F2G: Efficient Discovery of Full-Patterns
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Abstract. An increasing number of biomedical tasks, such as pattern-
based biclustering, require the disclosure of the transactions (e.g. genes)
that support each pattern (e.g. expression profiles). The discovery of pat-
terns with their supporting transactions, referred as full-pattern mining,
has been solved recurring to extensions over Apriori and vertical-based
algorithms for frequent itemset mining. Although pattern-growth alter-
natives are known to be more efficient across multiple biological datasets,
there are not yet adaptations for the efficient delivery of full-patterns.
In this paper, we propose a pattern-growth algorithm able to discover
full-patterns with heightened efficiency and minimum memory overhead.
Results confirm that for dense datasets or low support thresholds, a
common requirement in biomedical settings, this method can achieve
significant performance improvements against its peers.

1 Introduction

The discovery of frequent patterns is increasingly accomplished in biological set-
tings to identify orchestrations of genes and of their products using exhaustive
and efficient searches [17]. However, biological tasks often require the output of
both patterns and their supporting transactions. This task is referred as full-
pattern mining. Illustrating, in gene expression analysis the interest is not so
centered on the frequent expression profiles, but mainly on the group of genes
that support those expression profiles. Full-pattern mining has been adopted in
the past for biclustering [14, 17], gene association analysis [2] and integrative ge-
nomic studies [11] using gene expression data and genomic structural variations.

Existing full-pattern miners are simple extensions of frequent itemset mining
algorithms that rely on bitset vectors to represent the supporting transactions
per pattern [13,17, 14]. However, bitset vectors offer efficiency problems in terms
of memory and time for biological datasets with a medium-to-high number of
records. Thus, the goal of this work is to study efficient alternatives for the
full-pattern mining task. In particular, we propose the first variant of the FP-
growth method, referred as F2G (Frequent Full-pattern Growth), able to deliver
full-patterns with heightened efficiency. Experimental results hold evidence for
its superior performance. We also show that existing scalability principles and
alternative pattern representations can be easily included in F2G.

The paper is structured as follows. In section 2, the full-pattern mining task
is formalized and its relevance is motivated. In section 3, the contributions and
limitations from existing research are covered. The proposed F2G algorithm is
described in section 4. Finally, key implications from the evaluation of F2G
against state-of-the-art alternatives are synthesized in section 5.



2 Background

Let £ be a finite set of items, and I be an itemset I C L. A transaction t is a pair
(tia, I) with t;q € N. An itemset database D over L is a finite set of transactions.
A transaction t = (t;4,) contains an itemset A, denoted A C ¢, if A C I. The
coverage @ of an itemset I is the set of all transactions in D in which the itemset
I is contained: &; = {t € D | I C t}. The support of an itemset I in D, denoted
supy, is its coverage size |Py|.

A full-pattern is a pair (I,®;), where I is an itemset and @; the set of all
transactions that contain 1.

Given an itemset database D and a minimum support threshold 6, the full-
pattern mining task consists of computing the set: {(I, @) | I C L, supr > 0}.

For an illustrative itemset database D={(t1, {a, ¢, €}), (t2,{a,b,d}), (¢, {a,c})},
we have @, a={t1,t3}, sup(q,3=2. For a minimum support =2, the full-
pattern mining task over D returns {({a}, {t1,t2,t3}), ({a,c}, {t1,t3})}-

2.1 Applications

Biclustering, the discovery of correlations among transactions (e.g. genes) based
on a subset of overall items (e.g. conditions), is an increasingly popular biological
task [12]. Fig.1 illustrates how biclustering relies on full-patterns.
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Fig.1: Mining constant biclusters over itemset databases using full-patterns.

The input dataset is discretized. To find biclusters with constant values on rows, the discrete value
of each cell is concatenated with the respective column index. Each transaction corresponds to a
row with these new values. Full-pattern mining is applied. The columns and rows for each bicluster
are, respectively, derived from the items and supporting transactions of each full-pattern. Biclusters
with constant values on columns can be mined using the transpose matrix.

Full-pattern mining methods to biclustering combine efficiency with flexibil-
ity [17]. This explains the increasing attention towards pattern-based approaches
to biclustering such as BiModule [14], DeBi [17], RAP [16] and GenMiner [13].

Full-pattern mining has been also applied to perform association analysis
using patient/gene/product-centric views and to study biological networks [2, 3].
These tasks have been applied over gene expression data, mutations and copy
number variations [9], and discrete matrices derived from biological networks [3].

2.2 Related work

Separating the disclosure of transactions from the core mining task introduces a
significant and unnecessary computational effort. Thus, the existing full-pattern
miners rely on frequent itemset mining methods with implementations based
on bitset vectors to represent the transaction-sets. Since these structures are
maintained during all the search, is trivial to disclose the transactions shared
per pattern at the end of the search. There are two approaches with this behavior.



A first approach combines the original Apriori-based strategy with the use
of bitset vectors to track patterns coverage [1]. Illustrative implementations in-
clude LCM and CLOSE, used respectively by BiModule [14] and GenMiner [13]
biclustering methods. They differ regarding the pruning methods applied over
the itemset lattice of frequent candidates. Apriori-based methods generally suf-
fer from the costs associated with the generation of a huge number of candidates
for low support thresholds, a common requirement in biological tasks [14].

A second approach is the use of vertical-based methods, mostly through the
extension of Eclat [19] and Carpenter [15]. Since vertical-based methods rely
on intersection operations over transaction-sets to generate candidates, they re-
quire structures (such as bitset vectors or diffsets) to maintain the coverage
per pattern. When the bitset cardinality becomes large, not only these struc-
tures consume a significant amount of memory, but also the intersection gets
computationally costly. MAFIA [4] is an illustrative implementation adopted
by DeBi [17]. However, these vertical-based methods are not competitive with
horizontal-based methods for datasets with a number of transactions that sig-
nificantly exceeds the average number of items [18].

2.3 The Problem

Existing full-pattern miners suffer from critical drawbacks. First, Apriori variants
present efficiency problems for low support thresholds. Second, vertical-based
approaches are not prone to deal with databases with a large set of transactions.
Although FP-Growth method can overcome these problems [8], this method was
not yet adapted to efficiently delivery full-patterns. A straightforward extension
would be the annotation of each node on the underlying tree structure (FP-tree)
with its supporting transactions, which undesirably leads to an impracticable
additional computational complexity. Since most of the biological tasks rely on
large and dense datasets and low support thresholds, the study of efficient FP-
Growth extensions to discover full-patterns is of critical importance.

3 Solution

Since FP-Growth method relies on compact tree structures, it is positioned as
an attractive alternative to tackle the computational overhead of the existing
methods that maintain bitset vectors for every frequent candidate. Additionally,
it neither requires candidate generation nor multiple database scans. In this
section we propose a variant of the original FP-Growth method to deliver full-
patterns with heightened efficiency. This algorithm is referred as F2G, Frequent
Full-pattern Growth. Similarly to the original FP-Growth method, F2G relies on
a compact tree structure (FP-tree), which is recursively mined to enumerate all
frequent patterns. Patterns are generated by concatenating the pattern suffixes
with the frequent patterns discovered from conditional FP-trees where suffixes
are removed. Suffixes are composed according to an ascending frequency order
to prune the search space. In F2G, the transactions are optimally stored since
they appear at most once in the FP-tree. Thus, unlikely the original method,
the transaction-IDs are not lost at the very first scan.



Algorithm 1 describes F2G. The required adaptations, when taking FP-
growth algorithm [8] as the basis of comparison, are highlighted by a gray back-
ground. To illustrate them consider the new (conditional) FP-trees represented
in Fig.2, obtained from the application of Algorithm 1 over the itemset database
D:{(tov {A7 C, D, F})v (tlv {37 D, E, F})v (t27 {37 D, F})7 (t37 {A7 B, E})’ (t47 {A7 F})7
(ts,{A,B,D,E,F})}.

D={(to, {A, C, D, F}), (t1,{B, D, E, F'}), (t2, {B, D, F'}), (ta, {A, B, E}). (ta,{A, F'}), (1, {A, B, D, E, F'})}

FPTree (min support = 2)

E::Conditional-FPTree

D::Conditional-FPTree
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Fig.2: Illustrative behavior of F2G

The adaptations can be synthesized in three steps. First, the transaction-IDs
are stored in the leaf node of an itemset path in the FP-tree without redundancy
to guarantee optimal memory usage. To achieve this, the insertion of transactions
in the FP-tree, addTransaction (line 7), is adapted so the identifier can be added
to the item-node with least frequency. Considering the {F,A,D,C} path from the
original FP-Tree in Fig.2, the identifiers ty and t4 are placed in the item-nodes
D and A. Second, before removing an infrequent node from a path (line 16),
we need to exchange the transaction-IDs from the infrequent node to its parent
(line 17-19). In this way the IDs assigned to the target suffixes rise from leafs
to the root as long as shorter conditional FP-trees are built. Illustrating, since
item C (|@c|=1) in the FP-tree from Fig.2 is infrequent (§=2), ty is propagated
upwards. Third, we recursively add the transaction-IDs assigned to the parental
nodes of a frequent itemset to compute a full-pattern (line 25). Also, with the
addition of a full-pattern, the identifiers need to be copied to the parental nodes
(line 30). For the illustrative case, t; and 5 are propagated towards its parent
nodes during the construction of the E, D and B conditional FP-trees. The
computational time added by these extensions is residual when compared with
the construction of conditional trees (lines 29, 35).

Algorithm 2 describes the methods related with the (conditional) FP-tree
construction. The computational impact of changing the methods addTransaction
(line 11) and addPrefixPath (line 19) is residual. Note, additionally, that the
order of items in the header list of the conditional FP-trees should preserve the
order observed in the original FP-tree (line 21). This is due to the fact that a
potential reordering of least-frequent items (different from the original ordering)
may no longer preserve transactions at the end of itemset paths. To illustrate
this constraint, consider the E conditional FP-tree from Fig.2. If we had opted to
not maintain the order of the item nodes, B would appear below the root node,
causing transaction t5 to be relocated. This constraint has a residual impact on
the performance. On one hand it has a slight deteriorate effect, since the items in



Algorithm 1: F2G Algorithm
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Output: FrequentFullPattern[] fullPatterns

Method: runFullPatternGrowthDiscovery

Input: Transaction|] data, double support

Map<Int,Int> mapSup « getItemsFrequency(data);

data < removelnfrequentItems(data,mapSup);

data <+ sortItemsets(}data); //sort items in desc. freq. order
FPTree tree;

foreach Transaction trans : data do

| tree.addTransaction(trans.itemset,trans.id) ;
tree.createHeaderList(mapSup) ;
F2G(tree, 0, mapSup) ;

Method: F2G

Input: FPTree tree, Itemset a, Map<Int,Int> mapSup
pruning(tree, a, maESupﬂ; //FP-B%NSAI optimization

if tree.hasSinglePath() then addAllCombForPath(tree.path, ) ;
else FPGrowthMultiplePaths(tree, a, mapSup) ;

Method: FPGrowthMultiplePaths
Input: FPTree tree, Itemset o, Map<Int,Int> mapSup
foreach Int item : tree.headerList /*items in reverse order*/ do
if mapSup[item] < relativeMinsup then
foreach Node node : tree.getltemNodes(item) do
node.parent.trans<—node.parent.trans U node.trans ;
node.trans = 0 ;
continue;
B.values < « U item;
B.support +— min(a.support,mapSuplitem]);
foreach Node node : tree.mapItemNodes.get(item) do
node.parent.trans < node.parent.trans U node.trans ;
B.trans <— fS.trans U node.trans ;
fullPatterns.add () ;

Path[] prefixPaths; //B cond. base (prefizes co-occuring with suffiz pattern)
foreach Node node: troc.gctltcmNocfcs item) do
Path path = node.getParentsUntilRoot();
path.trans < node.trans ;
prefixPaths.add(path);
ap<Int,Int> mapBSup « getltemsSup(prefixPaths);
FPJf‘rcc Btree; //B conditional FP-Tree
foreach Path path : prefixPaths do

| Btree.addPrefixPath(path, mapBSup, 6) ;
Btree.createHeaderList(mapBSup, tree.headerList) ;
if Btree.hasNodes() then F2G(SBtree, 8, mapBSup) ;

Method: addAllCombForPath //recursively adds path nodes with prefiz
Input: Path path, Itemset o
Node node «+ path.retrieveFirst();
B.items < « U node.item;
B.support < node.counter;
B.trans < node.trans ;
fullPatterns.add(p) ;
if path.hasMoreNodes() then
addAllCombForPath(path, «a);
addAllCombForPath(path, 8

)

Algorithm 2: FP-Tree Construction Methods
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Method: addTransaction
Input: Itemset itemset, int tid /*transaction ID*/
Node node <+ root;
foreach Int item : itemset.getItems() do
if node.hasChild(item) then
Node newNode + createNode(item, node /*parent*/);
node < newNode;
else node < node.getChild(item) ;
if item==itemset.last() then node.trans < node.trans U tid ;

Method: addPrefizPath

Input: Path path, Map<Int,Int> mapSup, Int 6 /*support*/
Node transNode;

foreach Node node : path.nodes() /*backward order*/ do

if mapSup.get(node.item) < 6 then continue;

... /* code for adding a path to a FP-Tree */

transNode < node;

transNode.trans < transNode.trans U path.getTransactions() ;

Method: createHeaderList
Input: Map<Int,Int> mapSup, Int[] headerListSuper
headerList < getItemNodes(). sortByIndexIn(headerListSuper) ;




the tree may not be locally order by frequency. On the other hand, this contraint
is seized to optimize the efficiency of building conditional FP-trees.

Further Options: F2G method is compliant with further options that pro-
mote its scalability. In particular, we briefly motivate how F2G can comply with
the adoption of compressed representations and parallelization principles.

A frequent itemset is mazimal if is frequent and all supersets are infrequent,
while is closed if is frequent and there exists no superset with the same support.
FPMax and FPClose [6] use variants of conditional FP-trees to reduce the run-
ning time. These variants, Maximal /Closed Frequent Itemset trees, are optimally
constructed to keep track of maximal/closed patterns. Since these trees preserve
the item order of the original FP-tree header, the discovery of maximal/closed
full-patterns can easily follow the extensions proposed in the F2G method. An
alternative method is to rely on hybrid tree-projections [18].

Furthermore, parallelization and distribution principles proposed for FP-
growth can be also applied for F2G to improve its scalability [7]. F2G com-
ply with data partitioning principles [10] when relying on two steps. First, F2G
is applied for each partition in order to retrieve sets of full-patterns. Second,
the globally frequent itemsets are identified and their supporting transactions
across partition merged. An alternative direction is to build a global FP-tree
and to parallelize the (conditional) FP-tree construction methods [5], which also
preserves the soundness of the F2G variant.

4 Results

In this section, we compare the performance of state-of-the-art implementations
of Bitset Apriori and Eclat! with F2G on synthetic and real datasets. The al-
gorithms are implemented under JVM version 1.6.0-24. The experiments were
computed using an Intel Core i5 2.30GHz with 6GB of RAM.

4.1 Synthetic datasets

The properties of the generated datasets are described in Table 1. Patterns with
different shapes (varying number of transactions and items) were planted. The
number of supporting transactions and items for each pattern follow an Uniform
distribution over the ranges presented in Table 1. These settings were developed
to mimic commonly observed biclusters in gene expression matrices.

Matrix size (frows X fcolumns) 500x 50 1000x100  2000x200  4000x400
Nr. of hidden patterns 5 10 15 25

Nr. transactions for the hidden patterns [10,14] [14,30] [30,50] [50,100]
Nr. items for the hidden patterns [5,7] [6,8] [7,9] [8,10]
Minimum support assumption 0=1% 0=1% 0=1% 0=1%

Table 1: Properties of the generated dataset settings

The data density, the average percentage of total items per transaction, can
significantly vary from 5% to 50% across biological settings. Therefore, we eval-
uate our approach in two steps. First, the density is fixed as 20%. The changes

! http://www.philippe-fournier-viger.com /spmf/



in performance with varying size are the focus. Second, a specific size is fixed
and the density is varied from 5% to 33%.

In Fig.3 we assess the computational overhead of adapting the FP-Growth
to perform full-pattern mining. F2G adds only a residual time and memory cost.
The impact of sorting items in the header table is minor. Contrasting with F2G,
the naive way of attaching and gathering transactions on the FP-tree nodes
(extended FP-growth) strongly penalizes the performance.

Time (s} Memaory (Mb)

.

500x50 1000x100 2000x200 4000x400 500x50  1000x100 2000x200 4000x400
= == FPGrowth F2G  ssenes Extended FPGrowth

Fig.3: Efficiency of F2G and FPGrowth methods for datasets with varying size

Fig.4 compares the performance of efficient implementations of the major full-
pattern miners for different data settings. F2G has significant gains in efficiency
against Bitset Apriori and Eclat. The generation of candidate sets is penalized
when the number of patterns is considerably high. The high-dimensionality of
the datasets penalizes both the time and memory efficiency of Eclat.
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Fig.4: Efficiency of full-pattern mining methods for datasets with varying properties

To further compare the performance of full-pattern mining methods, we fixed
the 1000x 100 experimental setting and varied the level of sparsity. This analysis
is illustrated in Fig.5. First, F2G is the approach more able to deal with dense
datasets. Second, the adoption of horizontal approaches for full-pattern mining
is the best option in terms of memory for the generated settings.

Time (s) Memeory (Mb)
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Fig.5: Efficiency of full-pattern mining methods for datasets with varying density

4.2 Real datasets

To assess the performance of the target approaches in real datasets, we adopted
alternative gene expression datasets?. In particular, Fig.7 illustrates results for
the yeast dataset for varying support thresholds. The same relative behavior can

2 http://www.upo.es/eps/bigs/datasets.html



be observed across the remaining datasets from the selected repository. These
datasets were discretized (assuming a Gaussian distribution of values and a tar-
get density of 10%) and, finally, column indexes were concatenated with items,
as illustrated in Fig.1. Previous observations remain valid. F2G is the most ef-
ficient option in terms of time and, along with Apriori, a competitive choice for
efficient memory usage.

Time (s) Memory (Mb)
200 ’ 150
150 - 100 ol
100 .
50

: )
10% 5% 2% 1% gup

== =Bitset Apriori  sesses

min
sup

Fig.6: Efficiency of full-pattern mining methods for the yeast (2884x17) microarray

To evaluate the performance of full-pattern miners in different biological
settings, we adopted alternative datasets following the procedures described in
CP4IM project?. Fig.6 presents their performance on the primary-tumor dataset.
Similarly, F2G offers the best compromise in terms of efficiency. The same rela-
tive behavior can be also observed across other UCI biological datasets, such as
lymph and heart-cleveland?.

Time (s) Memory (Mb)
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’ 100 -
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20% 10% 5% 2% sup 20% 10% 5% 2% sup
= e Bitset Apriori = sssses Eclat F2G

Fig.7: Efficiency of full-pattern mining methods for the primary-tumor dataset

5 Discussion

This work formalizes the full-pattern mining task and motivates its relevance for
a critical set of biological applications. The performance of existing approaches
is discussed. To tackle their inefficiencies, we propose the F2G algorithm, a
pattern growth algorithm that discloses the supporting transactions per pattern
with minimum space overhead and heightened efficiency.

F2G relies on FP-tree variants that store transaction-IDs without redun-
dancy and on efficient propagation techniques. We show that F2G can easily
accommodate principles from existing research to deliver alternative full-pattern
representations or to discover full-patterns in distributed settings.

Results on both synthetic and real datasets show the superior performance of
the proposed method. In particular, F2G delivers a distinctive performance both
for dense and large datasets and for low support thresholds, common settings
in biological tasks. To the best of our knowledge, this is the first attempt to
compare full-pattern mining algorithms.

3 http://dtai.cs.kuleuven.be/CP4IM/datasets/
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