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Abstract Statistical evaluation of biclustering solutions is essential to guarantee the
absence of spurious relations and to validate the high number of scientific state-
ments inferred from unsupervised data analysis without a proper statistical ground.
Most biclustering methods rely on merit functions to discover biclusters with specific
homogeneity criteria. However, strong homogeneity does not guarantee the statistical
significance of biclustering solutions. Furthermore, although some biclustering meth-
ods test the statistical significance of specific types of biclusters, there are no methods
to assess the significance of flexible biclusteringmodels. This work proposes amethod
to evaluate the statistical significance of biclustering solutions. It integrates state-of-
the-art statistical views on the significance of local patterns and extends them with
new principles to assess the significance of biclusters with additive, multiplicative,
symmetric, order-preserving and plaid coherencies. The proposed statistical tests pro-
vide the unprecedented possibility to minimize the number of false positive biclusters
without incurring on false negatives, and to compare state-of-the-art biclustering algo-
rithms according to the statistical significance of their outputs. Results on synthetic
and real data support the soundness and relevance of the proposed contributions, and
stress the need to combine significance and homogeneity criteria to guide the search
for biclusters.
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1 Introduction

Given a real-valued or symbolic matrix, biclustering seeks to find subsets of rows with
specific homogeneity across a subset of columns. Biclustering has been applied for the
analysis of gene expression data, biological and social networks, collaborative filtering
data, growth phenotype data, genomic structural variations, text data, chemical data,
among other applications (Henriques et al. 2015; Gnatyshak et al. 2012; Henriques
and Madeira 2016b; Alzahrani et al. 2017; Madeira and Oliveira 2004). Despite the
relevance of the biclustering task for several biomedical and social applications, there
is not yet an accepted ground truth on how to guarantee the statistical significance of
biclustering solutions. This is due to the fact that most of the existing approaches are
guided by merit functions to guarantee the homogeneity of biclusters, but commonly
do not subject them to sound statistical evaluation. Understandably, optimizing homo-
geneity levels is insufficient since good levels of homogeneity can appear by chance
in the sample data (commonly observed for small biclusters).

A few statistical views are available to assess the significance of specific types of
constant biclusters (Califano et al. 2000; Bellay et al. 2011; Ramon et al. 2013), such
as dense biclusters (Tanay et al. 2002), low-variance biclusters (Lee et al. 2015), and
constant biclusters with sequential constraints (Madeira and Oliveira 2007). How-
ever, these views are not generalizable towards more flexible coherencies, including
biclusters with varying coherency strength and additive, multiplicative, plaid or order-
preserving assumptions. Furthermore, the statistical evaluation of biclusters is also
challenged by the need to guarantee that the retrieved biclusters deviate from expec-
tations. As a result, statistical assessments should be able to minimize the risk of false
positive discoveries (biclusters that appear by chance on the sample data) without
increasing the risk of excluding relevant biclusters (false negatives).

This work explores why existing efforts in the field of biclustering are not yet able
to address the enumerated problems (insufficiency of homogeneity criteria and chal-
lenges associated with the statistical assessment of biclusters with flexible coherency);
surveys the limitations and contributions frombiclustering and related research streams
(including pattern mining and inferential statistics/estimation theory); and proposes
a statistical method to efficiently test the significance of biclustering solutions with
a strict upper limit on the risk of false discoveries. This assessment can be used to
either filter biclusters or as a sound heuristic to narrow the search space of biclustering
algorithms. In this context, this work provides five major contributions:

1. sound statistical tests able to evaluate the significance of (real-valued) biclusters
with constant coherency;

2. first statistical tests to robustly assess: 1) additivemodels, 2)multiplicativemodels,
3) plaid models, 4) order-preserving models, 5) symmetric models;

3. theoretical and empirical analysis on how coherency impacts significance;
4. a newmulti-hypothesis correction to test deviation fromexpectations, thus address-

ing computational bottlenecks of non-conservative corrections while minimizing
the risk of false negatives of conservative corrections;
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Fig. 1 Challenges and proposed contributions to evaluate biclustering solutions

5. principles to guarantee the assessment of biclustering solutions with arbitrary-high
levels of noise and missing values, and to consistently combine significance and
homogeneity views for a complete evaluation.

These contributions are critical to:

– validate the increasing number of implications that are derived from real data
without statistically sound guarantees;

– evaluate and compare state-of-the-art biclustering algorithms with regards to the
significance of their solutions;

– output solutions without spurious biclusters (false positives/negatives);
– offer a sound criteria to reduce the high number of biclusters outputted by exhaus-
tive approaches;

– guide the biclustering tasks, promoting the efficiency of searches.

These contributions are consistently integrated within an evaluationmethod, imple-
mented in the BSig (Biclustering Significance) toolbox.1 Figure1 summarizes the
enumerated problems and contributions.

Accordingly, this paper is organized as follows. Section 2 provides background con-
cepts. Section 3 surveys the current challenges and relevant contributions to address
the target problem. Section 4 proposes the statistical principles to robustly evaluate
biclustering solutions with varying coherency and quality; and introduces the BSig
method to consistently combine these principles. Section 5 provides empirical evi-
dence of the relevance and soundness of the proposed method. It further compares

1 https://web.ist.utl.pt/rmch/software/bsig/.
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Fig. 2 Illustrative discrete biclusters with varying coherency assumption and quality

state-of-the-art biclustering algorithms regarding their statistical significance. Finally,
the contributions and implications of this work are synthesized.

2 Background

Definition 1 Given a matrix, A = (X,Y ), with a set of rows X = {x1, .., xN }, set of
columns Y = {y1, .., yM }, and elements ai j ∈ R relating row i and column j :

– A bicluster B = (I, J ) is a n × m submatrix of A, where I = (i1, .., in) ⊂ X is
a subset of rows and J = ( j1, .., jm) ⊂ Y is a subset of columns;

– The biclustering task aims to identify a set of biclusters B = {B1, .., Bs} such
that each bicluster Bk = (Ik, Jk) satisfies specific homogeneity criteria.

The homogeneity criteria are commonly guaranteed through the use of a merit
function, such as the variance of the values in a bicluster (Madeira and Oliveira 2004).
In stochastic approaches, a set of parameters that describe the biclustering solution
are learned by optimizing the merit (or likelihood) function (Hochreiter et al. 2010).
Alternatively, merit functions can be defined to locally maximize greedy iterative
searches, to combine row- and column-based clusters, to exploit matrices recursively,
or to guide the space exploration in exhaustive searches (Madeira and Oliveira 2004).

The merit function determines the coherency and quality of biclusters. The
coherency of a bicluster is defined by the observed correlation of values (coherency
assumption) and by the allowed deviation from expectations (coherency strength). A
bicluster can have coherency of values across its rows, columns or overall elements,
with values typically following constant, additive, multiplicative, symmetric, order-
preserving and plaid assumptions (Henriques et al. 2015). The quality of a set of
biclusters is defined by the type and amount of accommodated noise. Definitions 2-
4 formalize these concepts, and Fig. 2 illustrates biclusters with varying coherency
assumptions. Table 6 in appendix motivates the relevance of assessing biclusters with
flexible coherency by listing biological, clinical and social data contexts where such
biclusters are commonly found.

Definition 2 Let the elements in a bicluster ai j ∈ (I, J ) have coherency across rows
ai j = c j + γi + ηi j (or columns ai j = ci + γ j + ηi j ), where c j (or ci ) is the value of
column j (or row i), γi (or γ j ) is the adjustment for row i (or column j), and ηi j is
the noise factor of ai j .

Definition 3 Let Ā be the amplitude of the range of values in a matrix A. Given
a real-valued matrix A, the coherency strength is a range δ ∈ [0, Ā], such that
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ai j = c j + γi +ηi j where ηi j ∈ [−δ/2, δ/2]. Given a symbolic matrix, the coherency
strength δ is defined by the number of symbols L, δ = 1

|L| .

Definition 4 The γ factors define the coherency assumption: constant when γ = 0,
multiplicative if ai j is better described by ciγ j + ηi j (or c jγi + ηi j ), and additive
otherwise. Symmetries can be accommodated on rows, ai j × ki where ki ∈ {1,−1}.
Order-preserving assumption is verified when the values of rows induce the same
linear ordering across columns. A plaid assumption considers the cumulative effect
of the contributions from multiple biclusters on areas where their rows and columns
overlap.

Definition 5 The bicluster pattern ϕB is the ordered set of values in the absence of
adjustment and noise factors: ϕB = {c j | y j ∈ J } for coherency across rows (or
ϕB = {ci | xi ∈ I } for column-based coherency). The bicluster support supB is the
number of rows n = |I | (or columns m = |J |) respecting ϕB .

Given the illustrative additive bicluster with coherency on rows B = ({x1, x2, x3},
{y1, y2, y3}) from Fig. 2 where ai j ∈ N

+. This bicluster can be described by ai j =
c j + γi with pattern ϕB = {c1 = 1, c2 = 3, c3 = 2}, supported by three rows with
additive factors γ1 = 0, γ2 = 3 and γ3 = 2.

To our knowledge, there are no contributions to assess the significance of biclus-
tering solutions with flexible coherency (Definition 2-4). Nevertheless, mappings
between pattern mining and biclustering have been recently proposed by Henriques
et al. (2015) (see Definition 6), opening a new direction for robust assessments since
sound statistical views have been largely researched in the context of pattern mining
(Gionis et al. 2007; Kirsch et al. 2012).

Definition 6 Let L be a finite set of items, and P a pattern be a composition of
items (itemset I , rule I1 → I2 or sequence I1..In , where Ii ⊆ L). Given a set
of transactions D = {P1, .., Pn}, let the coverage ΦP of a pattern P be the set of
transactions in D in which P occurs ({i | P ⊆ Pi }), its support supP to be the
coverage size (| ΦP |), and its length to be the number of items (|P|). Given D and a
minimum support and length thresholds, θ1 and θ2, pattern mining aims to compute:
{(P, ΦP ) | supP ≥ θ1 ∧ |P| ≥ θ2}.

Given a matrix A, a set of transactions D can be derived by: 1) concatenating ai j
discretized elements with their column indexes (to learn constant patterns according
to Henriques andMadeira 2014b) or 2) ordering columns according to their values per
row (to learn order-preserving patterns according to Henriques and Madeira 2014a).
Let ΨP of a pattern P in D be its columns, and ΥP be its items in L. Given A,
pattern-based biclustering aims to learn a set of biclusters ∪k Bk from patterns ∪k Pk
(discovered on transactions D derived from A) by mapping Ik = ΦPk , Jk = ΨPk and
ϕBk = ΥP .

Figure 3 maps a (symbolic) matrix into two distinct transactional databases (given
by index concatenations and orderings) for the subsequent discovery of constant and
order-preserving biclusters derived from frequent patterns.

To motivate the target problem, consider a discrete matrix with 1000 rows, 200
identically distributed columns and 5 symbols uniformly distributed. Assume that we
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Fig. 3 Pattern-based biclustering (Henriques et al. 2015): discovery of two illustrative biclusters with
constant and order-preserving assumptions based on frequent itemsets and frequent subsequences from
transactional data mapped from the input data matrix

observe a pattern with constant symbols on 3 columns across 25 rows. Is the associated
(pattern-based) bicluster, B, statistically significant? The probability of the pattern
occurrence is pϕB = 1/53. A binomial calculus shows that the probability to have at
least 25 supporting rows is pB = 5.0E-3. Although pB is considerably low, we need
to consider the space of all similar biclusters, s = 53, to guarantee it deviates from
expectations. Assuming the conservative Bonferroni correction at α = 0.05, pB is
assessed againstα/s = 4E-4. Under these assumptions, B is rejected. Understandably,
this illustrative assessment needs to be revised to control false negatives and enable
the evaluation of real-valued biclusters with noise and non-constant coherencies.

3 Related work

3.1 Limitations of the state-of-the-art evaluation of biclustering solutions

Despite the rapidly increasing number of contributions on the field of biclustering,
assessing the statistical significance of biclustering solutions has been poorly explored
(Henriques 2016). We discuss below why this is the case and identify the major
limitations of existing efforts.

Optimization and scoring schema. Stochastic approaches for biclustering rely on
multivariate distributions to approximate data (Hochreiter et al. 2010). However, the
learned distributions are not considered for further testing the significance of biclus-
ters. Instead, they just derive biclusters from the learned parameters as soon as specific
convergence criteria are satisfied. Alternative approaches for biclustering (Madeira
and Oliveira 2004) commonly define an objective metric of the homogeneity of the
biclusters to either guide the discovery, sort the found biclusters and/or filter the dis-
covered bicluster. Understandably, these functions do not guarantee that a bicluster is
not found by chance in the sample data. Small biclusters can have high levels of homo-
geneity by chance. Some of the available merit functions compensate this undesirable
effect by weighting the size of biclusters to benefit larger biclusters (Mitra and Banka
2006). However, this is insufficient to guarantee the significance of biclusters and often
promotes a weak homogeneity, increasing the risk of false positive discoveries.

Testing homogeneity levels. Statistical tests have been applied to guarantee that homo-
geneity is below a residual error with a particular significance and statistical power
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(Wang et al. 2002). Serin and Vingron (2011) proposed tests to guarantee the com-
pactness of biclusters by verifying if the exclusion or inclusion of specific rows or
columns improves their homogeneity. However, these tests also suffer from the previ-
ous problem: homogeneity does not prevent a bicluster from occurring by chance.

Domain-driven significance. Statistical tests can be also used to guarantee the domain
relevance of each bicluster by computing the enriched terms of a bicluster against
a knowledge base (Huang et al. 2009). Noureen et al. (2009) compared the perfor-
mance of biclustering algorithms on gene expression data. Pio et al. (2012) proposed
a t Test to evaluate the hypothesis that rows/columns within the same biclusters are
more functionally similar according to enriched terms in Gene Ontology (GO) than
rows/columns belonging to different biclusters. Although domain-driven indicators
can be considered to be the ultimate criteria to assess biclustering solutions, they suf-
fer from three major drawbacks. First, knowledge bases are incomplete and prone to
errors. Second, domain-driven evaluation only targets one dimension of the bicluster
at a time (either the group of rows or columns). Third, domain significance and sta-
tistical significance are not always in agreement. In this context, domain-driven views
should be complemented with statistical significance views to better assess or promote
the relevance of biclusters.

Testing specific types of biclusters.A few biclustering methods perform robust tests to
guarantee the significance of their solutions (Califano et al. 2000; Ramon et al. 2013;
Tanay et al. 2002; Bellay et al. 2011). However, these tests cannot be easily extended
to evaluate flexible and noisy biclustering solutions (whose relevance is highlighted
in Table 6 in appendix).

Koyuturk et al. (2004) proposed an objective statistical function to test unusually
dense biclusters in binarized matrices by assuming that values are binomially dis-
tributed. Tanay et al. (2002) proposed a generalized assessment of dense biclusters
by mapping the matrix into a weighted graph (weights are assumed to be normally
distributed) and computing a p value for each bicluster (subgraph) based on the proba-
bility of finding a bicluster with at least the sameweight. However, even in the presence
of corrections, this assessment is optimistically biased and only applicable to biclusters
with differential values. Lee et al. (2015), Balakrishnan et al. (2011) and Chen and Xu
(2016) proposed alternative and rigorous statistical frameworks to test dense biclusters
using finite distributions. Despite their relevance, the provided formulations are meant
to test biclusters with low variance (as these works tackle the problem of submatrix
localization) and assume that the observed data is well described by an univariate
distribution. eCCC-Biclustering (Madeira and Oliveira 2007) assesses noise-tolerant
constant biclusters B with contiguous columns (given by a string pattern ϕB) by com-
puting the probability of a bicluster with the same size of B to occur by chance in a
matrix with the same frequency of contiguous pairs of symbols or ranges of values
(first-order Markov assumption). Finally, Ramon et al. (2013), Bellay et al. (2011) and
Califano et al. (2000) propose alternative statistical tests to assess the probability of a
constant bicluster to deviate from different forms of background noise.

Despite the relevance of the surveyed works, they can only handle specific forms
of constant coherency, and therefore their approaches are not applicable to assess
biclustering solutions outputted by alternative algorithms.
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3.2 Contributions from related streams of research

A substantial portion of the contributions for the statistical assessment of local regu-
larities has been developed in the context of pattern mining (PM) (Gionis et al. 2007;
Kirsch et al. 2012). In PM, and according to Definition 6, a pattern can be mapped
into a bicluster with coherency across rows and no noise (ηi j = 0). The relevance of
a pattern is defined by its support (number of rows) and length (number of columns).
The statistical significance of a pattern is then given by the probability of its support
and/or length to deviate from expectations. Accordingly, we now survey studies that
aim to guarantee the statistical significance of pattern-based solutions and minimize
their risk towards false positives and negatives. These contributions provide the struc-
tural principles to address the target problem since, to our knowledge, no contributions
to evaluate the statistical significance of biclusters with non-trivial forms of coherency
and arbitrary tolerance to noise have been proposed to date.

To test the significance of a (pattern-based) bicluster B, the regularities of the input
matrix A, Θ , need to be adequately modeled to assess the probability of occurrence
of bicluster B, pB . pB can be computed by testing B against: 1) approximated dis-
tributions, 2) randomized synthetic datasets, and 3) hold-out data partitions. Multiple
studies approximate the distributions underlying data,Θ , by either fitting distributions
for each row xi ∼ Θi , column y j ∼ Θ j , or for the overall matrix ai j ∼ Θ (Karian and
Dudewicz 2010). Then, pB is often estimated from the joint probability of a specific
pattern ϕB to occur, pϕB , for a minimum number of rows by computing Binomial
tails (Madeira et al. 2010). Instead of relying on the observed data, some approaches
generate multiple synthetic datasets from the underlying data regularities Θ (Kirsch
et al. 2012). Here, pB can be estimated by testing the ϕB support in the observed data
against the h generated datasets.2 Gionis et al. (2007) generated datasets based on
all arrangements of transactions that satisfy the exact item frequencies and average
transaction lengths of the original dataset. Megiddo and Srikant (1998) relaxed this
criteria, by assuming independence of items among transactions while preserving their
frequencies. Monte Carlo sampling is an additional option (Kirsch et al. 2012). Webb
(2007) proposed a hold-out method to control the false discovery rate by testing the
support of patterns found in the exploratory and holdout partitions using paired t tests.

In pattern discovery, density functions that compare the observed support supB
against the expected support ˆsupB (with σ̂ (supB) deviation) have been proposed by
using one of the previously surveyed assessment options. Significance ratios include:
supB/ ˆsupB and |supB- ˆsupB |/σ̂ (supB), among others3 (DuMouchel 1999; Kirsch
et al. 2012). Scores to identify spurious pattern discoveries have been also proposed by
Bolton et al. (2002). Alternative scores have been proposed in the context of Bayesian
analyzes by Silberschatz and Tuzhilin (1996) and association rule mining by Scheffer
(2005), Hämälinen and Nykänen (2008) and Zhang et al. (2004). The problem with

2 An illustrative statistical test is to rely on the percentage of synthetic datasets with support higher than
θ̂ : p(x) = 1

h Σh
i=1 f (x − θ̂ ), where f (z) = 1 if z ≤ 0 and 0 otherwise.

3 ((1− v(B))/(1− E[v(B)])) · (E[v(B)]/v(B)), where v(B) is the fraction of transactions with some but
not all ϕB items, and E[v(B)] is the expectation of v(B) in a random dataset (Aggarwal and Yu 1998).
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the use of ratios is that, instead of measuring the probability of a pattern’s occurrence,
ratios are subjective indicators of its relevance.

To address this problem, statistical tests have been proposed. χ2 tests were pro-
posed by Silverstein et al. (1998) (and revised by DuMouchel and Pregibon 2001)
to assess a pattern based on the degree of dependence among its constituent items
using synthetic data. DuMouchel (1999) and DuMouchel and Pregibon (2001) pro-
posed Bayesian assessments with shrinkage estimates to provide a conservative true
probability of support’s significance and hence minimize the number of false discov-
eries. The statistical significance has been also estimated from a Bayesian network
with parameters derived from Θ (Jaroszewicz and Scheffer 2005). However, these
Bayesian estimates neither provide a general mechanism for applying hypothesis tests
nor assess deviations from expectations. Kirsch et al. (2012) identify a global and
meaningful support threshold ρ that yields a substantial deviation fromwhat would be
expected in a random dataset with the same item frequencies. Although global param-
eters can be inferred efficiently and used right-away as an heuristic for biclustering
searches, small yet significant biclusters (very low ϕB) are incorrectly seen as false
positive discoveries.

Finally, the works of Ramon et al. (2013), Bellay et al. (2011) and Califano et al.
(2000) test the probability of constant biclusters to occur against randomized data
with different forms of background noise. However, these tests are deemed to assess
solutions of a specific algorithm, not being generalizable.

Deviation from expectations. To guarantee that the probability of occurrence of a
bicluster deviates from the expected probability, its significance needs to be cor-
rected against the space of similar biclusters. The space of similar biclusters depends
essentially on the allowed coherencies, placed similarity criteria (e.g. biclusters with
the same area or pattern length) and applicable relaxations (Bay and Pazzani 2001).
For a given space, correction procedures commonly rely on the family-wise error
rate (FWER) – the probability of accepting at least one false positive (flagging a
non-significant subspace as significant). To avoid a large increase in the number of
neglected relevant biclusters (false negatives), non-conservative options, such as Holm
(1979) and Hochbert procedures, can be used and still verify the FWER constraint.
Alternatively, non-FWER procedures for multi-hypotheses can be placed to minimize
false negatives, while still providing adequate guarantees on the risk of false positives
(Benjamini and Yekutieli 2001; Benjamini and Hochberg 1995).

4 Statistical evaluation of biclustering solutions

The solution space is organized as follows. First, we extend the surveyed statisti-
cal views in the context of pattern mining to assess constant biclustering solutions
Sect. 4.1). In this context, new statistical tests are proposed together with a new cor-
rection procedure able to simultaneously minimize type-I errors (false positives) and
type-II errors (false negatives). These contributions are then further extended to: (1)
assess additive, multiplicative, symmetric and order-preserving models Sect. 4.2); (2)
assess bicusters with arbitrary levels of noise and missings (Sect. 4.3); and (3) address
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intrinsic challenges related with the assessment of real-valued biclusters (Sect. 4.4).
Finally, BSig (Biclustering Significance) method is introduced (Sect. 4.5).

4.1 Significance of constant biclusters

Given a set of items L, a discrete bicluster B is referred as perfect if it does not
contain noisy elements, ai j ∈ L ∧ ηi j = 0. Under the mapping between pattern
mining (PM) and biclustering proposed by Henriques et al. (2015), the surveyed PM-
based statistical views (Sect. 3.2) are applicable to assess discrete, perfect constant
biclusters. To this aim, and according to related work, local and global statistical
tests can be defined (against the approximated data regularities, permuted/randomized
data or hold-out partitions) using either stochastic or frequentist views with different
degrees of dependence. Fixing these decisions essentially depends on: 1) the properties
of the input matrix, and 2) the selected biclustering approach (as it determines the type
and noise-tolerance of biclusters). Despite the relevance of existing contributions, the
majority of them still suffer from a lack of robust statistical views and the absence
of adequate corrections. In this context, we first provide a structured view on how
these contributions can be consistently combined, and then propose a variant of the
Hochbert procedure to tackle the efficiency bottlenecks of non-conservative FWER
corrections.

Probability of occurrence pB . When coherency is observed across rows, binomial
tails can be used to robustly compute the probability of a bicluster B = (I, J ) with
pattern ϕB to occur across a set of rows, p′

B = P(Z ≥ |I |) with Z ∼ Bin(pϕB , |X |),
where pϕB is the probability of the ϕB items to occur. Consider n = |I |, m = |J |,
N = |X | and M = |Y | to be, respectively, the number of rows and columns in a
given bicluster and the number of rows and columns of the inputted dataset. This
probability, given by (1), essentially depends on pϕB and on the size of both the
bicluster and the input matrix. The significance needs to be adjusted by the probability
of the bicluster to occur for any combination of columns, which is approximately given

by pB = 1− P(Z <| I |)(Mm) = (M
m

)
P(Z ≥| I |) when assuming that columns have a

similar distribution of items.

pB =
(
M

m

) N∑

x=n

(
N

x

)
pϕB

x (1 − pϕB )N−x (1)

Although the previous calculus allows for pB > 1 when it is likely to observe
the occurrence of more than one bicluster with ϕB pattern and at least n rows occur
for a given matrix, this probability can be bounded by 1 or, alternatively, used for
subsequent pB ≈ 0 hypothesis testing.

Similarly, a bicluster with coherency across columns has pB = (N
n

)
P(Z ≥| J |)

(2) with Z ∼ Bin(pϕB , M =| Y |). Variants can be defined to further assess biclusters
with a constant value (σ ∈ L) on both rows and columns. For this case, statistical
tests can be defined by assuming a memoryless dataset where the number of σ occur-
rences is binomially distributed. Under this assumption, the statistical tests proposed
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by Koyuturk et al. (2004) and Bellay et al. (2011) can be used to test unusually dense
biclusters in binarizedmatrices (high proportion of σ items against the remainingL\σ
items) based on the σ frequency.

The pϕB calculus essentially depends on the regularities underlying data,Θ , which
can be given by a univariate distribution, or, when independence is assumed among
columns (or rows), by a N -order (or M-order) multivariate distribution. Assuming
column independence, pϕB is either the joint probability of the observed items to occur
on the corresponding columns (e.g. P(y4 = 3)P(y5 = 6) P(y6 = 2)P(y7 = 4)) or
the sum of the Cartesian product when considering multiple orderings of ϕB values
(e.g. Σ7

j=4Πa∈{3,6,2,4}P(y j = a)). For this case, we suggest the use of dynamic
programming to avoid the redundant computation of subsets of products. Figure4
assumes items to be ordinal (ai j ∈ {0..6}) to show how the differentΘ approximations
impact the assessment of a perfect constant bicluster with coherency across rows.
Both univariate and multivariate distributions are applied, as well as varying forms
of dependency, to stress the relevance of adequately defining a null data model. The
coherency strength as implicitly defined by the number of symbols (|L| = 7) affects
both sides of the testing equation: the probability of ϕB occurrence (and consequently
pB) and the space of similar biclusters (and consequently the significance level of the
applied correction).

As illustrated, frequentist distributions can be considered to compute pϕB . They are
the default option when either a pairwise or overall form of dependency among items
in ϕB is assumed. In this context, the possible combinations of dependent items in
ϕB are thus either counted in the original dataset or used to generate the background
datasets.When coherency across rows is considered, the mean estimator for the counts
of subsets of items per row can be used. In addition to the counting of subsets of items,

Fig. 4 Illustrative assessment of a (non-noisy) constant bicluster in discrete settings
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there is the need to define principles for combining their influence to compute the prob-
ability of the overall pattern, pϕB (see the pairwise and overall dependence scenarios
provided in Fig. 4). Note that a high-order of dependency among items is only robust
for small patterns or large matrices since missing a single item from a lengthy pattern
does not contribute to its counts. This leads to overly pessimistic views of the statis-
tical significance of a bicluster, increasing the propensity of the assessment towards
type-II errors. To avoid this, frequentist views can be replaced by probabilistic views
to model different forms of dependency between based on conditional probability
calculus.

In the presence of small matrices, frequentist views are susceptible to overfit the
observed data. For these cases, a more robust strategy is to generate h background
datasets and replace the Binomial calculus by a test, such as an unilateral t-Student,
based on the h support estimates of ϕB .

This section extended the statistical principles proposed in the context of pattern
mining to: 1) allow an accurate pϕB calculus (when considering different distribu-
tions and forms of dependency), 2) guarantee their applicability to biclusters with
different forms of constant coherency, 3) avoid efficiency bottlenecks associated with
the pϕB calculus for bicluster’s patterns with non-indexed columns, and 4) avoid the
computationally expensive task of performing an arbitrary-high number of counts.

Robust and efficient corrections. Given ϕB = {3, 6, 2, 4}, when assuming columns
to be fixed, the space of similar biclusters is defined by the set of all patterns with
the same size (74 biclusters). Otherwise, larger spaces need to be considered (74

(10
4

)

biclusters), thus increasing both the probability of a pattern to occur pϕB and the
correction effect (from testing multiple hypothesis). When considering the Bonferroni
correction, the considered α confidence is simply divided by the space size s. Since
this correction assumes the space of other similar biclusters to be more significant,
pB > α/s does not imply that the occurrence of B is not significant. Thus, to avoid a
high number of false negatives (rejected biclusters that are significant), the Hochbert
correction can be applied. The p values from the s biclusters are sorted, {pB1, .., pBs},
and the p value maxpBj : ∀1≤ j≤s pB j ≤ α/(s − j + 1) is outputted as the corrected
level. Understandably, this strategy is impracticable in presence of a large number of
biclusters as it implies a high number of Binomial tail calculus.

To tackle this problem, we make use of a binary space partitioning (BSP) method
that recursively subdivides the space based on the frequency of each item. For the
introduced example, assuming that the order of items by frequency is {3,2,4,5,1,6,0},
BSP starts by computing the probability for bicluster with ϕB = {5, 5, 5, 5}, and
compares its probability with the corrected significance α/(74/2). If it is lower, then
BSP compares pB with ϕB = {6, 6, 6, 6} against α/(74/2+ 74/4), and, if lower, BSP
tests pB with ϕB = {6, 6, 0, 0} and so forth. A total of 10 tests provides already a
good approximation of the correct significance with heightened efficiency.

4.2 Significance of biclusters with non-constant coherency

Despite the relevance of the contributions fromprevious section, they cannot be applied
to assess biclusters with more flexible forms of coherency. In order to extend the pro-
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posed principles for non-constant biclusters, two aspects need to be carefully revised:
1) the pϕB calculus (affecting the Binomial tail) and, 2) the space of similar biclusters
(affecting the deviation analysis).

Additive biclusters. ConsiderR to be a finite set of integers with bijective correspon-
dence to the set of itemsL. Contrastingwith constant biclusters, the set of items per row
(column) can vary for an additive coherency across rows (columns). GivenL = {0..3},
if the items {2, 0, 1} are observed as a row of an additive bicluster, {3, 1, 2} (γ = 1)
can also be observed as an alternative row. The pattern ϕB is given by the underlying
items in the absence of shifting factors (γ = 0). pϕB thus differs from the constant
assumption since new combinations of items are allowed due to the presence of shift-
ing factors. The allowed number of shifts of an additive pattern ϕB is determined by
the difference between the maximum allowed value,maxai j (A), and the highest value
in ϕB , maxai j (ϕB), as well as by minai j (ϕB) − minai j (A). These ranges are used to
generate the shifting factors required to compute pϕB .

Although the probability of an additive pattern to occur is higher than that of a
constant pattern respecting the same ϕB , the size of the space of additive biclusters is
smaller leading to a subtler correction and higher testing significance level. Both sides
of the equation are affected. The space size, s, of an additive bicluster is defined by:

1 +
m−1∑

i=1

(
m

m − i

)
+

|L|∑

d=2

⎛

⎝
m−1∑

i=1

(
m

m − i

) ⎛

⎝
i∑

j=1

(
i

j

)
× (d − 1)i− j

⎞

⎠

⎞

⎠ (2)

The intuition behind this calculus is to count the combination of patterns with
different amplitudes. When the amplitude is Δ = 0, the m columns have the same
item, and only one count is considered. Consider m = 4, the patterns {2,2,2,2} and
{3,3,3,3} can co-occur as rows of a single additive bicluster. When the amplitude
is Δ = 1, only two items are considered and thus Σn−1

i=1

( n
n−i

)
defines the number of

possible arrangements. Form = 4, (43)+(42)+(41) = 14. Finally, when the amplitude is
higher, new arrangements are counted assuming that up tom−2 columns can be filled
with any itembetween themaximumandminimumϕB values. Considerm = 4 and the
amplitude to be3, then the last parcel of (2) is givenby (43)(

1
1)2

0+(42)((
2
2)2

0+(21)2
1)+...,

capturing the possible combinations of values with this amplitude.

Multiplicative biclusters. Similarly, multiplicative coherency impacts both pϕB and
the applied correction. GivenL = {−6..6}, if the pattern ϕB = {3,−1, 2}, is observed
within a row of a multiplicative bicluster, three additional combinations of items can
be observed (γ ∈ {−2,−1, 2}): {-6,2,-4}, {-3,1,-2} and {6,-2,4}. Contrasting with
the additive space of similar biclusters, which essentially depends on the amplitude
of values, the multiplicative space depends on the ratios between all values within a
pattern. Scaling factors can be defined by incrementally exploring γ = i and γ = 1/ i ,
where γ ∈ N∧ i ∈ N, until all the range of items are covered. The number of scaling
factors (space of similar multiplicative biclusters) for a specific ϕB with m columns is
typically less than the number of shifting factors (space of similar additive biclusters)
and is given by:

∑
ϕ∈Lm (gcd(ϕ) = 1) (3), where gcd(ϕ) is the greatest common

divisor of the m values of ϕ pattern. The idea behind this calculus is to remove the
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Fig. 5 Illustrative tests of non-noisy and discrete additive and multiplicative biclusters

patternswith scaling factors γ �= 1. If gcd(ϕ) differs from1, thismeans that the pattern
can be derived from a simpler ϕ pattern with gcd(ϕ) = 1. To avoid the generation-
and-test of all possible combinations of items, corrections can be performed using
a depth-first search and dynamic programming to avoid redundant computations of
the greatest common divisor. This is carried by storing intermediary calculus on the
respective nodes of the tree structure.

Figure 5 provides an illustrative assessment of an additive andmultiplicative biclus-
ter. It shows how the search space size and the enhanced pϕB calculus affect the
corrected significance threshold and the observed p value pB.

Order-preserving biclusters. Order-preserving biclusters are known for their flexibil-
ity, embedding constant, additive and multiplicative models (Henriques and Madeira
2014a). Their columns (rows) define a linear ordering (monotonically increasing)
respected across rows (columns). Order-preserving biclusters can simultaneously cap-
ture constant, additive and multiplicative coherencies. A bicluster with m columns is
described by one of the m! possible linear orderings. Thus, the probability of occur-
rence and the size of the space of similar order-preserving biclusters is well-defined.
The probability of occurrence of a m-length pattern ϕB is pϕB = 1/m!. Interestingly,
since every m-length pattern has equal probability of occurrence, the applied correc-
tion procedure simply needs to adjust the significance level according to the number
of similar biclusters,m!. The optimum significance level is thus α/m!. Based on these
observations, global properties, such as the minimum number of rows of a bicluster
withm columns, can be directly inferred for a N×Mmatrix by satisfying the binomial
calculus: P(Z ≥ n) < α/m!, with Z ∼ Bin(1/m!, N ).

Symmetric biclusters. A bicluster following a symmetric assumption can consider
symmetries on rows (or columns). Illustrating, the patterns {2,4,3} and {-1,-3,-2}
cannot be described by a single additive or multiplicative model, but can be described
by a symmetric additivemodel. Symmetries can be also accommodated with orderings
(Henriques and Madeira 2014a). Understandably, the presence of symmetries will
also cause the probability of occurrences to be larger as well as the corrected testing
significance level (as a result of a smaller space of similar biclusters). Similarly to the
previous coherencies, pϕB is computed by adding the probabilitieswith the symmetries
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of the allowed patterns associated with ϕB . For non-constant models, this means to
include the possible symmetries on each scaling or shifting factor associated with ϕB .
The space of a symmetric bicluster is approximately half of the original search space.
For instance, when considering symmetries over constant biclusters, the number of
comparable biclusters is given by | L |m /2 − 1.

Biclusters with plaid effects.Given a finite set of integersR, a plaid model is a compo-
sition of biclusters, ai j = ∑K

k=0 θi jk (simplified equation), where θi jk ∈ R specifies
the contribution of bicluster (Ik, Jk) for the ai j element (0 if xi /∈ Ik ∨ y j /∈ Jk) and
ai j ∈ R. In accordance with the original definition of the plaid model (Lazzeroni and
Owen 2002), θi jk is able to model biclusters with constant, additive and multiplicative
coherency assumptions. In this context, in order to statistically test a bicluster from a
plaid model, two steps are required. First, the original coherency, θi jk , associated with
an observed bicluster needs to be recovered by removing the plaid effects associated
with contributions associated with overlapping biclusters. Second, either the statis-
tical tests proposed in previous chapter or the extended tests proposed in previous
sections are applied depending on whether the observed bicluster is constant, additive
or multiplicative. Illustrating, consider an observation from an additive bicluster with
{ai2 = 3, ai3 = 5, ai5 = 2} values and contributions {ai2 = 2, ai3 = 2, ai3 = 0}
from other biclusters, then the pϕB calculus and applied correction assume that the
underlying pattern is ϕB = {0, 2, 1}.

4.3 Significance of noisy biclusters

Despite the relevance of the proposed statistical tests, they cannot be applied as-is
to assess biclusters in the presence of arbitrary-high levels of noise and missings.
Contrasting with the pattern mining task (from which the previously proposed statis-
tical tests were inspired from), biclustering is by definition prepared to tolerate noise
according to the inputted homogeneity criteria. A noisy discrete bicluster is a biclus-
ter where some of its elements ai j ∈ B do not respect the overall coherency criteria,
ηi j �= 0.

Assessing noisy biclusters. In order to compute the correct probability pB in these
cases, we propose a strategy that aims to identify the original ϕB pattern. The idea
behind this strategy is that the levels of noise can be significantly high, yet not sufficient
to corrupt expectations on the observed values. For this aim, we propose the mode
calculus to retrieve the true value. In the context of a constant bicluster, the true pattern
ϕB is given by the mode of items per column y j ∈ J . For additive and multiplicative
biclusters, this calculus is performed in three steps. First, the shifting or scaling factor
associated with each row in I are computed by assuming that the row-conditional
values do not have noise. Illustrating, given an additive bicluster with the {2, 3, 3}
items on row xi , a shifting factor γ = 2 is assigned to xi . Second, the computed
factors are applied for each row in I to retrieve the set of possible patterns (including
{0,1,1} from row xi ). The set of possible patterns form a (noisy) constant bicluster.
In this context, the mode is applied on each column to retrieve the true ϕB for the
pϕB calculus. Similarly, symmetric models rely on the identification and removal of
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Fig. 6 Retrieval of the true pattern ϕB of noisy biclusters with varying coherency

symmetric factors in order to identify the true pattern. Given a plaid model, three steps
are performed: 1) the plaid effects are removed to test separately the contributions of
each bicluster, 2) the coherency assumption underlying a given bicluster is identified,
and 3) the previous principles to retrieve the true bicluster pattern are applied. Finally,
although the assessment of noisy order-preserving biclusters does not depend on the
retrieval of the underlying true pattern, the mode of permutations can be computed to
recover the underlying orderings. Figure6 illustrates these strategies. Given the true
pattern, the proposed tests in previous sections can be directly applied to assess the
significance of noisy biclusters.

Assessing biclusters with missing values. An increasing number of biclustering algo-
rithms is able to accommodate missings in the outputted biclusters (Henriques et al.
2015). These contributions open the possibility to discover biclusters from sparse
matrices,where a biclustermay be associatedwith an arbitrary-high number ofmissing
elements. To enable the assessment of biclusters with missing elements, we similarly
propose the use of the mode calculus to retrieve the true pattern under the assumption
that at least one non-missing value is observed per column. In this context, missings
are removed from the mode calculus. In the presence of biclusters with both noisy and
missings, this strategy can be consistently combined with the previous assessment of
noisy biclusters.

Combining significance and homogeneity.Biclustering methods that tolerate high lev-
els of noise tend to deliver large biclusters, often highly significant. In these contexts,
significance comes at a cost of the tolerated noise, instead of being associated with a
non-noisy deviation from expectations. Understandably, this situation is undesirable
since it can mask the true statistical significance of the bicluster. In this context, to
guarantee more fair assessments, three strategies can be followed. First, the analysis
of significance can be complemented with the analysis of homogeneity levels.

Second, significance scores can be adjusted by the amount of noise computed using
the overall difference from the mode calculus. Illustrating, consider a bicluster with 5
rows and 3 columns and a total of 5 elements deviated from the expected true pattern. In
this context, ε = 1

3 of overall elements are noisy and therefore this fraction can be used
to weight the significance score. The fraction of identified elements as noisy can be
more effectively used to reflect the (noise-sensitive) statistical significance of a given
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bicluster. For this aim, statistical tests canbeproposedbasedon the conditional analysis
of the significance P(n ≤ x | (Σai j∈Bηi j ) < ε). Due to the inherent complexity of
this statistical test, we propose its simplification based on the Kolmogorov axiom. As
such, the p value given by the probability of a bicluster to deviate from expectations
(based on its support, length and expected pattern) can be divided by the p value
associated with the probability of a bicluster has unexpectedly low levels of noise (by
testing the amount of value deviations). In this context, if a bicluster has unexpectedly
low levels of noise, the noise p value will be close to 1 and therefore the significance
p value is not affected. Contrasting, if the bicluster tolerates a large amount of noise,
an adjustment over the original significance p value (increasing its value) is observed.

Finally, an alternative analysis is to adjust significance scores by the area of the
bicluster in order to benefit (smaller) biclusters with low probable patterns. This
score allows the differentiation between approaches that discover smaller (signifi-
cant) biclusters whose deviation is essentially due to the low pϕB and approaches
that discover larger (significant) biclusters whose deviation is essentially due to the
accommodation of noise.

4.4 Significance of real-valued biclusters

The applicability of the previous statistical views towards real-valued biclusters is
dependent on the application of discretization procedures, which can introduce uncer-
tainty, and does not account for the possibility of assessing bicluster with continuous
adjustment factors, γ ∈ R (where γ was introduced in Definition 2). Below we
describe how can discrete assessments be applied for this end without incurring in
undesirable drawbacks associated with the item-boundaries problem, and propose an
alternative strategy able to robustly bound the significance of real-valued biclusters.

“AppendixA2” extends these procedureswith new principles from integral calculus
in order to guarantee their applicability to the assessment of real-valued biclusters with
continuous ranges of shifting and scaling factors.

Noise-free discretization.The first option towards the analysis of real-valued biclusters
is to discretize data, thus mapping the discovered biclusters into discrete biclusters.
To fix an adequate alphabet length, the coherency strength, δ (Definition 3), needs to
be either given or estimated. The majority of available biclustering methods explicitly
define a coherency strength. For the few cases where coherency strength might not
be available, it can be inferred by analyzing the deviations from the expected values.
When the inputted data is associated with ranges of coherent values δ that differ for
different biclusters, a discretization procedure can be directly applied for each bicluster
(bypassing the need to estimate an overall coherency strength). The pros and cons of
alternative discretization methods, such as equal-depth, bin and distribution-centered
methods, have been largely discussed in literature (Carmona-Saez et al. 2006;Mahfouz
and Ismail 2009; Okada et al. 2007).

The mode calculus (Sect. 4.2) is then applied to deal with both structural noise
and the noise introduced from the applied discretization (associated with the item-
boundaries problem). In this context, after retrieving the discretized ϕB , the calculus of
pB should rely on continuous distributions approximated from the original values. The
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use of a continuous probabilistic view is preferable over a frequentist view in order to
minimize the errors associated with the applied discretization. Figure7a illustrates this
strategy using statistical break-points of a Gaussian distribution for data discretization.
However, real values near break-point boundaries can be assigned to different items,
leading to more uncertainty when retrieving the mode pattern.

To tackle this problem, elements with values near break-points can be assigned to
more than one item. The underlying idea is to reduce the influence of noisy elements
during the mode calculus. As such, the proposed mode calculus can be easily revised
to either equally weight co-occurring items or to ignore these elements in order to
reduce the bias of the mode calculus. Illustrating, consider a bicluster (discretized
using L = {−1, 0, 1}) with the four following observations for feature y2 ∈ J :
{a1,2 = {1}, a3,2 = {0, 1}, a5,2 = {1}, a6,2 = {0, 1}}. In this scenario, the mode for
this feature can be given by mode(1, 0, 1, 0) in the absence of multi-item assignments and
either by mode(1, 1) or mode(1, 0, 1, 1, 0, 1) in the presence of multiple items. This strategy
is also illustrated in Fig. 7a.

Range-based assessment. An alternative strategy, and the default option in BSig, is to
rely onmultiple probability estimates, one estimate per row (or column) in the bicluster,
with the coherency range δ applied around the observed value. For a constant bicluster
with coherency across rows:

p̂ϕB = T

⎛

⎝
⋃

xi∈I

{
piϕB

}
⎞

⎠ , where piϕB =
∏

y j∈J

P(ai j − δ/2 ≤ Y j ≤ ai j + δ/2)

(3)

Fig. 7 Strategies to extend the significance assessment to real-valued biclusters
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where piϕB
is the probability of the set of observed items in i th row to occur, Y j

is a random variable (with distribution drawn from values in y j column), and T is
the estimator of the true probability from the inputted n estimates. This estimator
p̂ϕB is then used to compute the Binomial tails in order to calculate the estimator
of the true probability, pB = (M

m

)
ΣN

x=n

(N
x

)
( p̂ϕB )

x
(1 − p̂ϕB )N−x (where N = |X |,

M = |Y |, n = |I | and m = |J |). Alternatively, given a set of estimates piB based
on piϕB estimates, the estimator of the true probability can be directly given by p̂B =
T({p1B, p2B, .., pnB}). For both options, the estimator T needs to be adequately defined.
We propose the median estimate and percentiles, such as the 15th and 85th percentiles,
to model the true probability of occurrence (pϕB and pB) with an error bar envelope,
providing lower and upper bounds on the significance of a bicluster. The lower and
upper bounds can be alternatively seen as conservative and optimistic estimations of
the true significance. These estimates are non-biased estimators of the true significance
(proof by Brown (1947)). Figure7b illustrates this strategy.

Equation (3) is natively prepared to assess constant biclusters, yet it can be con-
sistently extended towards additive, multiplicative, plaid and symmetric models by
applying the principles from two previous sections.

4.5 BSig method

To guarantee the correct application of the principles proposed throughout Sects. 4.1–
4.4, we propose BSig (Biclustering Signifcance). BSig is described in Algorithm 1.
Four major steps are considered. First, the null data model, Θ , is determined. To
this end, when independence between elements is assumed (default setting), Θ is
directly approximated from data by fitting multivariate distributions (according to
tests and fitting measures surveyed by Karian and Dudewicz 2010). Otherwise, row-
based counts are performed on the original dataset when N > 200 ∧ n

√
M > 5000

(see experimental evidence) and on h = 30 background datasets (generated using the
randomization principles proposed by Ojala et al. 2008) for the remaining cases.

Second, the coherency assumption and coherency strength of a given bicluster are
identified. To this end, the adjustment factors are approximated to check whether the
target bicluster is well described by a constant, additive or multiplicative coherency;
if there are localized forms noise explained by plaid effects; or if there are orderings
skewing previous checks. In the context of real-valued data, adjustment factors are then
removed and value deviations from expectancies computed to estimate the coherency
strength required for the proposed statistical tests.

Third, pϕB is estimated using Θ regularities and the principles from Sects. 4.2–
4.4 to deal with non-constant, noisy and (possibly) real-valued aspects. Only then,
statistical tests grounded on the calculus of binomial tails (1) are applied to compute
pB .

Fourth, the corrected significance is efficiently computed using the proposed
Hochbert correction by generating similarly-sized biclusters with varying ϕB pat-
tern according to a binary space partitioning procedure. Finally, the gathered p value
is tested against this corrected significance threshold.
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BSig is applied under three major assumptions: 1) considers that the coherency
of a given bicluster is well-defined; 2) when coherency strength is not known, it is
empirically estimated; and 3) relies on data fitting tests to guarantee an adequate
null data model. To our knowledge, these assumptions (estimation of the underlying
coherency and data regularities) should pertain to any method aiming to statistically
assess flexible biclustering solutions.

Algorithm 1: BSig core steps
Input: A data and B biclusters

1 Θ ← fitDist(A), ΘT ← fitDist(AT )//continuous vs. count-based
2 foreach B ∈ B do
3 if orientation(B)=column then B ← BT , A ← AT , exchange(Θ ,ΘT )
4 factors ← retrieveAdjustmentFactors(B,A)
5 if ai j ∈ R then δ ← estimateStrength(B,A,factors)
6 else δ ← 1 //assuming L � N (injective)
7 if hasPlaidEffects(B,A,factors) then
8 plaids ← removePlaidEffects(B,A,factors,B)
9 coherency ← estimateCoherencyAssumption(B,A,factors)

10 if coherency=orderPreserving then pB ← permutationTest(B) //Section 4.2
11 else if ai j ∈ R then
12 if coherency=constant then pϕB ← Eq.3 (with Θ , δ) //Section 4.4
13 else if coherency=additive then
14 pϕB ← Eq.A2 (with Θ , δ, factors) //Appendix A2
15 else pϕB ← Eq.A3 (with Θ , δ, factors) //Appendix A2
16 pB ← Eq.1 (with pϕB ) //Section 4.4
17 else
18 ϕB ← noiseTolerantPatternEstimation(B,coherency,factors) //Section 4.3
19 ΦB ← validPatterns(ϕB ,coherency,factors) //Section 4.2
20 if small(A) then pB ← noiseTolerantCountsOnBackgroundData(Θ ,h,ΦB )
21 else
22 pϕB ← computeProb(ΦB ) //Section 4.2
23 pB ← Eq.1 //Section 4.1
24 pB ← noiseProbCalibration(pB ,B,factors) //Section 4.3
25 α ← 1E-3; ϕS ← ∅
26 if ai j ∈ L then
27 foreach i ∈{1..10} do
28 ϕS ← binaryPartitioning(ϕB ,ϕS )
29 if HolmVerification(ϕS ,α) then break
30 α′ ← HolmCorrection(ϕS ,Θ)

31 if orientation(B)=column then A ← AT , exchange(Θ ,ΘT )
32 B.decision ← t-Test(pB ,α

′)

5 Results

The results were collected and analyzed in five steps. First, we undertake an in-depth
analysis of how the properties of biclusters and input data determine significance.
Second, we provide evidence for the soundness of the proposed statistical tests and
measure the impact of varying statistical decisions on the observed significance. Third,
we motivate the relevance of assessing the statistical significance of biclustering mod-
els. Fourth, we show how the coherency of biclusters affects the space of similar
biclusters and, consequently, the applied correction. Finally, we provide an initial com-
parison of state-of-the-art biclustering algorithms with varying coherency assumption
according to both the significance and homogeneity of their outputs.
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The proposed statistical methods are included in BSig toolbox.4 and implemented
in Java (JVM v1.6.0-24) The experiments were run using an Intel Core i3 1.80GHz
with 6GB of RAM.

For the experiments, we generated synthetic data and considered five gene expres-
sion datasets5,6: dlbcl to study responses to chemotherapy (Rosenwald et al. 2002),
hughes to characterize nucleosome occupancy (Lee et al. 2007), gasch to measure
yeast responses to varying environmental stimuli (Gasch et al. 2000), ycycle to study
yeast cell cycle (Tavazoie et al. 1999) and ystress to study yeast gene expression in
response to stress (Eisen et al. 1998).

Impact of n, m, N , M and pϕB in Significance Tables 1, 2 and 3 describe how the
significance of a bicluster varies with its size and coherency, with the size and regular-
ities of the original matrix, and with the probability of the ϕB pattern. These analyzes
determine the expected minimum size of a bicluster that guarantees its significance.
These size expectations can be used to guide biclustering algorithms and classifiers
reliant on discriminative biclusters.

Tables 1 and 2 show how the expected minimum number of rows in a bicluster
varies with the considered coherency strength, number of columns in the bicluster m,
and data size (number of rows, N , and columns, M). We assume pϕB to have items
with average, above-average and below-average probability of occurrence.We observe
that when moving from constant to more flexible coherencies (or looser coherency
strength), larger biclusters are required to preserve significance. The number of data
rows, N , impacts significance as it shapes the binomial tails. Given | L |= 5, m = 5
andM = 100, the expectedminimumnumber of rows is n̂ = x, n̂ = 17 and n̂ = 24 for
respectively a constant, multiplicative and additive (Δ = 0) bicluster when N = 2000,
and n̂ = x, n̂ = 81 and n̂ = 153 for the same biclusters when N = 50000. The
number of data columns, M , affects n̂ in a less accentuated way when assuming
coherency across rows. If coherency across columns is targeted, we would observe the
inverse effect: increased sensitivity to the number of data columns. Coherency strength
(number of items) also largely impacts significance. Given m = 5, N = 20000 and
M = 100 and constant coherency, for differential expression (| L |= 3): n ∈ [70, 309]
with n̂ = 153, while when considering | L |= 5: n ∈ [20, 53] with n̂ = 33. Finally,
the pattern length m strongly affects pϕB and thus the expected number of rows.
Assuming | L |= 5, N = 20000 and M = 100, then n̂ = 93, n̂ = 33 and n̂ = 12
are respectively expected for m = 3, m = 5 and m = 7 under a constant coherency
(n̂ = 610, n̂ = 59 and n̂ = 18 under an additive coherency with Δ = 2).

Table 3 explores structural properties of order-preserving biclusters. Order-
preserving significance analysis does not directly depend on data regularities,Θ . Here,
the minimum number of rows that guarantees the significance of an order-preserving
bicluster is highly sensitive to the pattern length m – e.g. n = 1012 rows for m = 4
and n = 15 rows for m = 8 (given N = 20000 and M = 100) – and to the number

4 Available in http://web.ist.utl.pt/rmch/software/bsig/.
5 http://www.bioinf.jku.at/software/fabia/gene_expression.html.
6 http://chemogenomics.stanford.edu/supplements/03nuc/datasets.html.
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of data rows N – e.g. (n = 14,m = 6) for N = 500 rows and (n = 50,m = 6) for
N = 10000 (given M = 100).

Soundness. The analysis provided in Table 4 tests the relevance of the proposed statis-
tical tests to recover only true positive biclusters from synthetic data. For this end, we
relied on available generation procedures for biclustering data (Henriques andMadeira
2015) to generate 30 synthetic datasets (N = 1000, M = 100) with 20 planted biclus-
ters (10 significant biclusters and 10 non-significant biclusters). In particular, three of
the planted significant biclusters are small yet their pattern ϕB is highly improbable.
Similarly, three of the planted non-significant biclusters are reasonably large yet the
probability of pattern ϕB to occur is above average. In this context, we assessed the
ability of exhaustive biclustering algorithms in BicPAMS (parameterized with default
behavior (Henriques et al. 2017)) to recover the true positive biclusters only when the
proposed statistical tests are used to post-filter the outputs. The results confirm the
relevance of using the proposed statistical tests to recover the true biclusters. Alterna-
tive global tests fail to correctly assess small (yet improbable) and large (yet probable)
biclusters.

Figure8 assesses the impact of assuming different distributions and dependence
degree when modeling the regularities of gene expression data (ycycle). Considering
a coherency strength given by | L |= 5, this analysis compares the significance of
the largest perfect biclusters (exhaustively mined with BicPAMS (Henriques et al.
2017)) using stochastic views, frequentist views (with pairwise and overall depen-
dence between items), and the proposed assessment method based on dynamically
selected tests as a function of the observed data size (N and M) and regularities (Θ).
Understandably, the average number of rows for the largest non-constant biclusters is
higher than the number of rows for the constant peers. However, this effect is compen-
sated by their higher pϕB , leading to comparable levels of significance against constant
biclusters. We observe that the conditional dependence between ϕB items can largely
impact the significance analysis (counts are associated with pessimistic views since
missing a single item from a lengthy pattern does not contribute to its support) and,
therefore, should be only considered for high-dimensional datasets (M > 100).

Table 4 Ability of exhaustive biclustering algorithms to recover only true biclusters from a set of 20 planted
biclusters (10 significant and 10 non-significant) in the presence and absence of local and global statistical
tests for 30 data instances (1000 × 100 setting and Jaccard-based match scores MS(B,H) and MS(H,B)

in accordance with Henriques and Madeira 2015)

Option MS(B,H)

(coverage of
significant
biclusters)

MS(H,B)

(exclusion of
non-significant
biclusters)

Fraction of
found
significant
biclusters (%)

Avg. number
of found
significant
biclusters

Avg. number of
found
non-significant
biclusters

No statistical tests 0.97 0.61 52 10.0 9.4

Global
statistical tests
(Henriques 2016)

0.84 0.81 74 8.1 2.8

Proposed statistical
tests

0.97 0.95 100 10.0 0.0
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Fig. 8 Impact of stochastic and frequentist views when assessing large biclusters discovered from ycycle
dataset

Fig. 9 Percentiles of significance of an illustrative set of biclusters selected from the outputs of ISA, Fabia
and CC algorithms collected for the ycycle dataset

Finally, we applied state-of-the-art biclusteringmethods over ycycle dataset to iden-
tify noisy biclusterswith varying properties, and then evaluated their significance using
the proposed strategies to assess real-valued biclusters. Figure9 illustrates the median,
15-percentile and 85-percentile estimators of the true significance of three illustrative
biclusters (corresponding to the 50-, 90- and 70-percentiles of the discovered biclus-
ters with regards to their statistical significance). gathered from the application of three
biclustering methods – CC (Cheng and Church 2000), ISA (Ihmels et al. 2004) and
Fabia (Hochreiter et al. 2010) – respectively prepared to discover biclusters with con-
stant, scaling and shifting factors. This analysis reveals the importance of bounding sig-
nificance whenever possible. Interestingly, although the absolute significance of ISA’s
biclusters is worse that of their peers, their variance is approximately zero (since ISA
guarantees a strong homogeneity that penalizes large biclusters). Contrasting, Fabia
and CC provide more significant biclusters at a cost of tolerating high levels of noise.

Statistical versus biological significance. To understand whether the statistical sig-
nificance of a biclustering model is correlated with its biological significance, we
conducted two analyzes provided in Table 5 and Fig. 10. Table 5 shows how the
average number of enriched gene ontology terms (p value of hypergeometric test after
correction7 below 1E-3 using) varies for significant and non-significant biclusters. For
this analysis, we applied BicPAMS with default behavior on dlbcl, hughes and gasch
datasets. From the gathered results, although it appears that statistical and biological
significance are correlated, this correlation is spurious as it is primarily explained by
a third variable: the number of rows within a bicluster. A commonly well-know draw-

7 Using Yeastract http://yeastract.com and Enrichr http://amp.pharm.mssm.edu/Enrichr.
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BSig: statistical significance of biclustering solutions

Table 5 Characterization of biclusteringmodels (found by BicPAMSwith default behavior) in gasch, dlbcl
and hughes datasets according to their: statistical significance (fraction of significant biclusters), size, and
biological significance (enriched biclusters)

Dataset Filtering criteria #Bics Average |I | × |J | Average #terms
enriched per bic

Gasch Significant 94 807 × 9 74

Non-significant 13 101 × 4 51

All 107 721 × 8 71

Dlbcl Significant 32 102 × 7 39

Non-significant 9 34 × 4 23

All 41 87 × 6 36

Hughes Significant 57 1431 × 8 69

Non-significant 11 128 × 4 47

All 68 1201 × 7 65

Fig. 10 Correlation between biological and statistical significance: number of enriched terms per bicluster
versus statistical significance of the exhaustive biclustering exploration of the gasch dataset with BicPAMS
(Henriques et al. 2017)

back of term enrichment analysis is its bias towards large (bi)clusters with a large
number of rows (columns) independently of ϕB pattern (Huang et al. 2009).

To complement this analysis, Fig. 10 plots all the biclusters discovered byBicPAMS
in the gasch dataset according to their statistical significance and number of enriched
terms (biological significance). This analysis suggests that statistical significance and
biological significance are not necessarily correlated. These analyzes pinpoint the
relevance of using both views to evaluate and (possibly) guide biclustering algorithms.

Applied correction. The impact of the coherency assumption and strength in the space
of similar biclusters is illustrated in Fig. 11. The space is here given by biclusters
with the same pattern length (m = 4). Understandably, the order-preserving space
of similar biclusters is the most flexible and therefore the most compact. The space
of similar additive biclusters increases at a significant lower rate than constant and
multiplicative spaces due to the higher chance of a pattern ϕB to be described by
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Fig. 11 Impact of coherency assumption/strength on the space of comparable biclusters

Fig. 12 Minimum probability pB to guarantee that a bicluster B deviates from expectations (using Bon-
ferroni and Hochbert procedures with α = 5%)

multiple shifting factors. The multiplicative space is comparable with constant space
due to the low probability of a pattern ϕB being described by a scaling factor γ �= 1. In
the presence of symmetries, the size of both constant and multiplicative spaces reduce
visibly.

Figure12 compares the impact of different correction procedures – Bonferroni
and the revised Hochbert (parameterized with 20 iterations to compute the adjusted
significance). For this analysis we assessed the significance of a planted bicluster (n =
20 ∧ m = 4) against a discrete dataset with N = 5000 rows and M = 100 columns
with a varying number of items (| L |∈ {4}) distributed according to N (

|L|
2 ,

|L|
5 ). The

large differences observed between the correction procedures support the relevance
of using non-conservative corrections that preserve the family-wise error in order to
reduce the risk of false negatives. This analysis also underlines the importance of using
correction procedures that take into account the different coherency assumptions for an
adequate identification of the probabilistic levels that guarantee a significant deviation
from the expected probability of occurrence. Additionally, the residual computational
complexity of the revised Hochbert procedure together with its comparable levels
of significance (against the original Hochbert procedure) support the efficiency and
effectiveness of the proposed correction.

Comparing biclustering solutions. To test the significance of biclusters discovered in
real settings, we selected five state-of-the-art biclustering algorithms8: FABIA with

8 To run experiments,weused: fabiapackage fromR,BicAT (Barkowet al. 2006) andBicPAMS (Henriques
et al. 2017) software.

123



BSig: statistical significance of biclustering solutions

Fig. 13 Comparison of significance and homogeneity of biclusters delivered from Fabia, ISA, OPSM, CC
and BicPAM over gene expression data

sparse prior (Hochreiter et al. 2010) (able to discover multiplicative biclusters), ISA
(Ihmels et al. 2004) (able to discover additive biclusters), CC (Cheng and Church
2000) (able to discover biclusters with flexible coherence that can accommodate shifts
and scales), OPSM (Ben-Dor et al. 2003) (able to discover order-preserving biclus-
ters) and BicPAM (Henriques and Madeira 2014b) (able to discover all the previous
coherencies). The number of seeds for FABIA and ISA was set to 10, the number
of iterations for OPSM was varied from 10 to 100. BicPAM was parameterized with
closed pattern representations, iterative searches with decreasing coherence strength,
and merging (70% overlap) and filtering (30% of overlap) procedures. The remain-
ing parameters of the selected algorithms were set by default. Figure13 provides an
initial view on their performance with regards to the significance and homogeneity
of their outputs for two datasets (gene expression of Yeast along a cell cycle (ycy-
cle) and under stress conditions (ystress) under a 5-item discretization. Homogeneity
was derived from the differences from the expected non-noisy pattern using a sim-
ple loss function (normalized mean squared error) between each row of the bicluster
and the mode ϕB pattern. We can observe that the proposed tests provide a sim-
plistic yet robust tool to study the significance of biclustering algorithms. CC and
Fabia discover biclusters with higher significance than ISA and BicPAM (without
post-processing options), but accommodate high amounts of noise (looser homo-
geneity levels according to merit functions sensitive to non-constant coherencies
(Yang et al. 2002)). The use of post-processing options in BicPAM is associated
with a good balance between the significance and homogeneity of the discovered
solutions. Although OPSM implements principles to guarantee the significance of
order-preserving solutions, some outputted biclusters are still below the adjusted sig-
nificance threshold.

6 Conclusions and future work

This work proposes a robust set of statistical principles, implemented within a method
termedBSig, to assess the significanceof biclustering solutionswith varying coherency
and quality.We covered the limitations of the existing statistical assessments of biclus-
tering solutions and potential contributions from related research on patternmining and
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statistics’ foundations. To answer this task, five major contributions were proposed.
First, relying on the established mapping between pattern mining and biclustering,
we consistently integrated dispersed statistical principles to assess constant biclusters
in discrete settings. Second, a new variant of Huchbert correction was proposed to
surpass the efficiency bottlenecks of non-conservation corrections, and minimize the
risk of false positive and false negative discoveries. Third, new principles were pro-
posed to extend this assessment towards flexible coherencies: additive, multiplicative,
symmetric, plaid and order-preserving assumptions. Fourth, we extended these prin-
ciples to enable assessments in noisy contexts where the underlying coherency of a
bicluster becomes blurry. In this context, in order to correctly assess large biclusters
discovered at a cost of tolerating large amounts of noise, we proposed new statistical
tests consistently integrating significance and homogeneity views. Finally, new princi-
ples were proposed to guarantee the applicability of previous tests towards real-valued
biclusters, including multiple estimators to bound the significance of biclusters and
discretization methods without susceptibility to boundary problems. In this context,
we also rely on integral calculus to enable the assessment of biclusters with continuous
ranges of shifting and scaling factors.

Results from synthetic and real data show the soundness of the proposed method
to flag false positive biclusters with varying coherency. This evidence is essential
to validate the increasing number of implications derived from the analysis of local
relations within biomedical and social data. We also conducted an experimental anal-
ysis to show how significance varies with the support, length, coherency strength,
coherency assumption and pattern of a bicluster in relation to the size, dimensionality
and regularities of the input data. We further confronted statistical and domain-driven
significance, showing that they are not always in agreement. Finally, we conducted
an initial comparison of biclustering algorithms that stress both the relevance of
revealing their statistical significance and of combining this view with homogeneity
views.

This work opens new directions for future work. The proposed principles can be
used to define heuristics to guide learning tasks. Both efficient local tests and the
inference of global constraints are critical to narrow the search space. Another rele-
vant direction is to extend the proposed statistical tests to minimize false negatives,
thus balancing type-I and type-II errors. This is particularly relevant for the unsu-
pervised analysis of high-dimensional data in order to reduce the overfitting risk
of the learned biclustering models by minimizing false positives (exclusion of non-
significant biclusters), as well as the underfitting risk by minimizing false negatives
(recovery of significant biclusters when there is evidence that the outputted set is
incomplete).

Acknowledgements This work was supported by FCT under the Neuroclinomics2 Project PTDC/EEI-
SII/1937/2014, ResearchGrantSFRH/BD/75924/2011 toRH, INESC-IDplurianualRef.UID/CEC/50021
/2013, and LASIGE Research Unit Ref. UID/CEC/00408/2013.

Compliance with Ethical Standards

Conflicts of interest The authors declare that they have no conflict of interest.

123



BSig: statistical significance of biclustering solutions

Appendix 1: Relevance of biclustering with flexible coherency

High-dimensional biomedical and social data is characterized by the presence of
biclusters with flexible coherency assumptions (Table 6). Table 6 motivates the rele-
vance of such biclusters, highlighting data contexts where their discovery is relevant
for different purposes.

Table 6 Relevance of non-constant biclusters for biomedical and social data analysis

Coherency Illustrative biclusters across biomedical and social domains

Additive and Multi-
plicative

Coherencies used to allow the occurrence of shifting and scaling factors across
observations. Illustrating, two genes may be regulated in the same subset of
conditions (features) but show different expression levels explained by a
shifting or scaling factor associated with their distinct responsiveness, or the
bias introduced by the applied measurement and preprocessing (Henriques and
Madeira 2014b). These factors are also critical to analyze physiological and
clinical data to handle the structural differences across individuals (Henriques
et al. 2015). In social domains, these factors are relevant to model social
interactions with coherent behavior but differing in the extent of frequency and
popularity of actions, and to group subjects with identical variation of
preferences during browsing and collaborative filtering (Gnatyshak et al. 2012)

Order Preserving Order-preserving biclusters were originally proposed to find genes co-expressed
within a temporal progression (such as stages of a disease or drug response)
(Ben-Dor et al. 2003). Yet, they have been also largely applied in static
biological contexts where gene expression or molecular concentrations
coherently vary across samples (Henriques and Madeira 2014a). This
coherence can be also applied to: find sets of nodes in (social and biological)
networks with an order-preserving degree of influence across another set of
nodes; to support task planning and scheduling; and to discover
order-preserving preferences from collaborative filtering data (Henriques
2016). Order-preserving biclusters can emulate constant, additive and
multiplicative coherencies, leading to more inclusive solutions with larger and
less noise-susceptible regions

Symmetric In biological contexts, symmetries are key to simultaneously capture activation
and repression mechanisms within biological processes associated with
biclusters in transcriptomic, proteomic or metabolic data (Henriques and
Madeira 2016a). In social contexts, symmetries are used to capture opposed
(yet correlated) regularities associated with trading, tweeting, browsing and
(e-)commerce activity (Henriques 2016). Symmetries can be combined with
the previous coherencies

Plaid Plaid models are essential to describe overlapping regulatory influence in
biological contexts and cumulative effects in the interactions between nodes in
social networks (Lazzeroni and Owen 2002; Mankad and Michailidis 2014).
Illustrating, consider a gene activate in a set of biological processes, a plaid
coherence can consider their cumulative effect on the expression of a gene
when more than one of these processes is active at a time. The plaid model can
be also applied to study regulatory cascades, user behavior and trading
operations, as these data contexts are also characterized by mutual influences
between biclusters (Henriques 2016)
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Appendix 2: Continuous adjustment factors

The proposed statistical tests can be extended to support biclusters with continuous
adjustment factors. Consider the {1.3, 2.2, 1.7} combination of values, a continuous
range of coherent values under additive ormultiplicative assumptions can be generated
based on the exploration of γ factors (e.g. shifting γ ∈ [−1.3, 1.8] or scaling γ ∈
[0, 1.8] factors for valuesai j ∈ [0, 4]). In order to robustly compute the pϕB probability
of additive andmultiplicativemodels, and subsequently of symmetric and plaidmodels
(with underlying additive/multiplicative assumptions), we propose a technique based
based on the integral of the product of (either slided or scaled) density probability
functions.

Continuous ranges of shifting factors

Consider the additive coherency assumption.Let themaximumandminimumobserved
values for a particular row xi ∈ I of a bicluster to be, respectively,maxJ |xi andminJ |xi .
Also consider the range of real-values of the matrix A to be [minA,maxA]. Then for
a particular pattern J|xi the shifting factors are defined by the interval γ ∈ [γ1 =
−(minA −minJ |xi ), γ2 = maxA −maxJ |xi ]. The probability of a particular value ai j
to occur under this shifting interval is:

∫ ai j+γ2

ai j+γ1

f (x) =
∫ γ2

γ1

f (x + ai j ) (A1)

where f (x) is the distribution function that approximates ai j values. This calculus
assumes that the range of observed values Â are linearly adjusted to guarantee an
unitary coherency strength δ ≈ 1. The probability of two values ai j (a1) and ai( j+1)
(a2) to occur under this shifting interval is not simply the product of their individ-
ual probabilities since a simple product would allow for non-coherent values (e.g.
{a1 + γ1, a2 + γ2/2}). In order to correctly account for the combination of values
with continuous shifting ranges, the distribution functions need to be aligned by the
target column value and multiplied. The resulting function delivers the product of the
individual probabilities. Finally, the area behind this curve between γ1 and γ2 values
is computed in order to retrieve a estimate of the probability pϕB for the Binomial tail
calculus. This strategy is illustrated in Fig. 14, under the assumption that the values in A
are either described by an Uniform or Gaussian distribution. Given ϕi

B = {ai1, .., aim}
combination of values, pϕi

B
can be approximated by:

∫ γ2

γ1

Πm
j=1 f (x + ai j ) (A2)

In order to compute this probability efficientlywe propose the calculus of its approx-
imate area by interpolating 100 points between γ1 and γ2.
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Fig. 14 Illustrative integral of the product of slided density functions to assess biclusters with continuous
ranges of shifting factors

Continuous ranges of scaling factors

The probability of occurrence of a combination of real values ϕi
B on the i th row of

a bicluster under a multiplicative coherency across rows can be approximated using
similar principles to the ones proposed in previous section. Considering maxi and
mini to be the maximum and minimum values of a given row xi and Ā to be the
range real values in A. When only positive values are allowed, the scaling range is
[γ1 = 0, γ2 = Ā/maxi ]. When negatives values are allowed the scaling range is given
by [γ1 = −d, γ2 = d] where d = max(maxi ,−mini )/( Ā/2).

The probability of multiple values to occur is given by the integral of the product of
the size-adjusted density functions for the [γ1, γ2] interval. Why the size adjustment
is necessary? Consider the pair of observed values {a1 = 1, a2 = 2.5} and the scaling
range to be γ ∈ [0, 1]. This means that the density function to estimate the a1 value is
considered for the interval [0,1], while the density function to estimate a2 is considered
over [0,2.5]. Therefore, the density functions need to be normalized with regards to
their size: f (x/a1) and f (x/a2). Given ϕi

B = {ai1, .., aim} combination of values for
i row, pϕi

B
can be approximated by:

∫ c2

c1
Πn

i=1 f (x/ai ) (A3)

Similarly, an efficient computation of the (A3) integral calculus is made available
recurring to interpolation whenever the multiplication of the inputted density func-
tions is complex. This strategy is illustrated in Fig. 15, under the assumption that
the values of the A matrix are either described by a single Uniform or Gaussian
distribution.

Appendix 3: Complementary results

Table 7 shows how the required minimum of rows that guarantee the statistical signif-
icance of a real-valued bicluster with continuous shifts/scales varies with the number
rows and columns of the input dataset. Two major observations can be retrieved. Both
the size and dimensionality of data affect the significance levels, being the effect of
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Fig. 15 Illustrative integral of the product of scaled density functions to assess biclusters with continuous
ranges of scaling factors

Table 7 Impact of data size and dimensionality on the expectedminimumnumber of observations (nmin) in
biclusters with continuous adjustment factors to guarantee their statistical significance (assuming a δ = 0.2
coherency strength, uniform background values, and additive and multiplicative coherencies with varying
ranges of allowed shifts/scales). Algorithm 1 was applied to compute statistical significance

N 200 500 2000 10000 10000 10000 10000
M 100 100 100 100 50 400 1000

m = 3 Multiplicative γ ∈ [0, 0.2] nmin 7 10 18 42 39 45 48

γ ∈ [0, 0.5] nmin 9 12 23 58 55 62 66

γ ∈ [0, 1] nmin 14 21 44 137 132 144 150

Additive γ ∈ [0, 0.2] nmin 8 11 19 44 41 48 51

γ ∈ [0, 0.5] nmin 11 15 31 82 78 87 91

γ ∈ [0, 1] nmin 14 21 44 137 132 144 150

m = 5 Multiplicative γ ∈ [0, 0.2] nmin 4 5 6 8 7 10 11

γ ∈ [0, 0.5] nmin 5 6 8 12 10 14 16

γ ∈ [0, 1] nmin 7 9 13 23 21 27 30

Additive γ ∈ [0, 0.2] nmin 6 7 9 13 11 15 17

γ ∈ [0, 0.5] nmin 7 8 11 18 16 20 23

γ ∈ [0, 1] nmin 7 9 13 23 21 27 30

varying the size of data clearly more accentuated since the assessment was applied
over biclusters with coherency across rows. Second, the observed pattern also largely
determines the computed significance levels as it determines the range of allowed
shifts and scales (Table 8). Understandably, the larger the allowed range, the higher
is the probability of a bicluster pattern to occur and thus the higher is the number of
minimum rows in the bicluster to guarantee its significance.

Figure 16 provides the graphical representation of the results gatheres throughout
Tables 1, 2 and 3, thus showing the expected minimum number of rows in a bicluster
that guarantees its significance for varying: coherency assumption, pattern expecta-
tionsϕB , coherency strength |L|, pattern lengthm, data size N , and data dimensionality
M .
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Table 8 Expected probability of different patterns to occur in biclusters with continuous shifts and scales
from data with approximately uniform distribution of values (ai j ∈[0,1])

Fig. 16 Impact of coherency strength, pattern length, data size/dimensionality on the expected minimum
number of bicluster’s rows that guarantee its statistical significance
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