecular in-
teractions, consumer ratings, ordered shoppings, tasks scheduling, among many
others. However, these tasks are characterized by two major challenges. First,
their hard nature, which is related with two factors: average high number of
items per transaction and high data density. Second, order-preserving solutions
are optimally described by lengthy noise-tolerant sequential patterns [5].

Although existing SPM approaches can be applied over item-indexable data-
bases, they suffer from two problems. First, they show inefficiencies due to the
commonly observed density levels and high average transaction length of these
datasets, which leads to a combinatorial explosion of sequential patterns under
low support thresholds [14]. Additionally, the few dedicated methods able to
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discover sequential patterns in item-indexable databases [13, 14] show significant
memory overhead.

Second, the average length of sequential patterns is typically short. A com-
mon desirable property for the tasks formulated over these databases is the
discovery of sequential patterns with a medium-to-large number of items. For
instance, order-preserving patterns from ratings and biological data are only rele-
vant above a minimum number of items. Such lengthy patterns can be discovered
under very low support thresholds, aggravating the yet hard computational com-
plexity, or by assuming local noise (violation of ordering constraints for a few
transactions). However, some of existing SPM extensions to deal with noise re-
laxations have been tuned for different settings [6], while others can deteriorate
the yet critical SPM efficiency [25]. Additionally, methods to discover colossal
patterns from smaller itemsets [30] have not been extended for the SPM task.

This work proposes a new method for the efficient retrieval of lengthy order-
preserving regularities based on sequential patterns discovered over item-indexable
sequences. This is performed in two steps. First, we propose a new method, In-
dexSpan, that uses efficient data structures to keep track of the position of
items per sequence and relies on fast database projections based on the rela-
tive order of items. Pruning techniques are available when the user has only
interest in sequential patterns above a minimum length. Second, we propose an
efficient method, MergeIndexBic, to guarantee the relevance of order-preserving
regularities by deriving medium-to-large sequential patterns from multiple short
sequential patterns. MergeIndexBic uses an error threshold based on the per-
centage of shared sequences and items among sets of sequential patterns. This is
accomplished by mapping this problem in one of two tasks: discovery of maximal
circuits in graphs or multi-support frequent itemset mining.

The paper is structured as follows. Section 2 introduces and motivates the
task of mining sequential patterns over item-indexable databases, and covers
existing contributions in the field. Section 3 describes the proposed solution
based on the IndexSpan and MergeIndexBic methods. Section 4 assesses the
performance of IndexSpan on both real and synthetic datasets against SPM and
dedicated algorithms. The performance of MergeIndexBic against default alter-
natives is also validated. Finally, the implications of this work are synthesized.

2 Background

Let an item be an element from an ordered set L. An itemset I is a set of non-
repeated items, I ⊆ L. A sequence s is an ordered set of itemsets. A sequence
a=<a1...an> is a subsequence of b=<b1...bm> (a⊆b), if ∃1≤i1<..<in≤m: a1 ⊆
bi1 ,..,an ⊆ bin . The illustrative sequence s1=<{a}, {be}>=a(be) is contained in
s2=(ad)c(bce). A sequence database is a set of sequences D = {s1, .., sn}.

The coverage Φs of a sequence s w.r.t. to a set of sequences D, is the set of all
sequences in D with s as subsequence: Φs = {s′ ∈ D | s ⊆ s′}. The support of
a sequence s in D, denoted sups, is its coverage size |Φs|. Illustrating, consider
the sequence database D={s1=(bc)a(abc)d, s2=cad(acd), s3=a(ac)c}. For this
database, we have |L|=4, Φ{a(ac)}={s1, s2, s3}, and sup{a(ac)}=3.

Given a set of sequences D and some user-specified minimum support thresh-
old θ, a sequence s ∈ D is frequent when is subsequence of at least θ sequences.
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The sequential pattern mining (SPM) problem consists of computing the set
of frequent sequences, {s | sups ≥ θ}.

The set of maximal frequent sequences for the illustrative sequence database,
D={(bc)a(abc)d, cad(acd), a(ac)c}, under a minimum support θ=3 is {a(ac), cc}.

Let an item-indexable sequence be a sequence without repeated items. An
item-indexable sequence database is a set of item-indexable sequences.

Let |I| be the length of an itemset, and |s| be the length of a sequence, Σi |si|.
Given a set of item-indexable sequences D, a minimum support threshold θ,
and a minimum sequence length δ. The task of SPM over item-indexable
sequences, or simply item-indexable SPM, consists of computing:

{s | sups ≥ θ∧ |s|≥ δ}

This formalization allows the definition of new methods prone to seize the
properties of item-indexable sequences. Understandably, the resulting sequential
patterns, referred as item-indexable sequential patterns, preserve the consistency
of item ordering constraints since they do not allow for item duplicates.

2.1 Applications

From the large set of applications of item-indexable SPM1, one prominent task
is order-preserving biclustering, a form of local clustering based on frequent
ordering constraints [13, 5]. Order-preserving biclustering is commonly applied
over biological domains for the analysis of gene expression data, networks and
genomic structural variations. Illustrating, finding subsets of genes respecting
orderings on the levels of expression across conditions is critical to study frequent
variations, otherwise not discovered under the original levels of expression.

To compose an item-indexable database D from a real-value or discrete ma-
trix, (X,Y ), where X={s1, .., sn} is a set of rows and Y={y1, .., ym} is a set
columns, the column indexes are linearly ordered for each transaction according
to their values. Each transaction is seen as a sequence of items that correspond
to column indexes. A bicluster, (I, J), a correlated subset of rows I⊂X and
columns J⊂Y , is order-preserving if the permutation of its columns J is strictly
increasing across the I rows. A order-preserving bicluster can be derived from
a frequent sequence s by mapping (I, J)=(Φs, {si | i=1..|s|}). Fig.1 illustrates
how order-preserving biclustering can be solved using SPM.

Fig.1: Mining order-preserving biclusters from item-indexable databases.

An increasingly important application of item-indexable SPM for recommen-
dations based on user preferences, quality assessments and questionnaires [11].
Item-indexable sequences are derived from an ordering of ratings, such as ratings

1 Detailed description of tasks availabe in http://web.ist.utl.pt/rmch/software/indexspan



4

of videos, hotels, shopped items, restaurants, among other products and expe-
riences recorded in large-scale platforms (e.g. IMDb, booking.com, Amazon).
Frequent precedences and co-occurrences disclose relevant priorities for differ-
ent groups of users. Other applications include the discovery of order-preserving
regularities in scheduling, planning, shopping, and traveling behavior [28, 9].

2.2 Related Work

Two major lines of research are considered. First, we review the general SPM
methods and item-indexable dedicated methods and cover their major draw-
backs. Second, we gather the potentialities and limitations of the available al-
ternatives to compose lengthy (sequential) patterns.

Efficient SPM in item-indexable databases. Although general SPM meth-
ods are not optimized to deal with item-indexable specificities, they have been
the largely adopted to solve these applications [14]. Since the SPM problem
proposal [1], multiple extensions and applications have been proposed, ranging
from scalable implementations to alternative pattern representations. Current
SPM methods can be classified into three main categories: apriori-based, pattern-
growth, and early-pruning [15]. Apriori-based algorithms [22], and vertical-based
variations [27], rely on join procedures to generate candidate sequences in a
breadth-first manner using multiple database scans. To overcome the computa-
tional complexity of maintaining the support count for each sequence generated,
the use of bitmaps or direct comparison have been proposed [7, 3].

Pattern growth methods [17, 18, 3] avoid the costs from candidate generation
by building a representation of the database and recursively traversing it to grow
the frequent sequences. PrefixSpan [17], an efficient option, recursively constructs
patterns by growing their prefix and by maintaining their corresponding postfix
subsequences into projected databases. This guarantees a narrowed search space
and avoids the generation of candidates since it only counts the frequency of
local sequences. The major cost of PrefixSpan resides on database projections.

Early-pruning methods emerged more recently in the literature [26, 7, 20].
They adopt a sort of position induction to prune candidate sequences very early
in the mining process and to avoid support counting as much as possible. These
algorithms usually employ a table to track the last positions of each item in the
sequence to evaluate whether the item can be appended to a given prefix.

The drawback of these SPM alternatives is that their performance does not
scale for very low support thresholds, which are often required in item-indexable
contexts to obtain medium-to-large sequential patterns. In fact, new methods
can seize the item-indexable property, that guarantees that each item appears
at most one time per item-indexable sequence, to minimize this problem.

Seizing this property, Liu and Wang [13, 14] proposed an alternative SPM
method that constructs a compact tree structure, OPC-Tree, where sequences
sharing the same prefix are gathered and recorded in the same branch. The
discovery of frequent subsequences and the association of rows with frequent
subsequences are performed simultaneously. However, the memory complexity
of OPC-Tree is Θ(n×m2), where n is the number of records and m the average
number of items per transaction. Although some pruning techniques can be
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applied in the OPC-Tree structure, their impact is not sufficient to turn this
approach scalable for medium-to-large databases.

Discovery of Lengthy (Sequential) Patterns. The existing attempts for the
discovery of lengthy patterns can be synthesized according to four major direc-
tions. First direction is to rely on efficient methods able to discover sequential
patterns under very low support thresholds. There are two main classes of such
methods. First class incorporates look-ahead heuristics, such as the ones used
by MaxMiner [4], to avoid the traversal of every frequent sequence [12]. Second
class generates patterns by reducing large candidates using the monotocity prop-
erty of frequency (if an itemset is frequent, then its subsets are also frequent).
Constraint programming methods can make good use of monotonic constraints
to effectively reduce the search space [19]. However, under very low support
thresholds, there are two structural problems. First, there is a high probability
of discovering precedences and co-occurrences by chance due to the small set of
supporting transactions. Second, the increase of length in the number of items
comes at the cost of an heightened decrease in the number of supporting trans-
actions. This does not support the final goal since the size of order-preserving
regularities is defined by the length of both item and transaction sets (as previ-
ously illustrated in Fig.1). To overcome this drawback, the remaining directions
allow for noisy patterns to increase their length without a significant decrease of
support levels. These directions assume a tolerance of item mismatches observed
for small subsets of the supporting transactions.

Second direction is to extend SPM to discover sequential patterns with local
mismatches and gap-based relaxations [25, 2, 6, 29]. However, such extensions
either: assume the presence of very long sequences for the creation of partitions,
or increase the computational complexity of the original methods, limiting even
more the discovery sequential patterns in useful time.

Third direction is to rely on approximative pattern mining under specific
principle for composing lengthy patterns [8]. In particular, colossal pattern min-
ing relies on the approximative fusion of smaller patterns [30]. However, these
principles have been synthesized in the context of frequent itemset mining and,
to our knowledge, have not yet been extended for sequential pattern mining.

Final direction is to view patterns as biclusters and rely on dedicated biclus-
tering merging strategies [21]. The need for merging biclusters is based on the
observation that when two biclusters share a significant area it is probable that
they are part of a larger coherent bicluster. The simplest criterion for merging is
to rely on the overlapping area (as a percentage of the larger bicluster). Never-
theless, the existing approaches require the computation of similarities between
all pairs of biclusters. Understandably, this solution is impracticable for solutions
characterized by a large number of biclusters (sequential patterns).

3 Solution

The proposed solution is defined by two major methods. First, IndexSpan method
for the efficient discovery of sequential patterns over dense item-indexable data-
bases. Second, MergeIndexBic method to consider relaxations that allow local
ordering violations to compose larger and noise-tolerant sequential patterns.
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3.1 IndexSpan: Boosting Item-Indexable SPM

To avoid the drawbacks of existing approaches, we propose the IndexSpan method,
an extension of PrefixSpan to discover sequential patterns with heightened effi-
ciency from item-indexable databases. Comparison of existing SPM algorithms
[15] shows key heuristics to turn the SPM efficient: mechanisms to reduce the
support counting; narrowing of the search space; optimally sized data structure
representations of the sequence database; and early pruning of candidate se-
quences. Seizing these properties, IndexSpan guarantees a search space as small
as possible and relies on a narrow search procedure, depth-first search.

IndexSpan extends PrefixSpan [17] in order to incorporate additional effi-
ciency gains from three principles. First, IndexSpan relies on an easily indexable
and compacted version of the original sequence database. Second, it uses faster
and memory-efficient database projections. A projected database only maintains
a list with the IDs of the active sequences. Finally, IndexSpan relies on early-
pruning techniques. IndexSpan is described in Algorithm 1.

Algorithm 1: IndexSpan

Input: sequence database D, minimum support θ, minimum sequence length δ
Output: set of sequential patterns S
Note: α is a sequence, Dα is the α-projected database

(Dα simply maintains a reference to the current sequences)

1 mainMethod() begin
2 foreach sequence s in D /*add array of item indexes per sequence*/ do
3 foreach item c do
4 s.indexes[c] ← position(s,c);

5 α.items ← φ; α.trans ← φ;
6 indexSpan(α,D);

7 indexSpan(α,Dα) begin
8 foreach frequent item c in Dα do
9 β.items ← α.items ∪ c; //co-occurrence (c is added to the last α itemset)

10 γ.items ← α.items · c; //α precedes c (c is inserted as a new itemset)

11 //pruning and fast gathering of sup. transactions (for efficient data projection)
12 foreach sequence s in Dα do
13 currentIndex ← s.indexes[c];
14 upperIndex ← s.indexes[αn] /*αn is the last item*/ ;
15 if leftPositions(currentIndex)≥δ-|α| /*pruning*/ then
16 if currentIndex > upperIndex then
17 γ.trans ← γ.trans ∪ s.ID;
18 else
19 if currentIndex=upperIndex ∧ c>αn then β.trans ← β.trans∪s.ID;

20 if supβ(Dα) ≥ θ then
21 S ← S ∪ {β};
22 Dβ ← fastProjection(β,Dα);
23 indexSpan(β,Dβ);

24 if supγ(Dα) ≥ θ then
25 S ← S ∪ {γ};
26 Dγ ← fastProjection(γ,Dα);
27 indexSpan(γ,Dγ);

28 fastProjection(β,Dα) begin
29 foreach sequence s in Dα do
30 currentIndex ← s.indexes[βn];
31 upperIndex ← s.indexes[βn−1];
32 if leftPositions(currentIndex)≥δ-|α| /*pruning*/ then
33 if currentIndex > upperIndex then
34 Dβ ← Dβ ∪ s;
35 else
36 if currentIndex=upperIndex ∧ c > αn then Dβ ← Dβ ∪ s;
37 return Dβ ;
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IndexSpan considers the three following structural adaptations over the Pre-
fixSpan algorithm. First, it maintains a simple matrix in memory that maintains
the index of each item per row. This matrix is constructed at the very begin-
ning (lines 2-5 ) and the original database is removed. Additionally, for sparse
databases, this matrix is replaced by a vector of hash tables to optimize memory
usage. These data structures support position induction. The idea behind is sim-
ple: if an item’s last/start position precedes the current prefix/postfix position,
the item can no longer appear before/after the current prefix.

Second, a projected database can be constructed with heightened efficiency
by avoiding the need to update and maintain postfixes. A projected database
simply maintains the identifiers of the supporting sequences for a specific prefix.

To know if a sequence is still frequent when an item is added over a specific
prefix, there is only the need to compare its index against the index of the
previous item as well as their lexical order for the case where the index is the
same (i.e. the new item co-occurs with the last items of the pattern). In this way,
database projections, the most expensive step of PrefixSpan both in terms of time
and memory, are handled with heightened efficiency. The proposed projection
method is described in Algorithm 1, lines 12-19 and 28-37.

Finally, the input minimum number of items per sequential pattern, δ, can
be used to prune the search as early as possible. If the number of items of the
current prefix (|α|) plus the items of a postfix sα (computed based on the current
and last index positions) is less than δ, then the sequence identifier related with
the sα postfix can be removed from the projected database since all the patterns
supported by s will have a number of items below the inputted threshold.

For an optimal pruning, this assessment is performed before item indexes
comparisons, which occurs in two distinct moments during the prefixSpan recur-
sion (Algorithm 1 lines 15 and 32 ).

The efficiency gains from fast database projections and early pruning tech-
niques, combine with the absence of memory overhead, turn IndexSpan highly
attractive in comparison with the OPC-Tree peer method.

3.2 MergeIndexBic: Composing Large Item-Indexable Patterns

In real-world contexts, an ordering permutation observed among a set items can
be violated for specific transactions due to the presence of noise. This can either
result in a sequential pattern with a reduced set of transactions or items (if this
violation turns the original sequence infrequent). In these scenarios, it is desirable
to allow some of these violations. Four directions to accomplish this goal were
covered in Section 2.2, with two directions being limited with regards to their
outcome and the other two directions with regards to their levels of efficiency.
In this section, we propose MergeIndexBic, which makes available two efficient
methods to compose lengthy sequential patterns based on merging procedures.

Merging procedures have been applied over sets of biclusters by computing
the similarities (overlapping degree) between all pairs of biclusters. Remind that
a sequential pattern s can be viewed as a bicluster (I, J), by mapping the sup-
porting transactions Φs as the I rows and the pattern items as the J columns.
In this context, merging occurs when a set of biclusters (Ik, Jk) has an overlap-
ping area above a minimum threshold, meaning that a new bicluster (I ′, J ′) is
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composed with I ′ = ∪kIk and J ′ = ∪kJk. This new bicluster can be mapped
back as a sequential pattern, for order-preserving tasks where biclustering is not
the ultimate goal. This strategy is reliable as it considers both the set of shared
items and the set of shared transactions to perform the merging step, leading
to an effective identification and allowance of local ordering violations. A global
view of this step is provided in Fig.2, where three larger biclusters are derived
from subsets of biclusters satisfying the minimum overlapping constraint.

Fig.2: Composing lengthy sequential patterns from smaller patterns by merging biclus-
ters: considering the influence of both the set of items and the set of transactions.

In this illustration, three major steps are considering: 1) mapping sequential
patterns as sets of rows and columns; 2) discovering candidates for merging;
and 3) recovering the new sequential patterns. In particular, we consider the
overlapping criteria for the discovery of merging candidates to be the shared
percentage of the larger bicluster. When multiple biclusters have overlapping
areas, two criteria can be consider: to merge all rows and columns if all pairs
of biclusters satisfy the considered overlapping criterion (relaxed setting) and to
merge all rows and columns by comparing the shared area among all with the
area of the larger bicluster (restrictive setting). We propose two procedures to
efficiently deal with the merging of biclusters, one for each setting.

Maximal Circuits. The first proposed procedure, MergeCycle, is the combina-
tion of a graph search method with several heuristics to guide the search space
exploration. Consider µ to be the overlapping degree between two biclusters.
Since the overlapping degree is typically defined as the number of shared ele-
ments by the larger bicluster, heuristics can be defined assuming that bicluster
are order by size. Consider two biclusters: a larger bicluster, (I, J), and a smaller
bicluster (I ′, J ′). If they do not satisfy |I ′|×|J ′|≤ µ|I|×|J |, we do not need to
compute their similarity, neither to compute the similarity for smaller biclus-
ters than (I ′, J ′). This is the first heuristic for pruning the search space. Second
heuristic is to further prune the space by computing similarities along one dimen-
sion only. Pairs of biclusters not satisfying either |I ∩ I ′|≥ µ|I| or |J ∩ J ′|≥ µ|J |
can be removed without computing the similarities for the remaining dimension.
The chosen dimension is the one with average lower size among biclusters.

After computing the pairs of biclusters satisfying the overlapping threshold, a
new procedure needs to be applied to verify the availability of larger candidates.
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Illustrating, if (B1, B2), (B1, B3) and (B2, B3) are candidates for merging, then
(B1, B2, B3) is also a candidate. For this step, we map the candidate pairs of
biclusters as an unweighted undirected graph, where the nodes are the biclusters
and their links are given by the pairs. Under this formulation, the larger candi-
dates for merging are edge-disjoint cyclic subgraphs (or circuits). This procedure
is illustrated in Fig.3, where the cycles in the graph composed of candidate pairs
are used to derive the three larger biclusters identified in Fig.2.

Fig.3: MergeCycle: computing merging candidates from pair candidates as a search for
edge-disjoint cycles in graphs of biclusters.

Multi-support FIM. The second proposed merging procedure, MergeFIM,
maps the task of merging biclusters as an adapted frequent itemset mining task.
Let the elements of the original matrix be the available transactions, and the bi-
clusters be the available items. Recovering the illustrative case presented in Fig.2,
the (x2, y2) transaction would now have three items assigned, {B1, B2, B3}. In
this context, the support represents the number of shared elements for a specific
set of biclusters (itemset). Understandably, for this scenario, we cannot rely on
a general minimum support threshold, as the minimum number of shared ele-
ments to find a candidate for merging depends on the size of the larger bicluster.
For this reason, the items (biclusters) are ordered by descending order of their
size. When verifying if an itemset is frequent, instead of comparing its support
with a minimum support threshold, the support is compared with the minimum
support of the larger bicluster (µ|I|×|J |) that corresponds to the first item (1-
length prefix) of the itemset. In this way, no computational complexity is added,
and we guarantee that the output itemsets correspond to sets of biclusters that
are candidates for merging.

This procedure follows three major steps. The first step is to create a min-
imal itemset database. Empty transactions are removed and transactions with
one item can be pruned for further efficiency gains. Similarly to MergeCycle pro-
cedure, MergeFIM can also rely on the proposed heuristics to reduce the search
space in order to produce the pairwise similarities. In this case, transactions with
two items can be removed, and an Apriori-based method can be applied with
the already 2-length itemsets derived from valid pairs of biclusters.

The second step is to run the adapted frequent itemset mining task using
closed itemset representations. As previously described, such adaptation allows
to replace the general notion of minimum by an indexable support based on the
size of larger bicluster in the context of an itemset. Note that by using closed
representation we avoid subsets of items with the same number of transactions.
This means that the output of the mining task is precisely the set of merging
procedures that are required.

The final step is to compose the new biclusters and, optionally, to derive
the respective sequential patterns when required. This procedure is illustrated
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in Fig.4, and it follows the illustrative case introduced in Fig.2. The efficiency of
this procedure is based on the observation that the mapped itemset databases
tend to be highly sparse.

Fig.4: MergeFIM: computing merging candidates as a frequent itemset mining task.

4 Results and Discussion

This section evaluates the performance of IndexSpan and MergeIndexBic against
competitive alternatives on synthetic and real datasets. IndexSpan and MergeIn-
dexBic were implemented in Java (JVM version 1.6.0-24)2. We adopted PrefixS-
pan3, still considered a state-of-the-art SPM method, and the OPC-Tree method
[13] as the bases of comparison. The experiments were computed using an Intel
Core i5 2.30GHz with 6GB of RAM.

4.1 Synthetic datasets

The generated experimental settings are described in Table 1. First, we created
dense datasets (each item occurs in every sequence) by generating matrices up
to 2.000 rows and 100 columns. Each sequence is derived from the ordering of
column indexes for a specific row according to the generated values, as illustrated
in Fig.1 from Section 2. Understandably, each of the resulting item-indexable
sequences contains all the items (or column indexes), which leads to a highly
dense dataset. Sequential patterns were planted in these matrices by maintaining
the order of values across a subset of columns for a subset of rows. The number
and shape of the planted sequential patterns were also varied. For each setting
we instantiated 6 matrices: 3 matrices with a background of random values,
and 3 matrices with values generated according to a Gaussian distribution. The
observed results are an average across these matrices. The number of supporting
sequences and items for each sequential pattern followed a Uniform distribution.

Matrix size (]rows × ]columns) 100×30 500×50 1000×75 2000×100

Nr. of hidden seq. patterns 5 10 20 30

Nr. rows for the hidden seq. patterns [10,14] [12,20] [20,40] [40,70]
Nr. columns for the hidden seq. patterns [5,7] [6,8] [7,9] [8,10]

Assumptions on the inputted thresholds θ=5% δ=3 θ=5% δ=4 θ=5% δ=5 θ=5% δ=6

Table 1: Properties of the generated dataset settings.

2 Software and datasets available in: http://web.ist.utl.pt/rmch/software/indexspan/
3 Implementation from SPMF: http://www.philippe-fournier-viger.com/spmf/
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Fig.5 compares the performance of the alternative approaches for the gener-
ated datasets in terms of time and maximum memory usage. Both PrefixSpan
and OPC-Tree can be seen as competitive baselines to assess efficiency. Note that
we evaluate the impact of mining sequential patterns in the absence and presence
of the δ input (minimum number of items per pattern) for a fair comparison.

Fig.5: Performance of alternative SPM methods for datasets with varying properties.

Two main observations can be derived from this analysis. First, the gains
in efficiency from adopting fast database projections are significant. In partic-
ular, the adoption of fast projections for hard settings dictates the scalability
of the SPM task. Pruning methods should also be considered in the presence
of the pattern length threshold δ. Contrasting with OPC-Tree and PrefixSpan,
IndexSpan guarantees acceptable levels of efficiency for matrices up to 2000 rows
and 100 columns for a medium-to-large occupation of sequential patterns (∼3%-
10% of matrix total area). Second, IndexSpan performs searches with minimal
memory waste. The memory is only impacted by the lists of sequence identifiers
maintained by prefixes during the depth-first search. Memory of PrefixSpan is
slightly hampered due to the need to maintain the projected postfixes. OPC-
Tree requires the full construction of the pattern-tree before the traversal, which
turns this approach only applicable for small-to-medium databases. For an allo-
cated memory space of 2GB, we were not able to construct OPC-Trees for input
matrices with more than 40 columns.

To further assess the performance of IndexSpan, we fixed the 1000×75 ex-
perimental setting and varied the level of sparsity by removing specific positions
from the input matrix, while preserving the planted sequential patterns. We ran-
domly selected these positions to cause a heighten variance of length among the
generated sequences. The amount of removals varied between 0 and 40%. This
analysis is illustrated in Fig.6.

Fig.6: Performance for varying levels of sparsity (1000×75 dataset).

Two main observations can be retrieved. First, to guarantee an optimal mem-
ory usage, there is the need to adopt vectors of hash tables in IndexSpan. Second,
although the use of these new data structures hampers the efficiency of IndexS-
pan, the observable computational time is still significantly preferable over the
PrefixSpan alternative.

In order to assess the impact of varying the number of co-occurrences vs.
precedences, we adopted multiple discretizations for the 1000×75 dataset. By
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decreasing the size of the discretization alphabet, we are increasing the amount
of co-occurrences and, consequently, decreasing the number of itemsets per se-
quence. This analysis is illustrated in Fig.7. When the number of precedences
per sequence is very small (<10), the efficiency tends to significantly decrease
due to the exponential increase of sequential patterns. However, for the remain-
ing discretizations, the efficiency does not strongly differ since the number of
frequent patterns is identical and pattern-growth methods are able to deal with
co-occurrences and precedences in similar ways (Algorithm 1 lines 20-27 ).

Fig.7: Performance for varying weights of precedences vs. co-occurrences.

To evaluate the relevance of considering noise-relaxations in order to com-
pose larger sequential patterns, we selected the 1000×75 setting and exchanged
the order of 5% of the items. Fig.8 traces item-indexable SPM performance for
varying noise-relaxations by using MergeIndexBic with different overlapping de-
grees. Performance is measured using match scores based on the Jaccard index to
assess: 1) to what the extent do the found patterns match with planted patterns
(correctness), and 2) how well are the planted biclusters recovered (complete-
ness). When relaxing the overlapping criteria, match scores increase, as the merg-
ing step allows for the recovery of order violations. However, this improvement
in behavior is only observable until a certain overlapping threshold. The correct
identification of this threshold can lead to significant gains (near 15 percentage
points for this experiment).

Fig.8: Impacting of merging sequential patterns in noisy contexts.

Finally, in order to show why MergeIndexBic is needed for an efficient merg-
ing step, we maintained the previous experimental settings and compared the
performance of traditional combinatorial procedures (where similarities are com-
puted for all pairs of biclusters, and the composition of larger candidates is
recursively accomplished) against the proposed MergeCycle and MergeFIM pro-
cedures. MergeFIM procedure relies on the efficient Charm4 method for the
delivery of closed frequent itemsets. Fig.9 illustrates this analysis for varying
overlapping degrees. Clearly, traditional procedures do not scale. MergeFIM
outperforms MergeCycle for hard scenarios where there are large candidates
for merging, a case that is commonly observed for relaxed levels of overlapping.

4 Implementation from SPMF: http://www.philippe-fournier-viger.com/spmf/
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Fig.9: Comparing the efficiency of MergeCycle and MergeFIM against peer procedures.

4.2 Real datasets

To assess the performance of the proposed approaches in real datasets, we used
multiple gene expression matrices5: dlblc (180 items per instance, 660 instances),
coloncancer (62 items per instance, 2000 instances), leukemia (38 items per in-
stance, 7129 instances). The goal is to discover order-preserved biclusters. For
this purpose, we followed the procedure described in Fig.1 to generate the se-
quence databases using a discretization alphabet with 20 symbols. The positions
corresponding to missing values were removed. Fig.10 compares the performance
of the alternative approaches for the θ=8% and δ=5 thresholds. This analysis
reinforces the previous observations. OPC-Tree is bounded by the size of the
database. The adoption of IndexSpan strategies to deal with item-indexable se-
quences strongly impacts the SPM performance, and, consequently, the ability
to discover order-preserving biclusters in real data.

Fig.10: Performance of SPM-based order-preserving biclustering for biological data.

The relevance of tolerating noise to compose larger sequences is illustrated in
Fig.11 for the leukemia dataset. Here, we computed the functional enrichment
of the genes supporting each frequent sequence, Φs, recurring to the GoToolBox
[16]. As a measure of significance, we counted the number of overrepresented
terms with Bonferroni corrected p-values below 0.01. We observe that MergeIn-
dexBic procedure increases not only the number of significant terms, but also
their relative percentage as it removes short patterns from the output.

Fig.11: Biological relevance of allowing noise using MergeIndexBic for leukemia data.

5
http://www.upo.es/eps/bigs/datasets.html
http://www.bioinf.jku.at/software/fabia/gene expression.html
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5 Conclusions

This work formalizes the task of performing noise-tolerant sequential pattern
mining over item-indexable databases and motivates its relevance for a critical
set of applications. The performance of existing approaches based on general
SPM methods and on dedicated algorithms, such as the OPC-Tree, is discussed.
To tackle the inefficiencies of existing solutions, we propose the IndexSpan al-
gorithm. IndexSpan relies on position induction to deliver fast and memory-free
database projections. Additionally, early-pruning techniques with impact on the
performance of IndexSpan can be adopted to guarantee that only large sequential
patterns are discovered.

Furthermore, we explore alternatives to efficiently extend IndexSpan in or-
der to compose large sequential patterns under parameterizable noise allowance
guarantees. MergeIndexBic is proposed to surpass the limited robustness and ef-
ficiency of existing options. This is done by merging sequential patterns with sig-
nificant overlap on sequence items and on the supporting transactions. Pruning
heuristics to avoid the computation of similarities among all pair are proposed.
Efficient computation of candidates is achieved by mapping the merging task
as maximal cycle discovery in undirected graphs or as multi-support frequent
itemset mining.

Results on both synthetic and real datasets show the superior performance
and relevance of the IndexSpan and MergeIndexBic methods.

Since the proposed item-indexable SPM relies on a prefix-growth search, it
can easily accommodate principles from existing research to deliver condensed
pattern representations, such as CloSpan [24], in order to reduce the complexity
of the merging step; and to discover sequential patterns in distributed settings,
such as MapReduce [23], in order to relax the efficiency boundaries of IndexSpan.
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