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Abstract

The increasing integration and availability of healthcare
data triggers new opportunities for an adequate discovery
and use of temporal patterns to support medical decisions.
However, adequate data mappings are still lacking for the
application of temporal mining methods over healthcare
databases. Additionally, existing methods commonly do not
allow for flexible knowledge representation to guide time
partitioning and to support the use of multiple temporal
granularities. Finally, existing predictors are not able to
rely on these temporal patterns. In this paper, cyclic rules
that integrate multiple medical aspects are discovered using
an expressive data mapping. Second, temporal constraints
are proposed to guide the discovery of patterns under
multiple time scales. Third, a classifier relying on cyclic
patterns is defined to predict healthcare conditions. The
conducted experiments hold evidence for the utility and
efficiency of the proposed methods in characterizing and
predicting integrated healthcare profiles.

Keywords: temporal pattern mining, cyclic rules, in-
tegrated data, pattern-based classification, time constraints

1 Introduction

The mining of temporal patterns over integrated health-
care databases represents an unprecedented opportu-
nity to support a wide-range of medical and adminis-
trative decisions. Predictive tasks are becoming increas-
ingly triggered by the growing amount, quality, tempo-
ral range and integration of healthcare data through
multi-dimensional structures. Medical predictive tasks
aim to classify upcoming healthcare needs for a better
planning of resources [7] and for the development of care
plans before emergencies occur, preventively increasing
health while decreasing costs of care. Our hypothesis
is that the knowledge-guided discovery of temporal pat-
terns is critical to support medical decisions.

Although there are data mappings for the ready-
application of time-sensitive pattern miners, the ma-
jority of these mappings are not able to deal simul-
taneously with the resultant attribute-multiplicity and
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with the temporal sparsity of healthcare databases. The
mining of healthcare dynamics have been centered on
single time series as administrative feature’s vectors,
physiological signals or genomic-proteomic sequences.
Although multiple temporal patterns of interest have
been defined for these structures (including calendric
rules, motifs, episodes, sequential patterns or partially-
ordered tones [21, 20, 19]), they have not been applied
over integrated healthcare databases. Additional chal-
lenges include the need to deal with different time scales
simultaneously [2, 7] and to use temporal constraints for
a guided discovery of more interesting patterns [3].

The first contribution of this work is on defining
an expressive data mapping for the discovery of tem-
poral patterns in integrated healthcare databases. In
particular, we focus on cyclic patterns. Second, we
use these patterns to compose cyclic rules and a new
time-sensitive classifier. Third, temporal constraints are
adopted to guide the target mining methods defining
time partitions. Finally, the integrated medical pat-
terns and rules are analyzed, the classification metrics
collected, and their implications synthesized.

The document is structured as follows. In section
2, the problem of mining cyclic rules over integrated
healthcare data is motivated and the critical contribu-
tions from related research streams covered. Section 3
formalizes the target task and describes the proposed
solution. Finally, results and key implications are syn-
thesized in section 4.

2 Background and Motivation

Time is a critical dimension when extracting knowledge
from large-scale healthcare databases. In this context,
hidden patterns across the monitored healthcare aspects
do not necessarily exist or hold throughout the whole
time period covered by the database, but only in some
time intervals with recurrent and, potentially, periodic
nature. Their discovery can be used to improve care
pathways, detect inefficiencies, allocate resources, and
study drug reactions and treatment effects.

Temporal pattern mining in healthcare.

Multiple types of temporal patterns have been



adopted for healthcare domains, including sequential
patterns, episodes, calendric patterns, relations among
interval-based events, cyclic rules and motifs [9, 21, 25].
Temporal patterns have been used to mine temporal as-
sociations, clinical prediction tasks, clustering of health
profiles, among other tasks [7]. Challenges of mining
temporal patterns in large repositories of patient records
are synthesized in [22] and assessed using summariza-
tion techniques. Disease anticipation is addressed in
[28] using sequential patterns relying on administrative
health records tracking drug prescriptions, hospitaliza-
tions, and daily hospital activities. The combination
of administrative data with omic data is pointed as a
decisive step to characterize disease progression [7].

Minimal sets of temporal patterns have been pro-
posed to predict the risk of developing thrombocytope-
nia [5]. State-based characterization using Markov mod-
els was, among others, applied to predict the risk of
stroke in sickle cell anemia [27]. Approaches relying on
temporal abstractions have been largely used for both
physiological signals and coarse-grained medical data
[30]. Time-annotated sequences was proposed to extend
sequential patterns, where precedences between events
is annotated with a duration, to describe the follow-up
of liver transplantations [8]. Bellazzi et al. [7] provide
an additional wide-set of temporal data mining appli-
cations, with an heightened incidence on physiological
signals and molecular data.

On the need to mine integrated healthcare data.

In the last decade, new integrated patient-centric
data sources emerged. Countries as United Kingdom
and Netherlands, already track patients’ movements
across health providers, payors and suppliers. The
changing landscape has been shaped by: i) consumer-
pushed demand through direct-access to risk and di-
agnosis information outside of the hospital setting, 1)
new requirements for drug and treatment development,
i11) the support of medical decisions for quality com-
pliance, and iv) remote home monitoring. Databases
are increasingly less fragmented, with appearing both
cross-country and cross-player offerings, as provided by
Cegedim and IMS!. Health records are commonly the
means to organize the wide variety of health-related
events (as laboratory results, prescriptions, treatments
or diagnostics) into a single and compact fact [15].

TOther relevant sources include databases derived from claims
(Ingenix, D2Hawkeye, CMS), e-health records (McKesson, GE,
PracticeFusion), imported health records (GoogleHealth, Health-
Vault), content aggregators (Walters Kluer, Reed Elsevier, Thom-
son), patient communities (Alere, Pharos, SilverLink, WebMD,
HealthBoards), consumer reports (Anthem, vimo, hospitalcom-
pare), online worksite healthcare (iTrax, webConsult), and physi-
cian portals (Medstory, Sermo, Doctors.net.uk).

However, there is still a lack of methods to mine
relevant temporal patterns over these databases. Sim-
plistic data mappings require the denormalization of
these structures into tabular datasets, which often re-
sults in the loss of temporal distances. Alternatively,
the discovery of temporal patterns has been mainly pro-
posed over single temporal structures. To deal with
multiple temporal structures derived from integrated
healthcare databases, some simplifications have been
proposed. One direction has been to apply temporal
miners to each attribute independently as in [31]. The
drawback of this solution is the loss of critical integrated
views that does not show up when each attribute is an-
alyzed separately. A second direction is to perform fea-
ture selection over sets of events with the goal of loosing
both the dimensionality and temporality, as in [6]. Dif-
ferent options, such as the use of feature vectors [18],
clustering techniques [14] and generative models [4] can
be considered under this goal. A final direction is to use
rule generation approaches from sets of events [20].

Shortcomings of temporal pattern mining methods.

The existing temporal pattern mining methods suf-
fer from two critical drawbacks. First, they are not
able to effectively deal with different time granulari-
ties simultaneously. Second, the few methods able to
deal with multiple attributes (transactional data) are
limited by non-robust and inflexible representations of
time [9]. The work on mining temporal patterns on
transactional sequences has been centered on the anal-
ysis of precedences, thus neglecting temporal distances
with the exception of few gap-based methods [2].

Temporal constraints to guide mining tasks.

Sequential constraints have been captured through
regular languages, context-free grammars and acyclic
graphs [12, 19]. Taxonomic and temporal constraints
were proposed between items in sequences [29], and in-
cluded during the pruning of large pattern-based struc-
tures [26]. Calendric constraints have been also pro-
posed [24]. To avoid the blocking of novel patterns, a
hierarchy of constraint relaxations for itemset sequences
ranging from conservative to distance-based approxi-
mations is introduced in [2]. D2PM framework [3]
uses an ontology to impose flexible constraints captured
through taxonomical, relational and compositional con-
straints deep into the mining process. A language for
the specification of periodic temporal patterns with non-
strict time boundaries is proposed in [10].

Temporal constraints are needed to support the in-
corporation of time regions and scales of interest. Back-
ground knowledge is, thus, of critical value to mine
integrated healthcare data as it guides the definition
of time windows; provides methods to bridge multi-
ple time granularities and to remove spurious correla-



tions; and allows for incrementally improved results by
refining the way domain-knowledge is represented. Un-
derstandably, mining methods cannot rely on combi-
natorial options to compose time windows when deal-
ing with large-scale databases. Currently, time par-
titioning strategies include clustering, pseudo-items,
fuzzy-characterization, split-based sequential-trees, or
symbolic-interleaving [20, 19]. However, there is the
need for a more flexible constraining of temporal regions
and scales of interest to avoid a bias towards regions
driven by spurious patterns.

On temporal pattern-based classification.

Few works have proposed the use of temporal
patterns to assist classification and prediction tasks. A
rule-based classifier using time-interval patterns [25] and
alternative predictors based on static patterns [7] are
examples. When targeting transactional sequences, as
we do in this work, sequential patterns are generally
the target temporal patterns. These patterns have
been combined with naive Bayesian classifiers [16] and
decision trees [13], or simply ranked with scores that
identify the patterns more able to discriminate a specific
class. However, such methods are not able to capture
temporal distances. To the best of our knowledge
there are not yet attempts on the combination of
transactional and time-sensitive patterns to perform
classification. Nevertheless, existing directions provide
critical principles for their definition.

3 Methods

Having motivated the need for knowledge-guided tem-
poral mining methods over integrated healthcare data,
in this section we incrementally propose methods to an-
swer this problem.

3.1 The Proposed Data Mapping

DEFINITION 3.1. Let ¥ be an alphabet of symbols, and
0 be a timestamp. A time sequence w € T™P is an
ordered multi-set of events (0;,0;):

{(Ui,ﬂi)\m:{aﬂ, ~~;Uip};gij S Ej,giJrl > 81,221, ..,’Il},

where n € N is its length, p € N its multivariate
order, and T™P is the set of all time sequences.

A time series is a time sequence where the oc-
curring events are temporally equally distant, not al-
lowing for co-occurrences and sparsity. Exemplify-
ing, y={(0,7),(3-5,27), (>5,37),(2,47)} € T*! is an
univariate time series, while y = {([2 21], 27), ([3
19],57), ([3 19],57)} € T%? is a multivariate time se-
quence of p = 2 order. Common time sequences with
p > 1 order include lab tests or bedside measurements.

DEFINITION 3.2. Let an item o be an element from an

Health Record Entries Fact Table Dimensions

Entry Date Key (FK)

Health
Record

Time Patient
Patient Key (FK)

Responsible Provider Key (FK)

Diagnosis Keys (Multivalued, time varying)
Treatment Keys (Multivalued, time varying)
Prescription Keys (Multivalued, time varying)
Comment (FK)

Entry Type (FK) ———Fact dimension to classify the facts

AmOunt g Measured value from procedure or lab test
Flag Categorical value from procedure or lab test
Series and Photo Pointer«e= Pointer to spatio and temporal series

Provider

| Diagnostic Employee

Lab Result l
‘ Prescription

| Treatment

Figure 1: Health record-centered multi-dimensional structure

alphabet 3. An itemset I is an orderedset of items. A
transaction or event is a tuple e = (I,t), where e.l is
an itemset and e.t a timestamp.

DEFINITION 3.3. A transactional sequence or itemset
sequence, s € [, is an ordered set of itemsets <
e1.1,..,en I >, whose timestamps respect: Vienl < i <
n = e;.t < e;y1.t, where n=ls| is the sequence length.

The proposed data mapping method combines mul-
tiple time sequences derived from multi-dimensional
structures into a single temporal structure, an itemset
sequence. This can be viewed as an integrative solution
at the input level.

For this mapping, we assume that the target
databases rely on health records to organize the wide va-
riety of episodes into a set of compact facts. In Fig.1, an
illustrative health record is presented. Beyond the rel-
atively structured diagnosis and treatment dimensions
(with contents mandated by the insurance industry and
governments), other key dimensions shared by health-
care providers can include the calendar date, patient
identity, payer, provider, prescription and location.

Under the presence of similar databases, six critical
steps compose the proposed data mapping. First, the
split dimension, commonly the patient dimension, is
used to group instances from fact occurrences.

Second, health records commonly define what the
fact represents and the type of its fields to deal with
their large number of entries. Therefore, a denormal-
ization is needed to compose each time sequence.

Third, amounts are discretized into intervals (seen
as ordinal symbols), free-text is ignored, and complex
data is converted into categorical sets of symbols of fixed
p length (to be mapped as time sequences of p-order).

Fourth, the sets of co-occurring measures from each
fact are mapped into a multivariate time sequence T™P
using the time dimension.

Fifth, conflicts between the domains of the consid-
ered time sequences are removed (by potentially replac-
ing symbols), and their dimensionality (|X|) balanced
by aggregating ordinally related symbols.

Finally, the multiple time sequences are mapped
into an itemset sequence by performing the union of
their revised domains. An illustration is given in Fig.2.
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Figure 2: Mapping integrated databases as an itemset sequence

Under an itemset sequential-based formulation, ex-
isting temporal mining principles to deal with such
structures can be adopted to support the definition of
the target solutions.

3.2 Temporal Pattern Mining

To guide the discovery of temporal patterns, we pro-
pose methods built upon previous work done in the
D2PM framework. The D2PM framework [3] has the
goal of supporting pattern mining tasks with the use
of domain knowledge represented through an ontology
and a set of predefined constraints. An ontology has
the expressive power to allow for different time repre-
sentations, being an explicit specification of a domain.
This framework also encompasses a full range of mining
methods that receive the ontology and its constraints
as the input, and return a set of patterns that satisfy
the specified constraints as output. We chose this frame-
work since it seamlessly integrates pattern mining meth-
ods with the use of domain knowledge, and due to its
extensibility potential, thus allowing the introduction of
flexible types of constraints and algorithms.

A constraint has been defined as a predicate c :

2¥ — {true, false}. An itemset I satisfies c if c(I) is
true. In the context of D2PM, this notion is revised.

DEFINITION 3.4. A constraint is a tuple C=(60, u, 1, p)
where 6 1is the minimum support threshold, p is a
mapping function, 1 is a predicate called the equivalence
function that defines which items contribute for the
same support, and @ defines the acceptance function. A
temporal constraint is a constraint where p maps a
timestamp to a user-specified time granularity, and the
acceptance function @ works as a filter that eliminates
all the transactions that do not fit into the time interval
and granularity in consideration.

The proposed temporal constraints are similar to
the ones defined in [2], in order to include temporal cri-
teria from a temporal ontology. The time ontology used
in this work is the Reusable Time Ontology [32], based
on the notion of time line and centered on Time Point
and Time Interval classes. Concepts as Convex Time In-
terval, which consists of a connected interval on the time
line, and Non Convex Time Interval, corresponding to
non-connected time intervals as periodically occurring
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Figure 3: Temporal constraints in the reusable time ontology

events, are allowed. A Time Quantity is represented
by a real number and a Time Unit defines the level of
granularity (year, month, day, and so on). A simplified
representation of this ontology is illustrated in Fig.3.

Introducing a temporal constraint instantiates mul-
tiple temporal concepts in the adopted ontology. For
example, if one wants to consider only “transactions
taking place on the 4th June of 2012”, the constraint
immediately instantiates “4th”, “Monday” and “June”.
This facilitates the access to different time granularities
simultaneously. In this work, we select one specific type
of temporal constraints, cyclic constraints, which define
a periodicity for an itemset support through the use of
a regular non-convex time interval.

DEFINITION 3.5. Given an itemset sequence database
D, the coverage of an itemset I with respect to a
temporal region of acceptance ¢, ®,(I), is the set of
events e in D where e.tCp in which the itemset I occurs
(I Ce.l). The support of an itemset I in D respecting
@, denoted sup,(I) is its coverage size |®,(I)].

When considering simple partitions as the convex
interval p=[t;,t], the inclusion of events on its cover-
age, @[y, ;)(1), should satisfy I C el ANt; < et <ty

DEFINITION 3.6. Given an itemset sequence database
D, a temporal association rule R with respect to a
temporal partition ¢ is defined as A =, B, where A and
B are itemsets that occur in the given time partition,
and AN B = (. The support of a rule is given by
supy,(A = B) = sup,(AU B), the confidence of a rule

is given by conf,(A = B) = %‘W,
SUpy
DEFINITION 3.7. Given a dataset D = {x1,..xm},

where each instance is an itemset sequence, x; € I, and
a set of temporal constraints C; with a minimum support
threshold 6; and temporal regions of acceptance @;, the
target temporal pattern mining task aims to discover
the set of patterns that occur frequently in D for the
constrained temporal regions:

{1 | Visupy, (I) > 6;}



Using these formulations and the proposed data
mappings, the research problem can now be decomposed
into two subproblems. First, to extend existing meth-
ods that work with itemset sequences to deal with time-
stamped transactional data, as they commonly only ac-
count for precedences. Second, to adapt existing meth-
ods to allow for the inclusion of the previously defined
temporal constraints to guide the mining process.

We propose an adaptation of the Interleaved
method to deal with time and to incorporate time con-
straints deep into the mining process. In particular, we
focus on cyclic constraints.

Since we want the resulting method to be extensible
so further constraints can be included at a later time,
we propose a separation between the algorithm behavior
and constraint instantiation process. We refer the
resulting method as (TD)?Interleaved, standing for
Transactional Temporal Domain-Driven Interleaved.

DEFINITION 3.8. A time partition ¢; is the set of
transactions that take place in [i x t,(i + 1)t] region,
where t is the considered temporal granularity defined
according to a constraint-based p mapping function.

DEFINITION 3.9. Let a cycle be a tuple (p-period, k-
offset) that defines time intervals that start at the k
time point and that repeats p after p time points. Given
a minimum support threshold 6, a cyclic pattern is
defined as I(p, k), where I is an itemset, and (p,k) is
a cycle defining regular non-convex intervals where for
every temporal partition p;, Vien : @i =lip+k,ip+k+1],
the pattern has supy,(I) > 0.

An illustrative cycle is I(p = 3,0 = 1), meaning
that the o € I items co-occur periodically from 3 to 3
time units starting on the 27¢ partition of the dataset.

DEFINITION 3.10. Given a minimum support 01 and
confidence 0y thresholds, a cyclic rule is defined as
A = B(p, k), where A and B are non-overlapping item-
sets, and (p, k) defines periodic non-convex intervals p;,
where sup,, (A= B) > 61 and conf,,(A= B) > 6.

For example, for a given granularity of 2 hours,
the cyclic rule highGlucoseLevels=insuline(24h,7am) is
discovered if the rule displays levels of support and
confidence above minimum thresholds repeatedly for the
7-9am period every 24 hours.

The proposed (TD)?Interleaved is described in
three stages. The first stage, the preprocessing, re-
ceives the integrated database, performs the data map-
ping steps described previously, and converts strings
into contiguous symbolic values for an efficient mining.

The second stage is responsible for the discovery
of frequent rules in two steps. First, the pre-processed

dataset is partitioned into multiple time partitions ac-
cording to the given temporal constraints?. To consider
different levels of granularity, we recur to the mapping
function p (see Def.3.4). Finally, for an efficient group-
ing of events, since p operation is only defined in the
Reusable Time Ontology for time points, we general-
ize the notion of TimePoint to be optionally seen as a
Timelnterval with the finest duration with regards to a
specified granularity.

Second, the Interleaved algorithm is applied over
these partitions. In Ozden et al.’s work [23], the prob-
lem of finding cyclic association rules is solved over
an already partitioned dataset using convex intervals
{©0, --s n—1}. The pseudocode for the proposed adap-
tation of the interleaved variant able to deal with con-
straints is describe in Alg.1.

Input: dataset of itemset sequences with partitions <sj..sp>
Input: Lmin>0, Lmax>0 //min and maz p-period of the cycles
Input: 61 /*min support™/ 02 /*min confidence™/

Output: All cyclic association rules R(p, k):

{R | VL'min SjSL7namv7j:].p+k8up5i (R)>917 Confsi (R‘)>92}
ForEach partition s;

Run Apriori to find all rules R with sup(R)>01Aconf(R)>02
ForEach rule R: compute bitmap //1 in ith pos if R emists in s;
n = 1: cycles are assumed to exist for each single itemset
ForEach n > 1 //cycle detection

Generate cycles for n-itemsets from (n-1

ForFEach time unit t;

Collect n-itemsets from candidates in s; //skipping
Remove cycles containing n-itemset I if sups,; (I) < 61

Yt cycles //pruning

Algorithm 1: Interleaved algorithm

For each partition ¢;, an algorithm as Apriori [1]
is applied to find all the frequent temporal association
rules X=-,,Y. For each association rule, a bit sequence
of size n is created (for example 0010101), where a 0 in
position ¢ means that the rule does not stand in ¢; and a
1 states that the rule stands in ;. Finally, the algorithm
performs cycle detection relying on three properties:
cycle skipping, cycle pruning and cycle elimination.

Finally, the third stage takes as input the cyclic
patterns obtained in the previous stage, and translates
them according to the temporal ontology in a meaning-
ful way for the user.

3.3 Discriminative Temporal Patterns
The use of temporal patterns and rules is critical to
classify health states and to predict upcoming medical

ZEach timestamp corresponds to an instance of TimePoint. To

compute partitions we need to consider the Timelnterval class,
which includes sets of two or more TimePoints. Additionally,
when the time intervals do not correspond to connected intervals,
they are instanced as members of the NonConvexTimelnterval
class, as the previously introduced RegularNonConvexTimelnter-
val constraints (e.g. “every Friday in December”).



conditions as the need for a surgery. For this we propose
a method to mine discriminative sets of patterns for a
specific condition, which receives labeled instances as
input, mines temporal patterns by applying the previ-
ously introduced methods, and delivers a discriminative
model as output.

First, the complete set of cyclic patterns is gen-
erated for each medical condition and their confidence
evaluated to compose a new type of rules of the form
I = ¢;, where I is a cyclic pattern and ¢; is the class.
Second, and similarly to CMAR [17], the cyclic-based
rules are inserted in a tree structure if: i) the x? test
over the rule is above an user specified « significance
level, and if ii) the tree does not contain a rule with
higher priority. A rule R; : I; = c is said to have
priority over Ry : Is = c if I O Lor if:

conf(R1) > conf(Rz2) V (conf(Ri)=conf(R2) A sup(R1) >
sup(Rz)) V (conf(R1)=conf(R2) A sup(R1)=sup(R2)A |I1|<|I2|)

Finally, the tree is pruned using the rules’ priority?.

In addition to this discriminative method, we pro-
pose a classifier, C?P (Classification from Cyclic Pat-
terns), that relies on a discriminative set of patterns
for each condition/class to compose the learning model
— (pattern,weight,class). The great challenge for this
classifier is the testing step. Cyclic patterns emerge
from a population of patients, and, therefore, one should
not expect to find discriminative cyclic patterns within
a given patient. The need for periodic care interven-
tions is not a common individual profile but an emerg-
ing collective profile. For this reason, we consider a
weighting criteria, cycles matching score, per patient’s
pattern proportional to the number of matching occur-
rences against discriminative cyclic patterns.

Given a specific testing patient, for all the dis-
criminative cyclic patterns we use the learner to deter-
mine the instantiated patterns and their cycles match-
ing score. The strength of each group of conditions is
calculated using a Weighted Chi Squared (WCS)* mea-
sure as in [17], which is finally combined with the cycles
matching score.

The strongest condition is outputted as the esti-
mated class if we want a deterministic classifier, other-
wise the computed strength for each class can be seen
as its probabilistic value.

3 Alternative scoring methods include probabilist induction [31]

and optimization metrics based on confusion matrices [11]

Wwes = Zr(x2(I) x x2(I))/MCS(I), where MCS is the
Maximum Chi Squared: MCS(I = ¢) = (min(sup(l), sup(c)) —
sup(I)sup(c)/N)? x N x e, where N is the number of testing
instances and e = 1/sup(A)sup(c)+1/sup(A)N — sup(c) +1/N —
sup(A)sup(c) + 1/(N — sup(A))(N — sup(c))

4 Results

To assess the performance of the proposed solution, we
first describe the properties of the target healthcare
database. Second, we present key observations from the
collected cyclic patterns, and perform an experimental
evaluation of the proposed method using results from
pattern-based classification against medical conditions.
Finally, their implications are synthesized.

4.1 Target Dataset

To evaluate the proposed solutions, a database that in-
tegrates healthcare data across hospitals, clinics, phar-
macies and laboratories was adopted. This database
monitors several aspects per patient across multiple spe-
cialties. According to the proposed data mapping, such
scheme was denormalized using the patient dimension,
multiple time sequences with discretized domains were
defined using the time dimension, and the target time-
sensitive itemset sequence per patient composed. For
simplicity, in this section we only present the integrated
observations for the available records of the following
time sequences: health condition, provider, illness sever-
ity index, specialty and required procedures.

4.2 Temporal Patterns and Rules
The proposed (TD)?Interleaved method was run with
constraint-guided varying levels of granularity (month,
trimester and semester), support and confidence. Each
granularity determines the number of time partitions to
be considered in the data. From the finer (month) to the
coarser (semester) granularity, there is a corresponding
increase in the mean number of transactions assigned to
each partition. For month, quarter and semester scale,
we have 36, 13 and 6 partitions with a mean number of
transactions of 2161, 5985, and 12967, respectively.
Fig.4 shows the total running time, the number of
cycles per pattern and the total number patterns de-
rived from the application of the (TD)?Interleaved algo-
rithm using alternative support levels and two illustra-
tive granularities — month and quarter — for a fix confi-
dence level (0.75). Three observations can be retrieved.
First, when comparing the running time across the sev-
eral granularities, we observe that the performance de-
grades for finer granularities. This means that the com-
plexity of this task is more affected by the cycles com-
putation (inter-transactional) than by the discovery of
rules within a given time partition (intra-transactional).
Second, the number of cycles per rule was found to be
higher for finer granularities and, understandably, to de-
crease with an increasing support. For finer partitions
the number of options for the p cycle period is higher,
which, when combined with alternative offsets, gives
rise to this observation. Finally, the number of cyclic
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rules strongly increases for lower support levels, and
become hardly available for supports thresholds above
10%. This is a consequence of the nature of integrated
healthcare databases, where a cyclic medical condition
of interest is commonly related with a specific specialty
and, therefore, has a significantly low support.

Fig.5 characterizes the discovered rules based on
their number of cycles (excluding different offsets) and
periodicity (including different offsets). Two key obser-
vations are retrieved. First, for a month granularity,
there is a large portion of rules with a high number of
cycles. These are rules that sustain levels of support
for a high number of partitions. Lifespan rules can be
adopted to remove rules with such behavior. Second,
periodicity values do not only coincide with trivial cy-
cles (as yearly or semester periodicities), but capture
other ranges with potential healthcare significance.

Table 1 shows a small set of illustrative frequent
patterns and rules retrieved using the target database®.
The first cyclic pattern, P1, informs that a combined
visit of two specialties A=1 and A=2 by patients

5Results were sanitized to protect data confidentiality issues

ID Cycles Granularity

P1 {A=1,A=2,D=3}(p=12,0=0)(p=12,0=11) Month
P2 {A=5,B=8,B=2,C=1}(p=2,0=0)(p=4,0=1) Quarter
Rl {A=2D=2}={A=7,B=3}(p=6,0=3)(p=6,0=4) Month
R2 {B=5}={C=T7}(p=4,0=1) Quarter
Table 1: Illustrative sanitized set of cyclic patterns and rules

obtained from the target database

Rule Conf. Score
{B=3,C=1,D=3}(p=12,0=11)=>Surgery 92% 85
{B=2,D=2}(p=2,0=0)(p=4,0=1)=-Surgery 90% 84
{B=4,D=0}(p=2,0=0)(p=2,0=1)=NoSurgery 2% 82
{B=5,B=1}(p=4,0=3)=Surgery 89% 81

Table 2: Tlustrative discriminative rules to predict a condition

with medium-to-high severity indexes® (D=3) appears
cyclically in the 1%¢ (period=12, offset=0) and 11**
month (period=12, offset=10) of the year.

The R2 cyclic rule informs that the need for a spe-
cific procedure C=7 is implied for patients with respi-
ratory defficiencies (B=>5) with heightened incidence on
the second quarter of every year. By disclosing the sup-
port of a pattern across the time scale we can test its
overall strength. This rule has the following quarters
support (three years) — 37, 120, 30, 32, 35, 132, 28,
29, 39, 131, 41 and 28 — meaning that there is clearly
stronger than alternative cycles for the same rule.

The use of these temporal patterns and rules moti-
vate the importance of retrieving temporal rules using
the proposed data mapping. Note that cyclic rules are
not illustrated to convey how healthcare value systems
can benefit from their discovery, but, rather, as an illus-
trative case of a temporal rule that sustains integrated
healthcare profiles.

4.3 Pattern-based Classification

Multiple temporal medical conditions as the need for
a specific treatment or monitoring can be subjected to
characterization or prediction. An illustrative discrimi-
native set of cycle-based rules that support the charac-
terization of the need for a surgery on the last quarter
is depicted in Table 2. This table presents how different
cyclic patterns induct with varying levels of strength the
class under assessment.

Additionally, Fig.6 illustrates key classification met-
rics when predicting the need for a specific procedure
on the last quarter. Note that there are not yet clas-
sifiers able to use the target databases with whom we
can establish comparisons. Comparison against tabu-
lar classifiers was not included as a simple denormal-
ization of events per patient would result in a database

SIndexes were discretized and balanced (section 3.1)
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Figure 6: Accuracy, sensitivity and specificity of the target
classifier to predict the need for a surgery on the last quarter

with more than 1000 attributes’ , which turns the learn-
ing task impracticable and leads to accuracy rates near
50% (similarly to a random classifier). Additionally, se-
quence classifiers are only able to receive a single time
series as input, which is a structurally different task.

To compute the metrics for this prediction task, the
data from the last quarter was removed and the classes
per patient were computed using the medical condition.
We adopted a 10-fold cross-validation. Three observa-
tions can be made. First, performance improves when
classification relies on cyclic patterns mined under lower
thresholds. This results from the fact that generally
the patterns with lower support generate classification
rules with higher confidence, since spurious patterns (as
co-informative specialties and procedures) tend to no
longer compose the majority of patterns.

Second, the observed sensitivity and specificity lev-
els are interestingly similar. This is because the posi-
tive condition (having surgery) is related with the set of
rules with higher confidence (since it relies on a wider
set of very specific patterns). Despite this behavior fa-
vors true positives, such unbalanced discriminative set
of rules turns also the classifier more susceptible to Type
IT errors (false negatives).

Finally, accuracy rates seem to have space for
improvement. That is, we hypothesize that the accuracy
levels not only result from the natural unpredictability
of health profiles or from the task complexity. A core
reason is the fact that cyclic patterns emerge for a
population, and, therefore, can hardly be fully find
within a given patient. Although, within the testing
stage, we use a weighting criteria to consider patterns
that do not necessarily repeat for a patient under
evaluation®, the isolated use of cyclic patterns still
provides an incomplete temporal picture. For this, the
complementary use of temporal rules (beyond cyclic) for
prediction tasks is a promising direction.

4.4 TImplications
Methodological Implications
Common integrated healthcare profiles of interest

Mean of 10 occurrences for 5 time sequences over 36 months

8 Approximates the task to traditional rule-based classification

are only shared by a small portion of the overall
target population. For this reason, low support and
high confidence thresholds should be adopted to find
temporal rules of interest. Additionally, constraints
relying on equivalence functions (Def.3.4) should be
complementary defined to remove spurious patterns as
multiple temporal patterns (as periodicities) that derive
from a single pattern (as a lifespan-holding pattern).

Two implications result from the efficiency obser-
vations. First, when mining temporal rules from large-
scale healthcare databases, it is critical to bound their
lifespan to avoid a high number of partitions. This can
be done recurring to sliding time windows. Second, an
exploitation of multiple granularities should start from
coarser to finer scales, with the patterns obtained for
coarser time scales potentially adopted to compose 1
and ¢ functions (Def.3.4) that guide the search space
over finer granularities. This can be done by extending
monotonicity principles across time scales.

Finally, the high number of temporal patterns and
of their internal configurations (as multiple periodicities
and offsets for cyclic patterns) claim for an extension of
existing condensed representations to include the time
dimension. This results in reduced discriminative sets
of patterns more prone to medical validation.

Healthcare Implications

As individuals move across locations, specialties
and care providers, a coherent historical picture be-
comes available. At a global level, emerging temporal
patterns, as periodic patterns, are critical for planning
resources and programs, or to discriminate integrated
profiles related with a medical condition (e.g. to assess
the impact of procedures and prescriptions in upcoming
health states). Temporal patterns can also be use to
support personalized medical decisions. Here, temporal
patterns as periodicities that only gain significance for
a population should be complemented with additional
temporal patterns to maximize predictive performance.

In the conducted experiment, integrated cyclic rules
were discovered using multiple coarse-grained temporal
granularities. However, their discovery using finer time
scales are also allowed by the proposed method, through
the simple inclusion of new temporal constraints. This
is increasingly required for hourly and daily analysis of
integrated healthcare data collected from tele-wearables
as remote glucose monitors, pacemakers, spiro-meter
and smart-shirts within mobile-health programs.

5 Discussion

This work motivates the task of mining temporal
patterns in healthcare databases using temporal con-
straints, and synthesizes the limitations and contribu-
tions of related research streams to answer the problem.



Cyclic rules are selected to illustrate how temporal pat-
terns can integrate multiple properties when mined over
time-sensitive itemset sequences.

The key contributions of this work are: i) the defi-
nition of an expressive data mapping for the discovery
of temporal patterns in integrated healthcare databases,
i) the proposal of a method for the inclusion of expres-
sive temporal constraints to support the pattern dis-
covery under multiple time scales, 4ii) the extension of
cyclic-rules mining methods to deal with timestamped
transactional data, and iv) the definition of a new clas-
sifier that uses cyclic patterns to characterize, discrimi-
nate and predict healthcare conditions.

The conducted experiments hold evidence for the
utility and efficiency of mining cyclic rules using non-
convex time constraints. Additionally, the observed per-
formance for the selected prediction task opens a door
for the inclusion of new temporal patterns to anticipate
medical conditions from integrated healthcare profiles.
This extension is simple as the proposed data mapping,
time-partitioning guidance, and pattern-ranking scheme
are independent from the underlying type of patterns.
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